
Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Open AccessR E S E A R C H
ResearchFlexSnap: Flexible Non-sequential Protein
Structure Alignment
Saeed Salem*1, Mohammed J Zaki2 and Chris Bystroff3

Abstract
Background: Proteins have evolved subject to energetic selection pressure for stability and flexibility. Structural
similarity between proteins that have gone through conformational changes can be captured effectively if flexibility is
considered. Topologically unrelated proteins that preserve secondary structure packing interactions can be detected if
both flexibility and Sequential permutations are considered. We propose the FlexSnap algorithm for flexible non-
topological protein structural alignment.

Results: The effectiveness of FlexSnap is demonstrated by measuring the agreement of its alignments with manually
curated non-sequential structural alignments. FlexSnap showed competitive results against state-of-the-art
algorithms, like DALI, SARF2, MultiProt, FlexProt, and FATCAT. Moreover on the DynDom dataset, FlexSnap reported
longer alignments with smaller rmsd.

Conclusions: We have introduced FlexSnap, a greedy chaining algorithm that reports both sequential and non-
sequential alignments and allows twists (hinges). We assessed the quality of the FlexSnap alignments by measuring its
agreements with manually curated non-sequential alignments. On the FlexProt dataset, FlexSnap was competitive to
state-of-the-art flexible alignment methods. Moreover, we demonstrated the benefits of introducing hinges by
showing significant improvements in the alignments reported by FlexSnap for the structure pairs for which rigid
alignment methods reported alignments with either low coverage or large rmsd.

Availability: An implementation of the FlexSnap algorithm will be made available online at http://www.cs.rpi.edu/
~zaki/software/flexsnap.

Background
The wide spectrum of functions performed by proteins are
enabled by their intrinsic flexibility [1]. It is known that
proteins go through conformational changes to perform
their functions. Homologous proteins have evolved to adopt
conformational changes in their structure. Therefore, simi-
larity between two proteins which have similar structures
with one of them having undergone a conformational
change will not be captured unless flexibility is considered.

The problem of flexible protein structural alignment has
not received much attention. Even though there are a pleth-
ora of methods for protein structure comparison [2-8], the
majority of the existing methods report only sequential
alignments and thus cannot capture non-sequential align-
ments. Non-sequential similarity can occur naturally due to

circular permutations [9] or convergent evolution [10]. The
case is even harder for flexible alignment since only two
methods, FlexProt [11], and FATCAT [12] report flexible
alignments. Nevertheless, both methods are inherently lim-
ited to sequential flexible structural alignment because both
methods employ sequential chaining techniques. The com-
plexity of protein structural alignment depends on how the
similarity is assessed. Kolodny and Linial [13] showed that
the problem is NP-hard if the similarity score is distance
matrix based. Therefore, over the years, a number of heuris-
tic approaches have been proposed, which can mainly be
classified into two main categories: dynamic programming
and clustering.

Dynamic Programming (DP) is a general paradigm to
solve problems that exhibit the optimal substructure prop-
erty [14]. DP-based methods, Structal [15] and SSAP [16],
construct a scoring matrix S, where each entry, Sij, corre-
sponds to the score of matching the i-th residue in protein A

* Correspondence: saeed.salem@ndsu.edu
1 Department of Computer Science, North Dakota State University, Fargo, ND

58108, USA
© 2010 Salem et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20047669
http://www.cs.rpi.edu/~zaki/software/flexsnap
http://www.cs.rpi.edu/~zaki/software/flexsnap

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 2 of 13
and the j-th residue in protein B. Given a scoring scheme
between residues in the two proteins, dynamic program-
ming finds the global alignment that maximizes the score.
DP-based methods suffer from two main limitations: first,
the alignment is sequential and thus non-topological simi-
larity cannot be detected, and second, it is difficult to design
a scoring function that is globally optimal [13]. In fact,
structure alignment does not have the optimal substructure
property, therefore DP-based methods can find only a sub-
optimal solution [17]. The other category of alignment
methods, the Clustering-based methods, DALI [2], SARF2
[4], CE [5], SCALI [7], and FATCAT [12], seek to assemble
the alignment out of smaller compatible (similar) element
pairs such that the score of the alignment is as high as possi-
ble [18]. Two compatible element pairs are consistent (can
be assembled together) if the substructures obtained by ele-
ments of the pairs are similar. The clustering problem is
NP-hard [19], thus several heuristics have been proposed.
The approaches differ in how the set of compatible element
pairs is constructed and how the consistency is measured.
Both SARF2 and SCALI produce non-sequential align-
ments.

The two main flexible alignment methods, FlexProt [11]
and FATCAT [12], work by clustering (chaining) aligned
fragment pairs (AFPs) and allowing flexibility while chain-
ing, by introducing hinges (twists). FlexProt searches for
the longest set of AFPs that allow different number of
hinges. It then reports different alignments with different
number of hinges. The FATCAT method works by chaining
AFPs using dynamic programming. The score of an align-
ment ending with a given AFP is computed as the maxi-
mum score of connecting the AFP with any of alignments
that end before the AFP. A penalty is applied to the score to
compensate for gaps, root mean squared deviation (rmsd),
and hinges. A third method, which can handle flexible
alignments, is the HingeProt [20] method. HingeProt first
partitions one of the two proteins into rigid parts using a
Gaussian-Network-Model-based (GNM) approach and then
aligns each rigid region with the other protein using the
MultiProt [6] method. HingeProt uses the MultiProt algo-
rithm in the sequential mode and thus does not report flexi-
ble non-sequential alignments. Therefore, the accuracy of
the HingeProt approach depends on the accuracy of identi-
fying the rigid domains which is a hard problem as the best
known method, HingeMaster [21], has a sensitivity of only
50%.

To address the limitations of exisiting algorithms we pro-
pose FlexSnap, a greedy algorithm for flexible sequential
and non-sequential protein structural alignment (the name
of the algorithm is a non-sequential permutation of the bold
letters in Flexible non-Sequential protein alignment). The
algorithm assembles the alignment from the set of AFPs
and allows non-sequential alignments and hinges. We dem-
onstrate the effectiveness of FlexSnap by evaluating its

alignments' agreement with manually curated non-sequen-
tial alignments. Moreover, FlexSnap shows competitive
results on the FlexProt dataset when compared to the main
flexible alignment methods, FlexProt and FATCAT.

