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Abstract

Background: Mutagenesis is commonly used to engineer proteins with desirable properties not present in the
wild type (WT) protein, such as increased or decreased stability, reactivity, or solubility. Experimentalists often have
to choose a small subset of mutations from a large number of candidates to obtain the desired change, and
computational techniques are invaluable to make the choices. While several such methods have been proposed to
predict stability and reactivity mutagenesis, solubility has not received much attention.

Results: We use concepts from computational geometry to define a three body scoring function that predicts the
change in protein solubility due to mutations. The scoring function captures both sequence and structure
information. By exploring the literature, we have assembled a substantial database of 137 single- and multiple-
point solubility mutations. Qur database is the largest such collection with structural information known so far. We
optimize the scoring function using linear programming (LP) methods to derive its weights based on training.
Starting with default values of 1, we find weights in the range [0,2] so that predictions of increase or decrease in
solubility are optimized. We compare the LP method to the standard machine learning techniques of support
vector machines (SVYM) and the Lasso. Using statistics for leave-one-out (LOO), 10-fold, and 3-fold cross validations
(QV) for training and prediction, we demonstrate that the LP method performs the best overall. For the LOOCV, the

LP method has an overall accuracy of 81%.

Availability: Executables of programs, tables of weights, and datasets of mutants are available from the following

web page: http//www.wsu.edu/~kbala/OptSolMut.html.

Introduction

Correlations between sequence and structure influence
to a large extent how proteins fold, and also how they
function. Working under this premise, most computa-
tional methods used for predicting various aspects of
structure and function employ scoring functions, which
quantify the propensities of groups of amino acids to
form specific structural or functional units. Scoring
functions for mutagenesis predict the effects of changing
one or more amino acids (AAs) on critical properties
such as stability [1-4] or activity [5], solubility [6], etc.
In experimental mutagenesis, one is often faced with the
challenge of having to select a small subset from a large
set of candidate mutations. Computational methods are
invaluable for making such choices without generating
all the mutants in the lab.
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Most computationally efficient scoring functions ana-
lyze protein structure at the atomic level or at the AA
level. Frequencies of groups of AAs in contact have
widely been used to define scoring functions for fold
recognition. The default choice is two body (pairwise)
contacts [7-10], but three [11,12] as well as four body
contacts [13-15] have also been used to define such
potential energies. It is natural to expect higher order
contacts to carry more information than two body con-
tacts. Further, higher order contacts could not typically
be modeled by summing up the component pairwise
contacts [12,16]. Four body contacts defined using the
concept of Delaunay tessellation (DT) [17] of protein
structures have been employed for computational muta-
genesis of protein stability [3,18,19] and enzyme activity
[5]. The main advantage of employing DT is that it pro-
vides a more robust definition of nearest neighbors than
pairwise distance calculations. DT of protein structure
has also been used as a generic computational tool to
analyze various aspects of protein structure such as sec-
ondary structure assignment [20], structural classification
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[21,22], and analysis of small-world nature of protein
contacts [23].

Even though the all-atom structure of a protein is
more accurate than representing each AA by a single
point, the latter approach has its advantages. Apart from
being simpler, the unified residue representation can be
applied even when the full-atom structure is not avail-
able. This representation is also more well-suited for
predicting mutagenesis, where the all-atom structure of
the resulting mutant is usually not known. With protein
solubility in mind, we introduce the degree of buriedness
for three body contacts under the framework of DT,
which estimates the extent of surface exposure or
buriedness of contacts without measuring the actual sur-
face areas. Notice that an efficient method for calculat-
ing solvent accessible surface areas uses alpha shapes
[24], which is a generalization of DT, when working on
all-atom models of proteins. At the same time, such sur-
face area calculations do not consider the sequence
identity of the AAs involved. On the other hand, some
previous studies that included AA identities of the con-
tacts have used arbitrary cut-off values on the associated
solvent accessible surface areas to label the contacts as
exposed or not [15]. The degrees of buriedness provides
an efficient middle ground for analyzing the AA compo-
sition and the buriedness of contacts in the same
setting.

Compared to stability or reactivity mutagenesis, col-
lections of experimental data for solubility mutagen-
esis appear scarce. This is especially the case for
solubility data that includes structural information. By
exploring the literature, we have assembled a struc-
tural dataset of 137 single- and multiple-point
mutants along with the associated increases or
decreases in the wild-type (WT) solubilities. To our
knowledge, this is the largest structural database for
solubility mutagenesis assembled so far. Some pre-
vious studies [6,25,26] have developed computational
models to predict whether a protein will be soluble or
not. In contrast, we are predicting changes to the solu-
bility of the protein, i.e., whether solubility increases
or decreases due to mutation(s). Henceforth in this
paper, when we use the term predicting solubility
mutagenesis, we mean the prediction of whether solu-
bility increases or decreases.

