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Abstract

Background: Mass spectrometry (MS) based protein profiling has become one of the key technologies in
biomedical research and biomarker discovery. One bottleneck in MS-based protein analysis is sample preparation
and an efficient fractionation step to reduce the complexity of the biological samples, which are too complex to
be analyzed directly with MS. Sample preparation strategies that reduce the complexity of tryptic digests by using
immunoaffinity based methods have shown to lead to a substantial increase in throughput and sensitivity in the
proteomic mass spectrometry approach. The limitation of using such immunoaffinity-based approaches is the
availability of the appropriate peptide specific capture antibodies. Recent developments in these approaches,
where subsets of peptides with short identical terminal sequences can be enriched using antibodies directed
against short terminal epitopes, promise a significant gain in efficiency.

Results: We show that the minimal set of terminal epitopes for the coverage of a target protein list can be found
by the formulation as a set cover problem, preceded by a filtering pipeline for the exclusion of peptides and target
epitopes with undesirable properties.

Conclusions: For small datasets (a few hundred proteins) it is possible to solve the problem to optimality with
moderate computational effort using commercial or free solvers. Larger datasets, like full proteomes require the use
of heuristics.

Background
Mass spectrometry (MS) based protein profiling has
become one of the key technologies in biomedical
research and biomarker discovery. Contrary to the ana-
lysis of mRNA profiles, the screening of protein expres-
sion profiles allows direct conclusions about the
molecular mechanisms involved in a certain condition,
because many cellular processes are directly related to
the protein functions.
mRNA-Profiling is based on hybridization of DNA-

molecules and binding molecules are easy to postulate
and to synthesize. This allows the comparatively cheap
production of high-density microarrays that cover a
large portion of the known genome. Unfortunately this
is not applicable in the protein world since features of
protein binding molecules can not be predicted as easily.

Mass spectrometry allows a parallel, high-throughput
detection of a mixture containing a limited number of
peptides [1-3]. For qualitative and quantitative protein
profiling of a complex sample time-consuming sample
fractionation steps such as 2D gel electrophoresis or
multidimensional chromatography are necessary. In this
way, small subsets of the sample are analyzed fraction
by fraction. The mentioned fractionation methods are
the limiting factor in MS-based protein analysis.
Immunoaffinity-MS approaches combine antibody-

based approaches with mass-spectrometry, increasing
sample throughput and detection sensitivity by captur-
ing proteins or peptides from the sample using protein-
or peptide-specific antibodies [4-9]. However, the draw-
back is the large number of antibodies needed - one
antibody per protein. Nevertheless efforts are ongoing to
generate antibodies for the analysis of the plasma pro-
teome by an immunoaffinity MS approach [10].
The novel ‘Triple X proteomics’-strategy (TXP) [11]

uses a special kind of antibodies to immunoprecipitate
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groups of peptides which share a common short
sequence (3-5 amino acids) at the N-or C-terminal end,
generated in a tryptic whole proteome digest of a biolo-
gical sample (see Figure 1). In contrast to classical pep-
tide antibodies those binders can be selected and
generated to bind dozens to hundreds of peptides shar-
ing the same TXP-epitope.
As the biological proof of concept has been shown,

the practical question arose which epitopes should be
produced to cover a large set proteins with minimal
effort based on prior knowledge of a proteome.
In this work we present a method to select and opti-

mize TXP-antigens, the short common terminal
sequences (epitopes), to cover a given set of target pro-
teins. This leads to a substantial reduction of antibodies
to be generated for a proteome wide immunoaffinity-MS
approach. An in-silico digest of a fully elucidated target
proteome is filtered to eliminate those peptides with
undesirable properties or epitopes. We show that the
problem of selecting the minimal set of TXP-antigens is
equivalent to the set cover problem. We apply a greedy
algorithm and a boolean programming approach, and
extend those methods, to enhance the multiple coverage
of the protein targets for a better experimental design.

