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Abstract
Background: We present the N-map method, a pairwise and asymmetrical approach which allows
us to compare sequences by taking into account evolutionary events that produce shuffled,
reversed or repeated elements. Basically, the optimal N-map of a sequence s over a sequence t is
the best way of partitioning the first sequence into N parts and placing them, possibly
complementary reversed, over the second sequence in order to maximize the sum of their gapless
alignment scores.

Results: We introduce an algorithm computing an optimal N-map with time complexity O (|s| ×
|t| × N) using O (|s| × |t| × N) memory space. Among all the numbers of parts taken in a reasonable
range, we select the value N for which the optimal N-map has the most significant score. To
evaluate this significance, we study the empirical distributions of the scores of optimal N-maps and
show that they can be approximated by normal distributions with a reasonable accuracy. We test
the functionality of the approach over random sequences on which we apply artificial evolutionary
events.

Practical Application: The method is illustrated with four case studies of pairs of sequences
involving non-standard evolutionary events.

Background
Classic alignments methods are unable to extract homol-
ogies involving shuffled, reverse-complemented or
repeated elements between sequences, despite the fact
that there are identified mechanisms of evolution of
sequences which lead to such types of homologies. This
can happen on large scale with genome rearrangements
but it can also occur on a smaller scale, for instance within
genes, with domain recombinations, duplications, exon
shufflings, etc.

On the other hand, there are few methods allowing us to
compare sequences with relaxed assumptions about con-

servation of linear order and one-to-one association of
positions between sequences [1-3]. In particular, as it is
pairwise and asymmetrical, the approach proposed in [1]
is similar to the work presented here. The authors intro-
duce the transformation distance, similar to the Leven-
stein distance between sequences, which includes editing
operations like transposition, duplication, etc. The algo-
rithmic complexity of the computation of this distance,
which was initially high, has been improved in [4].

However, the transformation distance has some draw-
backs; mainly, it does not take into account mutations. In
[2], the authors introduce the Glocal alignment method
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which allows one to compare sequences with shuffled or
inverted elements. The main idea of their work is to com-
bine local and global alignments. During the first stage,
the method selects conserved segments (local) and during
the second stage, it chains an optimal subset of the pairs
of segments previously selected (global). Many special-
ized approaches have been developed to model the spe-
cific evolutions "by blocks" of certain elements of
sequences: minisatellites [5] or swaps in proteins
sequences [6]. In the latter, the method is based on selec-
tion of common segments by local alignments scores and
can be applied in a more general framework. The
approach proposed in [3], mostly applied to more than
two sequences, proceeds in similar manner in its first
stage, then performs post-treatments and a graph repre-
sentation of common elements of sequences.

For simplicity, we present the N-maps without taking into
account inversions. Some hints will be given about how to
extend the definitions and the algorithms in order to han-
dle this type of evolution. Under this restriction, the (opti-
mal) N-map of a sequence s over a sequence t is basically
the way of cutting s into N parts that maximizes the sums
of the scores of the gapless alignments of all the N parts
against t. The gapless alignments can be local or global
and so can be the N-map. This approach can be seen as a
generalization of the "alignment with a fixed number of
gaps" method initially introduced in [7] and recently
studied in [8,9]. As this method, our approach is an
attempt to avoid the introduction of some arbitrary costs
on the transformations between sequences (like gap pen-
alties in the case of alignment). For this purpose, we need
a concrete way to determine the "best" number N of parts
for mapping a sequence s over a sequence t. As in [9], we
define this problem from a probabilistic point of view.
Practically, we choose the number of parts leading to the
most significant optimal score. The significance is empiri-
cally evaluated among pairs of independent identically
distributed (iid) random sequences of same lengths and
symbols distributions as s and t.

The rest of this paper is organized as follows. Section 1 is
devoted to formal definitions and basic properties of the
N-maps. We present the algorithms computing the opti-
mal scores and correponding N-maps of a sequence s over
a sequence t in Section 2. The algorithmic complexities of
these computations are O (|s| × |t| × N) in time and O (|s|
+ |t| × N) in memory space. These complexities have an
extra factor N with regard to the classical pairwise align-
ment algorithms. However typical values of interest of N
are small compared to the lengths of the sequences:
choosing a number of parts of the same order as the
lengths of the sequences does not make any sense. The
choice of the number of parts is discussed in Section 3, in
which we investigate the distributions of the scores of the

optimal N-maps of random sequences. In particular,
empirical evidences lead us to approximate these distribu-
tions by normal ones and to measure the significance of
optimal scores in terms of Z-values. The approach is eval-
uated in Section 4 by applying artificial evolutionary
events over random sequences and by measuring the abil-
ity of the approach to retrieve the corresponding homolo-
gous segments. Section 5 shows four case studies of
sequences (two pairs of proteins, a pair of DNA sequences
of transposon elements and a pair of sequences of genes
of microbial genomes) in which the homologies cannot
be reported by a classic alignment. Finally in Section 6, we
discuss the approach and present some research directions
we plan to explore.

The sources of the software computing N-maps are avail-
able at [10]. We also provide additional utilities to esti-
mate Z-values, represent N-maps as pictures (see Section
5), filter, merge and extract common segments.

1 Notations and Definitions
We consider sequences (or strings) over some finite alpha-
bet  of elements called letters or symbols. In practical
applications, symbols can represent nucleotides, amino
acids or genes. The elements of a sequence s are indexed
from 1 to |s|, where |s| denotes the length of s, i.e. s = s1 s2

... s|s|. For 1 ≤ i ≤ j ≤ |s|, the notation s[i, j] designates the sub-

string si si+1 ... sj. We note  the reverse sequence of s, i.e.

 = s|s| s|s|-1 ...s1. The set of all sequences of length l over

 is noted . Let s and t be two sequences. A pair of
intervals of positions ([a, b], [c, d]) is a diagonal of (s, t) if

1 ≤ a ≤ b ≤ |s|, 1 ≤ c ≤ d ≤ |t| and b - a = d - c. The first (resp.
the second) interval of a diagonal D of (s, t) will be desig-
nated as the s-interval (resp. the t-interval) of D. In order to
avoid to deal specifically with some "pathological cases",
we allow diagonals to be empty (of length 0).

