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Abstract
Background: In recent years, quartet-based phylogeny reconstruction methods have received
considerable attentions in the computational biology community. Traditionally, the accuracy of a
phylogeny reconstruction method is measured by simulations on synthetic datasets with known
"true" phylogenies, while little theoretical analysis has been done. In this paper, we present a new
model-based approach to measuring the accuracy of a quartet-based phylogeny reconstruction
method. Under this model, we propose three efficient algorithms to reconstruct the "true"
phylogeny with a high success probability.

Results: The first algorithm can reconstruct the "true" phylogeny from the input quartet topology
set without quartet errors in O(n2) time by querying at most (n - 4) log(n - 1) quartet topologies,
where n is the number of the taxa. When the input quartet topology set contains errors, the
second algorithm can reconstruct the "true" phylogeny with a probability approximately 1 - p in
O(n4 log n) time, where p is the probability for a quartet topology being an error. This probability

is improved by the third algorithm to approximately , where , with

running time of O(n5), which is at least 0.984 when p < 0.05.

Conclusion: The three proposed algorithms are mathematically guaranteed to reconstruct the
"true" phylogeny with a high success probability. The experimental results showed that the third
algorithm produced phylogenies with a higher probability than its aforementioned theoretical
lower bound and outperformed some existing phylogeny reconstruction methods in both speed
and accuracy.

Background
Evolution is a basic process in biology. The evolutionary
history, referred to as phylogeny, of a set of taxa can be
mathematically defined as a tree where the leaves are

labeled with the given taxa and the internal nodes repre-
sent extinct or hypothesized ancestors. There are rooted
and unrooted phylogenies. In a rooted phylogeny, an edge
specifies the parent-child relationship and the root repre-
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sents a common ancestor of all the taxa. A rooted phylog-
eny is called binary or resolved if every internal node has
exactly two children. In an unrooted phylogeny, there is no
parent-child relationship specified for an edge; and it is
called binary or resolved if every internal node has degree
exactly 3.

There have been many works on how to reconstruct
rooted and unrooted phylogenies [1-3]. It is already
known that rooted phylogenies and unrooted phyloge-
nies can be transformed into each other [4], for example,
by using an outgroup. In the remainder of this paper, a
phylogeny refers to an unrooted binary phylogeny unless
explicitly specified otherwise.

Given a taxon set S, each subset of four taxa of S is called
a quartet of S. In recent years, quartet-based phylogeny
reconstruction methods have received considerable atten-
tions in the computational biology community. In com-
parison with other phylogeny reconstruction methods, an
advantage of quartet-based methods is that they can over-
come the data disparity problem [5]. An unrooted phylog-
eny (or topology) of a quartet is called its quartet topology.
Given a quartet {s1, s2, s3, s4} of S, there are three possible
topologies associated with it, up to symmetry. These three
quartet topologies are shown in Figure 1. For simplicity,
we use [s1, s2|s3, s4] to denote the quartet topology in
which the path connecting s1 and s2 does not intersect the
path connecting s3 and s4 (see Figure 1(a)). The other two
quartet topologies are [s1, s3|s2, s4] and [s1, s4|s2, s3].

Given a taxon set S and a phylogeny T on S, we can see
that trimming all the other nodes (including the root if T
is rooted) from T gives exactly one topology for every
quartet of S. The quartet-based phylogeny reconstruction
works inversely to first build a phylogeny for every quartet
and then infer an overall phylogeny for the whole set of
taxa. Suppose that Q is the set of quartet topologies built
in the first step of a quartet-based phylogeny reconstruc-
tion, which can be done by various quartet inference
methods [6-8]. If there exists a phylogeny T such that a
quartet topology q in Q is the same as the one derived
from T, then we say that T satisfies q, and q is consistent with

T. If there exists a phylogeny T satisfying all quartet topol-
ogies in Q, then we say that Q is compatible and T is the
(unique) phylogeny associated with Q. In the ideal case
where all quartet topologies are "correct," i.e., Q is com-
patible, the task of assembling an overall phylogeny is
easy and can be done in O(n4) time [9], where n is the
number of taxa under consideration. In practice, however,
some quartet topologies may be erroneous. Therefore, the
set of quartet topologies may contain conflicting quartet
topologies. This possibility complicates the overall quar-
tet-based phylogeny reconstruction and presents an inter-
esting computational challenge.