Methods
The main idea of the FlexSnap approach is to assemble the
alignment from short well-aligned fragment pairs, which
are called AFPs. As we assemble the alignment by adding
AFPs, introducing hinges when necessary. Figure 1 shows
how the alignment is constructed from smaller aligned frag-
ment pairs. When chaining a fragment pair to the align-
ment, we choose the fragment that has the highest score
when joined with the last rigid region in the alignment. The
score rewards longer alignments with small rmsd and
penalizes large rmsd, gaps, and the introduction of hinges.
In the next subsections, we provide a detailed discussion of
the FlexSnap algorithm.

AFPs Extraction
Let A = {A1, A2,..., An} and B = {B1, B2,..., Bn} be two pro-
teins with n and m residues respectively, where Ai 8 �3 × 1

(similarly Bi) represents the 3D coordinates of the Cα atom
of the i-th residue in protein A. The first step in FlexSnap is
to generate a list of aligned fragment pairs (AFPs):

Each AFP, (i, j, l), is a fragment that starts at the i-th resi-
due in A and j-th residue in B and it has a length of l resi-

AFPs i j l rmsd i j l= ≤{(, ,) | (, ,) }ε

Figure 1 Flexible Structural Alignment. The Figure shows proteins
A and B which have 3 similar structure fragments. A rigid alignment
(top right) is not able to align the blue fragment, but a flexible align-
ment (bottom right) can do this easily by introducing a hinge between
the rigid block (the black and green fragments) and the blue fragment.
As we assemble the alignment from well-aligned pairs, we introduce
hinges to get a longer alignment and smaller rmsd.

Introduce a hinge here

Protein A

Protein B

Rigid Alignment

Flexible Alignment

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 3 of 13
dues. An AFP is formally represented as a set of l
equivalenced pairs between the two proteins, and given as:

where (Ai, Bj) indicates that the ith residue of protein A is
paired with the jth residue of protein B, and l is AFP's
length. Each AFP must satisfy a user-defined similarity
constraint. In FlexSnap, we employ the root mean square
deviation as the similarity measure, i.e., rmsd(i, j, l) ≤ ε.
Moreover, we require that the length of the AFP be at least

L, i.e., 3 ≤ L ≤ l. Furthermore, we define and to be
the beginning and end of the AFPk along the backbone of
protein B. For example, for a triplet AFPk = (i, j, l) and pro-

tein A, = i and = i + l - 1.
The number of possible AFPs can be as large as O(n3).

The set of all AFPs can be obtained by iterating over all the
triplets (i, j, l),

and for each triplet checking if the rmsd(i, j, l) ≤ ε. The
rmsd of a fragment of length l can be obtained in O(l) [22].
A naive implementation that iterates over all the triplets (i,
j, l) to obtain the set of all the AFPs would have an O(n4)
time complexity. However, by observing that the rmsd of
the AFP (i, j, l + 1) can be computed incrementally from the
rmsd of AFP (i, j, l) in constant time, the set of aligned frag-
ment pairs (AFPs) can be obtained in O(n3) time complex-
ity [11].

The main idea to incrementally compute the rmsd is to
simplify the rmsd formula. Given two sets, A and B, of N
points each, the root mean square deviation (rmsd) is calcu-
lated as [23]:

where A' and B' denote the points after recentering, i.e.,

, and the di's are the singular values of C

= A'B'T, which is a 3 × 3 covariance matrix given as:

In rare cases when the determinant of C is negative, then
d3 = -1 * d3. Equation (1) can be simplified as:

It is clear that all the terms used in equation (3) can be
updated in constant time, and thus computing the rmsd for
N + 1 points requires constant time if we have all the terms
evaluated for the first N points. Therefore computing the
rmsd for AFP(i, j, l) for all values of l's (for a given i and j)
requires only O(n) time. Thus, the total time complexity for
the seeds extraction step is O(n3) ...

Flexible Chaining
The second step in FlexSnap is to construct the alignment
by selecting a subset of the AFPs. Given a set of AFPs, P,
obtained in the AFPs extraction step, we are interested in
finding a subset of AFPs, R : P, such that all the AFPs in R
are mutually non-overlapping and the score of the selected
AFPs in R is as large as possible. At one hand, we want to
get as large an alignment as possible, while on the other
hand, we want to minimize the number of hinges and gaps.
Therefore, our goal is to optimize a score that rewards long
alignments with small rmsd, and penalizes the introduction
of hinges and gaps.

The set of AFPs can be thought of as runs in an n × m
matrix S, where n and m are the sizes of proteins A and B,

(, ,) {(,),(,), ,(,)}i j l A B A B A Bi j i j i l j l= + + + − + −1 1 1 1

bk
P ek

P

bk
A ek

A

where

i n L

j m L

L l min n i m j

= −
= −

≤ ≤ − + − +

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1

1

1 1(,)

rmsd
N

A B di

i

N

i i

ii

N
2 2

1

2

1

3

1

1
2= × ′ + ′ −

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= ==
∑ ∑∑

′ = − =∑
A Ai i

Aii
N

N
1

C A B
Aii

N Bi
T

i
n

Ni i
T

i

n

= − =∑ =∑

=
∑

1

1 1

rmsd
N

A
N

A B
N

Bi

i

N

i

i

N

i i

i

N
2 2

1 1

2

2

1

1 1 1= × −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

+ −
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= = =
∑ ∑ ∑

22

1

3

1

2−
⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟==

∑∑ di
ii

N

Figure 2 Flexible Structural Alignment by AFPs chaining. When
extending the alignment R = {P1, P2, P3}, the score of extending R with
each AFP is computed and we extend the alignment with the AFP that
gives the best score. The score S(P4, P2, P3)) indicates the score of add-
ing P4 to the region composed of P2 and P3.