Definition 1 Let s and t be two sequences. A N-map of s over
t is a N-tuple of diagonals of (s, t): [([a1, b1], [c1, d1]), ([a2,
b2], [c2, d2]), ...,([aN, bN], [cN, dN])] such that [ai, bi] ∩ [aj, bj]
= ∅ for all 1 ≤ i, j ≤ N with j ≠ i.

Without loss of generality, we assume in the following
that the diagonals of a N-map of s over t are indexed
according to the positions of their s-intervals. In particu-
lar, the first diagonal (resp. the last diagonal) is the one with
the smallest (resp. the greatest) start position of s-interval.

Notation  denotes the set of all the N-maps of s over

t.
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ŝ

 l

Ω( , )s t
N

Page 2 of 15
(page number not for citation purposes)



Algorithms for Molecular Biology 2007, 2:11 http://www.almob.org/content/2/1/11
A N-map of s over t is nothing but a peculiar type of map
from a subset of positions of s to the set of positions of t.
In other words, it associates at most one position of t to a
position of s; and none, one or several positions of s to a
position of t (See Figure 1 or Figure 2 for dotplot represen-
tation).

A given classical alignment (which is also a map between
positions) can be seen, for a certain positive integer N, as
a N-map, both of s over t and of t over s. More precisely,
an alignment with a fixed number K of gaps, like studied
in [7-9], is a (K + 1)-map which, with notations of Defini-
tion 1, verifies the additional conditions: [ci, di] ∩ [cj, dj] =
∅ and (ai - aj) × (ci - cj) > 0 for all 1 ≤ i, j ≤ K + 1 with j ≠ i.
For 0 <N ≤ K ≤ |s| and a given N-map of s over t, there is
at least one K-map defining the same map from positions
of s to positions of t.

Let  be a scoring scheme, i.e. a map from 

to �. The score associated to a N-map following  is:

As in classical alignment methods, we will consider in the
following only additive scoring schemes, i.e. defined from

a  substitution matrix π, for all lengthes l and all

pairs of sequences (u, v) ∈  × , by:

The score of an empty diagonal (l = 0) is 0.

The maximum of the scores over all the N-maps of s over

t is noted  (s, t):

An optimal N-map of s over t is a N-map with score 

(s, t). By convention, a 0-map is the empty set and  (s,
t) = 0.

Depending on whether the substitution matrix contains
negative values or not, the optimal N-map is said to be
local or global. These concepts are used by analogy with
the case of alignment. When the matrix contains only
non-negative values (global case), a corresponding opti-
mal N-map of s over t will attempt to associate each posi-
tion of s with a position of t, as in a global alignment.
When the matrix contains some negative values (local
case), the optimal N-map will be reached by considering
only subparts of s which lead to a positive contribution of
the total score when associated with a segment of t, once
more as in local alignment. Basically, a global N-map of s
over t spans the entire length of s (except possibly some
boundary positions) while a local N-map identifies N
non-overlapping segments of s with maximum scores
against t.

Some pathological situations could arise in the local case.
In particular there could be some positions i of s such that

π [si, tj] is negative for all positions j of t. Without consid-

ering empty diagonals,  (s, t) would be not always
growing with N.

  l l
l
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Dotplot representations of two 4-mapsFigure 2
Dotplot representations of two 4-maps. a) Position m is 
inside a diagonal. b) Position m is not inside a diagonal.
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Representation of the 3-map [([2, 3], [1,2]), ([4,8], [7,11]), ([11,13], [5,7])] of s over tFigure 1
Representation of the 3-map [([2, 3], [1,2]), ([4,8], [7,11]), 
([11,13], [5,7])] of s over t. The positions associated in a diag-
onal are connected by a line.
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The current software implementation incorporates vari-
ous substitution matrices in particular for amino acids
(PAM, BLOSUM, etc.).

For handling inversions, which is not allowed by Defini-
tion 1, it is first needed to extend this definition by adding
a sign to the pair of intervals:

• (+, [a, b], [c, d]) means that the positions [(a, c), (a + 1,
c + 1),...] are associated (normal case),

• (-, [a, b], [c, d]) means that the positions [(a, d), (a + 1, d
- 1),...] are associated (inversion case).

Another required extension concerns the way of calculat-
ing the score for "reverse diagonals". This point depends
on the nature of sequences. For instance in the case of
DNA sequences, the score of (-, [a, b], [c, d]) is computed
by summing the individual substitution scores of s[a, b]
against the complementary-reverse of t[c, d]. If s and t are
sequences of genes, this score is obtained by considering
s[a, b] against the reverse of t[c, d].

2 Algorithms
Given two sequences s, t and a positive integer N, we
address two problems:

• Problem 1: computing the optimal scores  (s, t)
with K running from 1 to N.

• Problem 2: outputting the diagonals of an optimal N-
map.

Computing the optimal scores
Let Best[i, j, K] be the maximal score obtained by a K-map of
s[1, i] over t ending at (i, j), i.e. such that its last diagonal
([aK, bK], [cK, dK]) verifies bK = i and dK = j. By setting Best[0,

j, K], Best[i, 0 , K] and Best[i, j, 0] to 0 for all integers i, j and K,
we have the following recurrence relation:

The correctness of this relation is straightforwardly proved
by induction. Let us consider the maximum involved in
the right part of this equation. It is equal to:

• Best[i, j, K], if the greatest score is obtained by increment-
ing the length of the last diagonal of an optimal K-map of
s[1, i] over t ending at (i, j) – then the last diagonal will end
at (i + 1, j + 1).

• , if the greatest score is obtained by

adding the diagonal of length 1 ([i + 1, i + 1], [j + 1, j + 1])
to an optimal (K - 1)-map of s[1, i] over t.