We define a scoring function to predict solubility
mutagenesis based on the frequencies of triplets of
AAs that have low degrees of buriedness, i.e., are pre-
dominantly on the surface. Machine learning techni-
ques such as artificial neural networks or logistic
regression [27] are often used to train such scoring
functions on the experimental data. For binary classifi-
cation problems, support vector machines (SVM) [28]
have proven to be one of the most accurate machine
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learning techniques. The method of least angle regres-
sion (LAR) [29] to fit predictive models using the least
absolute shrinkage and selection operator, or the Lasso
[30] has also gained increased popularity recently. For
our dataset, we have a much larger number of triplet
types (3895 descriptors) as compared to the number of
proteins (137). Hence we develop a new training
method based on linear programming (LP), which
combines some features of SVM and the Lasso. This
LP method allows us to impose meaningful bounds on
the weights as part of the learning process. As such,
we attain better performances than the standard SVM
and Lasso classifiers.

Methods

Delaunay tessellation is a construct from computational
geometry that defines clusters of nearest neighbor points
based on their relative proximities (see, e.g., [17]). The
dual construct of DT called the Voronoi diagram defines
convex polyhedral regions of space that are closer to the
parent point than to other points. With each AA repre-
sented by a single point in 3 D space, the DT describes
the structure of the protein as a collection of space-fill-
ing, non-overlapping tetrahedra (see Figure 1 for an
illustration in 2D). These tetrahedra naturally define
four body AA contacts. Solubility is predominantly a
surface property, and surfaces are tessellated using trian-
gles. Hence we define and analyze three body Delaunay
contacts.

Figure 1 Delaunay tessellation of a protein in 2D. The dots
represent amino acids, and the thick solid line connecting the dots
is the backbone. Dotted lines are Delaunay triangles and thin solid
lines represent the Voronoi cells. The four shaded edges illustrate
the four degrees of buriedness for two body contacts (see Section
on Delaunay Buriedness of Contacts). These edges are named e,
for b=0,1,2, 3 as shown in Figure 3.
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Three-body Delaunay Contacts

Each Delaunay tetrahedron naturally defines six edges
and four triangles. We define three body AA contacts
using the Delaunay triangles. We differentiate the con-
tacts based on their AA composition without consider-
ing the order in which the AAs occur in the protein
sequence. This definition is motivated by the observa-
tion that contacts are often formed by AAs distant
along the backbone chain, but are close to each other in
3 D space. Backbone chain connectivity is an important
aspect of the contacts, though, as demonstrated by the
performance of four body scoring functions [3,14].
Hence we include backbone chain connectivity as a
separate factor in the definition of three body contacts.
We define three connectivity classes for three body con-
tacts, having zero, one, or two bonded edges in the tri-
angle (see Figure 2). We appropriately index the three
body connectivity classes as 0, 1, 2. Notice that for the
three body connectivity class 1, the bonded edge could
either be lower down or higher up along the sequence,
i.e., the residue numbers could be (i, i + 1, j) with j > i
+ L, or (G j,j+ 1), withj>i

Delaunay Buriedness of Contacts

Surface exposure of AA contacts is typically determined
by solvent accessible surface area calculations [15]. Since
we use a unified residue representation, it is more nat-
ural to consider levels of surface exposure from a com-
binatorial point of view. Any two Delaunay tetrahedra
from the DT are non-intersecting, or intersect at a tri-
angle, edge, or just a vertex. Thus, each Delaunay trian-
gle is shared by at most two tetrahedra. We define a
triangle to be Delaunay buried, or simply buried, if it is
part of two tetrahedra in the DT. A triangle that is part
of at most one tetrahedron is hence non-buried, or is
on the surface. When a triangle is non-buried, we define
each of its three component edges and three vertices as
non-buried. To complete the definition, we say that an
edge (or a vertex) is buried if it is not non-buried.
Notice that the buriedness of edges is defined using the
buriedness of the three body contacts of which the edge
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is a component. Thus a vertex or an edge is non-buried
if it is part of at least one non-buried triangle.

Once we have determined whether each vertex, edge,
and triangle are buried or non-buried, we can define
various levels of buriedness for two and three body con-
tacts. We first introduce the case of two body buried-
ness, as the buriedness of three body contacts depend
on the buriedness of the component two body contacts.
Further, by studying the two body case first, the reader
can develop some intuition for the definitions. We
define four levels of Delaunay buriedness for two body
contacts, based on how many of the three simplices -
two vertices and the edge connecting them - are buried.
We appropriately index these buriedness classes by 0, 1,
2, and 3, based on the number of component simplices
that are buried (see Figure 3). We also illustrate the
occurrences of the two body buriedness classes in 2D in
Figure 1. Interestingly, we can define the same four
buriedness classes for two body contacts in three dimen-
sions as well.