Given a taxon set S, we define the phylogeny that reveals
the correct relationships among the taxa in S as the "true"
phylogeny on S, denoted as Ttrue. The accuracy of a phylog-
eny reconstruction method is the extent to which the gen-
erated phylogeny agrees with the "true" phylogeny. In
many applications, the "true" phylogeny is not available
to us for real-life instances in the study of evolution.
Therefore, to investigate the accuracy of different recon-
struction methods, synthetic data are created with simula-
tions using a given evolutionary model, where the "true"
phylogeny is known. If a quartet topology q ∈ Q conflicts
with Ttrue, then q is a quartet error. Given a quartet topology
set containing possible quartet errors, current phylogeny
reconstruction methods seek to estimate the "true" phyl-
ogeny in one of the following two ways: (1) by a specific
algorithm that leads to the determination of a phylogeny;
or (2) by defining a measurement for the quality of gener-
ated phylogenies and searching for an optimal phylogeny.
Purely algorithmic methods in the first category integrate
phylogeny reconstruction and the definition of the pre-
ferred phylogeny tightly. These methods include quartet
puzzling [10], the short quartet method [8], and semi-def-
inite programming [4]. The methods in the first category
tend to be computationally fast because they proceed
directly toward the final solution without the evaluation
of a large number of competing phylogenies. However,
they can achieve high accuracy only on some specific data-
sets. Other statistical methods such as bootstrapping [11]
are incorporated to assess the confidence of a found phy-
logeny, which requires extra computational time but may
generate better phylogenies. These statistical methods
have their limitations and may fail in some situations
[12].

The second category of methods first define a score for
each given quartet topology and then use combinatorial
algorithms to find a phylogeny that achieves the optimal
score. For example, the Maximum Quartet Consistency
(MQC) problem [13], which is NP-hard, aims to compute
a phylogeny which respects as many quartet topologies as
possible. Several attempts have been made to solve MQC
optimally [5,14,15] or approximately [16,17]. The hyper-

The three possible quartet topologies for quartet {s1, s2, s3, s4}Figure 1
The three possible quartet topologies for quartet {s1, s2, s3, 
s4}.
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cleaning algorithm proposed in [18] aims to reconstruct a
phylogeny that minimizes a certain quartet distance value
for measuring the quartet errors. The complexity of the
hypercleaning algorithm is O(n5 f(2m) + n7 f(m)), where
f(m) = 4m2(1 + 2m)4m, n is the number of taxa, and m is a
value based on the quartet distance model. These meth-
ods tend to be much slower than those in the first category
but have higher accuracy. For datasets with a relatively
large number of quartet errors, the optimal phylogenies
produced by these methods may not be unique, and one
must provide additional measurements to estimate the
"true" phylogeny.

Traditionally, the performance accuracy of a phylogeny
reconstruction method is measured by simulations on
synthetic datasets with a known "true" phylogeny, while
little theoretical analysis has been done. In this paper, we
propose a new model-based approach to measuring the
accuracy of a quartet-based phylogeny reconstruction
method, i.e., to analyze the probability of reconstructing
the "true" phylogeny.

Methods
We define our data model and describe our three phylog-
eny reconstruction algorithms in this section.

Probabilistic model of quartet generation
In this section, we define a probabilistic model for the
quartet-based phylogeny reconstruction and introduce
some terminologies that will be used in the discussion of
three new algorithms.

Given a quartet topology set Q on a taxon set S = {s1,

s2,...,sn}, Q is complete if Q contains exactly one quartet

topology for every quartet of S. In this paper, we assume
Q is complete. Given a phylogeny T on a taxon set S = {s1,

s2,...,sn}, n is the size of T, and we use QT to denote the

complete quartet topology set induced by T. Given Ttrue,

our simulation model first generates a complete quartet

topology set  for Ttrue. For every quartet topology in

, with probability 1 - p (0 ≤ p ≤ 1) our simulation

model does not do anything to it, and with probability 

changes its topology into each of the other two topolo-
gies. In this way, the model generates the input quartet
topology set Q, and consequently every quartet topology
in the generated set Q has the same probability p of being
a quartet error. This probability p is called the quartet error
probability associated with the instance. Under this model,
our main computational objective is to reconstruct Ttrue

from Q with a high success probability while minimizing
the time complexity.