X

P4

P5

A hinge

A

B

P6P7

P8

S(P2, P3, P6)

S(P2, P3, P5)

S(P1, P8)

S(P1, P7)

Alignment, R

P1

P2

P3

S(P2, P3, P4)

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 4 of 13
respectively (see Figure 2). We define a precedence rela-
tion, �, between two AFPs such that Pi � Pj if Pi appears

either in the upper or lower left quadrant of Pj, i.e.

and , or and (recall that and

 denote the beginning and end, respectively, of AFP Pi

in protein A). Generally speaking, we say that two AFPs, Pi

and Pj, can be chained if they do not overlap, i.e., Pi � Pj or
Pj � Pi As depicted in Figure 2, P7 and P8 can be chained to
P1.

For sequential chaining, we define a sequential prece-
dence relation, �s, such that Pi precedes Pj (written as Pi �s

Pj) if Pi appears strictly in the upper left quadrant with

respect to Pj, i.e. and . Two AFPs Pi and

Pj can be sequentially chained together if Pi �s Pj or Pj �s

Pi. In Figure 2, P7 and P2 can be sequentially chained to P1.
An AFP, Pi, can be chained to an alignment R, denoted as
(R T Pi), if it does not overlap with any AFP in R. In Figure
2, P7, P4, and P5 can be sequentially chained to R which
consists of AFPs {P1, P2, P3}; and both P6 and P8 can be
non-sequentially chained to R. Next, we shall introduce our
solution for the general flexible chaining problem.

The FlexSnap Approach
The goal of chaining is to find the highest scoring subset of
AFPs, i.e., R : P, such that all the AFPs in R are mutually
consistent and non-overlapping. The problem of finding the
highest scoring subset of AFPs is essentially the same as
finding the maximum weighted clique in a graph G = (V, E,
w) where the set of vertices V represent the set of AFPs,
each vertex vi has a weight equal to the score of the AFP,
w(vi) = S(Pi), where the score of an AFP Pi, S(Pi), could be
its length or some other combination of length and rmsd.
There is an edge (vi, vj) 8 E if the AFPs Pi and Pj do not
overlap and are consistent (can be joined with small rmsd or
have similar rotation matrices).

The problem of finding the maximum weighted clique in
a graph is computationally expensive; it is NP-hard [19].
Thus, we propose a greedy algorithm to find an approxi-
mate solution for the chaining problem. The main idea is to
start building the alignment from an initial AFP and to add
AFPs to the alignment. We start the alignment by selecting
the longest AFP, then we iteratively add new AFPs to the
alignment as long as the newly added AFP improves the
score of the alignment. Given an alignment, R, we add to it
the AFP that contributes most. We keep growing the align-
ment until no more AFPs can be added. The contribution of
an AFP to the alignment is scored by how consistent the

AFP is with the alignment and how good the AFP is. When
adding an AFP to an alignment, we reward longer AFPs
with smaller rmsd, and we penalize for gaps, inconsistency,
and hinges. The penalty takes into consideration: 1) the
number of gaps introduced; 2) the increase in rmsd when
combining two or more AFPs; 3) the introduction of new
hinges.

As depicted in Figure 2, the scores of extending the align-
ment, R, with P4, P5, P6, P7, or P8 are computed and the
AFP with the best score is added to the alignment. When
measuring the score of adding an AFP to the alignment, we
actually measure the score of adding the AFP to the last
rigid region, and not just to the last fragment, in the align-
ment. In Figure 2, the score of adding P4 to R is the score of
adding P4 to the region composed of P2 and P3. Since P2 and
P3 together form a rigid sub-alignment (as we can see there
is no hinge between them). When adding P7 to R, the score
of adding P7 to the region composed only of P1 is com-
puted.

Figure 3 shows the pseudo-code for the greedy chaining
algorithm used in FlexSnap. Since the chaining is a greedy
algorithm, we run the algorithm K times starting from the K
highest scoring non-overlapping AFPs and we report the
alignment with the best score.
Alignment Extension Score
Next, we will discuss how we extend a partial alignment
with the next best AFP. More specifically, given an align-
ment R, the next AFP to chain to the alignment is the one
that maximizes the following scoring function:

b ej
A

i
A>

b ej
B

i
B> e bj

A
i
A< b ej

B
i
B> bi

A

ei
A

b ej
A

i
A> b ej

B
i
B>

Figure 3 A greedy AFP chaining algorithm. A greedy algorithm for
AFP chaining. The algorithm iteratively chooses an AFP to add to R
(lines 4-7) until no more AFPs can be added, or the best score of adding
an AFP to R is negative.

GreedyChaining(A,B,L,H, ε,Dc,Mr,Mg)

A,B: the two proteins to be aligned

L: the minimum length of an AFP, L ≥ 3

ε: the maximum rmsd for an AFP

Dc: the rmsd threshold for introducing a hinge

Mr: the penalty for a hinge

Mg: the penalty for a gap

H: the maximum number of hinges allowed

1. P= seedExtraction(A,B,L, ε)

2. P ′
= highest scoring AFP in P

3. R = P ′

4. While(R can be extended)

5. P ′ ← maxPi
(S(R,Pi))

6. R ← R ∪ {P ′}
7. End

8. Report the AFPs in R

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 5 of 13
where R T Pi indicates that Pi does not overlap with R,
and S(R, Pi) is the score of chaining Pi to R. The score, S(R,
Pi), is a combination of the weight of the AFP, W(Pi), and
the penalty of extending R with Pi, C(R T Pi). The score is
defined as follows:

where C(R T Pi) is the penalty incurred when connecting
Pi to R, and W(Pi) is the score of the AFP itself. The scoring
function rewards longer AFPs with small rmsd and penalize
gaps and hinges. If the addition of an AFP Pi to the align-
ment results in a large rmsd, then we introduce a hinge only
if W(Pi) is large enough to compensate for the penalty
incurred. A similar approach for penalizing gaps and hinges
was used in the FATCAT method [12]. Though their score
and cost functions are different, and they do not consider
rigid regions as we do in FlexSnap when connecting an
AFP to the alignment. The score of connecting Pi to R is
defined as follows:

where Mg is the penalty for a gap, Mr is the maximum

penalty for a hinge, and is the rmsd of connecting Pi

to the last rigid region in R. If increases above a user-

defined threshold, Dc, we introduce a hinge and the penalty
is maximum; if not, the penalty is proportional to how far
the rmsd value is from ε (maximum rmsd for an AFP).
Moreover, we allow only a maximum number of H hinges.
The score for an AFP is a function of its length and rmsd.
The score is the length of the AFP, L(Pi), plus a contribution
of the rmsd of the AFP, rmsd(Pi), to the score, and is given
as:

