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Abstract

Background: This paper considers the problem of identifying pathways through metabolic networks that relate to
a specific biological response. Our proposed model, HME3M, first identifies frequently traversed network paths
using a Markov mixture model. Then by employing a hierarchical mixture of experts, separate classifiers are built
using information specific to each path and combined into an ensemble prediction for the response.

Results: We compared the performance of HME3M with logistic regression and support vector machines (SVM) for
both simulated pathways and on two metabolic networks, glycolysis and the pentose phosphate pathway for
Arabidopsis thaliana. We use AltGenExpress microarray data and focus on the pathway differences in the
developmental stages and stress responses of Arabidopsis. The results clearly show that HME3M outperformed the
comparison methods in the presence of increasing network complexity and pathway noise. Furthermore an
analysis of the paths identified by HME3M for each metabolic network confirmed known biological responses of
Arabidopsis.

Conclusions: This paper clearly shows HME3M to be an accurate and robust method for classifying metabolic
pathways. HME3M is shown to outperform all comparison methods and further is capable of identifying known
biologically active pathways within microarray data.

Background
Networks are a natural way of understanding complex
processes involving interactions between many variables.
Visualizing a process as a network allows the researcher
to form an intuitive understanding of complex phenom-
ena. A clear example of the effective use of networks is
the visualization of metabolic networks to provide a
detailed map of key chemical reactions and their genetic
dependencies that occur within a cell. However the size
and complexity of metabolic networks has increased to
the point where the ability to understand the entire net-
work is lost. Researchers must now rely on models of
the network structure to capture the key functional
components that relate to an observed response. In this
paper we propose a model capable of identifying the key
pathways through metabolic networks that are related to
a specific biological response.
Metabolic networks, as described in databases such as

KEGG [1], can be represented as directed graphs, with

the vertices denoting the compounds and the edges
labeled by the reactions. The reactions within metabolic
networks are catalyzed by specific genes. If a gene is
active, then it is possible for the corresponding reaction
to occur. If a reaction is active then a pathway is created
between two metabolic compounds that is labeled by
the gene that catalyzed the reaction. Information about
the activity of genes within metabolic networks can be
readily obtained from microarray experiments. Microar-
ray experiments are then used to view differences in
gene activity under varying experimental conditions
such as (y = 1) patients treated with drug A and (y = 2)
patients treated with drug B. The question asked by
such experiments is: are there any gene pathways that
are differentially expressed when patients are given drug
A or B? The abundance of publicly available microarray
expression observations found in databases such as
ArrayExpress [2] along with the detailed biological
knowledge contained within pathway databases like
KEGG, has spurred biologists to want to combine these
two sources of information and model the metabolic* Correspondence: timhancock@kuicr.kyoto-u.ac.jp
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network dynamics under different experimental
conditions.
This paper proposes a novel classification model for

identifying frequently observed paths within a specified
network structure that can be used to classify known
response classes. Our proposed model is a probabilistic
combination of a Markov mixture model which identi-
fies frequently observed pathway clusters and an ensem-
ble of supervised techniques each trained locally within
each pathway cluster to classify the response. We
require the prior specification of the metabolic network,
gene expression data and response variable that labels
the experimental conditions of interest.
To construct our model we consider the network to

be a directed graph and pathways through the network
to be binary strings. For example there are 4 possible
paths between nodes A and D in the network described
in Figure 1. In Figure 1 the binary representation of the
path between A and D that traverses edges [1,3,4] is [1,
0,1, 1, 0]. If we interpret Figure 1 to be a metabolic net-
work where the edges are the genes and the nodes are
the compounds, then which paths are taken at any given
time can be seen to be dependent on the activity of spe-
cific genes. If a gene is active, then it is possible to pro-
ceed along that edge within the network. In our
experiments we extract all valid pathways from each
microarray experiment that are observed between pre-
specified start and end compounds. To do this we treat
each microarray experiment, xi as a single observation
of the activity of all genes within a network. For each xi
we also have a response label yi denoting the experi-
mental conditions. Then defining an active edge to be
an over-expressed gene observation within xi we extract
all possible paths from the start node to the end node
and label each path with yi. The resulting pathway data-
set then consists of N observed paths from each micro-
array experiment each with a response label indicating
the observed experimental group. Common bioinfor-
matics solutions to this problem include using data
mining techniques to classify the response based on the
gene expression information and then overlay the find-
ing on the metabolic pathway [3]. Although this
approach can classify the response accurately, they use
no knowledge of the network structure. Network struc-
tures can be incorporated into standard methods by
defining an appropriate similarity measure between
sequences and then employ a kernel technique, such as
Support Vector Machines (SVM) [4] to classify the
response. However, the specification of a similarity mea-
sure or kernel removes any ability to observe individual
pathways and determine if the model identifies a