Methods
The goal of the experiment design task is to calculate a
minimal set of epitopes to measure a given set of proteins
in a complex mixture. The mixture is a digest, that was
derived from a tryptic digest of the whole proteome. It is
also assumed that the digest is complete (there are no
missed or mis-cleavages) and that the proteome of the
organism is fully elucidated. Another assumption is that the
hypothetical antibody is specific to a given epitope, and
does not bind variations or modifications of the epitope.

The process is divided in a filtering pipeline, where
the search space is reduced, and the optimization step,
where the problem is formulated and then solved.

Filter Pipeline
Starting from a proteome dataset (e.g. Uniprot or IPI)
that is defined as the background, an in-silico tryptic
digest is obtained. It is assumed that the background
dataset holds information about all proteins found in
the future sample.
Peptides must have certain properties to be detectable

by a read-out method. The mass of the peptide has to
be known and, in addition, mass-spectrometers have
limits in resolution and mass range. Instead of including
these limitations in optimization-constraints, a filter
pipeline is applied where peptides and epitopes, which
do not match the criteria, are removed.
Here, the digest of a proteome P is defined by a set of

pairs D(P) = {(Pi, pj)} where pj is the j-th peptide in pro-
tein Pi, pi = a1a2 ... an is an amino acid sequence com-
posed of the single letter amino acid code. We define a
peptide-antibody-combination as a quadruple labelled
pij
tl :

p P p t l t n c lij
tl

i j≡ ∈ >( , , , ) | { , }; .1 (1)

Here, l defines the length of the epitope and t
describes whether the terminus is n- or c-terminal. The
set

C C D P T l l pall ij
tl= =( ( ), , , ) { }min max (2)

with

( , ) ( )P p D Pi j ∈ (3)

Figure 1 Schematic Immunoaffinity-MS workflow: Sample preparation and digest, fractionation with TXP-antibodies, analysis of the
fraction with mass spectrometry.
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l l l T n c∈ … ∈ ( ){ , , }; { , }min max (4)

contains all combinations for a given proteome, length
range and termini. This combination set is the raw start
input for the filter pipeline. The quadruple is not needed
for every filter, but for reasons of formal continuity we
use the definition through the whole specification of the
pipeline.
Knowing the weight of captured peptides is essential

for the mass spectrometry read-out. Therefore, the
‘unknown-positions’-filter removes peptides containing
unknown positions (symbol X ), as their weight cannot
be calculated.
The methionine filter removes combinations with epi-

topes containing methionine (symbol M ), since chemi-
cal modifications of methionine may hamper the
recognition of the target epitope by a binding molecule,
especially by an antibody.
The high abundant epitope filter removes combina-

tions with epitopes which would capture a large number
of peptides. An antibody affine to such an epitope
would be cluttered, and therefore be rather insensitive.
We define a subset Ce ⊂ C which contains all combi-

nations p Cij
tl ∈ where epitope ( )p eij

tl = . If |Ce| is bigger
than 600, the epitope e would not be considered for
optimization.
The weight filter removes combinations which share

the same terminus and have almost the same weight.
These peptides can not be measured with standard

mass spectrometry read-out, because the resulting peaks
would overlap in the spectrum. A reasonable value for
Δmin is 2-10 Da for MALDI-TOF-spectrometers. In this
filter, rather than excluding the terminus from the opti-
mization only the almost isobaric peptides are not
counted as identifiable by combining the specific epitope
and mass information. For example the peptides
AYEQLGYR and HLEILGYR could not be discriminated
in a mass spectrum of a probe enriched with an anti-
body affine to the epitope LGYR, because the masses
only differ by 1.068 Da, if the resolution of the mass
spectrometer does not provide the adequate resolution.
The length filter removes combinations which do not

fit in the detection range of the mass spectrometer. The
detection range depends on the technical specifications
of the mass-spectrometer, but a range from 8-30 amino
acids is a good rule of thumb.
Some proteins occur with great abundance in the

sample, such as actin or tubulin. Terminal epitopes of
peptides from these proteins are unsuitable as epitopes
for immunoaffinity experiments for the same reasons
explained in the high abundant epitope filter. In this last
filter step an epitope stop list, generated from a hand
cured list of high-abundant proteins, is used to remove

those from list of combinations. As shown in figure 2
filters are usually applied in a specific order. While the
methionine, unknown positions, high abundant protein
filters can be applied at any position in the pipeline,
other filters are order-dependent. This is the case if a
filter evaluates the expected peptide distribution Ce of
an epitope e. These filters cannot be preceded by filters
that change those distributions. The high abundant epi-
tope filter must precede the weight filter, which must
precede the length filter.
Through the application of this filter pipeline the pre-

selection of epitopes is adjusted to the experimental
setup and the problem dimension is significantly
reduced.