We now extend the definition of buriedness classes to
three body contacts. This classification describes the
various ways in which the vertices, edges, and the face
of each triangle can be located on the surface of the
protein, as described by its DT. For example, two ver-
tices may be buried with the third one on the surface,
or all three vertices and edges may be on the surface
with the face buried, and so on. Altogether, there are
nine buriedness classes for three body contacts (Figure
4), indexed 0-8, which range from completely non-bur-
ied (class 0) to completely buried (class 8).

It is straightforward to visualize how some of the
buriedness classes occur in proteins, for instance, classes
0, 4, or 8. But other classes may not be as intuitive, e.g.,
class 5 where the three vertices are on the surface, but
the three edges and the triangle are buried. We illustrate
buriedness classes 1 and 5 in Figure 5, which happen to
be the two most rare classes. We do observe all nine
classes in proteins.

Note that in defining the buriedness classes, it is not
our goal to estimate any portions of the solvent

ordered from most non-bonded to most bonded, or connected.

Figure 2 Backbone connectivity classes for three body contacts. i, j, k, etc, are residue numbers. The connectivity indices (0, 1, 2) are
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in Figure 1, solid lines represent the backbone of the protein.

Figure 3 Buriedness classes for two body contacts. White/dotted elements are buried and black/solid elements are on the surface. Note that

2 3

accessible surface area (SASA) [31]. One could imagine
a method that estimates the fraction of SASA that is
accessible to a particular residue, and defining its
buriedness based on this fraction. In comparison, our
simplified definition of buriedness for a single residue is
given in the framework of DT. The Voronoi tessellation,
which is the direct dual of DT, has been used for accu-
rate SASA calculations in the past [32]. At the same
time, such methods work at the atomic level rather than
represent each residue by a single point. The latter
method of using a unified residue representation has
been utilized to speed up SASA calculations [33]. The
definition of buriedness classes for groups of three resi-
dues given here is combinatorial. It is different from
typical SASA calculations at atomic level, and is defined
specifically in the framework of DT with residues repre-
sented by single points.

Distance Cutoffs

The DT is originally constructed without using any dis-
tance cutoffs. Still, we need to screen the tetrahedra
using a preset distance cutoff in order to define bio-
chemically relevant AA contacts. We used a distance
cut-off of 9 Angstroms for the 3-body contacts, in order
to capture all the relevant surface features of the pro-
tein. We developed the entire scoring function using a

dataset of sequentially diverse set of 3988 protein chains
with at most 25% pairwise sequence identity at least 2A
resolution, selected by the PISCES server [34]. For this
dataset, the relative frequencies of occurrence for the
nine triplet buriedness classes 0-8 are 24.6%, 1.3%,
14.4%, 12.4%, 17.2%, 3.2%, 10.9%, 11.7%, and 4.3%,
respectively. Thus, the surface triangles are the most fre-
quent buriedness class. The corresponding frequencies
for the three connectivity classes 0-2 were 48.2%, 43.1%,
and 8.6%, respectively, showing that the non-bonded
class is the most frequent one.
Assigning Buriedness Classes The DT is first computed
using the quickhull algorithm (using code adapted from
the program of [35]). The triangles are listed by running
through the list of tetrahedra (four per tetrahedron). It
is a non-trivial task to fix the buriedness classes of ver-
tices, edges, and triangles, and we need the buriedness
indices of vertices and edges to fix the same for the tri-
plets. We do all the assignments as per the definitions
illustrated in Figures 3 and 4 by first creating the list of
all triangles, and subsequently running through the list
two more times. Hence we access the entire list of trian-
gles thrice.

In fact, we maintain the faces (triangles) in two sepa-
rate lists - one of buried faces and the other of surface

AN LN

Figure 4 Three body Buriedness classes. White/dotted elements are buried and black/solid elements are on the surface. Thus the solid
triangle type 0O is fully on the surface - the face, three edges, and three vertices, all are on the surface.
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order to visualize the same.

Figure 5 Triplet buriedness classes 1 and 5. Instances of triplet buriedness class 1 (left) and 5 (right), shown in red. The tube represents the
backbone, and Delaunay triangles are shown in blue. The class 1 triplet is formed by the residues 7LYS, 8PRO, and 10GLN in the protein 1VQB.