meaningful biological result. An accurate classifier with
the capability to extract the dominant pathways is
required for a complete solution.
Graphical methods such as Bayesian networks present

a framework capable of modeling a network structure
imposed upon a dataset [5]. Bayesian networks search
for the most likely network configuration by drawing
edges connecting dependent variables. However, when
considering mining the dominant paths within a known
network such an approach may not be the most direct
solution. For example constructing a Bayesian network
of a metabolic pathway will join related genes by assum-
ing a conditional dependence between each gene and its
parent genes within the network. This dependency is
valid when considering problems concerning the predic-
tion of unknown structure [6,7] though may be inap-
propriate for the prediction of frequently observed paths
through a known network structure. To predict fre-
quently observed paths, a more natural assumption is
accommodated by Markov methods which assume that
the decision on the next step taken along a path only
requires information on the current and next set of
genes within the network.
Hidden Markov Models (HMM) are commonly used

for identifying structure within sequence information
[8]. HMMs assume that the nodes of the network are
unknown and the observed sequences are a direct result
of transition between these hidden states. However, if
the network structure is known, a more direct approach
is available through a mixture of Markov chains. Markov
mixture models such as 3M [9] directly search for domi-
nant pathways within sequence data by assuming each
mixture component is a Markov chain through a known
network structure. For metabolic networks, Markov
mixture models, such as 3M, have been shown to pro-
vide an accurate and highly interpretable model of
dominant pathways throughout a known network struc-
ture. However, both HMM and 3M are unsupervised
models and therefore are not able to direct their search
to explicitly uncover pathways that relate to specific
experimental conditions.
The creation of a supervised classification technique

that exploits the intuitive nature of Markov mixture
models would be a powerful interpretable tool for biolo-
gists to analyze network pathways. In this paper we pro-
pose a supervised version of the 3M model using the
Hierarchical Mixture of Experts (HME) framework [10].
We choose the mixture of experts framework as our
supervised model because it provides a complete prob-
abilistic framework for localizing a classification model
to specific clusters within a dataset. Our proposed
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model, called HME3M employs a HME to combine the
3M with penalized logistic regressions classifiers as the
experts within each cluster to classify the response.

Experiments
Our problem has the following inputs: the network
structure, microarray observations and a response vari-
able. A pathway through the network, xi, is assumed to
be a binary vector, where a 1 indicates a traversed edge
and 0 represents a non-traversed edge. The decision on
which edges can be traversed is made for each microar-
ray observation based on the expression of each gene.
Once the set of valid edges have been defined, for each
microarray observation all valid pathways are extracted.
After extracting all observed pathways we label each
path with the response label of the original microarray
experiment. Once this is completed for all observations
it is possible to set up a supervised classification pro-
blem where the response vector y denotes the response
label of each pathway, and the predictor matrix X is an
N × P binary matrix of pathways, where N is the num-
ber of pathways and P is the number of edges within
the network. The binary predictor matrix, X and its
response y can now be directly analyzed by our pro-
posed pathway classifier, HME3M, and also with stan-
dard supervised techniques. We assess the performance
of HME3M in both simulated and real data environ-
ments and compare it to PLR and Support Vector
Machines (SVM) with three types of kernels, linear,
polynomial (degree = 3) and radial basis. The implemen-
tation of SVM used for these experiments is sourced
from the R package e1071 [11].
We point out here that the predictor matrix X is a list

of all pathways through the network observed within
the original dataset. Therefore X contains all available
information on the given network structure contained
within the original dataset. Using this information as
input into the PLR and SVM models is supplying these
methods with the same network information that is pro-
vided to the HME3M model. As the supplied informa-
tion is the same for all models the comparison is fair.
The performance of the models are expected to differ
because SVM and PLR do not consider the Markov nat-
ure of the input pathways whereas HME3M explicitly
models this property with a first order Markov mixture
model.
Experiments comparing HME3M to standard classifi-

cation techniques are performed first on simulated net-
work pathways and then on real metabolic pathways
and microarray expression data. We now describe the
details of each experiment.

