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Abstract

Recently, we performed an assessment of |3 popular computational tools for discovery of
transcription factor binding sites (M. Tompa, N. Li, et al., "Assessing Computational Tools for the
Discovery of Transcription Factor Binding Sites", Nature Biotechnology, Jan. 2005). This paper
contains follow-up analysis of the assessment results, and raises and discusses some important
issues concerning the state of the art in motif discovery methods: |. We categorize the objective
functions used by existing tools, and design experiments to evaluate whether any of these objective
functions is the right one to optimize. 2. We examine various features of the data sets that were
used in the assessment, such as sequence length and motif degeneracy, and identify which features
make data sets hard for current motif discovery tools. 3. We identify an important feature that has
not yet been used by existing tools and propose a new objective function that incorporates this

feature.

For the past decade, research on identifying regulatory ele-
ments, notably the binding sites for transcription factors,
has been very intense. The problem, usually abstracted as
a search problem, takes as the input a set of sequences,
which encode the regulatory regions of genes that are
putatively co-regulated. The output consists of the regula-
tory elements (short words in the input sequences) and a
motif model that profiles them.

Numerous computational tools have been developed for
this task. Natually, evaluation of these tools is becoming
vital in this area. Recently, Tompa et al. [1] report the
results of one such assessment. In this assessment, some
popular tools are tested on datasets of four species:
human, mouse, fly and yeast. Fach dataset contains a set
of sequences planted with binding sites of one transcrip-
tion factor. The binding sites are provided in the TRANS-
FAC database [2]. Details of the datasets are explained in

[1].

Besides the result of the assessment, this work also raises
questions about the approaches used by these tools. We
discuss some interesting questions that arise from further
analysis of the assessment in [1]. We believe that tech-
niques that have been adopted in search are very power-
ful, as proven by these eminent tools. But the definition of
the search problem, especially the formulation of objec-
tive functions, leaves space for substantial improvement
in the performance of the motif discovery tool.

| Are the objective functions informative?

The first step to design a new algorithm for the motif dis-
covery problem is to choose a proper objective function.
This is critical because the objective function implements
the designer's understanding of the protein-DNA interac-
tion model. Searching for candidates that optimize the
objective function is a major step to pull out the candidate
binding sites from the background sequences. An ideal
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Figure |

Objective function: p-Value of log likelihood ratio in negative
logarithm scale. The figure exhibits the comparison of the p-
value of the log likelihood ratio between the planted motifs
("TFBS" in the legend) and that of MEME's predictions for
selected datasets from [1]: we use only "Generic" and
"Markov" among the three types of datasets (see [1]),
because in "Real" type datasets the predictions are possibly
genuine binding sites of some unannotated transcription fac-
tor other than the ones planted. The datasets are sorted in
ascending order of TFBS scores for clarity. For each dataset,
there are two scores: the score of TFBS and the score of
MEME's prediction. Points on the x-axis correspond to the
datasets for which MEME didn't make any prediction.

objective function should be able to assign the optimal
score to the true motif binding sites and nowhere else.

Although there are numerous tools available, surprisingly
the types of objective functions are not as many. Here we
examined three popular objective functions. Theoreti-
cally, for each objective function we would test whether
the score of the planted binding sites is superior to the
scores of all other sets of words in the background
sequences which are false positive predictions. This, of
course, is impractical. In practice, we chose one tool that
applies this objective function and compared the tool's
prediction, which unfortunately is often a false positive,
with the planted motif. If the planted motif has a better
score, then the gap between the two scores shows the least
extent to which the tool misses the global optimum of the
objective function. On the other hand, if the prediction
scores higher, it would suggest that the objective function
is not accurate enough to model the true binding sites.

