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Abstract

Background: Supertree methods comprise one approach to reconstructing large molecular phylogenies given
multi-marker datasets: trees are estimated on each marker and then combined into a tree (the “supertree”) on the
entire set of taxa. Supertrees can be constructed using various algorithmic techniques, with the most common
being matrix representation with parsimony (MRP). When the data allow, the competing approach is a combined
analysis (also known as a “supermatrix” or “total evidence” approach) whereby the different sequence data matrices
for each of the different subsets of taxa are concatenated into a single supermatrix, and a tree is estimated on that
supermatrix.

Results: In this paper, we describe an extensive simulation study we performed comparing two supertree
methods, MRP and weighted MRP, to combined analysis methods on large model trees. A key contribution of this
study is our novel simulation methodology (Super-Method Input Data Generator, or SMIDGen) that better reflects
biological processes and the practices of systematists than earlier simulations. We show that combined analysis
based upon maximum likelihood outperforms MRP and weighted MRP, giving especially big improvements when
the largest subtree does not contain most of the taxa.

Conclusions: This study demonstrates that MRP and weighted MRP produce distinctly less accurate trees than
combined analyses for a given base method (maximum parsimony or maximum likelihood). Since there are
situations in which combined analyses are not feasible, there is a clear need for better supertree methods. The
source tree and combined datasets used in this study can be used to test other supertree and combined analysis
methods.

Background
Supertree methods-methods that, given a set of trees
with overlapping sets of taxa, return a tree on the com-
bined taxon set-offer one approach to estimating phylo-
genies from multi-marker datasets. Supertree estimation
methods are of considerable interest in the systematics
community, and several large phylogenies have been
published using these methods [1].
Matrix representation with parsimony (MRP) [2,3] is

currently the most widely used supertree method. It
operates by encoding the set of source trees as a matrix
of partial binary characters, one character for each
branch of each source tree, and then analyzing that
matrix using a parsimony heuristic. Weighted MRP [4]
is a variant of MRP in which the partial binary

characters are weighted, and this weighted matrix repre-
sentation is then analyzed using weighted parsimony.
These character weights are obtained from the source
tree analyses, using either bootstrap support or posterior
probabilities to assign weights to the branches of the
source tree.
Several studies (mostly based upon simulation) have

evaluated the performance of different supertree meth-
ods in terms of the topological accuracy of the resultant
phylogenies and have investigated how different proper-
ties of the input-in particular, the percentage of missing
data-and the method of phylogenetic analysis impact
final phylogenetic accuracy [5-13]. Most of the supertree
methods require that the input trees be rooted, a prop-
erty that is not true of all trees in systematic studies,
and potentially problematic because accurate rooting is
itself a nontrivial issue. Of the supertree methods that
do not require rooted input trees, MRP and weighted
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MRP are the most promising of the current supertree
methods.
The main alternative to supertree methods are com-

bined analysis methods, also known as supermatrix or
total evidence approaches; these methods concatenate
the alignments on each marker to produce a large “com-
bined dataset”, which is then analyzed using a phyloge-
netic estimation method (e.g., maximum likelihood or
maximum parsimony). Sometimes a combined analysis
is not always possible or advisable, e.g., when only
source trees are available or when the source trees are
derived from data types that cannot be used as input to
a combined analysis [14-16]. These cases for supertree
construction are not the subject of this paper.
Little is known about the relative accuracy of super-

tree and combined analysis approaches to multi-marker
phylogenetics. Two studies have evaluated the relative
performance of supertree methods and combined analy-
sis methods: Bininda-Emonds and Sanderson [5], who
evaluated combined analyses based upon maximum par-
simony (MP), and Criscuolo et al. [13], who evaluated
combined analyses based upon maximum likelihood
(ML). Both found that combined analysis provided a
somewhat more topologically accurate reconstruction
than MRP. In addition, Bininda-Emonds and Sanderson
found weighted MRP provided a slight improvement in
tree accuracy over combined analysis when MP was
used for both the source trees and the combined analy-
sis. However, the experimental methodology of these
earlier studies included elements that were neither bio-
logically accurate nor reflective of systematic practice, so
their conclusions regarding the relative performance of
supertree methods and combined analysis need to be
revisited. In particular, both studies examined datasets
with small numbers of taxa (while supertree analyses are
used primarily for very large numbers of taxa), and for
their source trees, they chose taxa at random from their
model trees (while most source tree datasets are gener-
ally based upon clades - sets of taxa densely sampled
within one subtree of the tree). Given these methodolo-
gical issues, the relative topological accuracy of super-
tree methods and combined analysis should still be
considered open.
This paper introduces a novel simulation methodology,

SMIDGen, which better reflects both biological processes
and systematic practice than previous simulation techni-
ques. We used SMIDGen to compare MRP, weighted
MRP, and combined analysis on datasets with up to 1000
sequences. Under the conditions of our study, combined
analysis using maximum likelihood consistently outper-
formed all other methods with respect to topological
accuracy, suggesting that with more realistic simulations,
MRP and weighted MRP supertree methods do not pro-

vide an acceptable alternative to combined analysis based
upon maximum likelihood.

