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Abstract

Background: When inferring phylogenetic trees different algorithms may give different trees. To study such effects
a measure for the distance between two trees is useful. Quartet distance is one such measure, and is the number
of quartet topologies that differ between two trees.

Results: We have derived a new algorithm for computing the quartet distance between a pair of general trees, i.e.
trees where inner nodes can have any degree ≥ 3. The time and space complexity of our algorithm is sub-cubic in
the number of leaves and does not depend on the degree of the inner nodes. This makes it the fastest algorithm
so far for computing the quartet distance between general trees independent of the degree of the inner nodes.

Conclusions: We have implemented our algorithm and two of the best competitors. Our new algorithm is
significantly faster than the competition and seems to run in close to quadratic time in practice.

Background
The evolutionary relationship between a set of species is
conveniently described as a tree, where the leaves repre-
sent the species and the inner nodes speciation events.
Using different inference methods to infer such trees
from biological data, or using different biological data
from the same set of species, often yield slightly differ-
ent trees. To study such differences in a systematic
manner, one must be able to quantify differences
between evolutionary trees using well-defined and effi-
cient methods. One approach for this is to define a dis-
tance measure between trees and compare two trees by
computing this distance. Several distance measures have
been proposed, e.g. the symmetric difference [1], the
nearest-neighbour interchange [2], the subtree transfer
distance [3], the Robinson and Foulds distance [4], and
the quartet distance [5]. Each distance measure has dif-
ferent properties and reflects different properties of the
tree relationship.
For an evolutionary tree, the quartet topology of four

species is determined by the minimal topological subtree
containing the four species. The four possible quartet
topologies of four species are shown in Figure 1. Given

two evolutionary trees on the same set of n species, the
quartet distance between them is the number of sets of
four species for which the quartet topologies differ in
the two trees.
Most previous work has focused on comparing binary

trees and therefore avoided star quartets. Steel and
Penny in [6] developed an algorithm for computing the
quartet distance in time O(n3). Bryant et al. in [7]
improved this result with an algorithm that computes
the quartet distance in time O(n2). Brodal et al., in [8],
presented the currently best known algorithm that algo-
rithm the computes the quartet distance in time O(n
log n).
Recently, we have developed algorithms for computing

the quartet distance between two trees of arbitrary
degrees, i.e. trees that can contain star quartets. In [9]
we developed two algorithms: the first algorithm runs in
time O(n3) and space O(n2)–and is thus independent of
the degree of the inner nodes–the second in time O
(n2d2) and space O(n2), where d is the maximal degree
of inner nodes in the trees–and thus depends on the
degree of the nodes. The O(n2d2) was later improved to
O(n2d) [10], and by taking an approach similar to the
Brodal et al. [8] O(n log n) we developed a sub-quadra-
tic algorithm in terms of n but at a significant cost in
terms of d: O(d9n log n) [11].
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In this paper we develop an O(n2+a) algorithm, where

α =
ω − 1
2

and O(nω) is the time it takes to multiply

two n × n matrices. Using the Coppersmith-Winograd
[12] algorithm, where ω = 2.376, this yields a running
time of O(n2.688). The running time is thus independent
of the degrees of the inner nodes of the input trees, and
this is the first sub-cubic time algorithm with this prop-
erty. Furthermore we have implemented the algorithm,
along with two of the previous methods, and show
experimentally that our new algorithm performs well in
practice.

Methods: A sub-cubic time and space algorithm
The quartet distance between two trees is the number
of quartets where the quartet topology differs
between the two trees, i.e. the number of quartets
where one tree has the star topology and the other a
butterfly topology, plus the number of quartets where
the trees have a different butterfly topology. As
observed in [9], the former–where one tree has the
star topology and the other a butterfly topology–can
be expressed in terms of the total number of butter-
flies in the two trees, the number of shared butterflies
and the number of different butterflies: For trees T
and T’, the number of different topologies due to one
being a star and the other a quartet, diffS(T, T’), is

given by

diffS(T,T′) = B + B′ − 2 (sharedB(T, T′) + diffB(T,T′)), (1)

where B is the number of butterflies in T, B’ the num-
ber of butterflies in T’, sharedB(T, T’) the number of
quartets with the same butterfly topology in T and T’
and diffB(T’) the number of quartets with different but-
terfly topologies in T and T’. Thus the quartet distance
between T and T’ is given by the expression

qdist(T,T′) = B + B′ − 2sharedB(T,T′) − diffB(T,T′). (2)