Log likelihood ratio

This ratio and its associated forms are used by most align-
ment-driven algorithms to assess the significance of motif
candidates. When the candidates are of different lengths,
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the p-value of the ratio is used. A method to compute the
p-value is described in [3]. The log likelihood ratio of the
predicted motif m is

PT(X|¢'Z))’
Pr(X | po)

where X is the set of sequences in the dataset, Pr(X|¢, Z) is
the likelihood of the sequences X given the motif model ¢
and its binding sites Z, and Pr(X|p,) gives the likelihood
of the sequences assuming the background model p,,.

lir(m) = log(

(1)

MEME [4] carries out an EM-based procedure to search for
a model (/5 that maximizes the likelihood ratio. The local

optimum can sometimes be avoided by rerunning the
program with different initializations. Figure 1 depicts, for
each dataset from [1], the scores (the p-values of the log
likelihood ratio in the negative logarithm scale) of
MEME's predictions and the planted binding sites. For
most datasets, the predictions of MEME have higher
scores than the planted motifs. We conclude that even an
algorithm guaranteeing the global optimal solution for
the log likelihood ratio function will miss the true binding
sites in these datasets, because this objective function does
not accurately capture the nature of the binding sites.

Now, consider one dataset in detail. The dataset is an
example for which the planted motif has a higher log like-
lihood ratio score than MEME's prediction, yet we argue
that log likelihood ratio still doesn't work well as an
objective function in this case.

In a way, the motif-searching problem is a classification
problem: all the words of a certain length appearing in the
sequences should be partitioned into two classes: the
binding sites, and all the others. Training the optimal clas-
sifier equates to searching for the optimal candidate motif
model. When the log likelihood ratio is applied as the
objective function, the ultimate classifier would be a
threshold of the log likelihood ratio score so that all the
binding sites are above the threshold, and all the others
are below it. A classifier corresponding to a good predic-
tion can achieve a decent balance between the false posi-
tives and false negatives of the classification. Vice versa, if
no threshold is satisfactory enough to classify the words,
no good prediction can be found under this motif model.

To test the classifiability of this dataset, we calculated the
log likelihood ratio scores of all the words in it, including
the true binding sites, and tried out various threshold val-
ues to classify the words. Among those having scores
above the threshold, the numbers of words are counted
which belong to binding sites and which belong to the
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Figure 2

Classifiability using log likelihood ratios as thresholds. Each
bar stands for a value of the cut-off threshold to distinguish
the binding sites of the motif from background. The pair of
numbers on the top of each bar indicate the number of false
positives(FP) and the number of false negatives(FN) resulting
from the classification.

background sequences. Figure 2 indicates that no matter
what threshold we choose to identify the binding sites of
the motif, we won't be able to find a value to achieve an
acceptable balance between the sensitivity and the specif-
icity of the classification. For example, to correctly classify
all 11 true binding sites, the threshold must be chosen so
low that 130 false positives are classified as binding sites
of the motif.

It is therefore fair to say that log likelihood ratio alone will
not be able to separate the true motif from the back-
ground noise. We will return to it later.

Z-score

The Z-score measures the significance of predictions based
on their over-representation. YMF [5] searches a restricted
space defined by a consensus motif model and finds the
candidates with the top Z-scores. The form of the Z-score
is as follows:

obs(m) — E(m)

Z(m) =
(m) o(m)

(2)

where obs(m) is the actual number of occurrences of the
motif m, E(m) is the expected number of its occurrences in
the background model, and o(m) is the standard devia-
tion.
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Objective function: Z-score. The figure shows the compari-
son between the Z-scores of the planted motifs (TFBS in the
legend) and the predictions of YMF for some datasets. For
the sake of comparison simplicity, we only used datasets
("Generic" and "Markov" types only, for the same reason as
in Figure 1) when predictions of YMF and the planted motifs
have the same length.

Consensus-based algorithms such as YMF are sometimes
criticized for not being able to incorporate the true bind-
ing sites into the motif model. To focus on the objective
function and spare the limitation induced by the consen-
sus motif model, we fantasize a motif model for each
dataset that comprises the planted binding sites com-
pletely and exclusively. We calculate the Z-scores of the
predictions and the planted motifs for selected datasets, as
shown in Figure 3. Note that the competition is actually
not fair: with an expanded motif search space, the new
optimum should be at least as high as the current predic-
tion. Nevertheless, we consider the Z-score of the predic-
tion as a touchstone: any score lower than it will not be
competitive in the new search space. From Figure 3, we see
that is exactly what happens in nearly all of the tested
datasets. Note the similarity to results as shown in Figure
1 in the sense of our test: statistical over-representation as
measured by Z-score does not necessarily mean binding
preference either.