The class 5 triplet is formed by residues 6LEU, 53GLY, and 86ILE in the protein 2ACY. Images generated using the package VMD [43]. It is best to
visualize these as well as other triplet types in 3 D. Scripts to draw all the triangles for the above two proteins in VMD are made available on the
web page for the paper [37]. The reader is encouraged to load the PDB file, run the script, and then rotate the molecule appropriately in 3 D in

faces. We create these lists by first running through all
the tetrahedra, marking the occurrences of each face in
the process. If a face is spotted for the first time, we set
the buriedness class of the face as non-buried (i.e., on
the surface), and add it to the list of surface faces. If we
spot a face for the second time, we update its buriedness
class to buried, and move this face from the list of sur-
face faces to the list of buried faces. We then make a
second run through the two lists of faces in order to
assign the buriedness classes of component simplices
(edges and points). Note that an edge or a vertex is
non-buried if is a component of at least one non-buried
triangle. Hence we first run through the list of buried
faces and mark each subsimplex as buried. We then run
through the list of surface faces, and mark each subsim-
plex as non-buried. The buriedness class of each vertex
and edge is assigned at the end of this pass. We can
now run through the lists of faces again to assign the
triplet buriedness classes. We do so when we run
through the list of faces for calculating the scoring func-
tion. As such, we can assign the buriedness classes for
all simplices and calculate scores for them in three
passes through the lists of all faces. Since each tetrahe-
dron in the DT contributes at most four triangles (typi-
cally less, once we account for buried triangles), we can
assign the buriedness classes of all simplices in O(7)
time, where T is (an upper bound on) the number of
tetrahedra in the DT of the protein. Notice that the
space required for storing all the information pertinent
to the faces is also O(T).

Scoring Function for Solubility Mutagenesis

DT-based scoring functions have been used for predict-
ing the effects of mutations on the stability [3,18,19], and
on the reactivity of proteins [5]. Computational
approaches that use structural information to predict the
effects of mutagenesis on protein solubility have been
rare. We hypothesize that the propensities of individual
or groups of amino acids to be on the surface of a protein
play vital roles in determining its solubility. With the
definition of buriedness classes of triplets using the DT
of proteins, we have a natural way to define scoring func-
tions based on groups of surface residues for predicting
the effects of mutagenesis on solubility of proteins.

We generalize the four body log-likelihood score
defined earlier by Krishnamoorthy and Tropsha [14] to
the three body case, and add buriedness classes. The
score of a triangle with amino acids i, j, k, connectivity
class ¢, and buriedness class b is given by

Qip =log| — |- (1)
ijk

The frequency term

number of (ijk) — triplets of classes ¢ and b in dataset

ch _
T total number of type cb triplets in dataset

represents the observed frequency of triangles in con-
nectivity class ¢ and buriedness class b consisting of
amino acids i, j, and k in a dataset of proteins used to
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develop the scoring function. The expected frequency
term

cb
pij = Caaaipy,

represents the statistical expectation of encountering
the triangle type, where

_ number of amino acids of type i in dataset

! total number of amino acids in dataset

and

_ number of type cb triplets in dataset

Py =

total number of triplets in dataset

Note that the index c¢ takes values 0, 1, 2, while the
index b takes values from 0-8. The combinatorial factor
C accounts for certain duplicate versions of triplets [14].
As mentioned previously under Distance Cutoffs, the
log-likelihood ratios are estimated using a large, sequen-
tially diverse set of proteins. This set of proteins is inde-
pendent of the set of 137 solubility mutants we have
assembled, which is described below.

Since we are characterizing solubility, we define the
total score of a conformation as the sum of log-likeli-
hood scores of individual triplets belonging to the five
most non-buried classes of triangles, i.e., b classes 0-4
(see Figure 4). We define the score of a mutation as the
total score of the mutant conformation minus the total
score of the WT. We assume the WT structure (in
terms of the sidechain centers of residues) for the
mutant protein as well, but the identity of the mutated
residues are changed accordingly. Hence, we can calcu-
late the score of a mutation by finding the change in the
total score of only the subset of triangles that see a
change in amino acid composition due to the mutation.
Note that single and multiple point mutations are
handled in a unified way by this method. Finally, we
correlate a positive (negative) score of mutation with an
increase (decrease) in solubility of the protein.

A dataset of solubility mutants

Scoring functions similar to ours are often optimized by
learning from a training set of mutations [1,5,6]. At the
same time, unlike the case of stability mutagenesis for
which databases such as ProTherm [36] are already
available, or reactivity mutagenesis for which some data-
sets have been assembled [5], solubility mutagenesis
data with structural information has not been presented
in a unified manner previously. We have assembled the
largest such dataset as yet, consisting of of 137 single-
and multiple-point mutants along with data on changes
to their solubilities. The mutants were assembled from
fifteen different studies - see Table 1 for a summary.