Since, B = sharedB(T, T ) and B’ = sharedB(T’, T’), an
algorithm for computing sharedB(T, T’) and diffB(T, T’)
gives an algorithm for computing the quartet distance
between T and T’.
Our approach to counting the shared and different

quartets is based on directed quartets and claims [8,9].
An (undirected) butterfly quartet topology, ab|cd
induces two directed quartet topologies ab ® cd and
ab ¬ cd, by the orientation of the middle edge of the
topology, as shown in Figure 2. There are twice as
many directed butterflies as undirected. If e = (se, te) is
a directed edge from se to te we call se the source of e,
and te the target. To each directed quartet, ab ® cd,
we can uniquely associate the directed edge, e so that
a and b are leaves in the subtree rooted at se, and c
and d are leaves in different subtrees rooted at te, see
Figure 3. We call such a tree substructure, consisting
of a directed edge e with a subtree, A behind e and
two distinct subtrees, C and D, in front of e a claim,
written A

e→(C,D). We say that the edge e claims the
directed quartet ab ® cd, and we also say that an edge
e claims an undirected quartet ab|cd if it claims one of
its directed quartets. Each (undirected) butterfly quar-
tet defines exactly two directed butterfly quartets, and
each directed quartet is claimed by exactly one direc-
ted edge; considering each claim and implicitly each
directed butterfly claimed by the claim, we can exam-
ine each directed butterfly in a tree, or each undirected
butterfly twice.
The crux of the algorithm is to consider each pair of

claims, one from each tree, and for each such pair count
the number of shared and different directed butterflies
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Figure 1 Quartet topologies. The four possible quartet topologies
of species a, b, c, and d. For binary trees, only the butterfly quartets
are possible.
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Figure 2 Directed and undirected topologies. An undirected quartet topology, (a), and the two directed quartet topologies, (b) and (c), it
induces.
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claimed in the two trees. This way each shared butterfly
is counted twice, and each different butterfly is counted
four times, as shown in Figure 4. Dividing the counts by
two and four, respectively, gives us sharedB(T, T’) and
diffB(T, T’).

Preprocessing
Before counting shared and different butterflies, we cal-
culate a number of values in two preprocessing steps.
First, we calculate a matrix that for each pairs of sub-
trees F Î T and G Î T’ stores the number of leaves in
both trees, |F ⋂ G|. This can be achieved in time and
space O(n2) [7].
Next, for each pair of inner nodes, v Î T, v’ ÎT’ with

sub-trees Fi, i = 1,..., dv and Gj, j = 1, ..., dv’, respectively,
we calculate a matrix, I, such that I[I, j] = |Fi ⋂ Gj|, and
we calculate vectors of its row and column sums, and
the total sum of its entries:

R[i] =
dv′∑
j=1

I[i, j] (3)

C[j] =
dv∑
i=1

I[i, j] (4)

M =
dv∑
i=1

dv′∑
j=1

I[i, j] (5)

Inspired by the sums (S.3) - (S.6) in Additional file 1
we calculate a matrix I’, vectors of its row and column
sums, the total sum of its entries, and some further
values

I′[i, j] = I[i, j](M − R[i] − C[j] + I[i, j]) (6)

R′[i] =
dv′∑
j=1

I′[i, j] (7)

C′[j] =
dv∑
i=1

I′[i, j] (8)

M′ =
dv∑
i=1

dv′∑
j=1

I′[i, j] (9)