Figure 2 Filter pipeline.
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The influence of the filters is shown in Table 1. While
the unknown-positions-filter and the methionine-filter
have a relatively small impact, the high abundant epi-
tope filter and the weight filter remove a large number
of combinations. The weight filters reduce the number
of combinations by about 43%, while the number of epi-
topes is only reduced by 3%. The filter removes combi-
nations from the set, which cannot contribute to the
coverage (overlapping peaks). Still the corresponding
antibody can capture peptides that are detectable by the
mass spectrometer.
Some antibodies (’robinson antibodies’) capture only

one peptide from one protein. If there is an antibody
that captures more peptides from the same protein and
others, it is always better to choose this one over the
‘robinson antibody’. Therefore all robinson antibodies
are removed from the graph before the optimization
starts.

Protein set cover problem formulation
The bipartite graph G = (P ∪ A, E) is constructed by
adding proteins and epitopes as vertices, and by con-
necting a protein node from the protein set P and an
epitope node from the epitope set A if a combination
appears in the filtered set:

G P A E= ∪( , ) (5)

E e P p C epitope p ei ij
tl

ij
tl= ∈ ∧ ={( , ) | ( ) } (6)

The problem is to select a minimal set of antibodies
Amin ⊂ A so that every protein in P is covered by at
least one epitope. The minimum set cover is a classical
problem in computer science and complexity theory.
The set cover can be formulated as a decision pro-

blem, where the question is asked, if a covering set
of size k or less exists. This problem was shown to be

NP-complete and achieving approximation ratios is no
easier than computing optimal solutions. [12] The opti-
mization version where the smallest covering set has to
be found is NP-hard. It was shown that a greedy algo-
rithm (see appendix) has an approximation ratio of

H n
k

n
k

n

( ) ln ,= ≤ +
=

∑ 1
1

1

(7)

where n is the size of the largest set. [13]
This the best approximation ratio for the set cover

problem [14]. In this algorithm in each step the epitope
in A covering the most yet uncovered proteins in P, is
added to the solution set L, until all proteins are
covered.
Another approach to the solution of the set cover pro-

blem is to formulate it as a binary linear program. The
binary decision variables sa reflect the inclusion of an
epitope a to the solution set. The number of the
selected epitopes forms the objective function:

min sa
a A∈
∑ (8)

A a a epitope p p Cij
tl

ij
tl= ∃ = ∈{ | ( ); } (9)

sa ∈{ , }0 1 (10)

The linear program is subject to the constraint that
every protein P has to be covered by one or more epi-
topes in the solution:

cov p a s P P
a A

ij
tl

a i

∈
∑ ( ) ≥ ∀ ∈, 1 (11)

cov p a
a epitope p

otherwise
ij
tl ij

tl

,
( )( ) = =⎧

⎨
⎪

⎩⎪
1

0
(12)

This program can be solved with available solvers
such as CPLEX or GLPK. This will lead to optimal solu-
tions, if the problem dimension is small.
To enhance the accuracy of the proteomics experi-

ments, it would be beneficial to capture the same or
multiple peptides from a protein by different binders. In
addition it is beneficial to include alternative binders in
the experimental planning, in case the generation of a
binder affine to a specific epitope fails. The multicover-
ing problem (MCP) is a generalization of the set cover-
ing problem. Several algorithms have been proposed by
Dobson [15], Hochbaum, Hall [16] and Rajagopalan
[17]. Those heuristics would solve the problem of