Methods
Experimental design
Estimating a species phylogeny from a dataset having
multiple markers requires either a combined analysis or
use of a supertree method. The availability of sequence
data for each marker depends upon a number of factors,
including biological processes (e.g., the novel gain of a
gene within the evolutionary history and its loss in some
lineages, and whether the marker evolves at the right
rate for the taxa being reconstructed), and technical and
practical issues (e.g., difficulties obtaining tissue samples
for some taxa, difficulty successfully producing the
sequence from some taxa, and the level of interest in a
particular group). The consequence of these issues is
that the pattern of missing data in both the supertree
and combined analyses is not random.
Second, the source trees for a supertree method are

produced by analyses of datasets selected by systema-
tists, typically with the intent of estimating the phylo-
geny for a lower level taxonomic group (genera, families,
and sometimes orders). We refer to these as “clade-
based” studies. Clade-based studies usually have dense
taxonomic sampling within the desired group (the
ingroup), which tends to improve the ingroup’s phyloge-
netic accuracy. For the taxa used as outgroups, sampling
is almost always less dense. In addition to clade-based
studies, systematists also produce “scaffold” phylogenies
for higher level taxonomic groups, e.g., angiosperms [17]
and metazoa [18,19]. Scaffold phylogenies sample taxa
widely distributed across the group to provide a broad-
scale sense of the relationships of the lower-level groups
contained within the higher level group. In the context
of a supertree analysis, scaffold phylogenies can provide
the necessary “glue” for connecting phylogenies. In the
absence of scaffold phylogenies, often the only overlap-
ping taxa between source trees will be the small number
of taxa used as outgroups for the clades of interest.
Thus, supertree efforts will often consist of a large num-
ber of clade-based phylogenies that are densely sampled
within their clades of interest and one or a small num-
ber of broadly distributed scaffold phylogenies based
upon markers that evolve slowly (see Table 1).
The simulation methodology we developed to reflect

these biological and practical realities (SMIDGen) has
six basic steps. In many cases we follow standard proto-
cols, but with a few significant changes to increase
simulation realism. The changes are indicated below.
Step 1: Generate model trees
We followed standard methodology here, generating
trees under a pure birth process, and deviating these
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from ultrametricity (the molecular clock hypothesis).
Unlike previous studies, we focused on large trees with
100 to 1000 taxa. We generated 30 replicates for each
model tree size. However, we report the results for only
10 replicates for the 1000-taxon datasets due to the very
long running times for the ML analyses of these
datasets.
Step 2: Evolve gene sequences down the model tree
We modified the standard methodology for this step.
We first determined the subtree within the model tree
for which each gene would be present, using a gene
“birth-death” process; this produced missing data pat-
terns that reflect biological data. Each gene was then
evolved down its subtree under a GTR+Gamma+Invari-
able process (i.e., General Time Reversible process, with
rates for sites drawn from a gamma plus invariable dis-
tribution [20]).
Step 3: Dataset production
This step was also performed in a novel way, producing
datasets for both combined analysis and source tree esti-
mation that reflect the practice of systematists. We pro-
duced datasets of genes appropriate for estimating trees
on specific clades (rooted subtrees) within the tree, and
also datasets of genes appropriate for estimating the

scaffold tree. For each clade dataset, we selected three
genes (each evolving on the same tree, but almost
always under a different set of parameters); each scaffold
dataset was based on 1-4 genes (again, each evolving on
the same tree, but often under a different set of para-
meters). Thus, each clade-based and scaffold dataset
provided to the phylogeny estimation routine was itself
a combined dataset.
Step 4: Estimation of source trees and the combined
analysis trees
We followed standard practice here, using RAxML [21]
for maximum likelihood (ML) and PAUP* [22] for maxi-
mum parsimony (MP) to estimate trees. However, we
did not use a partitioned analysis within RAxML, thus
somewhat hampering the accuracy of the maximum
likelihood analyses.
Step 5: Estimation of the supertrees
We used both standard and weighted MRP.
Step 6: Performance evaluation
We mostly followed standard practice here, evaluating
topological accuracy (with respect to false negative and
false positive rates) and running time. We also explored
the impact of dataset parameters on topological
accuracy.

Table 1 Selected empirical supertree studies

Group (Reference) Method Num.
taxa

Num. source
trees

Num. taxa in scaffold

Primates [34] Hierarchical MRP 203 112* 203 (100%) (taxonomy)

Carnivora [35] Hierarchical MRP 271 177* not given

Hologalegina [36] MRP (with topological constraints) 571 22 52 (9.1%)

Pinus [37] MRP 95 14 47 (49.5%)

Bacteria [38] wMRP 37 130-196 37 (100%)

Mammalia [39] MRP (large:small source trees weighted 4:1) 90 430 37 (41.1%)

Procellariiformes [40] MRP 122 7 90 (73.7%)

Chiroptera [41] Hierarchical MRP 916 105 not given

Poaceae [42] 1) wMRP (normal, purvis, and irreversible) 403 55 not given

2) wMRP (c.a. source trees) 61 8 61 (100%)

Lagomorpha [43] MRP (robust:nonrobust source trees weighted 2.81:1) 80 146 not given

Lipotyphla [44] (w)MRP (most source trees were MRP supertrees) 184 147 (7 final) scaffold is a supertree
of 6 taxa

Angiosperms [45] wMRP 379 46 323 (85.2%), 224 (59.1%)

Marsupialia [46] MRP (source trees with identical taxon sets were combined
using supertree methods)

267 158 267 (100%) (taxonomy)

Cetartiodactyla [47] MRP 290 201 290 (100%) (taxonomy)

Eutheria [48] MRP (some source trees were MRP supertrees) 113 725 (109
supertrees)

115 (100%)

Carcharhiniformes:
Sphyrnidae [49]

MRP (non-weighted, weighted, purvis, and irreversible) 8 5 8 (100%)

Mammalia [50] MRP (combined previously published supertrees and some of
their own.)

4510 >2500 (31
supertrees)

not given

Selected empirical supertree studies. For each supertree study we give the supertree method(s) used, the number of taxa in the final supertree, the number of
source trees, and the number of taxa in the scaffold dataset. If we could not determine which source trees served as scaffold trees, we instead give the number
of taxa in the largest source tree. * Indicates the number of publications from which source trees were drawn, not the actual number of source trees.
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Step 1: Generate model trees
For trees having 100, 500 and 1000 taxa, we generated
random model trees [23], with 30 replicates generated
for the 100 and 500 taxon cases, and ten for the 1000
taxon case. The smaller number of replicates for 1000
taxa was due to the very long run times for the 1000
taxon analyses. We produced the model tree topologies
using r8s [24], generating non-ultrametric trees in two
steps. First, we generated ultrametric model trees under
a Yule pure-birth process with the targeted numbers of
taxa and tree height of 1.0. We then modified branch
lengths to deviate from ultrametricity by applying a ran-
dom scaling factor to each edge length in the tree. At
the root, the scaling factor was set to 1.0 and progres-
sively altered-parent branch to daughter branches-by
adding a value, drawn from a normal distribution with
mean zero and standard deviation 0.05. The scaling fac-
tors were constrained to be at least 0.05 and no greater
than eight. (See appendix for commands used [Addi-
tional file 1]).