R′′[i] =
dv′∑
j=1

I[i, j](C[j] − I[i, j]) (10)
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Figure 3 A claim. A claim A
e→(C,D). The claim A

e→(C,D)
claims all ordered butterflies ab ® cd where a, b Î A and c Î C,d
Î D where C and D are two different subtrees in front of e.
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Figure 4 Counting directed claims. A shared butterfly induces two butterflies in each tree, which will give four pairs of claims, however the
butterflies will only be identical in two of these pairs, thus a shared butterfly will be counted twice. A different butterfly also induces four pairs
of claims, but since we are counting different butterflies all four will be counted. The way we count shared butterflies prevents the two different
butterflies induced by the shared (undirected) butterfly from being counted.
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C′′[j] =
dv∑
i=1

I[i, j](R[i] − I[i, j]) (11)

R′′′[i] =
dv′∑
j=1

I[i, j]2 (12)

C′′′[j] =
dv∑
i=1

I[i, j]2 (13)

Calculating the values in Eq. (3) - (13) can be done in
O(dvdv’) for each pair of inner nodes (v, v’) Î T × T’,
giving a total time of

O
(∑

v∈T
∑

v′∈T′ dvdv′
)
= O

((∑
v∈T dv

) (∑
v′∈T′ dv′

))
= O(n2).

Finally, we need to calculate the following values:

I′′′[i, j] =
dv∑

k=1,k �=i

dv′∑
l=1,l�=j

I[i, l]I[k, j]I[k, l] (14)

which takes time O(d2v d
2
v′) for each pair of inner

nodes, giving a total time of O(n4), if done naively.
However, as we show in section 1 of Additional file 1
the values in Eq. (14) can be calculated faster if we pre-
compute either I′′1 = IITand I′′′1 = I′′1 I, or I′′2 = ITI and
I′′′2 = II′′2 depending on which pair of matrices is fastest
to compute, where I is the dv × dv ’ matrix defined
above. We thus calculate either Eq. (15) and (16), or Eq.
(17) and (18), depending on which pair is fastest to cal-
culate.

I′′1[i, k] =
dv′∑
j=1

I[i, j]I[k, j] (15)

I′′′1 [i, j] =
dv∑
k=1

I[k, j]I′′1[i, k] (16)

I′′2[j, l] =
dv∑
i=1

I[i, j]I[i, l] (17)

I′′′2 [i, j] =
dv′∑
l=1

I[i, l]I′′2[l, k] (18)

Calculating the values in Eq. (15) and (16) takes time
O(max(dvdv′)ω) if padding the matrices to become
square and with ω = 2.376 if using the Coppersmith-
Winograd algorithm [12] for matrix multiplication, or
time O(d2v dv′) if using naive matrix multiplication. Simi-
larly, calculating the values in Eq. (17) and (18) takes
time O(max(dvdv′)ω) or O(dvd2v′). Computing either I′′1

and I′′′1 , or I′′2 and I′′′2 , thus takes time
O(min(max(dv, dv′)ω, d2v dv′ , dvd2v′)).

Counting shared butterfly topologies
For each pair of inner edges, e Î T and e’ Î T’, see Fig-
ure 5, we count the directed butterflies claimed by both
e and e’. These are all on the form ab ® cd, where a, b
Î Fi ⋂ Gj, c Î Fk ⋂ Gl and d Î Fm ⋂ Gn for some claims,

Fi
e→(Fk, Fm) and Gj

e′→(Gl,Gn), of e and e’. The total

number of directed butterflies common for both e and
e’ is therefore given by the expression

1
2

(
|Fi ∩ Gj|

2

) ∑
k �=i

∑
l�=j

|Fk ∩ Gl|
∑
m�=i,k

∑
n�=j,l

|Fm ∩ Gn| (19)

or the sum of
1
2

(
I[i, j]

2

)
· I[k, l] · I[m,n] for all distinct

entries in I but fixed (i, j), see Figure 6(a). We divide by
two since we count each quartet twice, due to symmetry
between the (k, l) and (m, n) pairs.
Notice, however, that the inner sum is simply the total

sum of entries in I, M, except for the rows i and k and
columns j and l, see Figure 6(b). Using