In practice, the quartet error probability p mainly depends
on the quality of the quartet inference methods, such as
the Four-point method [9], the Neighbor Joining method
[6], and the Ordinal Quartet method [7]. Simulation
results in [7] show that the Ordinal Quartet method can
achieve over 80% accuracy while inferring quartet topolo-
gies. Therefore, in our model we assume that current quar-
tet inference methods can infer more correct quartet
topologies than erroneous ones. In particular, we assume

the quartet error probability 0 ≤ p < . As this paper

focuses on phylogeny reconstruction, we also assume that
the time complexity of inferring one quartet topology is
O(1).

An O(n2)-time algorithm for reconstructing Ttrue when p = 
0
In this section, we assume that no quartet errors exist in Q.
Our algorithm is based on the following classic result by
Jordan [19].

Lemma 1 (see [19]) Given a tree T with n leaves, there exists
an internal node whose removal partitions the tree into con-

nected components, each with at most leaves, and such a

node can be found in linear time.

Given an unrooted binary phylogeny T, if we remove an
internal node v from T, T will be divided into three sub-
phylogenies. We denote these three sub-phylogenies as T
- {v}. Based on Lemma 1, there exists an internal node v

in T such that each of the trees in T - {v} has at most 

leaves. An internal node v of T having such a property is
called a separator of T. Notice that a phylogeny T may have
more than one separator, but our algorithms in Tables 1,
2, and 3 need only one of them. Given a phylogeny T and
a separator v of T, we can merge two sub-phylogenies of T
- {v} into one leaf node (replacing the separator v), which
is treated as a super taxon to represent the union of the
taxon sets of the two merged sub-phylogenies.

Given a quartet topology set Q with no quartet errors, we
can start with a randomly selected quartet topology q,
which forms an initial phylogeny T4 on 4 taxa, and then
iteratively insert a new taxon to grow the phylogeny. To
ensure that the true phylogeny on the whole taxon set is
recovered, in the i-th iteration to insert taxon si+4, we first
locate a separator, v, of phylogeny Ti+3. Then, we ran-
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domly select a taxon from each of the three sub-phyloge-
nies of Ti+3 - {v}. Suppose that these three selected taxa
are sa, sb, and sc. We proceed to check the given topology
in Q on quartet {sa, sb, sc, si+4}. Based on that topology,
we can determine which sub-phylogeny taxon si+4 should
be inserted into. For example, if the topology is [sa, sb|sc,
si+4], then si+4 should be inserted into the sub-phylogeny
that contains scas its leaf. Recursively, we treat the other
two sub-phylogenies as a super taxon (which replaces the

separator v) on the located sub-phylogeny to generate a
new phylogeny, and to determine the location in this new
phylogeny where taxon si+4 should be inserted. A high-
level description of this algorithm Q-RAND is summa-
rized in Table 1.

Theorem 2 Given a quartet topology set Q with no quartet
errors, Ttrue can be constructed in O(n2) time by querying at
most (n - 4) log(n - 1) quartet topologies in Q.

PROOF. The Q-RAND algorithm described above and
detailed in Table 1 can be employed to construct the true
phylogeny, where one can easily see that the final phylog-
eny obtained after inserting all the taxa satisfies all the
quartet topologies in Q, and therefore it is Ttrue.

In the i-th iteration, Q-RAND needs to query at most log(i
+ 3) quartet topologies. Therefore, the total number of
quartet topologies need to be queried is at most log 4 + log
5 + � + log(n - 1) ≤ (n - 4) log(n - 1). As we only need O(1)
time to infer each queried quartet topology, the time com-
plexity of querying these quartet topologies is O(n log n).