To compute the entries of Best referred to the index (i + 1),
we only need to know the entries referred to the index i.
Thus computing the optimal scores of all the K-maps of s
over t, with K from 1 to N, can be done in O (|s| × |t| × N)
time using O (|t| × N) memory space to store the dynamic
programming variables. We can introduce now the formal
algorithm Alg_1 which solves the problem of computing
the optimal scores for global or local N-maps without
inversion.

Algorithm Alg_1 takes as input two sequences s, t and a
number of parts N and returns:

• Bs and Bl, two |t| × N matrices where the entry Bs[j, K] con-
tains the maximal score of a K-map of s over t ending at
(|s|, j) – with the preceding notations Bs[j, K] = Best[|s|, j, K] –
and the entry Bl[j, K] stores the length of the last diagonal of
a K-map ending at (|s|, j) with score Bs[j, K];

• Ms and Md, two arrays of size N where the entry Ms[K]

stores the optimal score of a K-map of s over t – with the

preceding notations Ms[K] =  (s, t) = maxq ≤ |s|, p ≤ |t|

Best[q, p, K] – and the entry Md[K] stores the last diagonal of

a K-map with score Ms[K].

The correctness of Algorithm Alg_1 is proved by induction
over the positions of s. The time and memory space com-
plexities are straightforwardly analyzed.

The variables Bl and Md are not involved in the computa-
tion of the maximal scores of K-maps for 1 ≤ K ≤ N (they
will be used by the algorithm in charge of outputting the
diagonals). If we are only interested in solving Problem 1,
these variables as well as the lines 7, 10, 14 and 19 can be
deleted. Algorithm Alg_1 will still return the optimal
scores of K-maps with 0 ≤ K ≤ N in the array Ms.

Algorithm 1 Alg_1 (s, t, N, Bs, Bl, Ms, Md)

1: Bs[j, K] ← 0 ; Bl[j, K] ← 0 ; Ms[K] ← 0 ; Md[K] ← NULL ; (j = 0
... |t|, K = 0 ... N)

2: for i = 1 to |s| do

3: for j = 1 to |t| do

4: for K = N to 1 do

5: if Bs[j-1, K] ≥ Ms[k-1] then

6:  ← π[si, tj] 
+ Bs[j-1, K] ;

K

Best Best Best[ , , ] [ , ] [ , , ]
,

max , maxi j K s t i j K
k i l ti j+ +

≤ ≤
= +

+ +1 1 1 1
π [[ , , ]k l K −

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
1

max
,

[ , , ]
k i l j

k l K
≤ ≤

−Best 1

K

′Bs[ , ]j K
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7:  ← Bl[j-1, K] + 1 ;

8: else

9:  ← π[si, tj] 
+ Ms[K-1] ;

10:  ← 1;

11: end if

12: if  ≥ Ms[K] then

13: Ms[K] ←  ;

14: Md[K] ← ([i -  + 1, i], [j -  + 1, j]) ;

15: end if

16: end for

17: end for

18: swap (Bs, ) ;

19: swap (Bl, ) ;

20: end for

Theorem 1 Algorithm Alg_1 computes the optimal score of the
K-maps of a sequence s over a sequence t, for K from 1 to N, in
time O (|s| × |t| × N) using O (|s| + |t| × N) memory space.

Outputting the diagonals of an optimal N-map
Before presenting the formal algorithm, we need to intro-
duce some additional notations and results about "divid-
ing maps".

We say that a position m of s is inside a diagonal of a N-map
Γ if there is a diagonal ([a, b], [c, d]) ∈ Γ such that a ≤ m
<b (Figure 2a). This notion excludes two cases:

1. when m is not contained by any diagonal (this is usual
with local N-maps),

2. when a diagonal is exactly ending at m in its first inter-
val.

We denote as  the maximal score obtained by a

K-map of s[i,|s|] over t[j,|t|] starting at (i, j), i.e. such that its

first diagonal ([a1, b1], [c1, d1]) verifies a1 = i and c1 = j.

Lemma 1 Let s and t be two sequences, m a position of s and

N a positive integer. The optimal score of a N-map  (s, t)
is equal to the maximum of the two following quantities:

• 

• 

Proof: Let Γ = [([a1, b1], [c1, d1]), ..., ([aN, bN], [cN, dN])] be

a N-map of s over t with score  (s, t). There are two
possibilities: either the position m is inside a diagonal K

of Γ, or not. In the first case, there are a K-map Γ' ending

at [m, cK + m - aK] and a (N - K + 1)-map Γ" starting at posi-

tion [m + 1, cK + m - aK + 1] such that

, which implies

. In the second case, let K be such that m =

bK or bK <m <aK+1. There is a K-map Γ' of s[1, m] over t and a

(N - K)-map Γ" of s[m+1,|s|] over t such that

, which implies

. In both cases,  (s, t) is smaller than

max{ }.

On the other hand, for all integers 1 ≤ K ≤ N, for all posi-

tions 1 ≤ p < |t|, for all K-maps

 and for all

(N - K + 1)-maps

 the N-map

 has score , which is by definition smaller

than  (s, t). It implies that . A similar

argument establishes that  and ends the

proof.

Remark 1 Let s and t be two sequences, N a positive integer,
and [D1, ..., DN] an optimal N-map of s over t with diagonals
D1, ..., DN indexed following the increasing order of their s-
intervals.

1. For all 1 ≤ K <N, [D1, ... , DK] is an optimal K-map of

over t. Reciprocally, if is an optimal K-

map of over t then is

an optimal N-map of s over t.