Sequence specificity

Another type of objective function emphasizes the likeli-
hood that most, if not all, sequences are potentially
bound by the transcription factor. That means a predic-
tion having multiple binding sites in one sequence and
none in the others is much less significant than a predic-
tion having a balanced number of binding sites in each
sequence. This idea is designed into ANN-Spec [6] and
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Figure 4

Objective function: sequence specificity score. The figure
shows the comparison between the sequence specificity
scores of the planted motifs (named TFBS in the legend) and
the predictions of Weeder and ANN-Spec. For the same
reason as in Figure |, only datasets of "Generic" and
"Markov" types are tested. The x-axis tells the indices of the
datasets. The datasets are sorted in ascending order of TFBS
scores for clarity. For each dataset, there are three scores:
the score of TFBS motif, Weeder's prediction, and ANN-
Spec's prediction, colored in red, blue and green respectively.
Points on the x-axis corresponds to the datasets for which
the tool didn't make any prediction.

Weeder [7]. The objective function, named sequence spe-

cificity, is defined in [7] as  follows.
i:j 1

seq(m) = 3 log(————) 3
i=1 Ei(m|po) ( )

where E;(m|p,) is the expected number of motif m's occur-
rences in sequence i assuming the background model p,
and L is the total number of sequences in the dataset.

We calculated the scores of the predictions of Weeder and
ANN-Spec and the planted motifs. The planted motif has
a higher score than the predictions of the tools for most
datasets, as illustrated in Figure 4. The obvious gap
between the scores of planted binding sites and the pre-
dictions reflects a lack of optimum of the search strategies
adopted by these tools. Recall that ANN-Spec is a general-
ized version of SEM (Stochastic EM), and Weeder uses a
greedy and heuristic search method.

Comparing Figure 4 with the other objective functions
(Figure 1, 3), this result shows certain promise that using
the sequence specificity score may often lead to the true
binding sites. From objective function point of view
solely, sequence specificity seems to have the edge for our
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datasets. An assumption of this objective function is that
most sequences in the datasets should have binding sites
of the motif. Although our data shows that tools such as
Weeder and ANN-Spec are not too sensitive to the slight
departure from this assumption, we have not tested them
on datasets with more deviation. The Z-score function is
based on the statistical over-representation solely without
any reference to biological theories. The log likelihood
ratio relies on high-quality non-gapped alignments, but
it's not clear that non-gapped alignments are powerful
enough to model the true binding sites. No objective func-
tion meets our standard that all planted motifs should
have scores at least as high as those of the predictions. We
need to understand better the conservation information
hidden among those binding sites.

2 Is this a hard dataset?

Among the questions arising from the assessment project,
a particularly interesting one is this: what makes a partic-
ular dataset so hard to solve? The answer to this question
would be helpful at both ends of the tools. For the users,
it would save time and money if a certain assurance of the
predictions is provided; for the designers, focus would be
put upon factors that account for some for the poor per-
formance of current methods.

Some features of the datasets obviously show correlations
with the tools' performance. For instance, a dataset of a
large size intuitively is not easy to handle. But, when any
feature is studied alone, its correlation with the perform-
ance of the tools is always too weak to be convincing, as
the effects of all but this feature are ignored.

We applied multiple linear regression [8], a method of
estimating the conditional expected value of one variable
Y (the dependent variable) in terms of a set of other vari-
ables X (predictor variables). It is a special type of regres-
sion in which the dependent variable is a linear function
of the "missing data" (regression coefficients W) in the
model. A general form of multiple regression can be
expressed as

E(YIX) =W, X) +¢

where f is a linear function of W, a simple example of
which is f(W, X) = W-X. ¢ is called regression residue. It
has the expected value 0, and is independent of X ("ine-
quality of variance").