Based on Lemma 1, finding a separator of phylogeny Ti
takes O(i) time. Thus the time of finding the separators
during the i-th iteration is O(i + i/2 + � + 1) = O(i). The
overall time of Q-RAND is therefore O(n2). �

Table 3: 

M-VOTE(S, Q, p):
1. Search for a 5-subset compatible with Q;
2. If successful
2.1 Let the corresponding phylogeny be the current phylogeny 

T;
2.2 Delete the 5 taxa of T from the taxon set S;
3. Else
3.1 Randomly select a quartet topology in Q as the current 

phylogeny T;
3.2 Delete the four taxa of T from the taxon set S;
4. Randomly select a taxon s from S;
5. Locate a separator v of T;
6. Decide which sub-phylogeny of T - {v} taxon s should be 

inserted into based on the votes;
7. If the located sub-phylogeny has only one edge,
7.1. Insert taxon s on that edge and let the new phylogeny be T;
8. Else,
8.1. Merge the other two sub-phylogenies as a super taxon 

(which replaces v);
8.2. Let the located sub-phylogeny with the super taxon be the 

new current phylogeny T;
8.3. Go back to Step 5;
9. Delete taxon s from S;
10. If S is not empty,
10.1. Go back to Step 4;
11. Else,
11.1. Output the phylogeny T.

Table 2: 

Q-VOTE(S, Q, p):
1. Randomly select a quartet topology in Q as the initial phylogeny 

T;
2. Delete the four taxa of T from the taxon set S;
3. Randomly select a taxon s from S;
4. Locate a separator v of T;
5. Decide which sub-phylogeny of T - {v} taxon s should be 

inserted into based on the votes;
6. If the located sub-phylogeny has only one edge,
6.1. Insert taxon s on that edge and let the new phylogeny be T;
7. Else,
7.1. Merge the other two sub-phylogenies as a super taxon 

(which replaces v);
7.2. Let the located sub-phylogeny with the super taxon be the 

new current phylogeny T;
7.3. Go back to Step 4;
8. Delete taxon s from S;
9. If S is not empty,
9.1. Go back to Step 3;
10. Else,
10.
1.

Output the phylogeny T.

Table 1: 

Q-RAND(S, Q):
1. Randomly select a quartet topology in Q as the initial 

phylogeny T;
2. Delete the four taxa of T from the taxon set S;
3. Randomly select a taxon s from S;
4. Locate a separator v of T;
5. Randomly select a taxon from each sub-phylogeny of T - {v}, 

say sa, sb, and sc;
6. Decide which sub-phylogeny of T - {v} taxon s should be 

inserted into based on the quartet topology for {sa, sb, sc, s};
7. If the located sub-phylogeny has only one edge,
7.1. Insert s on that edge and let the new phylogeny be T;
8. Else,
8.1. Merge the other two sub-phylogenies as a super taxon 

(which replaces v);
8.2. Let the located sub-phylogeny with the super taxon be the 

new current phylogeny T;
8.3. Go back to Step 4;
9. Delete taxon s from S;
10. If S is not empty,
10.1. Go back to Step 3;
11. Else,
11.1. Output the phylogeny T.
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An experiment is a rooted phylogeny on three taxa. There
has been extensive work on reconstructing phylogenies
from a set of experiments with no errors. In general, there
is a trade-off between the number of queried experiments
and the running time. Kannan et al. [20] gave an Ω(n log
n) lower bound of queried experiments for reconstructing
rooted binary phylogenies in O(n2) time. Kao et al. [21]
presented a randomized algorithm with running time O(n
log n log log n) using O(n log n log log n) experiments.
The fastest algorithm [22] so far is a deterministic algo-
rithm which can reconstruct the true phylogeny in O(n log
n) time by querying at most n(log n + O(1)) experiments.
Although these algorithms and complexity results are for
reconstructing phylogenies from experiments, they also
apply to quartet-based phylogeny reconstruction through
straightforward transformation. Therefore, algorithm Q-
RAND achieves the lower bound of queried quartet topol-
ogies for phylogeny reconstruction from a given quartet
topology set without errors. Q-RAND will be the base
structure of our algorithms for the case with quartet errors.

Reconstructing Ttrue with a high success probability when 0 

<p <

If the input quartet topology set Q contains quartet errors,
then algorithm Q-RAND may make a wrong decision
while locating the sub-phylogeny where taxon si should be
inserted. In this section, we address this issue by adding a
voting scheme to algorithm Q-RAND to aggregate the
information in the correct quartet topologies. The key
observation is that, when p is small, in order to incorrectly
identify the location for a new taxon, there must exist
many quartet errors among the queried quartet topologies
that all support the decision, which however is unlikely.