′Bl[ , ]j K

′Bs[ , ]j K

′Bl[ , ]j K

′Bs[ , ]j K

′Bs[ , ]j K

′Bl[ , ]j K ′Bl[ , ]j K

′Bs

′Bl

Best[ , , ]i j K

N

1
1 1

1 1 1= +
≤ ≤ ≤ <

+ + − +max { }
;

[ , , ] [ , , ]
K N p t

m p K m p N KBest Best

  2
1

1 1= +
≤ ≤

−
+max { ( , ) ( , )}[ , ] [ ,| |]

K N
m

N K
m ss t s tK

N

  ( ) ( ) ( , )′ + ′′ =Γ Γ N s t

 N s t( , ) ≤ 1

  ( ) ( ) ( , )′ + ′′ =Γ Γ N s t

 N s t( , ) ≤ 2 N

 1 2,

′ = ′ ′ ′ ′ ′ ′Γ [([ , ],[ , ]),...,([ , ],[ , ])]a b c d a m c pK K1 1 1 1

′′ = + ′′ + ′′ ′′ ′′ ′′− + − +Γ [([ , ],[ , ]),...,([ , ],[m b p d a b cN K N K1 11 1 1 1 NN K N Kd− + − +′′1 1, ])]

Γ = ′ ′ ′ ′ ′ ′′ ′ ′′[([ , ],[ , ]),...,([ , ],[ , ]),...,(a b c d a b c dK K1 1 1 1 1 1 [[ , ],[ , ])]′′ ′′ ′′ ′′− + − + − + − +a b c dN K N K N K N K1 1 1 1

 ( ) ( )′ + ′′Γ Γ

N  1 ≤ N s t( , )

 2 ≤ N s t( , )

s aK[ , ]1 11+ − [ ,..., ]′ ′D DK1

s aK[ , ]1 11+ − [ ,..., , ,..., ]′ ′ +D D D DK K N1 1
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2. For all 1 <K ≤ N, [DK, ..., DN] is an optimal (N - K + 1)-

map of over t. Reciprocally, if is an

optimal (N - K + 1)-map of over t then

is an optimal N-map of s over t.

We are now able to introduce the formal algorithm Alg_2
which solves the problem of outputting the diagonals of
an optimal global N-map without inversion.

Algorithm Alg_2 takes as inputs two sequences s and t,
two positions i and j bounding a substring of s, and a
number of parts N. It outputs the diagonals of an optimal
N-map of s[i, j] over t ordered according to their first inter-
vals.

Algorithm 2 Alg_2 (s, i, j, t, N)

1: if N = 0 then

2: return;

3: end if

4: Smax ← -∞ ;  ;  ← NULL ;

5: Alg_1 (s[i, m], t, N, Bs, Bl, Ms, Md) ;

6: Alg_1  ; \* Loop 

*\

7: for K ← 1 to N do

8: L ← N - K + 1 ;

9: for p ← 1 to (|t| - 1) do

10: q ← |t| - p ;

11: if (Bs[p, K] + ) > Smax then

12: Smax ← Bs[p, K] +  ;

13: Dmax ← ([m - Bl[p, K] + 1, m + ], [p - Bl[p, K] +

l, p + ]) ;

14: NL ← K - 1 ; NR ← L - 1 ; jL ← m - Bl[p, K] ; iR ← m +

 + 1;

15: end if

16: end for

17: end for \* Loop  *\

18: for K ← 0 to N do

19: L ← N - K ;

20: if (Ms[K] + ) > Smax then

21: Smax ← Ms[K] + 

22: if K > 0 and Md[K] ≠ NULL then

23: ([a, b], [c, d]) ← Md[K] ; Dmax ← ([a + i - 1, b + i -
1], [c, d]) ;

24: NL ← K - 1 ; jL ← a + i - 2 ;

25: else

26: Dmax ← NULL ; NL ← 0 ;

27: end if

28: if L > 0 and  ≠ NULL then

29: ([a, b], [c, d]) ←  ;  ← ([a + m, b + m],

[c, d]) ;

30: NR ← L - 1 ; iR ← b + m + 1 ;

31: else

32:  ← NULL ; NR ← 0 ;

33: end if

34: end if

35: end for

36: Alg_2 (s, i, jL, t, NL) ;

37: Output (Dmax) ; output ( ) ;

38: Alg_2 (s, iR, j, t, NR) ;

Correctness of Algorithm Alg_2

Let us consider Best and  defined for s[i, j] as follows.

For all r such that i ≤ r ≤ j and v such that 1 ≤ v ≤ |t|, Best[r,

v, K] is the maximal score obtained by a K-map of s[i, r] over

t[1, v] ending at (r, v). Analogously,  is the max-

imal score obtained by a K-map of s[r, j] over t[v, |t|] starting

at (r, v). For all positions p of t and all 1 ≤ K ≤ N, we have

Bs[p, K] = Best[m, p, K],  (since it

is obtained from ),  and

. Following the notations of

Lemma 1, "Loop " (resp. "Loop ") parses the quanti-
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ties maximized by  (resp. by ). Thus, Lemma 1

ensures that  is stored in the variable Smax

after the execution of these two loops. If the maximum is

reached in "Loop ", the variable  is NULL and the

variable Dmax contains the diagonal including m, let us say

the Kth, of a N-map with score . Remark 1

allows us to output the Kth diagonal ([aK, bK], [cK, dK]) and

to compute recursively an optimal (K - 1)-map of

 over t, and a (N - K)-map of  over t.

If the maximum is reached in "Loop ", the variables

Dmax and  contain the two diagonals on both sides

of position m of a N-map with score . The

diagonal Dmax (resp. ) is possibly NULL – and not

outputted – if m is smaller than the first position (resp.
greater than the last position) of the N-map. Applying
again Remark 1 leads to the correctness of the algorithm.

Time and space analysis of Algorithm Alg_2
Let us consider the recursion tree of an execution of Alg_2
which outputs an optimal N-map of s over t. The root of
this tree is the initial call to Alg_2 with the parameters (s,
1, |s|, t, N), its two children are the two recursive calls in
lines 36 and 38, and so on. The depth level of recursion of
the initial call/root is 0. The depth level of another call is
recursively defined as the incremented depth level of its
direct ancestor. Before the two recursive calls at lines 36
and 38, the execution time of a call to Alg_2 with the
parameters (s, i, j, t, N) is bounded by c × (j - i + 1) × |t| ×
N, for a constant c. Time is spent essentially in the two
calls to Alg_1 at lines 5 and 6. The two recursive calls are
done with the parameters (s, i, jL, t, NL) and (s, iR, j, t, NR)
where:

• 

(1)

• NL + NR ≤ N - 1 (2)

Let us remark that because of the possibly unbalanced
repartition of N into NL and NR between the subcalls, the
Master Theorem [11], generally used to evaluate complex-
ity of divide and conquer algorithms, cannot be applied to
prove the desired time complexity.