Step 2: Evolve gene sequences
For each model tree, we generated a large suite of genes
for use in inferring the source trees. Genes for inferring
scaffold trees always appeared at the root of the tree and
did not go extinct; these are termed universal genes. Five
universal genes were evolved for each model tree. The
genes we created for the clade-based source trees did not
occupy the entire tree and are called non-universal genes.
We simulated 100 non-universal genes for each model

tree as follows. We selected a single birth node for each
gene by randomly selecting the gene’s birth point using
the model tree topology and branch lengths. For each
gene we evolved a single binary site starting at the root.
Initially, the site took state zero, representing the
absence of the gene. Branch lengths were normalized so
that the distribution was independent of tree height. A

decay process e-lb, where l is the normalization factor
and b is the branch length, was tested along all branches
leading away from a parent node, and if the birth
occurred then the state of the parent node was set to 1,
representing the presence of the gene. This node was
the “birth” place of the given gene. If the birth did not
occur, a recursive call was made to all children. If sev-
eral children of the same node were returned, then we
picked the earliest. If several children of the same node
are returned with equal dates, one was selected at ran-
dom with equal probability.
To determine the lineages for which the given gene

was lost, we continued to evolve the binary site starting
at the birth node using the same decay process
described above. We assigned the loss to the node
below the branch on which the loss event occurred, and
we allowed multiple loss events. Thus, the process for
determining birth and extinction points of the genes
produced a connected set of nodes in the tree contain-
ing the gene. This subtree constituted the model tree
topology for the given gene.
Following generation of the birth-death patterns for

the genes, gene sequences, each of length 500, were
evolved under the GTR+Gamma+I model, where the
parameters of the model were chosen with equal prob-
ability from a pool of parameter sets estimated by
Ganesh Ganapathy [25] on three biological datasets
(Table 2): (a) the Angiosperm data set - 288 aligned
DNA sequences of a group of Angiosperms, each of
length 4811 [17,26]; (b) the Nematode data set - 682
aligned small subunit rRNA sequences, consisting of
678 species of Nematodes and four outgroups, each of
length 1808 [27]; and (c) the rbcL data set - 500 aligned
rbcL DNA sequences each of length 1398 [28]. Genes
were evolved at a fast, medium or slow rate, implemen-
ted by rescaling the model tree branch lengths by a fac-
tor of 2.0, 1.0, or 0.1, respectively.

Table 2 Gene sequence parameters

Data Set Substitution Matrix Base Frequencies. Prop. Invar. Sites Gamma

Angiosperm 1.54755 3.67531 1.86115 A = 0.223269 0.2 0.5

0.93047 4.53303 C = 0.206748

1.0 G = 0.256568

T = 0.313414

Nematode 1.24284 3.47484 0.48667 A = 0.300414 0.273196 0.362026

1.07118 4.38510 C = 0.191363

1.0 G = 0.196748

T = 0.311475

rbcL 1.09397 3.12811 0.35141 A = 0.320128 0.101878 0.397524

1.55972 3.64704 C = 0.176726

1.0 G = 0.167462

T = 0.335683

Model parameters estimated on three biological data sets and used for generating DNA sequences.
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Universal genes were always slow - reflecting the prac-
tice in systematics of using slower evolving genes for
higher taxonomic groups. Twenty-five of the non-uni-
versal genes were fast, 50 were medium, and 25 slow.
We evolved each gene independently down its model
tree using the program Seq-Gen [29] (see appendix for
the Seq-Gen commands [Additional file 1]).

Step 3: Data set production
For each model tree, we created DNA sequence data
sets for phylogenetic analyses. Data sets differed in the
taxa and genes used and whether they were scaffold or
clade-based in order to mimic taxon-sampling strategies
used by systematists. The result of this process was a
collection of data matrices, which we then used for the
combined and supertree analyses.
For each clade-based data set, we selected a clade of

interest using the same process to select an edge as that
used in the birth node selection process above. The
child node of the selected edge was returned as the root
node of the clade of interest. Clade selection was
restricted by setting bounds on the number of extant
taxa in a clade to avoid selection of either very small or
very large clades. For each 100-taxon model tree, we
selected five clades with a clade size of at least 20. For
each 500-taxon model tree, we selected 15 clades with a
clade size of at least 30, and for each 1000-taxon model
tree, we selected 25 clades ranging in size between 30
and 500. We never created more than one clade-based
source tree for any clade in the model tree.
For each clade chosen, we selected the three non-uni-

versal genes that covered the largest number of taxa in
the clade, breaking ties randomly. Once the three non-
universal genes were chosen, we restricted the taxa in
the clade to only those that had all three of the genes.
This process produced clade-based datasets without any
missing sequence data, but that may not have contained
all the taxa of the specified clade. Since this process
could produce datasets with small numbers of taxa, we
excluded any clade-based data set that had fewer than
ten taxa.
For the scaffold data sets, we used the same technique

as in Bininda-Emonds and Sanderson [5], and selected a
subset of taxa uniformly at random from the model
tree, with a fixed probability p, which we called the
“scaffold-factor.” By design, the scaffold datasets gener-
ated by this process had on average p × n taxa, where n
is the number of taxa in the model tree. We generated
scaffold data sets with a scaffold factor of either 0.20,
0.5, 0.75 or 1.0, for either one, two or four universal
genes. The larger scaffold factors were chosen to ensure
some model conditions had the taxonomic overlap
necessary to potentially reconstruct an accurate super-
tree. For the smaller scaffold factors, we produced a