Page 7 of 12

Complete details of the dataset, including PDB codes
and chain identifiers, are available in Additional File 1
(Excel), and also from the web page for the paper [37].
We identified several more studies on solubility muta-
genesis (e.g., [38]), but could not include the mutants as
structural information was not available for the WT.

We are predicting whether the solubility of the WT
protein increases or decreases following a mutation.
Hence we have tried to select mutants in the dataset
that are soluble both before and after the mutation, but
the extent of solubility changes. We have the info about
whether the mutant is soluble for all except 16 out of
137 mutants in our dataset (this information was not
available in the literature for these 16 mutants). From
among the 121 mutants with info, only two were
reported to become insoluble post mutation. Thus for
most mutants in our dataset, the change in solubility
reported is indeed an increase or a decrease in the WT
solubility. We have also tried to find out what happens
to the stability of the WT post mutation along with the
change to its solubility. But this information appears
often to be not reported in the literature for these
mutants. We have this information for 26 of the
mutants in the dataset, and among these mutants we
see all four possible cases - with increase or decrease for
both solubility and stability. As such, we believe that the
changes in solubility and stability are independent for
the mutants in our dataset.

Training using linear programming

SVM is the standard machine learning tool used for bin-
ary classification. SVM finds a hyperplane (or a hyper-
surface when using nonlinear kernels) that separates the
two classes of data points with maximum margin. Treat-
ing each triplet type seeing changes due to mutation as
a descriptor, we have a total of 3895 descriptors for the
137 mutants in the dataset. The standard procedure for
training and testing is k-fold cross-validation. Leave-
one-out cross validation (LOOCYV) is the most compre-
hensive, but often computationally intensive, version of
cross validation (CV) using k = 137, i.e., with each fold
containing only one protein. Two other modes popularly
used for cross validation are 10-fold and 3-fold CV.
Even when we use LOOCYV on our dataset, there are tri-
plet types that occur only in the single test protein, but
do not feature in any of the training set mutations. We
refer to such triplets as singleton triplets. SVM, or any
other standard machine learning method, cannot learn
the weight of a singleton triplet from the training set.
Hence we propose a direct linear programming (LP)
approach to do the training, in which we impose mean-
ingful bounds on the training weights. The motivation
for this step comes from the similar step in the Lasso
regression [30].
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Table 1 Dataset of mutations studied
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# Article Study Mutants Pred TOT
1 [42] Mutagenesis experiments for L260A, C261A, W168A, C281A, C288A, C308A L234A, L235A, F241A, L253A, L371A 9 11
APOBEC3G
2 [44] AA replacement improving ~ N159D 0 1
solubility
3 [45] AA Contribution to solubility Y76 D, Y76R, Y76 S, Y76E, Y76K, Y76G, Y76A, Y76 H, Y76N, Y76P, Y76C, Y76 M, Y76V, Y76L, 12 17
Y76l, Y76F, Y76W
4 [46] mutagenesis of Ab42 F19 D, F19E, F19N, F19R, F19Q, F19 H, F19T, F19G, F19K, F19P, F19 S, F19A, F19C, F19 M, 18 19
s'Alzheimer’s peptide F19W, F19Y, F19L, F19V, F19I
5 [47] Polymerization and solubility E6F, E6W, E6L 2 3
of recombination
6 [48] Genetic selection for protein  (H6Q/V12A/N24A/132M/N36G), (V12A/132T/1.34P), (V12E/V18E/M35T/I41N), (F19S/L34P), (L34P), 6 7
solubility (F41/S8P/V24A/134P), 132S
7 [49] Isolation of viral coat protein (A26T/1118F), N27 S, A107T (N24S/C46R/A96V/N116S), Q109L, (V48A/Q109H), 1104V, (N12D/ 13 13
mutants S34G/S52P/192M/C101R/Q109L/S120T), (A21S/N24D/Q40R/V79A), (Q6L/N12D/133T/R56C/FI5L),
(T15N/N24S/V29A/W32C/T455/160T/N98Y/1104N/S126P), (V61E/L103F/K106R/Y129H), (F4S/
W32R/Q50R)
8 [50] Improved solubility of TEV (T17S/N68D/177V), (T17S/R80S) 2 2
protease
9 [51] Primary structure and W131A, V165K, A104T, Y203 H, W140F, C19Y, P28T, V32 M, G36R, T288 M, A384P, C70 S, C26 21 26
solubility S, C93'S, W140K, W140L, W140C, (W86F/W140F), (W130F/W140F), P28K, H44Y, (W86F/W130F/
W140F), R68C, G346 S, G349 S, A198V
10 [52] Substitutions affecting K97R, (K113F/W140K), (K113F/W140L), (K113F/W140C), K63 M, L104 M, T90A, L87 M, (T90A/ 12 21
protein solubility E97A), L127 M, V74F, E97A, K69 M, (T345L/M358R), M358L, K97G, K97V, W140C, L10N, L10 D,
L10T
11 [53] Dual selection for (Y35Q/F37R), (Y35L/F37T), (Y35G/F37L), (Y35L/F37R), K27E 4 5
functionally active mutants
12 [54] Assay for increased protein K185F, K1851, K185V, K185L, K185N, K185D 6 6
solubility
13 [55] Phage T4 vertex protein (E89A/EQ0A) 1 1
gp24
14 [56] Human cell surface receptor  (Q21V/S85T/S1F/K9V/K58V/G93L) 1 1
CD58
15 [57] Solubility and folding of a W232E, Y242E, 1317E, (G32D/I33P) 4 4