Since the initial call is done with the parameters (s, 1, |s|,
t, N), the following assertions can be proved by induction
over the depth level of recursion.

• From Inequalities (1), the length of the substring of s
bounded by the two parameters "positions" in a call of

depth level d is smaller than .

• From Inequality (2), the sum of the parameters "number
of parts" of all the calls of depth level d is smaller than (N
- d).

Thus, the total time spent at a level of recursion d is

smaller than c ×  × |t| × N. By summing over all the

possible levels (at most N levels), it comes that the total
(including all the recursive subcalls) execution time of a
call to Alg_2 with the parameters (s, 1, |s|, t, N) is smaller
than 2 × c × |s| × |t| × N. This ends the time analysis.

The analysis of the memory space complexity is straight-
forward: each call needs only O (|t| × N) of local storage
space to run; the sequences are stored once in O (|s| + |t|)
and, from Inequality (2), there are at most N recursive
calls to Alg_2.

Theorem 2 Algorithm Alg_2 outputs the diagonals of an opti-
mal N-map of a sequence s over a sequence t in time O (|s| ×
|t| × N) using O (|s| + |t| × N) memory space.

The algorithm taking into account inversions follows the
same general outline with additional and symmetrical
dynamic programming variables for "reverse diagonals".

A similar idea can be used to compute an optimal align-
ment with a fixed number N of gaps in O (|s| × |t| × N)
time complexity using O (|s| + |t| × N) memory space. It
improves the "SANK_AL" algorithm described in [9],
which needs O (|s| × |t| × N) memory space.

3 Choice of the number of parts
Given two sequences s and t, the score of an optimal N-
map of s over t increases with N. The maximum of the
optimal scores is reached at most with N = |s| and the cor-
responding maps generally do not make sense. Some a pri-
ori knowledge could help us to decide whether the
increase of the score between the K-and the (K + 1)-map
deserves to consider an extra diagonal, for instance by
introducing a penalty growing linearly with the number of
parts.

1 2

N
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Without such a priori knowledge, a natural choice is to
consider the most significant optimal N-map: here the
one which minimizes the probability of observing an

optimal score greater than  (s, t) between a pair of iid
random sequences with the same lengths as s and t, and
with the probabilities of symbols set to the frequencies
observed over s and t. This choice needs to have informa-
tions about the probability distributions of the optimal
scores of N-maps. Even if the problem could sound more
homogeneous than the alignment case, we failed to derive
an analytical approximation of this distribution. How-
ever, two cases are quite simple to check:

N = 1 A 1-map is nothing but a gapless alignment of s and
t. The distributions of the maximal scores were well stud-
ied in the local case and are known to converge to extreme
value (EV) distributions [12].

N = |s| The optimal score of a |s|-map is obtained by sum-
ming the maximal substitution scores of all the positions
of s against the whole sequence t. Let t be fixed and s be an
iid sequence, then the scores associated to all the posi-
tions of s correspond to a set of iid random variables of

expected value  and

variance ,

where px is the probability of the symbol x in s. The opti-

mal score turns out to be a sum of |s| random variables of
this type. Thanks to the Central Limit Theorem, its distri-
bution converges with |s| to the normal distribution

. If t is not fixed but random, this dis-

tribution becomes a mixture of  with

weights depending on the probabilities of sequences t.
With reasonable assumptions about the length and the
probability distribution of t, we can neglect all the compo-
nents of the mixture except the one which has distribution

 (μ|s|, σ2 |s|) where 

and .

Figure 3 shows the evolution of the empirical density
functions of optimal scores of N-maps with N in the range
of 1 to 15. In Figure 4, we can see that the empirical den-
sity function corresponding to N = 1 in the local case is
well approximated by an extreme value distribution. As N
increases, even for small values, the empirical distribu-
tions differ more and more from extreme value distribu-
tions and approach quickly normal distributions both in
local and global cases. For a given N, the empirical distri-

butions of global optimal scores are closer to the normal
approximations than the ones of local optimal scores.

Even if the distribution of optimal scores is of unknown
form for intermediate values of N, the empirical observa-
tions show that normal approximations fit well except for
very small values. This fact leads us to measure signifi-
cance of the score of an optimal N-map in terms of Z-val-
ues as in [9]. The estimated Z-value of an optimal score

 (s, t) is the number of standard deviations separating
this score from the mean:

where  and  denote respectively the

mean and the standard deviation of the optimal scores
estimated from a given number of trials of pairs of ran-
dom sequences with the same lengths and the same fre-
quencies of symbols as s and t. The higher the Z-value of

 (s, t), the lower the probability of observing a greater
score in the normal approximation. So an optimal N-map
of s over t with a higher Z-value will be consider more sig-
nificant.

N

μ πt p t tp
= ∈ ≤ ≤∑ pxx xmax { }

| | [ , ] 1

σ π μt p t t tp

2
1

2= −≤ ≤∈∑ px xx
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( | |, | |)μ σt ts s2
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 μ π= ∈∈∑ px y x yx
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Z s t
s t s t

s t
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N
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ˆ ( , )
 = − μ

σ

ˆ ( , )μN s t ˆ ( , )σ N s t

N

Empirical and approximated density functions of the optimal scores of local (a) and global (b) N-maps (N = 1, ..., 15 from left to right)Figure 3
Empirical and approximated density functions of the optimal 
scores of local (a) and global (b) N-maps (N = 1, ..., 15 from 
left to right). The N-maps are computed using BLOSUM62 
substitution matrix (made positive by adding a constant term 
in the global case) over 15000 random sequences with the 
same lengths and symbol distributions as Case study 5.2.
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The Z-values must be taken with caution for small N – let
us say less than 5 – because the corresponding probabili-
ties are underestimated (the tails of the empirical distribu-
tions are heavier than the tails of the normal ones when N
is smaller). This point is not crucial because we use Z-val-
ues to select a relevant number of part N rather than to
assess an absolute significance of N-maps, but it could
cause an underestimation of the "real" optimal number of
parts. When the estimated most significant number of
parts is small, it may be useful to check one or two next
values.