The new algorithm is called Q-VOTE, which also starts
with an randomly picked quartet topology. In the i-th iter-
ation to insert taxon si+4, the algorithm first locates a sep-
arator, v, of phylogeny Ti+3. It then queries all the possible
quartet topologies on {sa, sb, sc, si+4}, where sa, sb, and sc
come from the taxon sets of the three sub-phylogenies of
Ti+3 - {v}, respectively. If a sub-phylogeny contains a super
taxon, which is formed by merging two sub-phylogenies
in a previous step, all the taxa represented by that super
taxon are also taken into consideration. Suppose that the
taxon sets of the three sub-phylogenies have sizes m1, m2,
and m3, respectively. Then there are m1 × m2 ×  m3 quartet
topologies that we need to consider. Each quartet topol-
ogy gives a vote for a sub-phylogeny into which taxon si+4
should be inserted. For example, the quartet topology [sa,
sb|sc, si+4] gives a vote on the sub-phylogeny whose taxon
set includes sc. The algorithm then chooses the sub-phyl-
ogeny that has the maximum votes and recursively calls
the above procedure until the location of taxon si+4 is
determined. We call each recursive step described above a

decision to locate taxon si+4. In each decision, the algo-
rithm needs to query O(i3) quartet topologies, and log i
decisions are needed to determine the final location of
taxon si+4. Therefore, the overall running time of algo-
rithm Q-VOTE is O(n4 log n). A high-level description of
algorithm Q-VOTE is summarized in Table 2.

Theorem 3 When 0 <p < , algorithm Q-VOTE can recon-

struct Ttrue in O(n4 log n) time with a probability at least

,

where n is the size of the input taxon set and p is the quartet
error probability of the input quartet topology set.

PROOF. Suppose that the algorithm queries N quartet
topologies when it makes one decision of locating taxon

sj+1 on a phylogeny Tj with j taxa. It is easy to see that N ≥
j - 2. The algorithm makes a wrong decision only if the
number of quartet errors among these queried quartet

topologies is at least . (Note that, however, the exist-

ence of at least  quartet errors does not necessarily

imply the misplacement of taxon sj+1.) We know that each

quartet topology has a probability p to be a quartet error.
Therefore, the number of quartet errors follows a bino-
mial distribution, and the probability that the algorithm
makes a wrong decision is at most

(The detailed proof of this inequality is provided in
Appendix A.)

Since the algorithm makes log j decisions to locate the
final position of taxon sj+1, the probability that the algo-
rithm locates the correct position for taxon sj+1 is at least

Therefore, the algorithm can construct Ttrue with a proba-
bility at least
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The first term, 1 - p, is the probability that the algorithm
chooses a correct starting quartet topology.

Improvements

We can see that the maximum probability of algorithm Q-
VOTE to make a wrong decision,

, is close to 0, when j is

relatively large. Therefore, the probability that the algo-
rithm can reconstruct Ttrue mainly depends on the correct-

ness of the phylogeny with the first several inserted taxa.
Based on this observation, we propose the following
improvement to algorithm Q-VOTE to look for a good

starting phylogeny that contains m taxa for m ≥ 4.

Given a taxon set S, each subset of m (m ≥ 4) taxa of S is
called an m-subset of S. A quartet topology is associated
with an m-subset if the four taxa of the quartet topology
are all in the m-subset. An m-subset is compatible with Q if
the set of its associated quartet topologies in Q is compat-
ible. It is easy to see that a compatible m-subset has exactly
one topology, which can be constructed from its associ-
ated quartet topologies in Q.

In the following, we only consider m = 5, while our con-
clusion can be generalized to larger m with increased run-
ning time. The new algorithm, called M-VOTE, first goes
through all the possible 5-subsets to find a compatible 5-
subset. If successful, M-VOTE starts with the phylogeny on
the compatible 5-subset and proceeds as Q-VOTE to insert
all the other taxa into the phylogeny one by one. If unsuc-
cessful, M-VOTE starts with a randomly selected quartet
topology, and it reduces to Q-VOTE. A high-level descrip-
tion of algorithm M-VOTE is summarized in Table 3.

Theorem 4 When 0 <p < and Step 1 of algorithm M-VOTE

is successful, then the algorithm can reconstruct Ttrue in O(n5)

time with a probability at least

where n is the size of the input taxon set, , and p is the

quartet error probability of the input quartet topology set.