∑
m�=i,k

∑
n�=j,l

|Fm ∩ Gn| = M −
∑
q=i,k

R [q] −
∑
r=j,l

C [r] +
∑
q=i,k

∑
r=j,l

I [q, r] (20)

and the precomputed values we can, as shown in sec-
tion 2 of Additional file 1 rewrite the expression in Eq.
(19) to

1
2

(
I[i, j]
2

) (
M′ − R′[i] − C′[j] + I′[i, j]+

(I[i, j] − R[i] − C[j])(M − R[i] − C[j] + I[i, j])+

R′′[i] − I[i, j](C[j] − I[i, j])+

C′′[j] − I[i, j] (R[j] − I[i, j])
)

(21)

which can be computed in time O(1), if the referenced
matrices have been precomputed. Thus we can compute
all shared directed butterflies in total time O(n2). Divid-
ing by two, we get the number of shared undirected
butterflies.

Counting different butterfly topologies
Counting the number of different butterflies in the two
trees is done similar to counting the number of shared
butterflies. As before, we consider a pair of inner
edges, e Î T and e’ Î T’. The quartets claimed by both
e and e’, but with different butterfly topology, are on
the form a Î Fi ⋂ Gj, b Î Fi ⋂ Gl, c Î Fk ⋂ Gj and d Î
Fm ⋂ Gn for some claims Fi

e→(Fk, Fm) and

Gj
e′→(Gl,Gn). The number of butterflies claimed by

both e and e’ but with different topology is therefore
given by

Nielsen et al. Algorithms for Molecular Biology 2011, 6:15
http://www.almob.org/content/6/1/15

Page 4 of 8



|Fi ∩ Gj|
∑
k �=i

∑
l�=j

|Fi ∩ Gl||Fk ∩ Gj|
∑
m�=i,k

∑
n�=j,l

|Fm ∩ Gn|(22)

or the sum of I[I, j] · I[I, l] · I · [k, j] I[m, n] for all dis-
tinct entries in I but fixed (I, j), see Figure 7. In this case
there is no need to divide by any normalizing constant,
since there are no symmetries between k and m or
between l and n.
As before, the inner sum can be expressed as in Eq.

(20), and using the precomputed values we can, as
shown in section 3 of Additional file 1 rewrite the
expression in Eq. (22) as

I[i, j]
(
(M − R[i] − C[j] + I[i, j])(R[i] − I[i, j])(C[j] − I[i, j])+

(R[i] − I[i, j])(I[i, j](R[i] − I[i, j]) − C′′ [j])+
(C[j] − I[i, j])(I[i, j](C[j] − I[i, j]) − R′′[i])+

I′′′1 [i, j] − I[i, j]I′′1 [i, i] − I[i, j] (C′′′[j] − I[i, j]2)
)

(23)

or

I[i, j]
(
(M − R[i] − C[j] + I[i, j])(R[i] − I[i, j])(C[j] − I[i, j])+

(R[i] − I[i, j]) (I[i, j](R[i] − I[i, j]) − C′′ [j])+
(C[j] − I[i, j]) (I[i, j](C[j] − I[i, j]) − R′′[i])+

I′′′2 [i, j] − I[i, j]I′′2 [j, j] − I[i, j] (R′′′[i] − I[i, j]2)
)

(24)

depending on whether we have precomputed I′′1 and
I′′′1 , or I

′′
2 and I′′′2 . We can thus compute Eq. (22) in time

O(1) for each pair of inner edges e Î T and e’ Î T’ giv-
ing a total time of O(n2) to compute different directed,
and thus different undirected, butterfly topologies in the
two trees.
To get the actual number of different butterflies we

have to divide by four.