Synthetic Data
To construct the simulation experiments we assume
that the dataset is comprised of dominant pathways that
define the groups and random noise pathways. To
ensure that the pathway structure is the major informa-
tion within the dataset, we specify the network structure
and simulate only the binary pathway information. A
dominant pathway is defined as a frequently observed
path within a response class. The level of expression of
a dominant pathway is defined to be the number of
times it is observed within a group. A noise pathway is
defined to be a valid pathway within the network that
leads from the start to the end compounds but is not
any of the specified dominant pathways. As the percent
of noise increases, the relative expression of the domi-
nant paths decreases, making correct classification
harder.
We run the simulation experiments on three graphs

with the same structure but with increasing complexities
as shown in Figure 2. For each network we define two
dominant pathways for each response label, y = 0 and y
= 1 and give each dominant pathway equal pathway
expression levels. We simulate a total of 200 pathways
per response label which includes observations from the
two dominant pathways and noise pathways. Separate
simulations are then performed for the specified noise
pathway percentages [10, 20, 30, 40, 50]. The perfor-
mance of each method is evaluated with 10 runs of 10-
fold cross-validation. The performance differences
between HME3M compared to SVM and PLR are then
tested with paired sample t-tests using the test set per-
formances from the cross-validation. We set the
HME3M parameters to be M = [2,3], l = 1, a = 0.5.
KEGG Networks
To assess the performance of HME3M in a realistic we
use two different metabolic networks both extracted
from KEGG [1] for the Arabidopsis thaliana plant. The
networks are selected for their differing structure and
complexity. We deliberately use Arabidopsis as it has
become a benchmark organism and it is well known
that during the developmental stages and under stress
conditions, different components of core metabolic
pathways are activated. The first is glycoloysis (Figure 3)
which is a simple left to right style network and the sec-
ond is the pentose phosphate pathway (Figure 4) which
is a simple directed cycle. Due to the large number of
paths extracted for the KEGG networks to assess the
performance of HME3M we conduct 20-fold inverse
cross-validation for model sizes M = 2 to M = 10.
Inverse 20-fold cross-validation firstly divides the obser-
vations randomly into 20 groups and then for each
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group trains using only observations from one group
and tests the performance on the observations from the
other 19. The performance of HME3M for 20-fold
inverse cross-validation is compared to PLR and the
SVM models.
KEGG Arabidopsis Glycolysis Pathway
In Figure 3 we extract from KEGG the core component
of the glycolysis network for Arabidopsis between
C00668 (Alpha-D-Glucose) and C00022 (Pyruvate). The
extracted network in Figure 3 is a significantly more
complex graph than our simulated designs and has
103680 possible pathways between C00668 and C00022.
We extract the gene expression observations for all
genes on this pathway from the AltGenExpress develop-
ment series microarray expression data [12] downloaded
from the ArrayExpress database [2]. The AltGenExpress
development database [12] is a microarray expression
record of each stage within the growth cycle of Arabi-
dopsis and contains expression observations of 22814
genes over 79 replicated conditions. For our purposes
we extract observations for “rosette leaf” (n = 21) and
“flower” (n = 15) and specify “flower” to be target class
(y = 1) and “rosette leaf” to be the comparison class (y
= 0). For the glycolysis experiment we set the HME3M
parameters to be: l = 1 and a = 0.7.
To extract binary instances of the glycolysis pathway

within our extracted data we scale the observations to
have a mean of zero and standard deviation of 1. After
scaling the expression denote active genes within the
network using three tolerances [-0.1, 0, 0.1] and con-
struct three separate datasets. Within each dataset we
set any gene expression observation that is above the
specified tolerance to be “1” or overexpressed, otherwise
we set its value to “0” or underexpressed. The structure
of each pathway dataset is presented in Table 1. This is
a simple discretization as it requires no additional infor-
mation from the response or external conditions that
might limit the number of paths selected. We deliber-
ately choose this simple discretization of the gene
expressions as it provides a highly noisy scenario to test
the performance of HME3M.
KEGG Arabidopsis Pentose Phosphate Pathway
In Figure 4 we extract from KEGG the core component
of the pentose phosphate network for Arabidopsis
between C00668 (Alpha-D-Glucose) and C00118 (D-Gly-
ceraldehyde 3-Phosphate). The extracted network is
more complex again than the glycolysis network and
has 1305924 possible pathways between C00668 and
C00118. We extract the gene expression observations
for all genes on this pathway from the AltGenExpress
abiotic stress microarray expression data [13].