PROOF. Finding a compatible 5-subset needs O(n5) time.
In each iteration of inserting a taxon into the current phy-
logeny, the algorithm goes through all the remaining taxa
to make a selection. Therefore the overall running time of
the algorithm is

.

Suppose that in Step 1 the phylogeny constructed from
the compatible 5-subset is T5 and the true phylogeny of

this 5-subset is . Note that there are 15 possible phyl-

ogenies on this 5-subset, including  itself. If T5 ≠ ,

then it is easy to see that  = 2, 4, or 5.

Under the assumption that every quartet topology has
probability p to be erroneous, we show in the following

that  has different probabilities to be 0, 2, 4,

and 5 (but no probability to be 1 or 3).

First of all, clearly,  = 0 as probability (1 - p)5,

since every one of the 5 quartet topologies has to be cor-

rect. For each phylogeny T5 such that  = 2, i.e.,

there are two quartet errors, we conclude that these two
quartet errors must contain a common subset of three taxa

out of the five, and the induced sub-phylogeny of  on

these three taxa should not contain any other taxon from
the five. Since the probability to observe T5 is

 and there are exactly four possible topolo-

gies for T5,  = 2 has probability 4 ×

. A similar analysis shows that there are eight

possible T5's such that  = 4, and 

= 4 has probability ; there are two possi-

ble T5's such that  = 5, and  = 5

has probability .

To summarize, the probability of observing incorrect phy-
logenies on this 5-subset is
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and thus the probability of obtaining a phylogeny T5 and

T5 =  is

where  (and the success probability is greater

than 0.779) when 0 <p < . After the 5-subset is identi-

fied, M-VOTE proceeds as Q-VOTE and therefore it can
construct Ttrue with a probability at least

Notice that to increase the success probability, Step 1 of
algorithm M-VOTE can be changed to search for a com-
patible m-subset for any m > 5. Furthermore, if the search
is not successful, then the algorithm can look for a com-
patible (m - 1)-subset, and so on. In the worst case, the
starting phylogeny is a randomly selected quartet topol-
ogy, which has 1 - p probability not to be an error. In the
following lemma, we show that if the number of quartet
errors is not too large or the quartet error probability p is
small, then we can almost always find a compatible m-
subset for m ≥ 5.

Lemma 5 Given a quartet topology set Q with k quartet errors,

there exists at least one compatible m-subset if , where

m ≥ 5.

PROOF. Given an m-subset {s1, s2,...,sm}, there are 

quartet topologies in Q that are associated with it. If the

set of these  quartet topologies is not compatible,

then there must exist at least one quartet error in it. Since

a quartet topology is associated with exactly m-

subsets, the total number of m-subsets associated with at
least one quartet error is at most

. Note that there are m-

subsets. Therefore, at least one m-subset is compatible. �

Given a quartet error probability p, the expected number
of quartet errors in Q is p|Q|. It follows from Lemma 5

that if , then there is a high probability for the

existence of a compatible m-subset. For instance, when p
< 0.05, algorithm M-VOTE almost always find a compati-
ble 5-subset (and the probability that the associated phy-
logeny is correct is at least 0.984; see Figure 2).

Experimental results

To investigate the practical performance of algorithm M-
VOTE, we performed experiments on a set of synthetic
data. For a set S of n taxa, we generated a phylogeny by
recursively joining randomly selected subtrees. The sub-
trees were selected from a set that initially only contained
the one-node subtrees each corresponding to a given
taxon. When two subtrees were joined, we replaced them
in the set by the newly generated subtree. The resulting
phylogeny on n taxa was treated as the "true" phylogeny

Ttrue. A complete quartet topology set, denoted as ,

was then induced by this phylogeny. For every quartet on

S, we altered its topology in  by a probability p (0 <p
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< ) into a topology randomly selected from the other

two possible topologies for the quartet. We treated the
altered quartet topologies as quartet errors and the result-
ing quartet topology set as the input to the algorithms in
our experiments. Each generated dataset is labeled by a
pair (n, p) where n is the number of taxa and p records the
quartet error probability of the input complete quartet
topology set. We used the quartet error probability p = 1%,
5%, 10%, 15%, 20%, 25%, and the taxon set size n = 20,
25, 30, 35, 40, 45, 50. For every pair of (n, p), we generated
100 datasets. Therefore, given a quartet error probability
p, we have 700 datasets associated with it. In our experi-
ments, we compared our proposed algorithm M-VOTE
with the hypercleaning algorithm (HC) [18], and the
answer set programming method (ASP) for the MQC
problem [15] in terms of the probability to construct
"true" phylogenies.

