
Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30
http://www.almob.org/content/7/1/30

RESEARCH Open Access

Adaptive efficient compression of genomes
Sebastian Wandelt* and Ulf Leser

Abstract

Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever increasing rate. In
parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational
requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to
deal with this challenge. Recently, referential compression schemes, storing only the differences between a
to-be-compressed input and a known reference sequence, gained a lot of interest in this field. However, memory
requirements of the current algorithms are high and run times often are slow. In this paper, we propose an adaptive,
parallel and highly efficient referential sequence compression method which allows fine-tuning of the trade-off
between required memory and compression speed. When using 12 MB of memory, our method is for human
genomes on-par with the best previous algorithms in terms of compression ratio (400:1) and compression speed. In
contrast, it compresses a complete human genome in just 11 seconds when provided with 9 GB of main memory,
which is almost three times faster than the best competitor while using less main memory.

Keywords: Sequence compression, Referential compression, Heuristics, Scalability

Background
The development of novel high-throughput DNA se-
quencing techniques has led to an ever increasing flood
of data. While it took roughly 12 years and an esti-
mated amount of 3 billion USD to decipher the first
human genome [1], current techniques, usually summa-
rized under the term second generation sequencing (SGS),
are able to produce roughly the same amount of data in
about a week at a current cost of roughly 2000 USD. On
top, third generation sequencing promises to deliver a fur-
ther speed-up, reducing the time and price for sequencing
a human genome from weeks to days and from thousands
to under a hundred USD, respectively [2].
Large-scale projects are generating comprehensive sur-

veys of the genomic landscape of various diseases by
sequencing thousands of genomes [3]. Managing, stor-
ing and analyzing this quickly growing amount of data is
challenging [4]. It requires large disk arrays for storage,
and large compute clusters for analysis. A recent sug-
gestion is to use cloud infrastructures for this purpose
[5-7]. However, before being analyzed in a cloud, data
first has to be shipped to the cloud, making bandwidth in
file transfer one of the major bottlenecks in cloud-based

*Correspondence: wandelt@informatik.hu-berlin.de
Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin,
Germany

DNA analysis [8]. Accordingly, sequence compression is a
key technology to cope with the increasing flood of DNA
sequences [9-11].
To store a complete genome of a human being, one

needs roughly 3GB (uncompressed). Substitutional or
statistic compression schemes can reduce the space
requirements by up to 6:1 (one base is encoded with up to
1.3 Bit) [12,13]. However, in many projects only genomes
from one species are considered. This means that projects
often deal with hundreds of highly similar genomes;
for instance, two randomly selected human genomes
are identical to an estimated 99.9%. This observation is
exploited by so-called referential compression schemes,
which only encode the differences of an input sequence
with respect to a pre-selected reference sequence. Using
space-efficient encoding of differences and clever algo-
rithms for finding long stretches of DNA without differ-
ences, the best current referential compression algorithm
we are aware of reports a compression rates of up to 500:1
for human genomes [14].
However, all existing compression schemes have in

common that they have very high demands on the under-
lying hardware (up to 25 GB, for instance [15,16]). Fur-
thermore, the time needed for compressing the amount of
sequences corresponding to a human genome may be up

© 2012 Wandelt and Leser; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 2 of 9
http://www.almob.org/content/7/1/30

to several hours, which easily out-weights the time sav-
ings during file transfer. Furthermore, existing approaches
cannot easily be parallelized to reduce compression time,
because such a parallelization requires to share informa-
tion about the generated compression model. This com-
munication/synchronization overheadmay easily mitigate
the positive effects gained by parallelization.
In this paper, we present an adaptive, scalable and

highly efficient algorithm for referential compression of
DNA sequences genomes. It is able to gracefully trade-off
compression time and space requirements while con-
sistently achieving very good compression rates. For
instance, our algorithms requires only 12 MB memory
to compress/decompress a human genome at the same
speed as the fastest existing approach. Using 9 GB of
memory usage, our method performs up to three times
faster than the best competitor while still needing less
main memory. Both variants achieve similar compression
rates of approximately 400:1 for human DNA. For yeast
sequences, the compression ratios are lower, since two
yeast genomes can have substantial differences.
The remaining part of this paper is structured as fol-

lows. We first explain the main ideas behind our algo-
rithm in Section “General Idea”. The concrete design
choices and algorithms are described in detail in Section
“Genome Compression”. We discuss related work in
Section “Related Work”, before we provide an evalua-
tion of our method in Section “Evaluation”. The paper is
concluded with Section “Conclusions”.