genetic marker

Key: Multi-point mutants have each substitution separated by “/”, and the entire mutant enclosed within braces. Pred gives the number of mutants correctly

predicted by the LP-based method, out of the total number given under TOT.

For ease of notation, we index the triplets by their
type t = (i, j, k, ¢, b), where i, j, k are the amino acids,
and ¢, b are the connectivity and buriedness indices.
Assuming the AA composition of triplet ¢ is changed by
the mutation, its contribution to the mutation score is +
w,Q;, where w, is the weight for the log-likelihood score
Q; (Equation (1)). The sign is + if the triplet is in the
mutant and - if in the WT.

Note that the default value of each type tis w; = 1
before training, where the contribution of each triplet is
weighed equally and completely. Hence we impose the
bounds 0 < w, < 2 for each weight in our linear pro-
gram. Similar to the optimization model used in SVMs,
our objective function is to maximize the minimum
margin, as shown in the LP below. In the training set of
mutants, we denote the subset of instances seeing
increase and decrease in solubility by I/ and D,

respectively. For protein i, we also denote the triplet
types in the mutant that see any changes by M;, and the
same set for the WT by W,

max u
s.t. 2 w,.— Z wQ,
€M €W ;

2 1+g;Vie T,
ZWtQt—Ztht < -l+¢;Vie D; 2)
€M €W,
u < ¢;Vie ILD;
0< ' < 2Vt

The variable 4 models the minimum margin over all
instances, i.e., in the optimal solution, it will be equal to
the smallest ¢; value. Once we get the optimal weights
by solving this LP over the mutants in the training set,
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the score of a test protein j is calculated as

SA:E wQ_E
J teMj et tew

for any singleton triplet type t. The solubility of the
test protein is predicted to increase if s; > 0 and
decrease if 5; < 0.

Comparison to SYVM and Lasso models

The standard optimization model used by SVM does
not impose any bounds on the weights w,. In our LP
model, the weights of triplet types that are critical to the
determination of solubility are closer to 2, while the
unimportant triplets get weights assigned close to zero.
Since a singleton triplet does not appear in any of the
training set proteins, its value will be set to zero by the
LP. In comparison, SVM methods using both linear and
nonlinear kernels assign nonzero values to these
weights. The key modification we make is to reset the
singleton weights to the default value of 1, and use the
remaining weights as set by the LP when calculating s; .
Equivalently, we can incorporate this change in the
weights of singleton triplets by replacing each occur-
rence of w, in the LP (2), and subsequently in the calcu-
lation of s; , by w, + 1. The minimum margin of
separation for positive and negative data instances may
not be equal in our LP, while the SVM separating
hyperplane typically has the same minimum margin for
both classes. If a perfect separation of all mutants in the
training set into cases of increase and decrease in solu-
bility exists, the optimal value of y# will be non-negative.
Further, the larger the value of y > 0 is, the better the
separation margin is. Also, the objective function for the
LP is linear, while it is quadratic for SVM even when
using the linear kernel.

The idea of imposing bounds on regression coeffi-
cients has been used previously in the Lasso regression
[30], but this procedure tries a range of values for these
bound(s) by creating a family of models. It then chooses
the best bound(s) using cross validation. In contrast, the
bounds we impose are very specific to the case of the
scoring function in question, and we also do not con-
sider a sequence of bounds. We compare our LP
method to the least angle regression method [29] for
building Lasso models for logistic regression. Similar to
the optimization model of SVMs, the objective function
in the Lasso model is also non-linear.