The complexity of the chaining algorithm depends on the
number of AFPs, M, that the two structures have. In the
worst case, M could be close to n3, but in practice it is much
less, i.e., M ≤ n2. The complexity of the algorithm is
Mlog(M) + k * M * n, where k is the number of AFPs in the
final solution and n is the size of the larger protein.
Sequential Flexible Chaining
The above general chaining algorithm reports both sequen-
tial and non-sequential alignments. In the results section,
we demonstrate that the quality of its non-sequential align-
ments is competitive to state-of-the-art non-sequential
alignment methods. However, for sequential flexible align-
ment, there are more efficient chaining algorithms, namely
the approach proposed by the FATCAT algorithm. The
FATCAT algorithm follows a dynamic programming
approach for chaining the AFPs. In FATCAT, the score of
an alignment ending with an AFP, Pi, is defined in terms of
the score of Pj's and the connection cost of Pi with these Pj's
such that Pj precedes Pi (Pj �s Pi). More specifically, FAT-
CAT defines the score of the alignment that ends with Pi as
follows:

where C(Pj T Pi) is the penalty incurred when connecting
Pi to the alignment that ends with Pj and it is similar to the
penalty function used in the general chaining and W(Pi) is
the score of the AFP itself. We propose an approach that is

′ =
∀ →

P S R P
P s t R P

i
i i

max { (,)}
, . .

S R P W P C R Pi i i(,) () ()= + →

C R P M Z D M gap

Z D

if D D

DRPi
Dc

i r RP g

RP

RP c

i

i

i

() * () *

()

→ = +

=

>

−
where

 1

ε
−−

⎛

⎝⎜
⎞

⎠⎟
< <

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

⎫

⎬

⎪
⎪⎪

⎭

⎪
⎪
⎪

ε
ε

2

0

if D D

otherwise

RP ci

DRPi

DRPi

W P L P L P
rmsd Pi

i i i() () * ()*
()= + −⎛

⎝⎜
⎞
⎠⎟

α ε
ε

2

S P W P max S P C P Pi i
P s t P P

j j i
j j s i

() () max { (() (),)}
, . .

= + + →
∀ <

0

Figure 4 A greedy sequential AFP chaining algorithm. A greedy
sequential algorithm for AFP chaining. When encountering the begin-
ning of an AFP, the algorithm computes the scores of adding the AFP
to the alignments in the upper left corner and the AFP is chained to the
alignment with which it gives the highest score.

X
P4

A hinge

A

B

P1

P2

P3

P5

R2

R1

P6

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 6 of 13
similar in spirit to FACTCAT, however, it is different in two
important aspects. The first aspect is the optimality of the
alignment reported by FATCAT. The main issue here is that
the scoring function has an rmsd term since W(Pi) is a func-
tion of the length of Pi and its rmsd. Therefore, S(Pi) cannot
be optimal because we do not know of a scoring function
that involves the rmsd value that is additive and optimal
(rmsd score is not a metric since it does not satisfy the trian-
gular inequality property). Therefore, the optimality of
FATCAT alignments is not guaranteed since the sub-opti-
mality property of the dynamic programming does not hold
if the score incorporates an rmsd term. In Figure 4, let the
optimal alignment be {P1, P4, P5, P6}, the sub-optimality
property requires that {P1, P4, P5} is also optimal, and it is
the best alignment that ends with P5. This is not necessarily
true in structural alignment, because it could happen that
the alignment {P1, P2, P3, P5} is better {P1, P4, P5}. In gen-
eral, the flexible structural alignment does not exhibit the
optimal substructure that would justify the use of dynamic
programming.

In FlexSnap, we follow a similar approach as the
approach presented in [24] for chaining substrings. In the
original algorithm, once we reach the end of a substring
(segment), Pi, we delete all the solutions that end with Pj's
whose ends are lower and to the left of the endpoint of Pi
and S(Pj) <S(Pi). For the segments shown in Figure 4, let
S(P3) >S(P4), once we encounter the end of P3, we should
delete the solution that ends with P4. When we encounter
P5, we know that the best solution it can be chained to ends
with P3. This approach works fine for regular chaining
problems (like strings). However for the structural align-
ment problem, this approach does not yield the optimal
alignment since the problem does not exhibit the optimal
substructure property. Therefore, in FlexSnap, once we
reach the end of an AFP, Pi, we do not delete all solutions
that end with Pj's which are to the left and below Pi; instead
we only delete the ones that have very low scores as com-
pared to S(Pi). Though not optimal, this approach gave bet-
ter results for sequential chaining than the pure greedy
approach presented in the previous section.

The second aspect where FlexSnap is different from FAT-
CAT is that in FATCAT C(Pj T Pi) is the connection cost of
Pi and Pj while in FlexSnap it is the connection cost of Pi to
the rigid region that contains Pj. In FATCAT, if Pj belongs to
a rigid region and the connection cost of Pi with Pj is small,
Pi will be added to the same rigid region as Pj even though
Pi might not be consistent with other AFPs in the same
region. In Figure 4, if we were connecting P5 to R2 that ends
with P4, FATCAT would compute the connection cost C(P5,
P4) but FlexSnap would compute C((P1, P4) T P5) since P4
belongs to the rigid region that contains P1. In FATCAT,

when connecting P5 to R2, we might get the conclusion that
there is no need to introduce a hinge and thus P5 belongs to
the same rigid region as P1 and P4. This may lead to a large
rmsd when we report the alignment since we did not check
if P5 is consistent with P1. However, when FlexSnap adds
P5 to the same rigid region as P4 and P1, it will not harm the
final rmsd when we report the alignment as FlexSnap
ensures that all the segments in the same rigid region are
consistent. In the results section, we investigate how com-
puting the connection cost with the whole rigid region as
opposed to the last segment in the rigid region affects the
quality of the alignment. For some structure pairs, consider-
ing the whole rigid region in computing the connection cost
resulted in significant improvements.