General Idea
We denote strings with s,t. The length of a string s is
denoted with |s| and the substring starting at position i
with length n is denoted s(i, n). s(i) is an abbreviation for
s(i, 1). All positions in a string are zero-based, i.e. the first
character is accessed by s(0). The concatenation of two
strings s and t is denoted with s ◦ t. Although a genome
can be encoded with four characters, i.e. A,C,G, and T, we
allow arbitrary symbols. For instance, symbol N is often
used to indicate an unknown base. Given two strings s and
t, the longest prefix-suffix match of s in t, is the longest
string tm, such that t = t1 ◦ tm ◦ t2 and s(0, |tm|) = tm.
We want to compress a given input genome with respect

to a reference genome, by only encoding differences
between the input and the reference. This yields loss-less
compression, i.e. based on the reference genome and the
difference description it is possible to recover the input
genome. The idea is to split up a given reference genome
into blocks. In general, two genomes of the same species
are very similar to each other, and blocks are chosen in
a way that long matches of to-be-compressed blocks can
often be found in reference blocks by local search. Please
note that splitting the reference into blocks of fixed length
is not an optimal way, since different sizes of the blocks

can provide better performance in terms of compression
ratio. However, for the sake of compression speed and
easier data handling, we only consider a fixed block length.
For each reference genome block, a suffix tree is com-

puted. The suffix trees allow to find longest prefix-suffix
matches of parts of the input genome and the reference
genome efficiently. The compression process is informally
summarized in Algorithm 1.

Algorithm 1: Sketch of our Compression Algorithm
1: while Input contains characters
2: Find matching reference block B for current input

position
3: Perform referential compression with respect to B

until we cannot find “long” matches anymore
4: end while

The compression algorithm generates a set of referential
matches with respect to reference blocks. The output of
our compression algorithm is a compressed file of entries,
such that each entry is one of the following:

• Block-change entry BC(i): next entries are encoded
with respect to reference block i.

• Relative match entry RM(i, j): The input matches
the reference block at position i for j characters.

• Raw entry R(s): A string s is encoded raw (for
instance if there is no good matching block).

An example compression is given in Figure 1. An input
sequence “TACGTAAT...” is compressed with respect to a
reference sequence “ACGACGTA...”. The first character of
the input is encoded raw, with entry R(T), then the first
reference block is chosen, with entry BC(0) , in order to
referentially encode the subsequence “ACGTA”, with entry
RM(3, 5).
Please note that block change entries can be actually

avoided, since local positions in a block can be easily
transformed into global positions in the reference. In the
remaining part, we will still assume the usage of block
change entries.

Genome Compression
Index Construction
In order to find matches of the input in reference blocks,
we need an index structure over the reference blocks.
Suffix trees [17] are tree data structures which allow for
fast access to all suffixes of a given string. Each suffix
is usually represented by a path from the root of the
tree to a leaf. Please note that the longest prefix-suffix
match problem of s in t can be be easily solved by depth-
first search given a suffix tree for the string t. The focus
recently shifted towards so-called compressed suffix trees.
One example of a compressed suffix tree implementation
is CST++ [18], which uses a new approach to compress

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 3 of 9
http://www.almob.org/content/7/1/30

Figure 1 Example for relative compression. An example compression is given in Figure 1. An input sequence “TACGTAAT...” is compressed with
respect to a reference sequence “ACGACGTA...”. The first character of the input is encoded raw, with entry R(T), then the first reference block is
chosen, with entry BC(0) , in order to referentially encode the subsequence “ACGTA”, with entry RM(3, 5).

the longest common prefix-array and achieves, depend-
ing on the sampling rates of the (inverse) suffix array, an
usual space overhead of (4−6)∗n bits. In the following, the
compressed suffix tree of a string s is denoted withCST(s).
In addition, we need a reference genome for our com-

pression algorithm. The reference sequence is given as a
set of compressed FASTA-files, one for each chromosome.
The index generation algorithm iterates over all chro-
mosomes of the reference genome. Each chromosome is
split up into blocks of a maximum size BS. For instance,
given the textual representation s1 of Chromosome 1, we
computem substrings b1,1, . . . , b1,m, such that

• s1 = b1,1 ◦ . . . ◦ b1,m,
• ∀i ≤ (m − 1) : |b1,i| = BS, and
• [b1,m]≤ BS.