The AltGenExpress abiotic stress database [12] con-
tains gene expression measurements on the responses of
the “Shoots” or “Roots” of Arabidopsis to various stress
stimuli. For our purposes we extract observations for
Arabidopsis “Shoots” in both the oxidative stress and
control groups for all observed times from 0.25 to 3
hours. This results in six experiments from the “Oxida-
tive” (n = 6) and 10 experiments from the “Control” (n
= 10) and we specify “Oxidative” to be target class (y =
1) and “Control” to be the comparison class (y = 0).
We select this particular subset of the AltGenExpress

abiotic stress as observations on the metabolite abun-
dance for the pentose phosphate pathway [14] clearly
show that within the first 3 hours of exposure to oxida-
tive stress a significant increase in the abundance of
C00117 (D-Ribose 5-phosphate) is observed. In [14] it
was suggested that this increase was a result of an
increase in the flux through the oxidative branch of the
pentose phosphate pathway (Figure 4). In this paper we
try to confirm this observation within the AltGenEx-
press abiotic stress with HME3M.
To extract binary instances of the pentose phosphate

network within our extracted data we scale the observa-
tions to have a mean of zero and standard deviation of
1. After scaling the expression denote active genes
within the network using three tolerances [0, 0.05, 0.1]
and construct three separate datasets. The structure of
each pathway dataset is presented in Table 2. We use
different tolerances to the glycolysis pathway experi-
ments due to the excessively large number of pathways
extracted for negative tolerance values Table 2. For the
pentose phosphate experiment we set the HME3M para-
meters to be: l = 2 and a = 1.

Results and Discussion
Synthetic Data
For the synthetic data the correct classification rate
(CCR) percentages, ranges and paired sample t-test
results for simulated graphs are shown in Table 3. All
experiments show HME3M outperforming the trialled
SVM kernels and a single PLR model. In fact, the only
times when the performances of SVM and HME3M are
equivalent (P-value < 0.05) is with the small or medium
graph with high levels of within group noise. Of particu-
lar note is the observation that for the medium and
large graphs the median performance for HME3M is
always superior to SVM. Furthermore, as the graph
complexity increases it is clearly seen that HME3M con-
sistently outperforms SVM and this performance is
maintained despite the increases in the percent of noise
pathways.
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The performance of PLR for the simulated pathways is
particularly poor because the dataset is noisy and binary.
PLR can only optimize on these noisy binary variables
and is supplied with no additional information such as
the kernels of the SVM models and the pathway infor-
mation of HME3M. Additionally, the L2 ridge penalty is
not a severe regularization and will estimate coefficients
for pure noise pathway edges. Combining the lack of
information within the raw binary variables with the
nature of L2 regularization, it is clear in this case that
PLR will overfit and lead to poor performance.
Table 3 also demonstrates that as you increase the

number of mixture components in the HME3M model,
M, the model’s resistance to noise increases. The
increased robustness of HME3M is observed in the
increase in median performance from M = 2 to M = 3
when the noise levels are 30% or more (≥ 0.3). A sup-
porting observation of particular note is that when the
performances of HME3M with M = 2 is compared with
the linear kernel SVM on the medium graph and 50%
noise there is no significant difference between the
model’s performances. However, by increasing M to 3,
HME3M is observed to significantly outperform linear
kernel SVM. Further, in a similar but less significant
case, for the small graph with 50% added noise, by
increasing M from 2 to 3 the median performance of
HME3M becomes greater than that of linear kernel
SVM. Although this increase did not prove to be signifi-
cant the observed increasing trend within the median
performance is clearly driving the results of the t-test.
It is noticeable in Table 3 that the HME3M perfor-