Cross validation across sequentially diverse folds

As an alternative method of cross validation, we con-
sidered the division of the dataset of 137 mutants into
various subsets or folds based on sequence similarity.
The idea is to explore the robustness of the scoring
function across sequentially diverse families of pro-
teins. The full dataset of mutants include 19 different
PDB entries, and hence we first consider k = 19 folds

w,Q, , after setting w, = 1
j
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with one protein (i.e., one PDB file) per fold. As one
would expect, the mutants of the same protein are
classified in the same fold according to measures of
sequence similarity. When leaving one fold out for the
purpose of training and testing, there are many single-
ton triplets. Hence we are not able to assign the
weights of these triplets effectively, as they do not
appear in the training set of mutants. Hence we gradu-
ally increase the number of folds for the purpose of
training and testing, with the folds still created based
on sequence alignment scores. We employed
the sequence alignment functions available as part of
the Bioinformatics toolbox in MATLAB to create the
folds. We consider k = 30, 50, and k = 70 folds in this
analysis. These folds are made available in Additional
File 3 as well as on the web page for the paper.

Comparison to hydrophobicity values We have calcu-
lated the average hydrophobicity values of the mutation
site residues before and after mutation according to the
definitions of Varadarajan et al. [39]. The change in
average hydrophobicity of residue j is calculated as

HMY(j) - HW"(j), where H,(j) is calculated as an

average over a window of 7 residues (Equation [2] in
the original paper [39]). We want to see if changes in
solubility are correlated to changes in hydrophobicity
values of the mutated residues. For multipoint muta-
tions, we average the per-residue average hydrophobicity
changes over all mutation sites. Ideally, hydrophobicity
values would be expected to decrease when solubility
increases, as the protein attracts more water.

Results

Previous computational studies related to our line of
work have tried to predict whether the protein will be
soluble or not after mutation, rather than predict the
change in its solubility. We still mention these results
briefly. Smialowski et al. [25] have summarized the
accuracies of most of these methods, all of which use
only sequence-based attributes. They reported an overall
accuracy of 70%, while Idicula-Thomas et al. [6]
reported a slightly higher accuracy of 72%, which has
been the best reported accuracy so far (these authors
used a different dataset of 64 mutants).

We compare the performance of our LP model to
SVM and Lasso (LAR) models. Given the size of the
dataset, we are able to use LOOCV, which is often com-
putationally expensive to perform. At the same time,
there is some concern that LOOCV models may cause
over-fitting. Hence we compare the three models using
both 10-fold CV and 3-fold CV. We used the package
LibSVM [40] to build the SVM models. For creating the
LAR models, we used the function cvglmnet provided as
part of the LARS software [29]. This function selects the
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best model for logistic regression (we choose the family
as binomial) by using 10-fold cross validation on the
training set alone. Thus we use 10-fold CV as the proce-
dure for model selection within LAR when performing
LOO, 10-fold, and 3-fold CV on the overall set of
mutants. The best model thus selected in each case is
then used to predict the classes for the mutants in the
test set.

We report the accuracy, Matthew’s correlation coeffi-
cient (MCC) [41], and precisions for both classes for
each model. The statistics for LOOCV are presented in
Table 2, those for 10-fold CV are presented in Table 3,
and those for 3-fold CV are presented in Table 4. These
statistics show that the LP method outperforms SVM
and Lasso classifiers based on all three CV methods. We
used the default linear kernel for the SVM classifier. All
nonlinear kernel options available in LibSVM performed
worse than the linear kernel in this case, typically pre-
dicting all, or most, of the mutants to be in one class.
The confusion matrices for LP, SVM, and Lasso predic-
tion models are provided in Additional File 2.

For k-fold cross validation across sequentially diverse
folds, we report the accuracy and MCC values for k =
19, 30, 50, 70 in Table 5. These folds are created using
sequence alignment scores, thus grouping mutants with
similar sequences in the same fold. For k = 19, which
corresponds to leaving one protein out, the perfor-
mances are not great. There are many singleton triplets
under this setting, for which the optimal weights cannot
be assigned by learning. The performances are better
when we go to k = 30 folds, with the LP method achiev-
ing an accuracy of 0.64 and an MCC value of 0.28.
When the number of folds is increased further, the per-
formances are expectedly better, as the number of sin-
gleton triplets go down. For k = 50 folds, the Lasso
models outperformed the LP models, achieving an accu-
racy of 0.71 and an MCC value of 0.45. In summary, the
scoring functions are effective as long as we can assign
weights under training for a big majority of the triplet
types. No obvious correlation was observed between the
changes in hydrophobicity and solubility values for our
dataset of mutants. 36 out of 78 mutants seeing a
decrease in solubility show an increase in hydrophobi-
city, and 42 out of 59 mutants with increasing solubility
showed a decrease in hydrophobicity. The detailed

Table 2 Statistics for LOOCV using LP, SVM, and Lasso
models
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Table 3 Statistics for 10-fold CV using LP, SVM, and
Lasso models

Measure LP SVM Lasso
Accuracy 0.766 0.752 0.708
MCC 0.545 0496 0448
Precision(class /) 0.719 0.705 0.952
Precision(class D) 0.822 0.790 0.664

results are available in Additional File 3 (Excel) and in
the web page for the paper [37].