handful of datasets with such low taxon overlap that it
would have been inappropriate to apply either a super-
tree or a supermatrix analysis (see [[30], pg. 257] for a
description of the conditions needed to apply a super-
tree analysis). These datasets were discarded from our
study. Because of the combination of scaffold and clade-
based source trees, and because all were larger than
some minimum size, we were able to achieve good cov-
erage of most taxa in the model tree.
For each replicate, after all the source tree gene data-

sets were selected, a “combined dataset” was created for
the combined analyses, CA-MP and CA-ML. If a gene
happened to be used in more than one source tree data-
set, we superimposed the alignments on the different
taxon sets to produce a single alignment on the union
of these source tree taxon datasets. For example, if a
gene were used for source trees on taxon sets A and B
(note these alignments will be identical on A ∩ B), we
merged these two alignments into a single alignment on
the set A ∪ B. Since the clade-based datasets used only
non-universal genes and the scaffold datasets contained
only universal genes, this process of merging alignments
coming from the same gene only happened for the
genes used in clade-based datasets.

Step 4: Estimation of source trees and the combined
analysis tree
For each data matrix, we inferred phylogenies using
both MP and ML methods. The MP source trees for the
MRP analyses were estimated using the parsimony
ratchet implemented in PAUP* [22]. Starting trees were
generated from a random addition sequence, and fol-
lowed by one round of TBR swapping. Once a local
optimum was reached, we performed a ratchet iteration.
The first step of the ratchet iteration randomly
reweighted 25% of the characters with weight 2.0, while
keeping the weight of the other characters 1.0. A round
of TBR hill-climbing was then performed on the
reweighted data matrix. During the second step, the
weights on all characters were returned to 1.0, and
another round of TBR hill-climbing was performed. (See
appendix for commands used.) We performed 50 itera-
tions on the scaffold data sets and 100 iterations on the
clade-based data sets, keeping the most parsimonious
solutions obtained over all the iterations. Finally, we
returned the strict consensus of the most parsimonious
trees found.
The MP source trees for the weighted MRP analyses

were estimated using a fast MP command (bootstrap
nreps = 1000 search=faststep) in PAUP* to analyze 1000
bootstrap replicates. (See appendix for command used.)
We chose this approach for generating the wMRP
source trees because the parsimony ratchet we used for
the MRP input trees was too slow in this context (given
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the number of bootstrap replicates we analyzed). We
returned the majority consensus of these analyses.
To generate the ML input trees for the (unweighted)

MRP analysis, we used RAxML [21] in its default setting
(GTRMIX), returning the single best tree. We estimated
the ML source trees for weighted MRP using the fast
bootstrap version of RAxML, analyzing 100 bootstrap
replicates in its GTRMIX setting. (See appendix for
commands used.) The smaller number of bootstrap
replicates for the ML analyses, as compared to the MP
analyses, was necessary due to longer runtimes per
replicate. Also, the weighted MRP-ML analyses could
only be performed on the 100 taxon datasets due to
very long runtimes on the 500 and 1000 taxon cases.
For the combined analyses, phylogenies were esti-

mated on the supermatrix created from the source-tree
matrices using both maximum parsimony (CA-MP) and
maximum likelihood (CA-ML). MP analyses consisted
of five iterations of the parsimony ratchet, using the
same implementation described for the input tree recon-
structions, returning the majority consensus of the most
parsimonious trees found. ML analyses used RAxML in
its GTRMIX default setting for the 100- and 500-taxon
data sets and in its GTRCAT default setting for the
1000-taxon data sets. GTRCAT was used for the largest
data sets due to running time and memory constraints.
GTRMIX uses the same search algorithm as GTRCAT,
but recomputes the likelihood score on the final tree.
Thus, both variants of RAxML methods produce trees
with the same topology, differing only in the numeric
parameters.

Step 5: Estimation of the supertrees
For the supertree analyses, we used the MP and ML
source trees as input for the MRP method, and the
bootstrap MP and bootstrap ML source trees as input
to the weighted MRP method (wMRP); thus, MRP-MP
and wMRP-MP had slightly different source trees, and
MRP-ML and wMRP-ML also had slightly different
source trees. For the wMRP analyses, the bootstrap pro-
portions from the input tree analyses were used as the
branch lengths. Thus we had a total of four different
supertree reconstructions (MRP-MP, MRP-ML, wMRP-
MP, and wMRP-ML). The MRP method was used
because it is the most popular of the various supertree
methods, and wMRP was used because Bininda-Emonds
and Sanderson [5] results indicated that wMRP-MP per-
formed better than MRP-MP and combined analyses.
We used r8s [24] to produce the matrices for the MRP
and wMRP analyses from the given source trees. For the
MRP analyses, we analyzed the supertree matrices using
50 iterations of the parsimony ratchet described above.
Since the parsimony ratchet in PAUP* will not accept
weights for branches, in order to perform the wMRP

analyses we used a weighted parsimony search (with 100
random sequence additions, TBR branch swapping, and
maxtrees = 1000). (See appendix for command used.)
For both MRP and wMRP analyses, we returned the
majority consensus of the most parsimonious supertrees
returned by the search.