Time analysis
The running time of the algorithm is dominated by the

time O
(
min (max (dv, dv′)2.376, d2v dv′ , dvd2v′)

)
it takes to

compute either I′′1 and I′′′1 , or I
′′
2 and I′′′2 , for each pair of

nodes v Î T and v’ Î T’. Let O(nω) be the time it takes
to multiply two n × n matrices. In section 4 of Addi-
tional file 1 we show that the running of our algorithm

is O(n2+a), where α =
ω − 1
2

. Using the Coppersmith-

Winograd algorithm [12] for matrix multiplication,
where ω = 2.376, this yields a running time of O(n2.688).

Results
We have implemented our new algorithm and, for
comparison, the O(n3) and O(n4) algorithms [9] for
general trees. We chose those algorithm instead of
those from [10,11], because the running time of those

Fi e

Fm

Fk

Gj

e′

Gn

Gl

Figure 5 Comparing two edges. A pair of inner edges, e Î T, e’ Î T’, where Fi (Gj) is the sub-tree behind e (e’) and Fk, k ≠ i (Gl, l ≠ j) the
remaining subtrees of the node pointed to by e (e’). Highlighted are two claims, one from each tree.
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Figure 6 Counting shared quartets. Graphical illustration of the
shared quartet expression, eq. (19). On the left, the matrix entries
summed over are explicitly shown. On the right, the inner sum is
implicitly shown. The sum of the greyed entries can be computed
in constant time.
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Figure 7 Counting different quartets. Graphical illustration of the
different quartet expression, eq. (22). On the left, the matrix entries
summed over are explicitly shown. On the right, the inner sum is
implicitly shown. The sum of the greyed entries can be computed
in constant time.
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algorithms are dependent on the degree of the nodes,
while a major feature of our new algorithm is that it
has a good asymptotical running time independent of
the degree of the nodes. For matrix multiplication we
link to a BLAS library, and expect that to choose the
most efficient algorithm for matrix multiplication. In
our experiments the vecLib library from Mac OS X is
used. We have run benchmarks with trees with ten
leaves up to trees with almost 15, 000 leaves. For each
size, trees were generated in four different ways: gen-
eral trees, binary trees, star trees and trees with one

node of degree
n

2
surrounded by degree 3 nodes. The

code that generated the trees is available in Additional
file 2. For each of the ten possible combinations of
topologies, one pair of trees were randomly generated,
and the time used for the computation of the quartet
distance was measured and plotted. Our experiments
were run on a Mac-Pro with two Intel quad-core Xeon
processors running at 2.26 GHz and with 8 GB RAM.
As seen in Figure 8 the implementation of our new
algorithm is significantly faster than the implementa-
tions of the competing algorithms, on trees with many
leaves. In the worst cases our algorithm approaches O

(n3) which is expected if the BLAS implementation
uses the O(n3) matrix multiplication algorithm. Indeed
Figure 9 shows that the slowest of our runs are on two
star-shaped trees, where we need to multiply two n ×
n matrices and where the time-complexity of the
matrix multiplication algorithm is most important.
However, in most cases our algorithm seems to be
close to quadratic execution time, even though it
apparently uses an asymptotically slow matrix multipli-
cation algorithm.

Conclusion
We have derived, implemented and tested a new algo-
rithm for computing the quartet distance. In theory our

algorithm has execution time O(na+2), where α =
ω − 1
2

.

With current knowledge of matrix multiplication this is
O(n2.688). If an algorithm for matrix multiplication in
time O(n2) is found this would make our algorithm run
in time O(n2.5). Experiments on our implementation
shows it to be fast in practice, and that it can have a
running time significantly better than the theoretical
upper bound, depending on the topology of the trees
being compared.
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Figure 8 Comparison of algorithms. Plotted are our new algorithm compared to previously known O(n3) and O(n4) algorithms. In a log-log
plot xb becomes a straight line with the slope determined by b. The lines in the plot are not regression lines, but are inserted to help the
reader judge the time complexity of our implementations.
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Availability
The software is available from http://www.birc.au.dk/
software/qdist. It has been tested on Ubuntu Linux and
Mac OS X.

Additional material

Additional file 1: Supplementary material containing mathematical
derivations that are too tedious for the main text.

Additional file 2: The python script used to generate the random
trees for the experiments.
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