mance can be less precise than SVM or PLR models.
However the larger range of CCR performances is not
large enough to affect the significance of the perfor-
mance gains made by HME3M. The imprecision of
HME3M in this case is most likely due to the constant
specification of l, a and M over the course of the simu-
lations. In the microarray data experiments we show
that careful choice of M produces stable model perfor-
mances with a comparable CCR range than the nearest
SVM competitor.
KEGG Arabidopsis Glycolysis Pathway
The glycolysis experiment results are displayed in Figure
5. Figure 5 presents the mean correct classification rates
(CCR) for HME3M and comparison methods for each
pathway dataset built from the three trailed gene activity
tolerances. The number of mixture components M is
varied from 2 to 10. It is clear from Figure 5 that for all
tolerances the mean CCR for HME3M after M = 2 is
consistently greater than all other methods and the opti-
mal performance being observed at M = 4. An

interesting feature of Figure 5 is that after the optimal
performance has been reached, the addition of more
components seems to not affect the overall classification
accuracy. This shows HME3M to be resistant to overfit-
ting and complements the results of the noise simula-
tion experiments in Table 3.
The ROC curves for each HME3M component are

presented in Figure 6 and clearly show that the third
component is the most important with an AUC of
0.752, whereas the other three components seem to
hold limited or no predictive power. A bar plot of the
HME3M transition probabilities (θm) for the third (m =
3) component is presented in Figure 7. Overlaying the
transition probabilities from Figure 7 onto the full net-
work in Figure 3 it is found that for three transitions
only single genes are required for the reaction to pro-
ceed:

• C CAT G00111 001182 21180 
• C C CAT G AT G00197 00631 000741 09780 1 74030   

A further analysis of the genes identified reveals the
interaction between AT1G09780 (θ = 1) and
AT1G74030 (θ = 0.969) is of particular importance in
stress response of Arabidopsis. A literature search on
these genes identified both AT1G09780 and
AT1G74030 as important in the response of Arabidopsis
to environmental stresses such as cold exposure, salt
and osmotic stress [15,16]. However, AT2G21180, apart
from being involved in glycolysis, has not previously
been found to be strongly involved in any specific biolo-
gical function. Interestingly however, a search of TAIR
[17] revealed that AT2G21180 is found to be expressed
in the same growth and developmental stages as well as
in the same plant structure categories as both
AT1G09780 and AT1G74030. These findings are indica-
tive of a possible relationship between these three genes
in particular in the response to environmental stress.
The second path connecting compounds C00197

through C00631 to C00074 is found by HME3M to
have a high probability of being differently expressed
when comparing glycolysis in flowers and rosette leaves.
The branching of glycolysis at Glycerate-3P (C00197)
through to Phosphoenol-Pyruvate (C00074) corresponds
known variants of the glycolysis pathway in Arabidopis;
the glycolysis I pathway located in the cytosol and the
glycolysis II pathway located in the plastids [17]. The
key precursor that leads to the branching within cytosol
variant by the reactions to convert Beta-D-Fructose-6P
(C05378) to Beta-D-Fructose-1,6P (C05378) using
diphosphate rather than ATP [17]. Referencing the
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included pathway genes in Figure 7 within the reference
Arabidopsis database TAIR [17] we observe that the
genes specific to the percursor reactions for the cytosol
variant of glycolysis are included within the pathway, i.e.
the genes [AT1G12000, AT1G20950, AT4G0404] for
converting beta-D-fructose-6P (C005345) into beta-D-
fructose-1,6P2 (C005378) utilizing diphosphate rather
than ATP. HME3M’s identification of the plant cytosol
variant of the glycolysis pathway confirms this pathway
as a flower specific, because the plastids variant is clearly
more specific to rosette leaves due to their role in
photosynthesis.
KEGG Arabidopsis Pentose Phosphate Pathway
The classification performance rates for all methods to
classify oxidative stress and control pathways within the
pentose phosphate pathway for each tolerance level are
presented in Figure 8. It is clearly observed from Figure
8 for tolerance levels 0.05 and 0.1 HME3M is outper-
forming all comparison models for all values of M.
However for tolerance 0 we initially observe the polyno-
mial and radial SVM kernels outperforming both
HME3M and linear SVM. However as M increases we
observe the performance of HME3M to steadily increase
and finally after M = 9 HME3M is slightly outperform-
ing both radial and polynomial SVM. This performance
profile is an indication of the degree of noise within the
dataset. The number of pathways identified for a toler-
ance of 0 is quite large, 63002 (Table 2), and decreasing
slightly this tolerance level to -0.05 is seen to double the
number of pathways extracted. Therefore it is reason-
able to suggest that setting a tolerance of 0 is just at the
edge of the pathway structure distribution below which
excessive amounts of noise pathways are extracted.
In contrast increasing the tolerance level to 0.1 we