We do the same for all other chromosomes of the ref-
erence genome. For each reference block a compressed
suffix tree is computed and stored on hard disk together
with the raw reference block. In addition, we keep
track of the order of the blocks, which is induced by
their position on the chromosomes. This meta infor-
mation is used below for optimizing our compression
algorithm.
The memory consumption during index creation is lim-

ited as follows: at each step of the index generation we
have one raw reference block of size at most BS bytes
in main memory plus (roughly) 4∗BS bytes for its com-
pressed suffix tree. For example, given a BS of 4 MB,
the main memory usage can be restricted to approxi-
mately 20 MB. The maximum value for BS is 300 MB,
since the largest human chromosome (Chromosome 1)
has about 247 million nucleotide base pairs, and each base
is encoded as one byte.
Please note that we could have encoded bases of the

reference genome with 3 bits (five entries: A,C,G,N,T),
in order to further reduce memory usage. However, our
tests indicate that the space saving yields a significant
time overhead for accessing bases. Furthermore, the 3-
Bit-encoding would not allow us to compress sequences
against references with other symbols than these five.

Compression and Decompression
In the following, we present our compression algorithm
for genome sequences in detail. Algorithms do not show
range checks for the sake of readability. Algorithm 2
assumes the input genome in Input (as a string of bases).
The input string is traversed from left to right, and
depending on the current characters in the input and in
the reference block, different subroutines are executed.

Algorithm 2: Compression Algorithm
1: Pin ← 0
2: Praw ← 0
3: FIND-MATCH
4: while Pin �=| Input | do
5: if Input(Pin) = B(Praw) then
6: ENCODE-REF
7: else if Input(Pin) /∈ {A,C,G,T} then
8: ENCODE-RAW
9: else
10: FIND-MATCH
11: end if
12: end while

In the beginning of the compression algorithm, a match
for the current input position in the reference is searched,
using function FIND-MATCH, Algorithm 3, explained in
detail below. If the current reference block B matches
the input at the current position, then we try to gen-
erate a (as long as possible) reference match in func-
tion ENCODE-REF, Algorithm 4. If the current input
base does not equal the current reference block base,
and the input is not a normal base, i.e. neither A,
C, G, or T, then the base and all the following non-
normal bases are added as raw entries to the compressed
genome file in function ENCODE-RAW, Algorithm 5.
Finally, if neither of the conditions is satisfied, then the
algorithm tries to find a new match (either in the cur-
rent block or in another reference block) using function
FIND-MATCH.

Algorithm 3: FIND-MATCH Function
1: Max ← 25

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 4 of 9
http://www.almob.org/content/7/1/30

2: if not HAS-LOCAL-ALTERNATIVE() then
3: for all Bj ∈ Blocks do
4: ifm(Input,Pin,Bj) ≥ Max then
5: Max ← m(Input,Pin,Bj)
6: B ← Bj
7: end if
8: end for
9: ifMax ≤ 25 then
10: Raws ← Input(Pin,Max)
11: Add R(Raws) to output
12: Pin ← Pin + Max
13: else
14: Praw ← beginning of the longest match in B
15: Add BC(B) to output
16: end if
17: end if

Algorithm 4: ENCODE-REF Function
1: M ← 0
2: while Input(Pin) = B(Praw) do
3: M ← M + 1
4: Pin ← Pin + 1
5: Praw ← Praw + 1
6: end while
7: Add RM(Praw-M,M) to output

Algorithm 5: ENCODE-RAW Function
1: Raws ← ””
2: while Input(Pin) /∈ {A,C,G,T} do
3: Raws ← Raws ◦ Input[Pin];
4: Pin ← Pin + 1;
5: end while
6: Add R(Raws) to output

In Algorithm 4 the number of matching characters
between current input position and current reference
position are determined and stored in variable M. A ref-
erence entry RM(Praw-M,M) is added to the compressed
output. The encoding of a raw sequence in Algorithm 5
is straight-forward: The string Raws is filled with bases
from the input until a normal base is found and R(Raws)
is added to the output.
Algorithm 3 requires more thoughts. The function

FIND-MATCH is called, whenever there is a mismatch
between the input and the reference. In this case, we
need to find an alternative match for the current input
position. First, we check whether there exists a match
in the neighbourhood (mutations caused by few single
nucleotide polymorphisms) of the current position of the
reference block. The process is explained in detail later.
If we cannot find a local match, then all the reference
blocks are checked for a better match. The expression
m(Input,Pin,Bj) returns the position of the longest prefix-
suffix match of the current input in Bj.