Results and Discussion
To assess the quality of FlexSnap alignment compared to
other structural alignment methods, we evaluated the agree-
ment of the methods' alignments with reference manually-
curated alignments. We compared FlexSnap against
sequential methods (DALI [2] and CE [5]), non-sequential
methods (SARF2 [4], MultiProt [6], and SCALI [7]), and
flexible sequential alignment methods (FlexProt [11] and
FATCAT [12]). Finally, we analyzed the flexibility on the
DynDom dataset [25], which is a comprehensive and non-
redundant dataset of protein domain movements.

All the experiments were run on a 1.66 GHz Intel Core
Duo machine with 1 GB of main memory running Ubuntu
Linux. The chaining algorithm is efficient and its running
time varies from 1 second to a minute depending on the size
of the proteins. We used the corresponding web server for
most of the other alignment methods. The optimal values
for the different parameters were found empirically such
that they give the best agreement with manually curated
alignments; we used L = 8, ε = 2 Å, Dc = 3 Å, α = 0.5, Mr =
-10, Mg = -1, and H = 3 (see Figure 3).

Non-Sequential Alignments
We used the reference alignments for the structure pairs
which have circular permutation in the RIPC dataset [26].
The RIPC set contains 40 structurally related protein pairs
which are challenging to align because they have indels,
repetitions, circular permutations, and show conformational
flexibility [26]. There are 10 pairs in the RIPC dataset that
have circular permutation. Since the structure pairs have
non-sequential alignments, to be fair, we only compare with
algorithms that can handle non-sequentiality. However, we
report the average agreement for some sequential methods
as well. The agreement of a given alignment, S, with the
reference alignment, R, is defined as the percentage of the
residue pairs in the alignment which are identically aligned
as in the reference alignment (IS) relative to the reference
alignment's length (LR), i.e., A(S, R) = (IS/LR) × 100. Table 1

Sa
le

m
 e

t a
l.

A
lg

or
ith

m
s f

or
 M

ol
ec

ul
ar

 B
io

lo
gy

 2
01

0,
 5

:1
2

ht
tp

://
w

w
w

.a
lm

ob
.o

rg
/c

on
te

nt
/5

/1
/1

2
Pa

ge
 7

 o
f 1

3

Table 1: Comparison of SARF, MultiProt, SCALI, and FlexSnap on the RIPC dataset.

SCOPID SARF MultiProt SCALI FlexSnap

Pro1 Pro2 size rmsd A size rmsd A size rmsd A size rmsd A

d1nkl__ d1qdma
1

67 2.21 92 67 1.82 68 62 1.94 69 73 2.39 100

d1nls__ d2bqpa_ 212 1.50 83 213 1.03 100 195 1.62 83 210 2.81 83

d1qasa2 d1rsy__ 109 2.27 65 107 1.24 93 98 1.92 82 111 1.73 100

d1b5ta_ d1k87a2 171 2.63 63 144 2.04 0 159 3.38 0 177 2.99 50

d1jwyb_ d1puja 115 2.43 83 108 1.81 92 110 4.60 83 116 2.61 92

d1jwyb_ d1u0la2_ 97 2.02 100 103 1.86 91 91 4.52 90 96 2.82 100

d1nw5a_ d2adma 129 2.52 85 130 2.11 92 132 3.73 84 128 2.91 100

d1gsa 1_ d2hgsa1 73 2.59 20 74 1.56 40 69 3.23 40 73 2.81 20

d1qq5a_ d3chy__ 88 2.39 67 82 1.97 67 52 2.08 66 93 2.94 67

d1kiaa_ d1nw5a_ 146 2.48 83 153 1.85 75 138 3.99 75 141 2.69 75

Avg. Agreeme
nt

74 72 67 79

Three values are reported for each alignment: its length, its rmsd, and A which is its agreement with the reference alignment in the RIPC dataset

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 8 of 13
shows the agreements of four different methods with the
reference alignments in the RIPC dataset. The results show
that FlexSnap is competitive to state-of-the-art methods for
non-sequential alignment. In fact, it has the highest average
agreement (79%) among the methods shown. The average
agreement of most of the sequential alignment methods we
compared with were drastically lower: DALI [2] (40%), CE
[4](36%), FATCAT [12](28%), and LGA [27](38%).

FlexSnap alignments have 100 percent agreement on four
structure pairs. One such pair is the alignment of NK-lysin
(1nkl, 78 residues) with prophytepsin (1qdm, chain A, 77
residues). On this pair, all the sequential alignment methods
(CE, DALI, FATCAT, and LGA) returned zero agreements.
For the non-sequential ones: SARF returned 92%, Multi-
Prot got 68%, and SCALI returned 69%. The reference
alignment had 72 aligned pairs. As shown in Figure 5, the
sequential alignment methods (only DALI and FATCAT
shown) have their alignment paths along the diagonal and

do not agree with the reference alignment (shown as cir-
cles).

Sequential Flexible Alignments

Table 2 shows the alignments of different methods on the
FlexProt dataset [11] which is obtained from the database of
macromolecular motions[28]. We have implemented two

versions of FlexSnap namely FlexSnapF, and ;

In FlexSnapF, C(Pj T Pi) is the cost of connecting Pi with
the rigid region to which Pj belongs. In the second version,

, C(Pj T Pi) is the connection cost of Pi with
only Pj. It is observed that when considering the entire rigid
region, as in FlexSnapF, we get much better alignments,
i.e., they have lower rmsd and fewer hinges. Moreover,
FlexSnapF gives comparable results to the FATCAT
method. In few cases, it got slightly shorter alignments with

FlexSnapF2

FlexSnapF2

Figure 5 Comparison of the agreements of the alignments with one structure pair from the RIPC dataset. Comparison of the agreement be-
tween the reference alignment and 6 other alignment methods on the structure pair of prophytepsin(d1qdma1) and nk-lysin(d1nkl__). Residue po-
sitions of d1qdma1 and d1nkl__ are plotted on the x-axis and y-axis, respectively. Note: the reference alignment pairs are shown in circles. The SARF,
MultiProt, SCALI, and FlexSnap plots overlap with the reference alignment. FlexSnap has 100 percent coverage of the reference alignment; there is a
triangle in every circle.