observe a decrease in the performance of HME3M as M
is increased from M = 2 to M = 4 (Figure 8). This
uncharacteristic drop in performance of HME3M is the
result of insufficient variation within the pathway dataset.
This assertion is supported by HME3M finding the opti-
mum model over all datasets at tolerance of 0.05. How-
ever when the gene activity tolerance is increased to 0.1
the optimal performance observed at a tolerance of 0.05
is never reached. Therefore increasing the tolerance to
0.1 is removing important pathways are required to pro-
duce the optimal model. HME3M then attempts to com-
pensate for this lack of variation within the pathways
observed at a tolerance of 0.1 by overfitting. This overfit-
ting then leads to the decrease in performance observed
as the model complexity of HME3M is increased.
From Figure 9 we observe that the ROC curves for the

optimal HME3M model (M = 2 tolerance = 0.05) clearly

indicate one path for the oxidative label and another
path for the control label. An interesting property of the
ROC curves of each path is that the structure of m = 1
is almost exactly opposite to m = 2. The cause of this
inverse similarity between the ROC curves is that a
similar path is identified by each 3M component (θm = 1

and θm = 2 are correlated at r = 0.52) for both m = 1
and m = 2 but the signs of the PLR coefficients within
each expert are flipped. In Table 4 we show the distri-
bution of signs of the PLR coefficients for each of the
two components. From Table 4 we see that for all cases
when bm = 1 < 0 there is a 45% chance that the sign of
the PLR coefficent is positive in path m = 2. The high
correlation between the estimated pathway structure
indicates that the same path is being found for both m
= 1 and m = 2. However the flipping of the signs within
the PLR coefficients changes the structure of m = 1 to
predict the control label when the oxidative path in
component m = 2 is not observed. The pathway dupli-
cation indicates that the main structure within the data-
set is the activated oxidative pathway observed when
Arabidopsis is under stress and the control group con-
tains mainly noise pathways with little unique structure.
To visualize the oxidative class pathway we overlay the

transition probabilities onto the pentose phosphate net-
work (Figure 4) and clearly see the oxidative branch
from C00668 to C00117 (D-Ribose-5P) is highlighted
(Figure 10). The transition probabilities estimated by
HME3M confirm the observations of [14] and show that
when Arabidopsis is under oxidative stress the pentose
phostphate pathway is clearly coordinated to produce
D-Ribose-5P. However we observe that no single gene
transitions can define the pathway but a coordinated set
of genes that determine the path taken when the pen-
tose phosphate cycle is subjected to oxidative stress.

Conclusions
In this paper we have presented a novel approach for the
detection of dominant pathways within a network struc-
ture for binary classification using the Markov mixture of
experts model, HME3M. Simulations clearly show
HME3M to outperform both PLR and SVM with linear,
polynomial and radial basis kernels. When applied to
actual metabolic networks with real microarray data
HME3M not only maintained its superior performance
but also produced biologically meaningful results.
Naturally it would be interesting to explore the perfor-

mance of HME3M in other contexts where the proper-
ties of the datasets and networks are different. Future
work on HME3M could be to assess the performance of
different pathway activity definitions, other than simply
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over expressed genes. Furthermore, the 3M component
of HME3M is also able to be extended to include other
gene information such as protein class and function.
Incorporating additional information on specific gene
functions or using different pathway definitions would
allow HME3M to examine metabolic pathways at several
resolutions and help improve the understanding of the
underlying dynamics of the metabolic network.