Step 6: Performance evaluation
Steps 1 through 5 produced results for four supertree
methods and two combined analysis methods. The
supertree methods were MRP based upon MP trees
(MRP-MP), MRP based upon ML trees (MRP-ML),
weighted MRP based upon MP trees (wMRP-MP), and
weighted MRP based upon ML trees (wMRP-ML)), and
the combined analysis methods were based upon either
MP (CA-MP) or upon ML (CA-ML). We calculated
topological error using the false negative (FN) rate-the
number of edges present in the model tree but not in
the estimated tree, divided by the number of internal
edges in the model tree (n - 3 where n is the number of
taxa)-and the false positive (FP) rate-the number of
edges present in the estimated tree but not in the model
tree, divided by the number of internal edges in the esti-
mated tree. We also calculated the arithmetic mean of
the FN and FP rates, which we refer to as the “average
topological error”. Note that when the trees being com-
pared are binary, the average topological error is equiva-
lent to the normalized Robinson-Foulds (RF) distance
[31]. For each model condition, we calculated the aver-
age error rates and standard errors.
We recorded the running time of each method on

each dataset. Because the analyses were run under Con-
dor (a distributed software environment [32]), the run-
ning times (for the larger datasets, especially) are
inexact, and larger than they would be if run on a dedi-
cated processor. Running times are provided to give an
approximate estimation of the time needed to perform
these analysis. We report the maximum and minimum
running time for each model condition.
Finally, we explored the impact of (1) the topological

error of the source trees, (2) the scaffold factor, (3) the
number of scaffold genes, and (4) the number of taxa
on the topological error of the resultant supertrees.

Results and Discussion
Relative performance of methods
Interestingly, the six methods we studied had roughly
the same relative topological accuracy (measured with
respect to FN and FP rates and to average topological
error) under most model conditions. CA-ML was con-
sistently the best method, with much lower topological
error than the other methods for most model condi-
tions. Following CA-ML were the other ML-based
methods-wMRP-ML, and MRP-ML, in that order-and
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then the three MP-based methods-CA-MP, MRP-MP,
and wMRP-MP, usually in that order
(Figures 1, 2 and 3). CA-ML’s advantage was substan-

tial for cases where the scaffold factor was less than
100% (with the biggest advantage for the smallest scaf-
fold factors), and this advantage increased slightly with
the number of taxa and decreased with the number of
scaffold genes (Figures 4 and 5).
In comparing the performance of the different algo-

rithms (combined analysis or supertree method, based
upon either maximum parsimony or maximum likeli-
hood), we discovered that certain algorithm design
choices had a large impact on the topological accuracy
of the trees that were constructed. In particular, the
choice of optimization problem, i.e. whether we used
maximum likelihood or maximum parsimony, had the
largest impact on the final accuracy, with methods that
used maximum likelihood (CA-ML, wMRP-ML, and
MRP-ML) as a group more accurate than the methods

based upon maximum parsimony (CA-MP, wMRP-MP,
and MRP-MP). The second most significant algorithmic
choice was whether we performed a combined or a
supertree analysis, with CA-MP more accurate than
MRP-MP and wMRP-MP, and similarly CA-ML more
accurate than MRP-ML and wMRP-ML.
The first of these observations (that ML-based ana-

lyses were more accurate than MP-based analyses) is in
some ways not surprising. Supertree methods are sensi-
tive to error in their source trees, so improving the
accuracy of the source trees will improve the accuracy
of the supertrees. Furthermore, our study showed that
source trees based upon ML were on average more
accurate than source trees based upon MP. ML source
trees usually had less than 20% FN error, and MP
source trees usually had more than 20% (Figure 6).
These two observations suggest that supertrees based
upon ML source trees should be more accurate than
supertrees based upon MP source trees.

Figure 1 Scaffold factor vs. super-method FN rate. False Negative (FN) rates (means with standard error bars) for supertree and supermatrix
reconstructions as a function of the scaffold factor. Values in italics on the x-axis are the average percent of missing data in the data matrices of
the combined data sets for that scaffold factor. Graphs a-c are for data sets with one scaffold gene, and d-f for four scaffold genes.
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However, while it is not surprising that trees estimated
using ML are more accurate than trees estimated using
MP, the performance of ML in our study, particularly in
the combined analyses, is still noteworthy because our
data analyses did not include partitioning of the data-
sets. All the sequence datasets we generated were
obtained by concatenating gene data sets; maximum
likelihood analyses of these datasets then proceeded
without using the “partitioned analysis” option. Since
each gene in the dataset could evolve under a different
model of evolution, the concatenated data sets were not
guaranteed to evolve under the same GTR model.
Therefore, our ML analyses were performed under a
simpler (single GTR matrix) model, even though the
data were generated under a more complex model. This
treatment of the data has the potential to reduce the
accuracy of all our ML-estimated trees (whether ML
source trees or ML combined analysis trees), in compar-
ison to what they might have been if they had been

estimated under a partitioned analysis for each gene.
Therefore, the improved topological accuracy of the ML-
based methods in comparison to the MP-based methods
shows that maximum likelihood is likely to be more
accurate than MP.

Running time
Table 3 provides information on the running times of the
methods studied here. Since these methods were run
under Condor (a distributed system lacking dedicated
processors), these numbers should be considered approx-
imate and are given only as an indication of the general
trends. Running times for wMRP-ML were prohibitively
high for the 500 and 1000 taxon datasets, making it infea-
sible to use wMRP-ML on datasets of these sizes. Almost
as problematic is wMRP-MP, which can be extremely
slow on some 1000 taxon datasets. Combined analysis
using maximum likelihood takes more time than com-
bined analysis using maximum parsimony or MRP-ML

Figure 2 Scaffold factor vs. super-method FP rate. False Positive (FP) rates (means with standard error bars) for supertree and supermatrix
reconstructions as a function of the scaffold factor. Values in italics on the x-axis are the average percent of missing data in the data matrices of
the combined data sets for that scaffold factor. Graphs a-c are for data sets with one scaffold gene, and d-f for four scaffold genes.
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and MRP-MP, but is still acceptable in its computational
requirements (although it requires more than a day of
analysis on the 1000 taxon datasets).