 1

 15

 30

 45

 60

 75

 1 15 30 45 60 75

d1
nk

l

d1qdma1

Reference
FlexSnap

SARF2
MultiProt

SCALI
DALI

FATCAT

http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1nkl
http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=1qdm

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 9 of 13
much better rmsd as in the case of the third and fourth
alignment pairs.

Flexibility in the DynDom Dataset

The DynDom dataset [25] is a comprehensive and non-
redundant dataset of protein domain movements; it has
been compiled by an exhaustive analysis of protein domain
movements on all available protein structures using the
DynDom program [29]. The protein conformations are first
grouped into families based on sequence similarity, result-
ing in 1825 families with an average of 11.5 family mem-
bers. Then a clustering procedure is applied to members of

the same family to remove dynamic redundancy (same
motion) and finally running the DynDom program to ana-
lyze domain movements in each family. There are currently
2035 representative pairs belonging to 1578 families in the
DynDom dataset. Since these representative pairs involve
domain movements, rigid alignment methods would not be
able to align these pairs effectively, while flexible align-
ment methods will be able to introduce hinges and align the
pairs more effectively. We define the coverage of the align-
ment as the percentage of the number of residues in the
alignment to the length of the smaller protein. More for-

Table 2: Comparison of FlexProt, FATCAT, FlexSnapF, and .

FlexProt FATCAT FlexSnapF

Pro1 Pro2 l r T l r T l r T l r T

1wdnA
(223)

1gggA(220) 218 0.94 2 220 1.01 2 220 0.96 2 220 0.96 2

1hpbP
(238)

1gggA(220) 220 2.34 2 213 1.59 2 211 1.67 2 210 3.88 1

2bbmA
(148)

1cll_(144) 139 2.22 1 144 2.28 1 138 1.8 1 138 1.80 1

2bbmA
(148)

1top_(162) 147 2.40 3 145 2.28 3 137 1.78 3 137 1.78 3

1akeA
(214)

2ak3A(226) 200 2.44 2 202 1.54 2 207 2.05 2 206 6.72 1

2ak3A
(226)

1uke_(193) 182 2.90 2 188 2.97 0 184 2.36 1 184 3.08 0

1mcpL
(220)

4fabL(219) 218 1.93 1 217 1.40 1 217 1.49 1 217 1.49 1

1mcpL
(220)

1tcrB(237) 212 2.33 1 213 2.20 1 202 2.3 1 200 2.38 1

1lfh (691) 1lfg_(691) 691 1.41 2 686 0.89 2 688 0.99 2 688 0.99 2

1tfd (294) 1lfh_(691) 291 1.98 2 290 1.37 2 287 1.89 2 283 1.41 2

1b9wA
(91)

1danL(142) 75 2.78 1 80 2.39 2 82 2.25 2 83 2.7 2

1qf6A
(641)

1adjA(420) 323 4.43 1 351 2.68 1 326 2.45 3 320 2.47 2

2clrA(275) 3fruA(269) 253 2.71 2 245 3.06 0 254 2.57 3 252 4.31 0

1fmk (438) 1qcfA(450) 424 1.25 2 433 2.27 0 413 2.71 0 413 2.44 1

1fmk (438) 1tkiA(321) 231 3.28 2 238 3.07 0 241 2.58 3 242 3.14 2

1a21A
(194)

1hwgC(191) 163 2.75 4 153 3.16 1 156 2.35 3 155 3.79 2

Comparison of FlexProt, FATCAT, FlexSnapF, and . Each alignment is reported in the following format: its length, l, its rmsd, r,

and the number of hinges introduced, T.

FlexSnapF2

FlexSnapF2

FlexSnapF2

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 10 of 13
Table 3: Comparison of several alignment methods on the DynDom dataset

DALI Structal MultiProt FlexSnapR FlexSnap FlexProt

aC/aR aC/aR aC/aR aC/aR aC/aR/aH aC/aR/aH

97/2.31 87/1.27 87/1.15 85/1.60 96/1.46/0.45 88/2.14/0.45

Two values are reported for the alignments of each method: average coverage for the method (aC in %), and average rmsd (aR in Å). For
FlexSnap and FlexProt, we also report the average number of hinges introduced (aH). FlexSnapR is FlexSnap in rigid mode with the number
of maximum allowed hinges set to zero.

Figure 6 An example of a rigid alignment with low coverage. A DynDom pair with low alignment coverage: Rigid vs. Flexible alignment.

(a) pdbID:1u42 chain:A 101 residues (b) pdbID:1u36 chain:A 100 residues

(c) DALI (N/rmsd): 55/0.8Å (d) FlexSnap (N/rmsd/hinges): 100/0.89Å/1

mally, the coverage of an alignment of length Nmat is

defined as , where |A| is the

length of protein A, similarly for |B|.
Table 3 shows the average coverage, rmsd, and hinges

reported by different methods on the DynDom dataset. For
the same structure pair, FlexProt reports different solutions
with different number of hinges ranging from 0 to 5 hinges.
For the sake of fair comparison, we choose the FlexProt
alignment with the same number of hinges as the solution
reported by FlexSnap. Moreover, we also run FlexSnap in

rigid mode (FlexSnapR) with the number of allowed hinges
set to 0 to investigate how it compares to rigid alignment
methods. DALI has the highest coverage followed by Flex-
Snap. However, the average rmsd of FlexSnap alignments
is much smaller than the average rmsd for DALI align-
ments. On average, FlexSnap introduced 0.59 hinges in the
alignments. By introducing flexibility in the alignments,
FlexSnap reported alignments with significantly smaller
rmsd while maintaining high alignment coverage. Also
when run in the rigid mode, FlexSnapR is competitive to
state-of-the-art methods like DALI, Structal, and MultiProt.

coverage Nmat
min A B= ×(| |,| |) 100

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 11 of 13
Table 4: Comparison of FlexSnap and FlexProt on the DynDom pairs for which rigid alignment methods returned coverage
≤ 60%

Rigid Alignment FlexSnap FlexProt

Method #Pairs aC(%)/aR(Å) aC(%)/aR(Å)/aH aC(%)/aR(Å)/aH

DALI 30 31/2.3 89/1.75/1.37 79/2.36/1.37

Structal 282 52/0.77 94/1.72/1.34 93/2.08/1.34

MultiProt 164 53/1.12 92/1.59/1.56 93/2.0/1.56

Two values are reported for the alignments of each method: average coverage for the method (aC in %), and average rmsd (aR in Å). For
FlexSnap and FlexProt, we also report the average number of hinges introduced (aH).