Methods
Hierarchical Mixture of Experts (HME)
A HME is an ensemble method for predicting the
response where each model in the ensemble is weighted
by probabilities estimated from a hierarchical framework
of mixture models [18]. Our model is the simplest two
level HME, where at the top is a mixture model to find
clusters within the dataset, and at the bottom are the
experts, weighted in the direction of each mixing com-
ponent, used to classify a response. Given a response
variable y and predictor variables x, a 2-layer HME has
the following form,

p y x p m x p y xm m m m

m

M

( | , , , , , , ) ( | , ) ( | , ).     1 1

1

  

 (1)

where bm are the parameters of each expert and θm
are the parameters of mixture component m. A HME
does not restrict the source of the mixture weights p(m|
x, θm) and as such can be generated from any model
that returns posterior component probabilities for the
observations. Taking advantage of this flexibility we pro-
pose a HME as a method to supervise the Markov mix-
ture model for metabolic pathways 3M [9]. Combining
HME with a Markov mixture model first employs the
Markov mixture to find dominant pathways. Posterior
probabilities are then assigned to each sequence based
on its similarity to the dominant pathway. These are
then passed as input weights into the parameter estima-
tion procedure within the supervised technique. Using
the posterior probabilities of 3M to weight the para-
meter estimation of each supervised technique is in
effect localizing each expert to summarize the predictive
capability of each dominant pathway. Therefore incor-
porating the 3M Markov mixture model within a HME
is creating a method capable of combining network
structures with standard data table information. We
now formally state the base 3M model and provide the
detail of our proposed model, Hierarchical Mixture
Experts 3M (HME3M) classifier.

3M Mixture of Markov Chains
The 3M Markov mixture model assumes that pathway
sequences can be represented with a mixture of first
order Markov chains [9]. The full model form spanning
M components estimating the probabilities of T transi-
tions is,

p x p m x

p c p c x c

m

m

m m

m

M

t t t tm
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( | ) ( , | ; )
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





 


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1

1 1

1

1

2

(2)

where πm is the mixture model component probabil-
ity, p(c1|θ1m) is the probability of the initial state c1, and
p(ct, xt|ct-1, θtm) is the probability of a path traversing
the edge xt linking states ct-1 and ct. The 3M model is
simply a mixture model and as such its parameters are
conveniently estimated by an EM algorithm [9]. The
result of 3M is M mixture components, where each
component, m, corresponds to a first order Markov
model defined by θm = {θ1m, [θ2m, ..., θtm, ..., θTm]}
which are the estimated probabilities for each transition
along the mth dominant path.
HME3M
The HME model combining 3M and a supervised tech-
nique for predicting a response vector y can be achieved
by using the 3M mixture probabilities p(m|x, θm) (2),
for the HME mixture component probabilities in (1).
This yields the HME3M likelihood,

p y x p m x p y x

p y x p c p

m m

m

M

m m m

m

M

( | ) ( | , ) ( | , )

( | , ) ( | ) (













 

  

1

1 1

1

cc x ct t t tm

t

T

, | ; )

 1

2



(3)

The parameters of (3) can be estimated using the EM
algorithm by defining the esponsibilities variable him to
be the probability that a sequence i belongs to compo-
nent m, given x, θm, bm and y. These parameters are
iteratively optimized with the following E and M steps:
E-Step: Define the responsibilities him:

h mp m xi m p yi xi m

mp m xi m p yi xi mm
Mim 

  

  
( | , ) ( | , )

( | , ) ( | , )1
(4)

M-Step: Estimate the Markov mixture and expert
model parameters:
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(1) Estimate the mixture parameters

 


m tm

himi
N

himi
N

m
M

xit himi
N

himi
N

 







1

11

11

1
and

( )
(5)

where δ (xit = 1) denotes whether a transition t is
active within observation i, or xit = 1. This condition
enforces the constraint that the probabilities of each set
of transitions between any two states must sum to one.
Additionally it can be shown that for this model all
initial state probabilities p(c1|θ1m) = 1.
(2) Estimate the expert parameters
Using a weighted logistic regression for each expert,

l h h y x log em im im i m
T

i
x

i

N

m

m
T

i( | ) arg max ( ) 


   










 1

1 
(6)