In our implementation of Algorithm 3, we care
about the order in which all reference blocks are tra-
versed. This is necessary, since loading blocks from
the disk is a time consuming effort and should be
avoided. Reference blocks are traversed with the following
heuristic:

1. The block left and right of the current reference block
2. All other blocks on the same chromosome as the

current reference block
3. All other blocks of the reference genome

If there is no long enough match in any reference block,
then we just encode few raw bases. Matches in other
blocks are required to be longer than 25 characters, in
order to avoid random matches. Our experiments have
shown that the mere length of the human DNA causes a
lot of unrelated matches with less than 20-25 characters.
Algorithm 3 uses the functionHasLocalAlternative. The

intuition is that we want to avoid searching all possible
reference blocks all the time. Our experiments showed
that one longest prefix-suffix-match lookup-operation in
a single compressed suffix tree can take up to few mil-
liseconds depending on the size. This is basically caused
by the high bit-wise compression of the reference genome.
Furthermore, potentially we have to load all the other ref-
erence block’s CTSs from the hard disk. Therefore, the
naive strategy to search for a new reference block on each
mismatch does not scale.
Instead we use a local search in the neighbourhood of

the current input position and of the current reference
position. This strategy has a biological foundation: Often
two parts of a genomemight only be different by few bases
(base insertion, base removal, of base mutation). When-
ever we find an appropriate match in the neighbourhood,
we avoid checking other reference blocks, although they
might contain better matches. In fact, if we searched for
the best reference blocks each time, we could increase the
compression rate slightly for the price of being orders of
magnitude slower.
The algorithm for local neighbourhood search is shown

in Algorithm 6. If a match of at least 20 characters can
be found near the current input and reference positions,
then the difference until thematch is encoded raw, and the
match is encoded referentially.
Decompression of the relative genome data is straight-

forward. Basically, all entries are processed according to
their type. For decompression of genome data we do not
need the compressed suffix trees any more, but only the
raw blocks of the reference genome. The decompression
of genome data is the least CPU-intensive task. Our eval-
uation in the next section shows that index generation and
compression are CPU-bound, while the decompression
phase is I/O-bound.

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 5 of 9
http://www.almob.org/content/7/1/30

Algorithm 6: HAS-LOCAL-ALTERNATIVE Function
1: for i ∈ {0, 1, . . . , 6, 7} do
2: for j ∈ {−7,−6, . . . , 6, 7} do
3: if Input(Pin + i, 20) = B(Praw + j, 20) then
4: if i ≥ 1 then
5: Raws ← Input(Pin, i)
6: Add R(Raws) to output
7: Pin ← Pin + i
8: end if
9: Praw ← Praw + j
10: ENCODE-REF
11: RETURN
12: end if
13: end for
14: end for

We emphasize that our compression scheme is a heuris-
tic, which mainly works when compressing a sequence
with respect to a reference from the same species. The effi-
ciency of this heuristic is evaluated in Section “Evaluation”.
The worst-case time complexity of our compression algo-
rithm is O(|Input|), since we need to traverse the whole
input sequence one time from left to right and for each
character we perform (in the worst case) one lookup in
the reference. The complexity of the lookup depends on
the length of the substring being looked up (we assume
a fixed maximal match length) and is therefore constant.
The worst-case space complexity isO(|Input|). Each char-
acter of the input is stored at most one time: either inside
a raw block or as part of a referential block.

RelatedWork
In the following, we review existing work on biologi-
cal data compression. In general, compression algorithms
are either substitutional, statistical, or referential. Sub-
stitutional algorithms [19] replace long repeated sub-
strings by references, e.g. Lempel-Ziv-based compression.
Statistical algorithms [13,20] derive a predictive model
from (a subset of) the input, based on partial matches.
If the model always indicates high probabilities for the
next symbol, then high compression rates are possible.
While referential algorithms replace long substrings as
well, the source for these subsets is usually not part
of the input (the sequence to be compressed). Referen-
tial compression algorithms have drawn a lot of atten-
tion recently, since they allow for very high compression
rates.
In [16], RLZ, a self-indexing based approach is proposed

as follows: Given a self-index for a base sequence, com-
press other sequences with LZ77 encoding relative to the
base sequence. In fact, a suffix array for the reference
sequence is built and the reference entries are position ref-
erences with length into the base sequence. Please note
that the authors do not store raw sequences at any time,

but only encode based on a list of references, no matter
how long.
The authors of [21] proposed to store human genomes

relatively to a reference chromosome. They used vari-
able integers for storing absolute and relative positions of
matches and represent often used k-mers (sequences of
length k) with Huffman encoding.
In [22], a LZ77-style compression scheme is proposed.