Because it is time consuming and its accuracy is not rigor-
ously evaluated, the way of estimating the significance of
an optimal score is not fully satisfying. Analytical approx-
imations of the distributions of the optimal scores should
be pretty much better but they are beyond the scope of
this article.

4 Evaluation
To evaluate the ability of the approach to retrieve seg-
ments of sequences related by evolution, we apply a given
number of evolutionary events (mutations and shuffles)

to random sequences and we measure the intersection
between the homologies known from the artificial evolu-
tion and the ones reported by the most significant N-map.

More precisely, given a length L, a number of parts K and
an identity proportion α, the protocol follows the steps
below for a fixed number of trials.

1. Generate a reference random sequence sa iid with uni-
form probabilities over symbols of length L over an alpha-
bet of 4 or 20 symbols ("random DNA" or "random
protein").

2. Split sa into K equal parts and let sb be the sequence
obtained by shuffling these parts with respect to the
reverse permutation: (1, 2, ..., K) → (K, K - 1, ..., 1). This
step defines a reference K-map of sa over sb.

3. Let  be a sequence obtained by mutating (1 - α) × L

different positions of sb randomly chosen with uniform

probabilities. Here "mutating" implies an actual (and ran-
dom) change of symbol, so the identity proportion

between sb and  is α. The K-map of Step 2 is kept as ref-

erence when mapping sa over .

4. Determine the number M leading to the moat signifi-

cant global M-map of sa over  (by using Identity substi-

tution matrix and by checking the Z-values for M between
1 and K + 10).

5. Compute an optimal global M-map of sa over  and

measure its intersection with the reference K-map of Step

2, i.e. the number of pairs of positions of sa and  which

are associated both in a diagonal of the reference K-map
and in a diagonal of the optimal M-map computed. Nor-

malize this value by dividing by L = |sa| = | | to get the

intersection ratio.

We do not apply insertion/deletion events over sequences
in the protocol because the approach deals with this type
of evolution exactly in the same way as the "split and shuf-
fle" of Step 2.

Figure 5 shows the evolution of the means of the intersec-
tion ratios for K = 2, 5, 10 and 15 parts, as functions of the
identity proportion conserved in Step 3, over:

• 500 random DNA sequences of length 500 (Figure 5a),

• 500 random DNA sequences of length 250 (Figure 5b),

′sb

′sb
′sb

′sb

′sb

′sb

′sb

Empirical and approximated density functions of the optimal scores of: a) local 1-maps, 5-maps and 15-maps, b) global 1-maps, 5-maps and 15-mapsFigure 4
Empirical and approximated density functions of the optimal 
scores of: a) local 1-maps, 5-maps and 15-maps, b) global 1-
maps, 5-maps and 15-maps. The N-maps are computed using 
BLOSUM62 substitution matrix over 15000 random 
sequences with the same lengths and symbol frequencies as 
Case study 5.2.
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• 500 random protein sequences of length 250 (Figure
5c).

The error bars displayed in Figure 5 report the correspond-
ing standard deviations.

The agreement of the results is perfect or almost perfect
when the identity proportion is high. The identity propor-
tion, the number of parts, the length of the sequences and
the number of symbols in the alphabet affect the intersec-
tion ratio. This can be explained by the fact that the ability
of the approach to associate a given segment of sa with its

artificially evolved counterparts in  depends on the

probability of observing another segment in  with a

better score (here identity proportion). For instance in the
case of DNA sequences the expected identity proportion
of two segments is 0.25 under the random model used in
the protocol. So it is not surprising to observe that the
intersection ratio is 0 when the identity proportion artifi-
cially required in Step 3 is smaller than this value (Figure
5a and Figure 5b). In the case of protein sequences, the
expected identity proportion is 0.05. Eve tunes smaller
than in the DNA case and we observe better results for
small values of the identity proportion in Figure 5c.
Clearly the identity proportion and the length of the

sequence  affect the probability of associating with the

artificial counterpart. The role played by the number of
parts is twofold. First, since it determines the length of the
segments split in Step 2 of our protocol, it has a direct
effect on the preceding probability. Second, it increases
the number of boundaries and the possibility of an error
when associating positions which are located at the begin-
ning or at the end of the segments.

5 Case studies
In the three first case studies, N-maps are represented as
pictures where horizontal bold lines represent the
sequences compared. The names of the sequences are
specified over and under the lines. Each diagonal is repre-
sented as two boxes connected by an edge, where each box
corresponds to a segment of one of the sequences. The
height of the two boxes depends upon the score of the
diagonal divided by its length (see Figures 6, 7 and 8).
This type of graphical representation is also used in [1,6].
In the last case study we display N-maps as dotplots in
order to make the results easily comparable with the ones
of [13]. For convenience reasons, the scores represented in
all the figures are normalized by being divided by the
greatest entry of the substitution matrix.

5.1 Proteins 1
We begin with a case study from [3]. It compares SHK1
protein present in Dictyostelium (SwissProt ID Q9BI25)
with ABL1 protein present in human (SwissProt ID
ABL1_HUMAN). These proteins share two common
domains which occur in a different order in each protein.

When comparing these sequences, the most significant
optimal scores are obtained for:

′sb
′sb

′sb

Evolution of the intersection ratio with the identity propor-tion for: a) random DNA sequences of length 500, b) random DNA sequences of length 250, c) random protein sequences of length 250Figure 5
Evolution of the intersection ratio with the identity propor-
tion for: a) random DNA sequences of length 500, b) random 
DNA sequences of length 250, c) random protein sequences 
of length 250.
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• N = 5 for both local maps of SHK1 over ABL1 and of
ABL1 over SHK1 (Z-values respectively 36.67 and 36.79 –
Figure 6a),

• N = 9 for global map of SHK1 over ABL1 (Z-value 19.46
– Figure 6b),

• N = 15 for global map of ABL1 over SHK1 (Z-value
10.79 – Figure 6c).