Table 1 Filter impact

Filter #
epitopes

#
proteins

#
combinations

Unfiltered 671,427 20,333 4,196,636

unknown positions filter 671,253 20,333 4,195,788

methionine filter 569,365 20,332 3,839,772

high abundant epitope
filter

569,354 20,332 3,312,617

weight filter 559,323 20,178 1,962,034

length filter 530,863 20,020 1,662,437

high abundant protein filter 527,164 20,010 1,598,289

Impact of the different filters applied on the in-silico tryptic digest of the
human proteome (Uniprot taxon id 9606), N-C-terminal epitopes of length 4
and 5, Δmin = 4, Δmin = = =4 6 30, ,l lmin

filter
min
filter
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covering each protein twice or more. As it would be
cost-prohibitive to double the number of binders, it is
not possible to cover all target proteins more than once.
This is the case at least for proteins that are covered by
a very specific epitope. The following approach solves
the pragmatic variant of the problem.
The greedy algorithm can be modified to enhance the

probability of the selection of an epitope set that meets
the multicoverage requirement for the target proteins.
In this variant (see appendix) the scoring function

combines two different optimization targets, minimality
and redundancy, by summation to a one-dimensional
multiobjective fitness function.
The function is a weighted sum of the number of pro-

teins which are not yet covered

n a a p E p Pcov cov( ) |{( , ) | }|,= ∈ /∈ (13)

and the number of proteins which are covered again
by this antibody

n a a p E p Pmcov cov( ) |{( , ) | }| .= ∈ ∈ (14)

E denotes the edge set in the bipartite graph and Pcov
the set of already covered proteins. The influence of
new and already covered proteins on the overall score
of an epitope is weighted by the parameters smcov and
scov:

score a n a s n a scov cov mcov mcov( ) ( ) ( )= ⋅ + ⋅ (15)

Still the algorithm terminates with a total number of
epitopes lower or equal as the number targets, because
every added epitope is required to cover at least one
new target protein.
The choice of the parameters smcov and scov has a high

impact on the results, and depends heavily on the size
of the dataset. The number of epitopes with high capa-
city is considerably lower in small datasets than in large
datasets. Because of this the probability that a protein
can be covered more than once by different high capa-
city epitopes is small. In large datasets the situation is
the opposite. As many epitopes have a very large capa-
city, and possibly cover up to a few hundred peptides
from many different proteins, it is more probable that
the sets of captured proteins overlap. In this configura-
tion it is better to score innovation over redundancy.
While this is intuitively clear, it would be a big effort to
determine the best values analytically. For large datasets
should smcov should be chosen smaller than scov, for
small datasets smcov >scov.
Multiple coverage can be integrated to the Integer

Program formulation by changing the coverage con-
straints to

cov p a s
a A

ij
tl

a

∈
∑ ( ) ≥, 2 (16)

for all proteins that can be covered twice. However
this will lead to inclusion of elongated, already selected,
epitopes (e.g. IER and EIER), to satisfy the double cover-
age constraints.
This formulation requires that all proteins are multiply

covered by the solution. A better formulation reads as
follows: Maximize the number of multiply covered pro-
teins in a valid covering of all proteins, by using a fixed
number of epitopes. The objective function maximizes
the number of proteins which are multi-covered.

max Si
i

m

=
∑

1

(17)

If the binary variable Si is set to one, protein i has to
be covered at least twice. This is guaranteed by using
the following constraint:

cov p a s S P P
a A

ij
tl

a i i

∈
∑ ( ) − ≥ ∀ ∈, 1 (18)

If Si is selected, at least two covering epitopes have to
be selected in order to satisfy the constraint. This pro-
blem would be easily solved just by picking two epitopes
randomly for each protein. In order the get an optimal
usage of the epitopes their number is restricted by an
additional constraint:

s costa

a A∈
∑ ≤ max (19)

Here costmax denotes the maximum number of antibo-
dies to be chosen, and this has to be set by the user and
may just depend on the available funding for antibody
generation or purchase. An upper bound for costmax is
the size of the optimal solution to the original multi-
cover ILP, which already covers all proteins in the data-
set twice or more. A lower bound is the minimal cost
for the normal covering.