Table 5: Comparison of FlexSnap and FlexProt on the DynDom pairs for which rigid alignment methods returned
alignments with rmsd ≥ 4.0 Å

Rigid Alignment FlexSnap FlexProt

Method #Pairs aC(%)/aR(Å) aC(%)/aR(Å)/aH aC(%)/aR(Å)/aH

DALI 295 94/5.89 94/1.61/1.54 93/2.02/1.54

Structal 16 88/5.03 82/1.97/2.19 78/2.75/2.19

Two values are reported for the alignments of each method: average coverage (aC in %), and average rmsd (aR in Å). For FlexSnap and
FlexProt, we also report the average number of hinges introduced (aH).

DynDom Pairs with Low Coverage
Rigid alignment methods try to optimize a score that is usu-
ally dependent on the length and rmsd of the alignment.
Therefore, they might prefer shorter alignment with small
rmsd over a longer alignment with significantly larger
rmsd. In some cases, like when there is a movement in one
of the proteins, they have no choice but to report a shorter
alignment with an acceptable rmsd value. We analyze the
alignments of structure pairs for which rigid alignment
methods returned short alignments as compared to the
length of the smaller protein. We run three different rigid
alignment methods, DALI, Structal, and MultiProt, and get
the pairs for which any of the methods returned a coverage
less than or equal to 60%. The list has 30 pairs for DALI,
282 for Structal, and 164 for MultiProt. An example of a
rigid alignment with low coverage is shown in Figure 6. For
this DynDom pair, Structal reported an alignment of 52 res-

idues with rmsd 0.40 Å; MultiProt's alignment was 54 with
rmsd 0.52 Å.

Table 4 shows the average coverage, rmsd, and hinges
reported by FlexSnap on these structure pairs. For fair com-
parison, we choose the FlexProt alignment with the same
number of hinges as the FlexSnap solution. FlexSnap sig-
nificantly improves the coverage of the alignments of these
hard pairs. Moreover, it does so while maintaining good
rmsd values and introducing on average about 1.5 hinges.
In FlexSnap's scoring function, hinges are penalized and we
only introduce a hinge if there is a significant increase in
the alignment score. That explains why the number of
hinges introduced is not large. DALI optimizes a score that
incorporates the length and rmsd of the alignment. Thus for
these 30 pairs, the score is too low for longer alignments,
and thus DALI chooses to report shorter alignments with
good rmsd, and thus low coverage on these 30 pairs. The
Structal method reported low coverage alignments on many

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 12 of 13
more structure pairs when compared to DALI. The reason
behind that is the fact that the Structal method depends on
the initial alignments for its initial transformations and it
might miss the true alignment if the initial alignments are
not good starting points.
DynDom Pairs with Large rmsd
In some cases rigid alignment methods would seek to opti-
mize the score that favors longer alignments with accept-
able rmsd values, and thus they may have good coverage on
some pairs, but the rmsd values may be too large. Flexible
alignments can be employed for these cases to get similar
alignments but with much better rmsd values. For each of
our test methods, namely DALI, Structal, and MultiProt, we
compiled a list of the structure pairs for which the method
reported an alignment with rmsd ≥ 4.0 Å, and we ran FlexS-
nap on these pairs. An example of a rigid alignment with
large rmsd is shown in Figure 7. FlexSnap reported an
alignment with 100% coverage with an rmsd of 0.71 Å by
introducing only one hinge in the alignment. Table 5 shows
the average coverage, and rmsd as reported by the native
rigid method and by FlexSnap. Under this criterion, DALI
reported alignments with rmsd ≥ 4.0 Å on 295 pairs, much
more than what the other methods reported. MultiProt

didn't report any alignment with large rmsd. In fact, all of
the MultiProt alignments had rmsd ≤ 2.3 Å; this can be
explained by noting that MultiProt includes in the align-
ment only residue pairs which are closely aligned and thus
the overall rmsd will not be large.

FlexSnap significantly improved the average rmsd of the
alignments of these pairs. For the 295 pairs for which DALI
reported an average rmsd of 5.89 Å, FlexSnap reported an
average rmsd of 1.61 Å. For the 16 pairs reported by Struc-
tal, FlexSnap average rmsd is 1.97 Å as opposed to 5.03 Å
reported by Structal.

Conclusions
We have introduced FlexSnap, a greedy chaining algorithm
that reports both sequential and non-sequential alignments
and allows twists (hinges). We assessed the quality of the
FlexSnap alignments by measuring its agreements with
manually curated non-sequential alignments (on the RIPC
dataset). On the FlexProt dataset, FlexSnap was competi-
tive to state-of-the-art flexbile alignment methods. More-
over, we demonstrated the benefits of introducing hinges by
showing the significant improvement in the alignments
reported by FlexSnap for the structure pairs for which rigid

Figure 7 An example of a rigid alignment with large rmsd. A DynDom pair with large alignment rmsd: Rigid vs. Flexible alignment.

(a) pdbID:2cn4 chain:A 173 residues (b) pdbID:1dk0 chain:B 173 residues

(c) DALI (N/rmsd): 125/5.7Å (d) FlexSnap (N/rmsd/hinges): 173/0.71Å/1

Salem et al. Algorithms for Molecular Biology 2010, 5:12
http://www.almob.org/content/5/1/12

Page 13 of 13
alignment methods reported alignments with either low
coverage or large rmsd (on the DynDom dataset).

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
SS and MJZ designed the FlexSnap algorithm with the proposed scoring
scheme. SS coded the algorithm in C++ and wrote the paper. CB proposed the
experiments and helped analyze the alignments. All authors read and
approved the final manuscript.

Acknowledgements
We would like to thank the anonymous reviewers for their comments and sug-
gestions. Also, we thank the authors of the different alignment algorithms for
making their programs available. This work was supported in part by NSF
Grants EMT-0829835 and EIA-0103708, NIH Grant 1R01EB0080161-01A1, and
NIH grant number P20 RR016741 from the INBRE program of the National Cen-
ter for Research Resources.