Given a dataset D and an algorithm A, let the phylogeny
constructed by algorithm A from D be TD and the "true"

phylogeny of D be Ttrue. If  = 0, then we say

that dataset D can be correctly recovered by algorithm A.
Given a probability value p, we applied each algorithm to
the corresponding 700 datasets, and calculated the total
number of datasets that could be correctly recovered,

referred to as c. We then used  as the expected proba-

bility of the algorithm to construct "true" phylogenies. In
our experiments, we used the expected probability as a
score to quantify the performance of the algorithms. In
Figure 2, we compare the expected probability values of
M-VOTE, HC, and ASP, and the theoretical success proba-
bility values based on Theorem 4. As shown in Figure 2,
algorithm M-VOTE produced "true" phylogenies with the
highest probability, and the probability values of algo-
rithm M-VOTE were always higher than the theoretical
ones. As the reported time complexity of the hyper-clean-
ing algorithm (O(n5f(2m) + n7f(m))) is much higher than
that of our algorithm M-VOTE, and the ASP method is an
exact method for the NP-hard MQC problem, M-VOTE is
therefore the fastest and most accurate one.

Discussion and Conclusions
In this paper, we have proposed an O(n2)-time algorithm
(Q-RAND) to reconstruct a phylogeny from a quartet
topology set without quartet errors. This algorithm
achieves the optimal lower bound on the number of quar-
tet topology queries. We have also proposed a probabilis-
tic model for the quartet-based phylogeny reconstruction.

Under this model, two algorithms (Q-VOTE and M-
VOTE) are proposed to reconstruct a phylogeny on a quar-
tet topology set with errors. These two algorithms are
mathematically guaranteed to reconstruct the "true" phy-
logeny with high success probabilities. The key to our
algorithms for being able to achieve a high success proba-
bility is that for making a wrong decision on the location
of a new taxon, there must exist a large number of quartet
errors among the queried quartet topologies, which is
unlikely. Although we only showed that this is a small
probability event under the binomial distribution, we
believe that this should be a small probability event also
under other probability distributions. The experimental
results showed that algorithm M-VOTE produced "true"
phylogenies with a higher probability than the theoretical
success probability stated in Theorem 4, and it outper-
formed two existing phylogeny reconstruction methods in
both speed and accuracy.

This work opens up several research directions. First of all,
in real world phylogeny reconstruction, the distribution
of quartet errors is largely unknown, both theoretically
and empirically. The probabilistic model and algorithms
proposed in this paper can be regarded as the first step
toward reconstructing the "true" phylogeny with a high
success probability. Csűrös and Kao [1] proposed an algo-
rithm that can reconstruct the true phylogeny with a high
probability in the Jukes-Cantor model of evolution [23].
Our next step would be to investigate possible probabilis-
tic properties of the quartet topology set under some mod-
els of evolution and to design algorithms that can
reconstruct the true phylogeny with a high probability
under such evolutionary models. Secondly, it would be
interesting to investigate the relationships between the
accuracy of the reconstructed phylogeny and the topology
of the true phylogeny. In general, the larger the quartet
error probability p is, the more difficult it is to reconstruct
the true phylogeny and therefore the lower the accuracy is.
However, under the same quartet error probability, it is
interesting to investigate whether different topologies of
the true phylogeny may affect the accuracy of our algo-
rithms. Thirdly, some computational questions are still
open. Can we reduce the running time of the proposed
algorithms by utilizing the techniques proposed in [20-
22]? We know that there is a trade-off between the run-
ning time and the number of queried quartet topologies,
as demonstrated in Theorem 4. If we attempt to reduce the
running time by querying fewer quartet topologies, what
is the success probability of the new algorithm to recon-
struct the true phylogeny?

Appendix A

Theorem 6 If N is an even number and 0 <p < , then

1
3

Q QL TD
−

true

c
700

1
3
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and

PROOF. For the first inequality,

For the second inequality, it is easy to prove that

Therefore,
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