Results and Discussion
Proteomes of various organisms (Homo sapiens, Mus
musculus, Rattus norvergicus, Bos taurus, Saccharo-
myces cervisiae) were obtained from UniProtKB [18].
Only reviewed sequences were included in the dataset.
The proteomes were trypsin-digested in-silico, by cut-
ting after lysine (K) or arginine (R), if no proline (P) fol-
lowed. A complete digest without missed cleavages or
mis-cleavages was assumed. The resulting digests were
pre-processed and filtered as described. To investigate
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the use case of assay designs for a limited number of
targets, the lists of proteins associated to the pathways
for TGFß , WNT and TLR signaling were obtained from
the KEGG (Kyoto Encyclopedia of Genes and Genomes)
PATHWAY database [19]. The KEGG gene IDs in the
pathway descriptions were mapped to Uniprot IDs. The
combination sets for the pathways were extracted from
the filtered combination set of the human proteome.
The coverage score L

P of a solution L is the number of
required epitopes relative to the number of proteins to
cover.
The solutions of the integer program delivered by the

industry standard ILP solver CPLEX after a limited run-
ning time of 12 hours were, not surprisingly, superior to
the solutions provided by the greedy algorithm on all
tested proteomes and epitope-length combinations (see
Table 2). The inclusion of epitopes of length five
increased the problem dimension considerably, because
of the much larger number of potential epitope
sequences (O lmax( )20 ). This increased the number of
coverable proteins in the final combination set.
Nevertheless the number of required epitopes was

decreased in three of five proteomes (Homo sapiens,
Rattus norvegicus, Bos taurus). When including terminal
sequences of length four and five, the set cover will
include shorter epitopes in most cases as they cover
more proteins. If for a specific protein all epitopes of

length four have been filtered out, longer sequences can
still be used to cover it.
The solutions provided by the multicoverage integer

program are significantly larger than the solutions, in
which multicoverage was not enforced. The multicover-
age greedy approach only favors but does not enforce
multicoverage, so the solutions provided by this method
are smaller, but not necessarily superior to those pro-
vided by the multicoverage integer program. As shown
in Table 3 the number of multicovered proteins (Homo
sapiens, length = 4) was increased from 14,847 (Greedy)
to 15,853 (Greedy MC) by only eight additional epitopes
in the solution, compared to the solution of the stan-
dard greedy algorithm. This was achieved with a setting
of scov = 100; smcov = 1, which scores not yet covered
proteins one hundred times higher than already covered
proteins. The solution of the IP MC is 3.895 large, so
the effort of multicovering all 19,756 proteins nearly
doubles the number of epitopes compared to the solu-
tion of the standard IP, where only 13,815 proteins are
multicovered. By using IP MMC with the costmax set to
the solution size of the Greedy MC the number of mul-
ticovered proteins was increased from 15,853 to 16,314.
On the smaller pathway datasets it is possible to cal-

culate the best possible solutions with CPLEX and
GLPK in a very short amount of time (less than 2 sec-
onds). Table 4 shows a comparison of the solution size
and the multicoverage percentages on pathway datasets.
On pathway datasets the solution sets are proportionally
larger than on proteome datasets. This was expected,
because the probability of shared terminal epitopes is
smaller if the number of target proteins is reduced.
Nevertheless coverage scores of 42% (WNT, length = 4-
5, IP, 55 epitopes to cover 133 proteins) are a substan-
tial improvement to the scenario of choosing peptide-or
protein-specific antibodies for immunoaffinity-MS. The
multicoverage integer program provided solutions with
coverage scores from 81% (WNT, length = 4-5) to 100%
(TLR, length = 4).