The goodness-of-fit of regression is measured by the coef-
ficient of determination R2. This is the proportion of the
total variation in Y that can be explained or accounted for
by the variation in the predictor variables {X}. The higher
the value of R2, the better the model fits the data. Often R2
is adjusted for the bias brought by the degree of freedom
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(b)Multiple Regression: residue versus
estimated nCC score
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Multiple linear regression result. (a)The best-fit line. Marks on the x-axis index the datasets, which are arrayed so that the esti-
mated values of the dependent variable (the assessment scores) are in a straight line. For each dataset, the red dot is the
assessment score, measured by the best correlation coefficient score nCC (see [9]) among all the tools, and the circle on the
blue line shows the estimated value of the best-fit linear model. (b)Residues of the regression versus estimated nCC score. The
x-axis is the estimated value of the dependent variable, the y-axis is the corresponding residue. This plot shows little indication
of inequality of variance, which is an important assumption of linear regression.

of the model and the limited number of observations as

) (1-R?) .
Rad]. =R2-p x ——= , where n is the number of observa-

p-1

tions, and p is the number of predictors.

In our application of multiple linear regression, Y is the
performance of the tools for a dataset, which is measured
by the highest nucleotide-level correlation coefficient
score nCC (see [9]) among all the tools. The reason for
using the highest score is to smooth the disadvantages of
each individual tool. The predictor variables are a set of
features of a dataset which we think may be possible fac-
tors. These features include:

1. the total size of a dataset;

2. the median length of a single sequence in a dataset;

3. the number of binding sites in a dataset;

4. the density of the binding sites, which equals the

number of binding sites divided by the total size of a data-
set;

5. the fraction of null sequences (ones that do not contain
a binding site) in a dataset;

6. relative entropy of binding sites in a dataset;

7. the relative entropy-density in a dataset, which is the
overall relative entropy times the density of the binding
sites;

8. the uniformity of the binding site locations within the
sequences in a dataset. We quantified this position distri-
bution information by performing a Kolmogorov-Smir-
nov test [10] against a uniform distribution and
calculating its p-value.

We used least square fitting to calculate the regression
coefficients. The most common forms of it include least
square fitting of lines and least square fitting of polynomi-
als. In the former, only the first-order term of the predictor
variables are involved in the regression model; in the lat-
ter, higher order polynomial terms of them are also used.
Due to a limited number of observations available (the
number of "Generic" and "Markov" datasets in the analy-
sis is about thirty) compared to the number of features, we

Page 5 of 8

(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:8

(a) one dimensional conservation

o 160
% *
> * MEME
5 140 N *  TFBS | ]
-
120 * * ]
*
| K ,
100 * «
* *
80+ % * * J
* S
¥*
g * *
601 * * 1
) *
*
40 f¢ RoTE S .
* *
* " L ¢
201 * * %¥ 1
ok ¥
Ol
0 20 40 60
dataset

Figure 6

http://www.almob.org/content/1/1/8

(b) two dimensional conservation
160 \

*
*
140t !
* * MEME
1200, 4 * TFBS
*
ok ,
3 100§ N
g ¥ K
:IJ_ 80* * * ¥ % i
o *OF
-
3 *
Kk
%&% * * %
20 * * * 1
*  Kox
0 % L L
0 5 10 15
position bias

Position conservation information helps classification. In both figures, the y-axis is the negative log p-value of the log likelihood
ratio of a motif in a dataset. The x-axis in (a) is the dataset index, in (b) it is the p-value of the Kolmogorov-Smirnov test on
positions of a motif's binding sites, assuming a uniform distribution. Each point represents one dataset. For the same reason as
in Figure |, no "Real" type datasets are included. In (b) the straight green line decently classifies the two sets of points.

confined ourselves to the simplest form of linear regres-
sion: only the first-order terms are used in the fitting. As
we will discuss below, this simplification does not affect
the regression result much.

Some features are obviously not independent. For exam-
ple, relative entropy-density is the non-linear operation
(multiplication) of two other X variables, relative entropy
and density. For every set of features that are highly corre-
lated to each other, we replaced it by its subset with the

highest adjusted correlation coefficient Rgdj .