Conclusions

This study demonstrates that the default settings avail-
able as part of standard machine learning methods may
not be appropriate for all data sets. Our LP-based
method could be applied to other similar datasets, in
which over-fitting may be a concern due to a large
number of descriptors as compared to the number of
entries in the training set. At the same time, it may not
be obvious what the default weight or the bounds
should be for other datasets. One could also implement
the flexible treatment of weights as part of the optimiza-
tion framework of an SVM model.

We are trying to expand out dataset of solubility
mutants by further exploration of literature. We have
already found a few mutants whose solubility is
reported to be “close to WT"- for example, some
mutants from the study of Chen et al. [42] (which are
not included in our dataset). One way to include such
mutants in our study is to expand the underlying model
to include a third class of mutants that see no change in
solubility post mutation. The prediction models would
then have to be developed for multiclass prediction - 3-
class to be exact, into I, D, and N for no change. At
this point, we do not have a sizable number of mutants
in the N class, but we plan to identify enough such
mutants in the near future. At the same time, it may
not be obvious how the LP model can be modified
easily to handle more than two classes. The default idea
would be to try the one-versus-all strategy, as used in
multiclass SVM [40].

For the binary classification case, we expect the LP
method to be effective even on larger datasets. The
total number of triplet types considered in the scoring

Table 4 Statistics for 3-fold CV using LP, SVM, and Lasso
models

Measure LP SVM Lasso Measure LP SVM Lasso
Accuracy 0.810 0.708 0.701 Accuracy 0.766 0.686 0.715
MCC 0617 0405 0423 MCC 0.529 0.359 0452
Precision(class /) 0.762 0.661 0.909 Precision(class /) 0.714 0.638 0917
Precision(class D) 0.851 0.735 0.661 Precision(class D) 0.811 0.722 0.673
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Table 5 Accuracy and MCC values for k-fold CV using LP,
SVM, and Lasso models, when the folds are created
using sequence similarity scores

LP SVM Lasso
k-fold ACC MCC ACC MCC ACC MCC
19 0.504 0.289 0.569 -0.056 0.569 -*
30 0.642 0.279 0511 -0.075 0.584 0.140
50 0.650 0.289 0409 -0.185 0.708 0448
70 0.686 0.364 0.650 0.269 0.708 0448

Key: k = 19 represents leave one protein out CV. There was no MCC value
(denoted by -*) for predictions by the Lasso model in this case, as all mutants
were predicted to see a decrease in solubility.

function is 1540 x 3 x 5 = 23100 (using 20 AAs, 3
connectivity classes, and 5 buriedness classes). Even
with a few thousands of mutants in the dataset, one
could expect the number of triplets seeing any changes
to be larger than the number of mutations themselves.
Hence, one could still hope for a complete separation
of the three classes when solving the LP for the entire
dataset. The current dataset is diverse, but one could
re-train the weights by solving the LP on a specific
family of proteins, if the goal is prediction for mutants
belonging to the same family. This scoring function
should perform better on test proteins within the
family than the default scoring function, and poorer on
ones outside it. Our method handles single- and multi-
ple-point mutants in the same manner. In fact, it may
be more accurate on multiple-point mutants, as the
number of triplets involved in the mutation will typi-
cally be larger.

Additional material

Additional file 1: Dataset of solubility mutants. PDB code, chain,
mutation details, and information about whether solubility increased or
decreased for each of 137 mutants in the dataset. Information about
whether the wild type and the mutant were soluble is included. Further,
info on whether stability increased, was unchanged, or decreased due to
the mutations is also included when available. Predictions by the linear
programming (LP) model under leave-one-out cross validation are also
listed for each mutant. Format: Excel file.

Additional file 2: Confusion Matrices. The confusion matrices for
predictions using LP, SVM, and Lasso using leave-one-out, 10-fold, and 3-
fold cross validation (9 tables).

Additional file 3: Cross validation across sequentially diverse folds.
Divisions of the dataset into 19, 30, 50, and 70 folds based on sequence
similarity of the mutants. Analyses of predictions using LP, SVM, and
Lasso methods for each division. Accuracy and MCC of predictions
reported for each case. Also included is the comparison of solubility
changes to changes in average hydrophobicity values. Format: Excel file.
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