Table 2 Solutions for proteome datasets

Proteome length IP Greedy |A| |P|

Homo sapiens 4-5 2,020
(10.1%)

2,292
(11.5%)

527,164 20,010

Mus musculus 4-5 1,541
(9.6%)

1,727
(10.8%)

473,406 15,995

Rattus norvegicus 4-5 851
(11.7%)

970
(13.3%)

273,558 7,295

Bos taurus 4-5 790
(14.2%)

903
(16.1%)

199,735 5,584

Saccharomyces
cervisiae

4-5 1,000
(15.6%)

1,134
(17.6%)

240,253 6,422

Homo sapiens 4 2,026
(10.1%)

2,306
(11.5%)

86,963 19,979

Mus musculus 4 1,529
(9.6%)

1,737
(10.9%)

83,073 15,974

Rattus norvegicus 4 858
(11.8%)

975
(13.4%)

64,058 7,294

Bos taurus 4 792(14.2%) 896
(16.1%)

53,751 5,576

Saccharomyces
cervisiae

4 995
(15.5%)

1,130
(17.6%)

58,464 6,405

Comparison of the solution quality of the integer program IP (CPLEX solver,
running time limited to 12 hours) and the greedy set cover algorithm on
proteomes of different species, and epitope length settings. |A| denotes the
number of different epitopes, |P| the number of target proteins, the
percentage next to solution sizes is the coverage score solution size

P
 

| |

Table 3 multicoverage of the human proteome

Solver # prot. single
covered

# prot.
multicovered

|L|

IP MC 223 19,756 3,895

IP MMC (costmax =
2,314)

3,665 16,314 2,314

IP 6,164 13,815 2,026

Greedy MC 4,126 15,853 2,314

Greedy 5,132 14,847 2,306

Comparison of the solution quality of the IP MC, IP MMC, the greedy set cover
algorithm, and the modified algorithm (Greedy MC, scov = 100; smcov = 1) on
the in-silico tryptic digest of the human proteome (Uniprot taxon id 9606),
N-C-terminal epitopes of length 4, |L| denotes the total size of the solution.
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The settings of the multicoverage greedy algorithm
were changed to scov = 1 and smcov = 10, because the
probability of multicoverage through one epitope is
proportional to the size of the datasets. In this way
the multicoverage score begins to take effect earlier
during the iterative optimization. Table 5 contains
results of a grid search on the parameters of the
greedy MC algorithm applied to the WNT pathway
example. The multicoverage enhancing effect shows
only if already covered proteins are scored higher
than new proteins.
If scov is chosen bigger than smcov the multicoverage

effect almost completely vanishes on small datasets.
After the calculation of the greedy multicover the result-
ing cost (solution size) was used as the cost limit costmax

for the maximization multicover (IP MMC) formulation.
The results were significantly better multicoverage per-
centages for all datasets for the same costs (Table 4,
compare columns Greedy MC and IP MMC).
Results, coverage reports and the used software pack-

age SCPSolver are available on the website
http://www.ra.cs.uni-tuebingen.de/software/scpsolver/

txp.

Conclusions
Starting from the real-world lab engineering task, we
have shown that the problem of choosing a minimal set
of epitopes is equivalent to the well-known set cover
problem. In combination with a filter pipeline that elim-
inates unsuitable peptide-epitope combinations, we pro-
posed different methods for the solution of the problem.
For small datasets (a few hundred proteins) it is possi-

ble to solve the problem to optimality with minimal
computational effort using commercial or free solvers.
Larger datasets, like full proteomes, require the use of
heuristics, or respectively a running time limitation of
the branch-and-bound search in the integer program
solvers. Large sets of proteins can theoretically be cov-
ered by TXP-antibodies with a fraction (down to 9.57%,
see Table 3) of the otherwise required peptide-specific
antibodies for every protein. We further proposed meth-
ods to enforce (IP MC) or enhance (Greedy MC, IP
MMC) the multiple coverage of a protein for a better
experimental design.
The results presented in this paper were used to gen-

erate concrete lists of candidate epitopes, which are cur-
rently in production and evaluation in the NMI lab.