Author Details
1Department of Computer Science, North Dakota State University, Fargo, ND
58108, USA, 2Department of Computer Science, Rensselaer Polytechnic
Institute, 110 8th St, Troy, NY 12180, USA and 3Department of Biology,
Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA

References
1. Wriggers W, Schulten K: Protein domain movements: detection of rigid

domains and visualization of hinges in comparisons of atomic
coordinates. Proteins: Structure, Function, and Genetics 1997, 29:1-14.

2. Holm L, Sander C: Protein structure comparison by alignment of
distance matrices. J Mol Biol 1993, 233:123-138.

3. Subbiah S, Laurents D, Levitt M: Structural similarity of DNA-binding
domains of bacteriophage repressors and the globin core. curr biol
1993, 3:141-148.

4. Alexandrov N: SARFing the PDB. Protein Engineering 1996, 50(9):727-732.
5. Shindyalov I, Bourn P: Protein structure alignment by incremental

combinatorial extension (CE) of the optimal path. Protein Eng 1998,
11:739-747.

6. Shatsky M, Nussinov R, Wolfson H: A method for simultaneous
alignment of multiple protein structures. Proteins: Structure, Function,
and Bioinformatics 2004, 56:143-156.

7. Yuan X, Bystroff C: Non-sequential Structure-based Alignments Reveal
Topology-independent Core Packing Arrangements in Proteins.
Bioinformatics 2003, 21(7):1010-1019.

8. Zhu J, Weng Z: FAST: A Novel Protein Structure Alignment Algorithm.
Proteins: Structure, Function and Bioinformatics 2005, 14:417-423.

9. Lindqvist Y, Schneider G: Circular permutations of natural protein
sequences: structural evidence. Curr Opin Struct Biol 1997, 7(3):422-427.

10. Milik M, Szalma S, Olszewski K: Common Structural Cliques: a tool for
protein structure and function analysis. Protein Engineering 2003,
16(8):543-552.

11. Shatsky M, Nussinov R, Wolfson H: Flexible protein alignment and hinge
detection. Proteins: Structure, Function, and Bioinformatics 2002,
48:242-256.

12. Ye Y, Godzik A: Flexible structure alignment by chaining aligned
fragment pairs allowing twists. Bioinformatics 2003, 19:II246-II255.

13. Kolodny R, Linial N: Approximate protein structural alignment in
polynomial time. PNAS 2004, 101:12201-12206.

14. Needleman S, Wunsch C: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol 1970,
48:443-453.

15. Gerstein M, Levitt M: Using Iterative Dynamic Programming to Obtain
Accurate Pairwise and Multiple Alignments of Protein Structures. Proc
Int Conf Intell Syst Mol Biol 1996, 4:59-67.

16. Orengo C, Taylor W: SSAP: sequential structure alignment program for
protein structure comparison. Methods Enzymol 1996, 266:617-35.

17. Eidhammer I, Jonassen I, Taylor WR: Protein Bioinformatics: An algorithmic
Approach to Sequence and Structure Analysis UK: John Wiley & Sons Ltd;
2004.

18. Eidhammer I, Jonassen I, Taylor W: Structure comparison and structure
patterns. J Comput Biol 2000, 7(5):685-716.

19. Garey M, Johnson D: Computers and Intractability: A Guide to the Theory of
NP-Completeness San Francisco, CA: W.H. Freeman; 1979.

20. Emekli U, Schneidman-Duhovny D, Wolfson H, Nussinov R, Haliloglu T:
HingeProt: Automated Prediction of Hinges in Protein Structures.
Proteins 2008, 70(4):1219-1227.

21. Flores S, Keating K, Painter J, Morcos F, Nguyen K, Merritt E, Kuhn L,
Gerstein M: HingeMaster: normal mode hinge prediction approach and
integration of complementary predictors. Proteins 2008, 73:299-319.

22. Kabsch W: A solution for the best rotation to relate two sets of vectors.
Acta Crystallogr 1976, A32:922-923.

23. Chwartz J, Sharir M: Identification of partially obscured objects in two
dimensions by matching of noisy characteristic curves. Int J Robotics
Res 1987, 6:29-44.

24. Gusfield D: Algorithms on strings, trees, and sequences: Computer science
and computational biology New York: Cambridge University Press; 1999.

25. Qi G, Lee R, Hayward S: A comprehensive and non-redundant database
of protein domain movements. Bioinformatics 2005, 21(12):2832-2838.

26. Mayr G, Dominques F, Lackner P: Comparative Analysis of Protein
Structure Alignments. BMC Structural Biol 2007, 7(50):564-77.

27. Zemla A: LGA - a Method for Finding 3D Similarities in Protein
Structures. Nucleic Acids Research 2003, 31(13):3370-3374.

28. Gerstein M, Krebs W: A database of macromolecular motions. Nucleic
Acids Res 1998, 26(18):4280-4290.

29. Hayward S, Berendsen H: Systematic Analysis of Domain Motions in
Proteins from Conformational Change; New Results on Citrate
Synthase and T4 Lysozyme. Proteins, Structure, Function and Genetics
1998, 30:144-154.

doi: 10.1186/1748-7188-5-12
Cite this article as: Salem et al., FlexSnap: Flexible Non-sequential Protein
Structure Alignment Algorithms for Molecular Biology 2010, 5:12

Received: 19 August 2009 Accepted: 4 January 2010
Published: 4 January 2010
This article is available from: http://www.almob.org/content/5/1/12© 2010 Salem et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Algorithms for Molecular Biology 2010, 5:12

http://www.almob.org/content/5/1/12
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8377180
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15335781
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9796821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9204286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12968072
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14534198
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15304646
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5420325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8877505
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8743709
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11153094
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17847101
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18433058
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15802286
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9722650

	Abstract
	Background
	Results
	Conclusions
	Availability

	Background
	Methods
	AFPs Extraction
	Flexible Chaining
	The FlexSnap Approach
	Alignment Extension Score
	Sequential Flexible Chaining

	Results and Discussion
	Non-Sequential Alignments
	Sequential Flexible Alignments
	Flexibility in the DynDom Dataset
	DynDom Pairs with Low Coverage
	DynDom Pairs with Large rmsd

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	Author Details
	References