Comparison with earlier studies
The most appropriate studies for comparison with the
work presented here are those by Bininda-Emonds and
Sanderson [5] and Criscuolo et al. [13] since they both
performed simulation studies using MRP and combined
analysis approaches. However, Bininda-Emonds and San-
derson only examined CA-MP, wMRP-MP, and MRP-
MP, while Criscuolo et al. only examined CA-ML and
MRP-ML; our study is, thus the first to consider wMRP-
ML as a supertree method as well as the first to compare
MP-based “super-methods” to ML-based super-methods.
Direct, quantitative comparisons with their studies are
somewhat complicated because they used different
metrics for assessing the topological accuracy of

estimated trees relative to the true trees: Criscuolo et al.
used quartet distances and Bininda-Emonds and Sander-
son used the consensus fork index (CFI). We, therefore,
restrict our comparisons to qualitative differences.
The result common to all three studies is that for each

fixed optimality criterion (MP or ML), combined analy-
sis is more accurate than MRP. However, the studies
differ in terms of the magnitude of the improvement
obtained by combined analysis over MRP, with our
study finding much larger differences (especially for the
small scaffold factors). Beyond the relative performance
of MRP and combined analysis, the three studies come
to different conclusions. Bininda-Emonds and Sanderson
found that wMRP-MP was more accurate than CA-MP,
whereas, across all model conditions, our study found
that CA-MP was more accurate than wMRP-MP, having
much lower FN error rates and comparable FP error
rates. We also found that wMRP-ML was not as

Figure 3 Scaffold factor vs. super-method avg. topological error. Average topological error (means with standard error bars) for supertree
and supermatrix reconstructions as a function of the scaffold factor. Values in italics on the x-axis are the average percent of missing data in the
data matrices of the combined data sets for that scaffold factor. Graphs a-c are for data sets with one scaffold gene, and d-f for four scaffold
genes.
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accurate as CA-ML for 100 taxon datasets. Since neither
earlier study evaluated wMRP-ML as a supertree
method, our findings with respect to its performance
cannot be compared to their findings, except insofar as
our findings are helpful in understanding wMRP as a
generic supertree method.
The differences between our findings and those of

Bininda-Emonds and Sanderson and Criscuolo et al.
could be due to several factors. Since our results show
that increasing the number of taxa increases the relative
advantage of combined analysis over MRP and wMRP,
we suspect that one factor is likely the number of taxa
in the experiments: we examined datasets with between
100 taxa and 1000 taxa, while Bininda-Emonds and San-
derson explored datasets with at most 32 taxa and Cris-
cuolo et al. explored 48 and 96 taxon datasets. Since
most recent empirical supertree studies have included
upwards of 200 taxa (see Table 1), and it is likely that
future empirical supertree analyses will also tend to be
in the range of our analyses, our results may be a better
indicator of the relative performance of MRP supertree
and combined analysis methods (and in particular, of
wMRP-MP and CA-MP) for current uses of these meth-
ods. A second factor could be our simulation methodol-
ogy. One of the main differences between the simulation
methodology we used and those used by others is the
taxon sampling procedure: our datasets included clade-
based source trees and scaffold source trees, while the
technique used by both Bininda-Emonds and Sanderson
and Criscuolo et al. produced only scaffold datasets,
because their taxa were always randomly selected from
the full dataset. (Bininda-Emonds and Sanderson used

25%, 50%, 75%, and 100%, and Criscuolo et al. used 25%
and 75% scaffold factors.) While the comprehensiveness
of taxon sampling for in-groups in biological studies
varies depending on the purpose of the study, the
resources available to the researchers, and the ability to
collect or access source material, there is almost always
a clear non-random distribution of taxon-sampling
effort in most of the individual trees that would be used
as input for a supertree method or for producing a
supermatrix. Thus, it is likely our technique better repli-
cates systematic practice than theirs. To test this expec-
tation, we designed an additional experiment to see if
using only scaffold-based source trees would result in
findings more similar to those produced by Bininda-
Emonds and Sanderson and Criscuolo et al.
Using our 100-taxon model trees, and using the same

methodology described in the Methods section, we gen-
erated a collection of “all-scaffold” datasets for analysis
by MRP-ML and CA-ML. For each model condition, we
generated 30 replicate datasets. First, we generated 100
universal genes (50 slow and 50 medium), under differ-
ent GTR+Gamma+I models. For the MRP-ML analyses,
we produced six source trees, each based upon four
genes, and sampling taxa at random for the specified
scaffold factor. Note that different source trees could
use genes used by other source trees, but within a
source tree all four genes were different. These gene
matrices were combined into a single matrix for the
combined analysis. We then analyzed the datasets using
MRP-ML and CA-ML, and scored each tree for its false
negative and false positive rate. We also recorded the
topological error in the estimated source trees.

Figure 4 Number of taxa vs. super-method FN rate. FN rates (means with standard error bars) for supertree and supermatrix reconstructions
as a function of the number of taxa in the model tree and the number of scaffold genes. Values in italics on the x-axis are the average percent
of missing data in the data matrices of the combined data sets for that scaffold factor. Only data sets with 100% scaffold factors are presented.
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The patterns we saw for these “all-scaffold” model
conditions were mostly consistent with our first experi-
ment, but also provide interesting contrasts (contrast
Figure 7 to Figures 1 and 2). The two experiments show
roughly the same relative performance between CA-ML
and MRP-ML: for the lowest scaffold factors (20% and
50%) CA-ML is much more accurate than MRP-ML,
while for the largest scaffold factors (75% and 100%)
they have almost identical performance. As before, we
see that scaffold factor impacts the accuracy of both
methods, but in this experiment the impact is greater: at
the lowest scaffold factors (20% and 50%) both methods
produce very inaccurate trees (with MRP-ML clearly
worse), and at the highest scaffold factors they produce
highly accurate trees. Since the scaffold factor is a pretty
close approximation to the amount of nucleotide data in
the matrix (i.e., for scaffold factor of 20%, the alignment
will have about 20% nucleotides and 80% missing data),

this suggests that the amount of missing data for these
all-scaffold datasets has a large impact on the accuracy
of both supertree and combined analysis methods. Note,
however, that CA-ML seems somewhat more robust to
missing data than MRP-ML. Given MRP-ML’s particu-
larly poor accuracy on the sparse scaffold datasets, we
examined the error rates in the source trees to see if the
problem was due to poor source trees (Figure 8). Inter-
estingly, the ML source trees had only moderately high
error rates (about 20%) for the lowest scaffold rate-a
case where MRP-ML had average error above 80%; a
similar, but less extreme, situation presents for the 50%
all-scaffold datasets. We provide the following possible
explanation for these results: when the datasets are all
very sparse scaffold datasets, there may not be enough
overlap in the source trees to provide enough phyloge-
netic signal, thus hampering potentially any supertree
method. While supermatrix methods are also impacted