Then the best subset of features is chosen to maximize the
multiple linear regression output. The set of features that
shows the most correlation to the performance consists of
the relative entropy of the binding site alignment, the
position distribution of the binding sites in the sequences,
and the length of the single sequence in the dataset. The
result is exhibited in Figure 5(a). The adjusted coefficient

of determination Rﬁd]- is about 68%, with a p-value less

than 0.001. The regression residues versus the estimated
response (Figure 5(b)) doesn't indicate evident inequality

of variance, which is an important assumption of linear
regression the requires that regression residues are inde-
pendent of the expected value of Y.

We then ran a least square fitting of second-order polyno-
mials on these three features in the regression. The higher

order form merely improves the regression result to Rﬁdj

~70%. No second-order term has a significant coefficient
in the model. Thus, although the simple linear regression
model is learned through a greedy approach, we expect it's
stable enough to indicate the importance of these three
features in controlling the performance.

We also tried the transformations of the power family on
the dependent variable Y using the Box-Cox method [11].

A lambda value other than 1 improves the Rgdj to about

90%. The three features mentioned above again show sig-
nificance in the model. But some other features - the frac-
tion of null sequences and density particularly — which are
skipped in the first model show impact here. This con-
firms that the three features are likely important for affect-
ing the performance, but we can't rule out other features.
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Figure 7

A new obijective function using position information. The fig-
ure shows the same test as in Figure | on a new objective
function. The x-axis tells the indices of the datasets, the y-
axis the value of the objective function for the motif, either
planted (red points) or predicted by MEME (blue points).
Only datasets of "Generic" and "Markov" types are tested.
For all but one of the datasets, the planted motif has a higher
score than MEME's prediction.

It's no surprise that the sequence conservation (relative
entropy) is key to the hardness of a dataset. It turns out
that tools are actually quite robust with respect to the size
of the dataset in a large range (up to 10,000 bp). Rather,
the length of each single sequence has a bigger impact.
This is somewhat supported by our discussion of the
objective functions that sequences in a dataset should be
considered as individuals. Also, it is connected to the posi-
tion distribution information, as the longer each single
sequence is, the more significant it becomes that the bind-
ing sites are not uniformly distributed in the sequences.

3 Can other information help?

The result of the multiple regression suggests a type of
information that may help capture the hidden informa-
tion in the motif's binding sites: the conservation of the
binding sites' positions in the promoter sequences. It has
been discussed in previous work (see [12]), but never inte-
grated into the objective functions by the commonly used
tools.

As discussed above, log likelihood ratio alone is unlikely
to distinguish the true binding sites from the background
noise. Figure 6(a) shows a different view of Figure 1. The
(inaccurate) predictions from MEME serve not only as
false positives versus the planted motifs, but also perhaps
the hardest to separate from the true binding sites. A sim-
ple horizontal line classifier obviously can not separate

http://www.almob.org/content/1/1/8

the true binding sites from the predictions. In Figure 6(b),
we introduce a second number in each dataset: we per-
formed a Kolmogorov-Smirnov test on the positions of
the binding sites, and calculate its p-value assuming a uni-
form distribution as the background model. Now on the
2D plane, the axes correspond to the motifs' conservation
in both sequence and position. It's easy to see that even a
straight line classifier y - ax - b = 0 will separate the two sets
decently. Let Pry, be the y value, the negative log p-value of
the log likelihood ratio, Pr, be the x value, the negative
log p-value of Kolmogorov-Smirnov test as explained
above. Most true binding sites will fit aPr,,- Pry+ b >0,
and most false predictions of MEME will fit aPr,,- Pry+ b
< 0. The straight line in Figure 6(b) has parameters a =
13.5, b =21.

This interesting result suggests a new form of objective
function

aPrpos - Pry,

against MEME's predictions for the value of a calculated
from Figure 6(b). Figure 7 displays a very promising
result, as for all but one of the datasets the planted motif
has a higher score than MEME's prediction. Of course, this
comparison is somewhat unfair to MEME, as it wasn't try-
ing to optimize this function. But we can't help but ask
this question: if we optimize this form of objective func-
tion, will we be able to improve on the predictive accuracy
of MEME and other tools? The idea is very tempting, at
least. Of course, the "new" pursued objective function
may be some other function of these two types of conser-
vation information, as it's not necessarily linear, or if it is
linear, the coefficients a and b can vary from data set to
data set.
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