The original implementation of HME estimates the
expert parameters, bm, with the Iterative Reweighted
Least Squares (IRLS) algorithm, where the HME
weights, him are included multiplicatively by further
reweighting the standard IRLS weights [10]. The IRLS
iterations are Newton-Raphson steps with normal equa-
tions defined by,

m
new T

m
T

m mX W X X W z ( ) 1 (7)

where ŷ is the vector of probabilities p x m
old( ; ) and

Wm is a diagonal matrix of weights such that
w h y ymii im i i ˆ ( ˆ )1 and zm is the working response for
the IRLS algorithm z X W y ym m

old
m  ( ( )) 1 . How-

ever, in this setting, X is a sparse matrix of binary path-
ways where we expect and are explicitly looking for
dominant pathways. Thus, simple IRLS maximization of
(6) is likely to be inaccurate. Furthermore, the severity
of the sparsity within X is compounded by the addi-
tional weighting required by the experts’ inclusion into
the HME architecture. These conditions will manifest
themselves in duplicate rows within X, causing rank
deficiency and results in unstable estimates for the para-
meters of a logistic regression model. Therefore the sim-
ple IRLS scheme proposed by [10] is inappropriate for
use in this case. To overcome the rank deficiency issue
we propose using a regularized form of logistic regres-
sion [19].
Penalized logistic regression (PLR)
Penalized Logistic Regression (PLR) uses a penalty [20]
to allow for the coefficients of logistic regression to be
run over a sparse or large dataset. In this paper the use
of PLR is necessary to overcome the rank deficient nat-
ure of the data matrix and allow for stable estimation of

the HME3M parameters. PLR maximizes bm subject to
a ridge penalization |bm|2 controlled by l � [0, 2],

( | ) arg max ( ) | |   



m im im i m

T
i

x
m

i

N

h h y x log e
m

m
T

i    



 1

2
2

1










(8)

The size of l directly affects the size of the estimates
for bm. As l approaches 2 the estimates for bm will
become more sparse, and as l approaches 0 the esti-
mates for bm approach the IRLS estimates. In this case
we choose the ridge penalty for reasons of computa-
tional simplicity. The ridge penalty allows the regulariza-
tion to be easily included within the estimation by a
simple modification to the Netwon-Raphson steps (7).
The Iterative Reweighted Ridge Regression (IRRR) equa-
tions are given by,

m
new T

m
T

m mX W X X W z  ( ) 1 (9)

where Λ is a P × P diagonal matrix with l along the
diagonal where P is the number of variables in X and zm
is the working response as specified in (7).
However, another issue is that the Iterative

Reweighted Least Squares algorithm (IRLS) used for
estimating the parameters of a PLR is known to be
unstable and not guaranteed to converge [20].
Furthermore our personal experience of IRLS in the

HME context indicates the need for additional control
over the rate of learning of the experts. This experience
suggests that if the PLR iterations converge too quickly
the estimates of bm reach a local optimum. A subse-
quent effect is the HME likelihood in the following
iterations becomes erratic as the EM responsibilities (4)
are dominated by the PLR probabilities p(y|x, bm) which
do not necessarily reflect the structure within the 3M
parameters. The different rates of convergence between
the 3M and PLR parameters can cause instabilities in
the HME3M likelihood. This problem has been noted
by [18] and a solution is proposed by the imposition of
a learning rate on the gradient descent form of the IRLS
algorithm. This gradient descent method ensures that at
each iteration, a step will be taken to maximize bm, a
sufficient condition for the EM algorithm. However this
method allows for control of the learning rate of the
experts by the imposition of a learning penalty a � [0, 1]
on the coefficient updates. The parameter update for
gradient descent PLR regularization is then computed
by:

  m
new

m
old T

m
T

imX W X X h y y   ( ) ( ( )) 1  (10)
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where Λ is a diagonal matrix with the regularization
parameter l along the diagonal and Wm is a diagonal
matrix of observation weights combining information
from the IRLS algorithm and the HME architecture.
The observation weights are defined to be

W h y ym imii
 ˆ( ˆ)1 , where ˆ( ˆ)y y1  weights the observa-

tions to optimally predict y by ˆ
( )

y
e m

T X


 
1

1  sourced

from the IRLS algorithm, and him are the EM responsi-
bilities (4). This update for bm gives control over the
size of the coefficients through l and speed in which
these parameters are learned through a. It is noted by
[18] that this method will converge to the same solution
as the IRLS method, however the effect of a will
increase the number of iterations for convergence. In
(10) the action of l is to control the size of each bm by
artificially inflating their variance.
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