Table 4 Pathway results

Pathway length IP IP MC Greedy Greedy MC IP MMC |P|

WNT 4-5 55 (13.5%) 107 (96.2%) 60 (22.6%) 88 (54.1%) 88 (77.4%) 133

TGF 4-5 36 (8.9%) 70 (93.7%) 40 (19.0%) 57 (49.4%) 57 (74.7%) 79

TLR 4-5 47 (5.3%) 92 (94.7%) 51 (16.0%) 72 (46.8%) 72 (70.2%) 94

WNT 4 56 (16.6%) 108 (94.0%) 63 (15.8%) 85 (48.8%) 85 (70.7%) 133

TGF 4 36 (8.9%) 71 (89.9%) 39 (13.9%) 57 (48.1%) 57 (69.6%) 79

TLR 4 47 (3.2%) 94 (93.6%) 50 (11.7%) 70 (45.7%) 70 (62.8%) 94

Comparison of the solution quality of the integer program (IP), integer multicover (IP MC), the greedy set cover (Greedy) and multicover (Greedy MC, scov = 1;
smcov = 10 ), integer maximization multicover (IP MC, costmax was set to result of Greedy MC), algorithm on different pathways (subsets of the Homo sapiens
proteome), and epitope length settings. The percentage in parentheses is the degree of multicoverage on the dataset, e.g. a value 50% means that half of the
proteins are multiply covered.

Table 5 Grid search on the parameters scov and smcov

scov/smcov 1 2 3 4 5 6 7 8 9 10

1 73 (50) 84 (65) 86 (67) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65) 85 (65)

2 63 (36) 73 (50) 79 (60) 84 (65) 86 (67) 86 (67) 86 (67) 85 (65) 85 (65) 85 (65)

3 61 (33) 64 (37) 73 (50) 79 (60) 80 (61) 84 (65) 86 (67) 86 (67) 86 (67) 86 (67)

4 61 (33) 63 (36) 64 (37) 73 (50) 79 (60) 79 (60) 80 (61) 84 (65) 86 (67) 86 (67)

5 61 (33) 61 (33) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 80 (61) 80 (61) 84 (65)

6 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 79 (60) 80 (61)

7 61 (33) 61 (33) 61 (33) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60) 79 (60)

8 61 (33) 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60) 79 (60)

9 61 (33) 61 (33) 61 (33) 61 (33) 64 (37) 64 (37) 64 (37) 64 (37) 73 (50) 79 (60)

10 61 (33) 61 (33) 61 (33) 61 (33) 63 (36) 64 (37) 64 (37) 64 (37) 64 (37) 73 (50)

Grid search on the parameters scov and smcov of the modified greedy set cover algorithm (Greedy MC) on the WNT pathway, N-C-terminal epitopes of length 4:
solution size (multicovered proteins)
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While it is not yet clear whereif the TXP approach
scales up to the proteome level, first results are
promising.
In future work scheduling of binder generation, to get

a broad coverage effect of interesting targets early, and
other experimental setups, e.g. sandwich immunoassays
based on TXP-antibodies, will lead to new interesting
design optimization tasks on a higher level of
complexity.

Appendix
Input: bipartite epitope-protein graph G(P ∪ A, E)
Output: set of epitopes L
Pcov = ∅;
L = ∅;
while P\Pcov = ∅; do
foreach a Î A\L do

//calculate how many new proteins are covered by
the epitope a score

score(a) = |{(a, p) Î E|p ∉ Pcov}|;
end
//select the epitope a with the highest score
as = arg maxa score(a);
L = L ∪ {as};
Pcov = Pcov ∪ {p|(as, p) Î E};
//remove the covered proteins from the graph
G = G((A ∪ P)\(Pcov ∪ L), E\{(as, P) Î E});

end
return L

Algorithm 1: The greedy set cover
algorithm
Input: bipartite epitope-protein graph G(P ∪ A, E),

scov, smcov

Output: set of epitopes L
Pcov = ∅;
L = ∅;
while P\Pcov ≠ ∅; do
foreach a Î A\L do

//here the score favorizes the multiple coverage of
proteinsscore a a p E p P s

a p E p P s
cov cov

cov mcov

( ) |{( , ) | }|

|{( , ) | }|

= ∈ /∈ ⋅ +
∈ ∈ ⋅ ;;end

as = arg maxa score(a);
L = L ∪ {as};
Pcov = Pcov ∪ {p|(as, p) Î E};
E = {(a, p) Î E|∃(a, p

∧ ∉ Pcov) Î E}):
end
return L

Algorithm 2: The multicoverage greedy set
cover algorithm (Greedy MC)
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