With the global approach, each part of the sequence to
map is associated to the segment which maximizes its gap-
less alignment score in the second sequence, even if this

score is small and does not correspond to a "real" hom-
ology. As a result, a most significant global N-maps con-
tain a greater number of diagonals and look more
confusing than with the local case. However, despite the
fact that not all the homologies reported are relevant, the
global N-maps are interesting because they provide a
more complete representation of the common elements.
They allow us to consider diagonals formed by segments
which are not homologous or not long enough to be
selected in an optimal local N-map but which can be
meaningful and can suggest an evolutionary history when
taken in the whole context. Let us illustrate this point with
the 15-map of ABL1 over SHK1 (Figure 6c). The diagonal
with the ABL1-interval [1, 27] (the first segment of ABL1
in Figure 6c) is too short to be selected in the most signif-
icant optimal local N-map but it can make sense when
taking into account the larger diagonal with the ABL1-
interval [113,198] (the third segment of ABL1 in Figure
6c) that follows it – not consecutively – in the two
sequences. This could suggest the deletion or the insertion
of the ABL1-interval [28 – 112] along the evolutionary
history of this protein.

A simple solution to make a global N-map clearer is to
select only diagonals with scores greater than a given
threshold and/or long enough (see Figure 8 – case study

a) An optimal local 5-map of CRK over NCKFigure 7
a) An optimal local 5-map of CRK over NCK. b) An optimal 
local 6-map of NCK over CRK. The N-maps are computed 
using BLOSUM62 substitution matrix.
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a) An optimal local 5-map both of SHK1 over ABL1 and of ABL1 over SHK1Figure 6
a) An optimal local 5-map both of SHK1 over ABL1 and of 
ABL1 over SHK1. b) An optimal global 9-map of SHK1 over 
ABL1. c) An optimal global 15-map of ABL1 over SHK1. 
Local and global maps are computed using BLOSUM62 sub-
stitution matrix (made positive by adding a constant term in 
the global case).
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5.3). In particular, by considering only diagonals with
average scores over a threshold in the two global N-maps
of this case study, we would obtain pictures very similar to
the local 5-map.

Finally, the common domains reported in [3] are both
retrieved in the homologies pointed out with the local
and the global N-maps: Pkinase domain (positions about
110–200 in ABL1) and SH2 domain (positions about
230–510 in ABL1). The homology involving the SH2
domain is split into 4 diagonals in all the maps. Naturally,

as these two domains are shuffled between the two
sequences, a classical alignment could not point out the
two homologies at once.

5.2 Proteins 2
We compare two proteins sequences from [6]. A CRK like
protein (SwissProt ID P46109) and a NCK adaptor pro-
tein (SwissProt ID P16333). This example is given to illus-
trate the way of pointing out repeated elements and we
consider only local N-maps. The most significant optimal
scores are obtained for:

• N = 5 for local N-maps of CRK over NCK (Z-value 17.29
– Figure 7a),

• N = 6 for local N-maps of NCK over CRK (Z-value 18.91
– Figure 7b).

In Figure 7 we can see that the most significant optimal
local N-map of NCK over CRK has an extra diagonal with
regard to the N-map of CRK over NCK. Apart from this
extra diagonal, these two maps share almost the same
diagonals set. There are only some small changes on their
boundaries, essentially because the non-overlapping con-
straint of Definition 1 applies either to one or the other
sequence. The extra diagonal is composed of a segment of
NCK (positions 226–247), which was not included in the
diagonals of the reciprocal map, and a segment of CRK
which is also part of another diagonal formed with the
positions 35–58 of NCK. Since they are both homologous
to a same segment of CRK, we have a clue that these two
segments of NCK are repeated elements. Note that retriev-
ing all the repeated common elements of two sequences
needs generally to map one sequence over another and
reciprocally to make sure that all the associations of seg-
ments are reported.

5.3 Transposons
We consider here DNA sequences of two transposons ele-
ments occurring in two species of Drosophila and studied
in [14]: P-element (GenBank ID AY116625.1) and P-
repressor (GenBank ID AF169142.2). We use the BLAST
substitution matrix for nucleotides [15] for local N-maps
and Identity matrix for global ones.

The most significant optimal scores of N-maps are
obtained for:

• N = 5 for local maps both of P-element over P-repressor
(Z-value 425.83) and of P-repressor over P-element (Z-
value 420.24) corresponding to a same optimal 5-map
(Figure 8a),

• N = 19 for global maps of P-element over P-repressor (Z-
value 132.75 – Figure 8b),

a) An optimal local 5-map of P-element over P-repressor and reciprocally (BLAST substitution matrix)Figure 8
a) An optimal local 5-map of P-element over P-repressor and 
reciprocally (BLAST substitution matrix). b) An optimal glo-
bal 15-map of P-element over P-repressor (Identity substitu-
tion matrix). c) An optimal global 24-map of P-repressor 
over P-element (Identity substitution matrix). Diagonals with 
average score (here identity proportion) smaller than 0.6 
were removed from the global N-maps.
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• N = 24 for global maps of P-repressor over P-element (Z-
value 119.96 – Figure 8c).

The corresponding maps are represented in Figure 8 in
which we keep only the diagonals of the global N-maps
with more than 60% of identity. As expected, filtering the
diagonals according to their scores makes the pictures
clearer and closer to the local one.

Once more, many diagonals are shared between these
three N-maps with small variations in their-boundaries.
The two global maps show an extra homologous region
formed by several diagonals probably too short to be
taken into account in the most significant local N-map.

In Figures 6, 7, and 8 we can remark series of diagonals
composed of intervals of positions which seem contigu-
ous and occur in the same order in the two sequences.
They cannot be replaced by a unique diagonal because
they are separated by small gaps (too small to appear at
the scale of figures). In other words, N-maps computing
acts over these positions like a classical alignment.

5.4 Microbial genomes
This case study illustrates how the approach can be
applied to comparative genomics. We compare two
microbial genomes: Chlamydia trachomatis (GenBank ID
AE001273) and Chlamydophila pneumoniae (GenBank ID
AE001363) studied in [13].