Figure 5 Number of scaffold genes vs. super-method FN rate. FN rates (means with standard error bars) for supertree and super-matrix
reconstructions as a function of the number of scaffold genes used in the scaffold reconstruction. Values in italics on the x-axis are the average
percent of missing data in the data matrices of the combined data sets for that scaffold factor. Graphs a-c and d-f are for data sets with 20%
and 100% scaffold factors, respectively.
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Figure 6 Average source tree FN rate vs. supertree FN rate. Average source tree FN rates against supertree FN rates. Each point represents a
single replicate for a single model condition. The solid line is a regression line. The dotted line represents supertree constructions that have the
same FN as the average source tree given as input. Points above the dotted line correspond to supertrees that are less topologically accurate
than the average source tree, while points below the line correspond to supertrees that improved upon the average accuracy of the source
trees.
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Table 3 Running time

Num. Taxa Scaffold Factor Num. Scaff. Genes MRP wMRP Comb. Analysis

MP ML MP ML MP ML

100 20% 1 0:02:26
(0:00:16)

0:04:12
(0:00:17)

0:01:59 (0:00:30) 7:00:43 (0:07:22) 0:00:19 0:09:22

2 0:02:46
(0:00:18)

0:04:33
(0:00:17)

0:01:59 (0:00:29) 13:09:51
(0:08:19)

0:00:20 0:14:49

4 0:02:46
(0:00:18)

0:04:48
(0:00:17)

0:02:02 (0:00:30) 13:12:03
(0:09:27)

0:00:22 0:24:19

50% 1 0:02:31
(0:00:17)

0:04:52
(0:00:17)

0:02:02 (0:00:34) 13:27:05
(0:07:26)

0:00:20 0:19:28

2 0:02:52
(0:00:17)

0:04:43
(0:00:17)

0:02:00 (0:00:29) 13:34:02
(0:08:30)

0:00:19 0:18:45

4 0:02:36
(0:00:19)

0:04:47
(0:00:17)

0:02:03 (0:00:27) 13:29:32
(0:09:39)

0:00:21 0:11:47

75% 1 0:02:34
(0:00:18)

0:04:40
(0:00:18)

0:02:10 (0:00:38) 13:37:31
(0:09:14)

0:00:20 0:11:22

2 0:02:37
(0:00:21)

0:05:08
(0:00:19)

0:02:08 (0:00:31) 7:51:22 (0:04:47) 0:00:20 0:14:09

4 0:02:39
(0:00:19)

0:05:25
(0:00:19)

0:02:12 (0:00:27) 16:08:55
(0:06:31)

0:00:22 0:17:46

100% 1 0:03:12
(0:00:19)

0:04:49
(0:00:18)

0:02:15 (0:00:40) 16:04:16
(0:00:46)

0:00:19 0:15:59

2 0:02:42
(0:00:19)

0:05:12
(0:00:18)

0:02:15 (0:00:31) 16:23:16
(0:00:32)

0:00:20 0:15:59

4 0:02:51
(0:00:19)

0:05:24
(0:00:17)

0:02:27 (0:00:27) 14:12:23
(0:00:30)

0:00:21 0:16:42

500 20% 1 0:38:08
(0:14:00)

0:42:23
(0:10:30)

4:33:43 (4:11:26) 0:31:32 8:18:55

2 0:36:41
(0:13:12)

0:54:00
(0:14:02)

4:16:10 (3:52:54) 0:30:03 8:11:45

4 0:36:15
(0:12:38)

0:43:26
(0:10:26)

3:40:18 (3:16:18) 0:31:41 10:46:11

50% 1 0:35:50
(0:12:57)

0:50:02
(0:11:11)

5:15:58 (4:54:09) 0:36:43 10:28:04

2 1:04:27
(0:23:12)

0:53:11
(0:12:19)

5:16:34 (4:50:07) 0:33:17 11:11:52

4 0:46:12
(0:15:36)

0:59:05
(0:13:42)

5:12:08 (4:42:06) 0:31:30 8:40:21

75% 1 0:38:20
(0:13:45)

0:54:45
(0:12:56)

7:03:10 (6:40:10) 0:37:44 7:02:24

2 0:37:54
(0:12:30)

0:52:09
(0:11:05)

6:34:58 (6:07:25) 0:34:19 7:53:34

4 0:41:21
(0:12:39)

0:57:47
(0:11:43)

3:52:45 (3:18:24) 0:29:39 8:38:06

100% 1 0:44:33
(0:15:07)

0:57:14
(0:11:53)

7:04:20 (6:43:18) 0:35:42 7:51:45

2 0:44:38
(0:14:23)

1:09:41
(0:14:36)

12:33:24 (11:56:14) 0:37:26 7:59:34

4 0:43:44
(0:12:02)

1:05:59
(0:11:38)

5:33:52 (4:55:00) 0:26:27 7:10:35

1000 20% 1 3:27:39
(2:21:39)

3:14:56
(1:47:23)

85:59:18 (84:53:20) 6:09:44 30:51:13

2 3:22:14
(2:18:39)