Each genome is represented by the sequence of its coding
genes in the order they occur. Genomes of Chlamydia tra-
chomatis and Chlamydophila pneumoniae contain respec-
tively 895 and 1052 genes. A gene is identified with the
sequence of amino acids of the corresponding protein.
Thus, there are as much different symbols as the total
length of the two genomes (except the unlikely case where
several genes share exactly the same sequence of amino
acids).

We compare two sequences/genomes s and t of symbols/
genes which are themselves sequences of amino acids and
we need to define a substitution score π between genes
(actually this is only required between the genes of the
first genome and the genes of the second one). For two
sequences of amino acids pa and pb, we set π[pa, pb] to the
(highest) identity proportion of an alignment of pa and pb.
As this substitution score is non-negative, we will consider
global N-maps.

Because of the particular type of sequences studied here,
the estimations of the empirical means and of the stand-
ard deviations of the Z-values are computed in a slightly
different way from the one described in Section 3. To esti-
mate the significance of a N-map score of a genome s over

a genome t, we compute over a given number of trials, the
empirical mean and the standard deviation of the optimal
scores obtained by mapping a random shuffle of s, over t.
The empirical distributions of the optimal scores observed
by shuffling the first genome depend a lot on the nature
of the substitution scores between the genes of the first
genome and the genes of the second one. But in non
degenerated cases (when the substitution levels between
genes are not all the same) we observe a behaviour close
to the one described in Section 3. In this case study the
most significant optimal scores of global N-maps are
obtained for:

• N = 94 for the global map of Chlamydia trachomatis over
Chlamydophila pneumoniae (Z-value 289.61 – Figure 9a),

• N = 97 for the global map of Chlamydophila pneumoniae
over Chlamydia trachomatis (Z-value 265.23 – Figure 9b).

Because of the number of diagonals involved in the rear-
rangement, which is relatively complex and includes sev-
eral inversions, we represent N-maps as dotplots (see
Figure 9). The authors of [13] use this type of representa-
tion and show similar figures.

The N-map approach allows us to perform genomes com-
parison without the initial step of identification of clusters
of orthologous genes which is generally a necessary (and
sometimes a critical) stage before comparing genomes
[16,17]. However, the N-map approach is different to
methods such as sorting by reversals because it does not
construct an evolutionary history (in the sense that it does
not provide a sequence of evolutionary events transform-
ing the genomes). It is rather a way to connect conserved
segments and can be seen as an alternative to identify
orthologous genes. The fact that two genes are associated
in a N-map does not depend only on the level of hom-
ology between these genes, but also benefits from the lev-
els of homology between their respective
neighbourhoods.

6 Discussion and future work
Mapping sequences by parts is a simple and effective way
to find out similarities between two sequences in the pres-
ence of evolutionary events that do not preserve their lin-
ear order. This first version was written in order to
introduce the idea of "computational mapping of
sequences" and needs some technical improvements and
extensions such as dealing differently with the bounds of
the parts which are mapped or distinguishing different
costs for mutational events, to become more realistic from
a biological point of view.

In the local case, the optimal N-map of s over t is close to
the selection of the N gapless alignments with higher
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scores. So the results obtained with local N-maps should
be generally close to the ones obtained by methods based
on local (gapped or not) alignments [2,3,6]. The main dif-
ference stands in the non-overlapping constraint of Defi-
nition 1. From our point of view, the originality of the
method actually makes sense with global N-maps.
Strengths and weaknesses of global versus local N-maps
are analogous to the alignment case. The local approach
allows us to report only significant homologies. But a
drawback is that the level of significance needs to be fixed
a priori, generally by shifting the entries of the substitution
matrix more or less negatively. On the other hand, with
the global approach (a positive matrix), adding a same
positive constant to all the entries of the substitution
matrix leaves the resulting optimal N-maps unchanged. A
first drawback is that even weak homologies are reported,
but this is not a real problem since they can be easily fil-
tered. A more serious concern is that a strong homology
can be possibly diluted in a longer (but weaker) one.

The method can be extended in several directions. A first
natural way is to allow gaps while mapping each part of
the first sequence. Basically it can be done by extending
the definition of diagonal to not constrain the lengths of
the two segments to be equal and by defining the score of
an "extended diagonal" as the alignment score (penaliz-
ing gaps) of its two segments. The algorithms computing
the maximal scores and optimal N-maps with extended

diagonal scores (computed with linear or affine gap pen-
alties) are essentially the same as Alg_1 and Alg_2. In par-
ticular, their orders of time and memory space
complexities do not change. In fact, the current imple-
mentation of the method provides an option to align
parts with a linear gap penalty. Nevertheless, we presented
here the method with the gapless case because it appears
conceptually clearer and does not need any parameter
such as a gap penalty (this parameter is critical for the dis-
tributions of the optimal scores and they appear more
confusing in the gapped case).

Further in the same direction, an interesting possibility of
extension is to associate different kinds of penalties for
insertions/deletions, inversions and shuffling, and to
compute the greatest score of a map of s over t according
to a substitution matrix and these penalties. From an algo-
rithmic point of view and with reasonable kinds of penal-
ties, this can be done by Dynamic Programming
equations analogous to the ones used in Alg_1. These
equations could be directly applied to compute the best
score and an optimal set of diagonals of a "penalized
map" of s over t with complexity O (|s| × |t|). Setting the
different values of penalties is a natural way to introduce
biological knowledges in the approach but this needs a
strong expertise in sequence analysis. We are interested in
collaborations in this direction.

a) Dotplot representation of an optimal global 94-map of Chlamydia trachomatis over Chlamydophila pneumoniaeFigure 9
a) Dotplot representation of an optimal global 94-map of Chlamydia trachomatis over Chlamydophila pneumoniae. b) Dotplot rep-
resentation of an optimal global 97-map of Chlamydophila pneumoniae over Chlamydia trachomatis. Darker is a diagonal, higher is 
its length-normalized score.
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