3:26:56
(1:47:54)

30:34:14 (29:53:19) 5:46:56 28:05:57

4 4:23:55
(3:05:25)

3:21:37
(1:51:27)

83:56:34 (82:42:34) 6:15:50 27:58:00

50% 1 3:22:33
(2:18:18)

4:22:00
(2:18:23)

75:21:00 (74:11:14) 7:36:14 33:21:22
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negatively, they are somewhat more robust to missing
data.
At the other end of the spectrum, when all the source

trees are dense scaffold datasets, we see that both MRP-
ML and CA-ML produce highly accurate trees, even
improving in accuracy over the source trees (Figure 8).
This interesting phenomenon also has a potential expla-
nation. First, different source trees can be helpful for
different parts of the tree, and so may provide comple-
mentary information about the tree; this allows super-
tree methods (as well as supermatrix methods) to return
a more accurate tree on the full set of taxa than the
average source tree.
A comparison between the results we see for all-scaf-

fold datasets and the combined types of source tree
datasets (some scaffold and some clade-based) shows
that however one estimates trees (supertree or super-
matrix), all-scaffold datasets tend to result in very poor
trees except when they are all very dense. We also saw

that the mixed source tree dataset conditions had the
best accuracy when some source trees are dense, but
that reasonably good results could be obtained from
only moderately dense scaffold datasets if analyzed
using CA-ML. Furthermore, MRP seems more sensi-
tive to the problem of sparse taxonomic sampling than
combined analysis, further lending support to the
hypothesis that MRP is generally inferior to combined
analysis.

Conclusions
Our study has two main contributions. First, we provide
a new experimental methodology, SMIDGen (available
from the first author), for generating simulated multi-
marker datasets, and we show that SMIDGen can be
used to evaluate supertree and combined analysis meth-
ods under a range of conditions that reflect both biolo-
gical processes and systematic practice. The datasets
and model trees used in this study are available as

Table 3: Running time (Continued)

2 3:36:43
(2:24:07)

3:28:32
(1:37:26)

54:19:41 (53:30:45) 6:14:55 29:23:03

4 3:15:25
(2:01:12)

4:06:33
(2:00:27)

41:23:37 (40:19:38) 11:13:18 29:28:29

75% 1 4:12:25
(2:38:59)

4:18:28
(1:58:46)

88:13:11 (87:10:11) 8:07:53 33:39:42

2 4:01:05
(2:24:18)

4:22:16
(2:00:57)

67:17:02 (66:12:47) 6:16:32 28:41:11

4 4:11:41
(2:22:43)

4:34:12
(1:40:56)

50:49:52 (49:25:52) 5:33:09 29:08:11

100% 1 5:29:37
(3:26:03)

4:29:46
(1:52:53)

174:47:23
(173:41:33)

7:56:46 34:14:48

2 4:26:05
(2:39:56)

5:53:10
(2:30:23)

295:10:35
(293:51:27)

6:02:16 27:11:45

4 4:54:31
(2:43:09)

4:43:11
(1:51:43)

174:52:35
(172:49:10)

4:49:07 24:33:39

Average running time for each of the six methods. For the four supertree methods, the time to compute just the supertree is given in parentheses following the
full running time, which includes the time taken to compute source trees. Running times are given in hours:minutes:seconds.

Figure 7 All-scaffold data scaffold factor vs. super-method FN rate. FN and FP rates (means with standard error bars) for supertree and
supermatrix reconstructions as a function of the scaffold factor, for datasets where all source tree datasets are scaffold datasets containing four
universal genes.
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benchmarks in our online supplementary material, at
http://www.cs.utexas.edu/users/mswenson/pubs/. Sec-
ond, we show that combined analysis using maximum
likelihood produces more accurate trees than all the
other methods we tested, with the degree of improve-
ment increasing with the number of taxa and decreasing
with the density of the scaffold tree. Third, we show
that taxonomic sampling strategies for the multi-marker
datasets affects all phylogenetic analyses, but that MRP-
ML is particularly impacted when all the markers are
sparsely sampled from the full set of taxa. These results
together provide evidence that combined analysis using
maximum likelihood (CA-ML) should be used instead
of MRP when possible. These results also suggest that
the selection of markers for large-scale multi-marker
phylogenetic analyses should be done with care, ensur-
ing that a sufficiently large number of markers provide
dense coverage within clades, and using sparsely
sampled datasets (perhaps) only as needed. However,
further research is needed to determine the impact of
adding sparsely sampled datasets to an otherwise “good”
multi-marker dataset.
Our recommendation to use combined analysis to

assemble trees from maximum likelihood source trees
thus argues for a computationally intensive approach
to large-scale phylogenetics. However, with the avail-
ability of fast and highly accurate software for maxi-
mum likelihood (e.g., RAxML and GARLI [33]), such
combined analyses should not pose a substantial com-
putational problem. Finally, our conclusions are limited
specifically to a comparison of MRP and combined
analysis, as we did not test any other supertree meth-
ods. This limitation was due to the fact that most

other supertree methods require the input source trees
to be rooted, and our simulation process does not
make it easy to locate roots within the estimated
source trees. Thus, we leave open the possibility that
some of these other supertree methods may outper-
form combined analysis using ML.

Additional file 1: Appendix. The appendix includes the commands
used to perform the simulation study.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1748-7188-5-8-
S1.PDF ]
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Figure 8 All-scaffold data average source tree FN rate vs. supertree FN rate. Average source tree FN rates against supertree FN rates. Each
point represents a single replicate for a single model condition with a 100-taxon model tree and datasets for which all source trees are
estimated using scaffold datasets containing four universal genes. The solid line is a a regression line. The dotted line represents supertree
constructions that have the same FN as the average source tree given as input. Points above the dotted line correspond to supertrees that are
less topologically accurate than the average source tree, while points below the line correspond to supertrees that improved upon the average
accuracy of the source trees.
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