Themain difference is that several reference sequences are
taken into account. The match-finding process is based
on hashing. Compression is performed on input blocks
with shared Huffman models, in order to support random
access. In [23], another LZ77-style compression scheme is
proposed.
There exists further early work on non-referential

compression algorithms [24-27]. Furthermore, there
is compression based on context-free grammars [28],
determination of Markov-model based probabilities of
sequence positions [29], and hybrid methods [30]. In [12],
a splay tree-based compression algorithm is proposed,
which favors encoding of recently seen symbols. Finally,
there exists previous work on relative compression of
reads and alignment data, e.g. [31,32].

Evaluation
In the following section, we evaluate our proposed com-
pression scheme. All experiments have been run on a
Acer Aspire 5950G with 16 GB RAM and Intel Core
i7-2670QM, on Fedora 16 (64-Bit, Linux kernel 3.1). The
code was implemented in C++, using the BOOST library
[33], CST [34], and libz. All size measures are in byte, e.g.
1 MB means 1,000,000 bytes. The source code is available
for download1.
First, we performed compression tests on human

genomes. Our set of data genomes consists of 1000
genomes from the 1000 Genome project [35]. The 1000
Genome project group provides all sequenced genomes
in Variant Call Format (VCF) [36] for download2. The
Variant Call Format describes differences of sets of
genomes with respect to a reference sequence, based
on SNPs and indels. We have extracted one consen-
sus sequence each for in total 1000 genomes. Since the
project contains slightly more than 1000 genomes, we
have only extracted the first 1000 genomes (columns
from left to right) named in these VCF files. The con-
sensus sequences for each chromosome of each genome
were stored GZip-compressed on a hard disk. These
1000 GZip-compressed genomes need in total 700 GB of
storage.

Compression Ratio
First, we have compressed each chromosome referentially
against the reference chromosome taken from HG19 [37].
The results are shown in Figure 2. The first chromosome

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 6 of 9
http://www.almob.org/content/7/1/30

Figure 2 Compressed file size for different input chromosomes(in MB).We have compressed each chromosome referentially against the
reference chromosome taken from HG19 [37]. The results are shown in Figure 2. The overall compression ratio obtained for the 1000 human
genomes is 397:1.

of 1000 humans needs 236.6 GB of uncompressed stor-
age, while the referentially compressed file needs only 0.57
GB, yielding a compression ratio of 415:1. The smallest
human chromosome of our 1000 genomes, Chromosome
22, is compressed from 36.4 GB down to 0.1 GB, yielding a
compression ratio of 364:1. The overall compression ratio
obtained for the 1000 human genomes is 397:1.
For very similar sequences we achieve higher compres-

sion rates, than for less related sequences. This is inherent
to all referential compression schemes: the more simi-
lar input and reference sequence are, longer referential
matches can be found.
We have evaluated the impact of the block size on the

compression ratio. The results (average over all human
genomes and chromosomes) are shown in Figure 3. In
general, a larger block size will yield better compression
ratios. The intuition is that a larger block in main mem-
ory allows for finding longer matches. However, for a
block size of 1 MB, our compression scheme can still
achieve a compression ratio of 361:1, which is roughly
competitive to existing relative compression schemes for
human genome sequences. RLZ obtains a compression

ration of 80:1 and RLZopt a compression ratio of 133:1
for human genomes. GDC achieves compression ratios
of 200:1 - 500:1, depending on speed-tradeoffs. There
exists one variant GDC-ultra, which achieves a com-
pression ratio of 1000:1, which switches the reference
sequence during compression. Switching the reference
naturally allows for higher compression ratios. How-
ever, since we only use one reference, it seems to be
fair to only compare our results to the non-ultra vari-
ant of GDC, obtaining a compression ratio of at most
500:1.
Please note that the compression ratio for 300 MB is

actually smaller than for 50MB. One explanation could be
that all these matches found with smaller blocks allow for
a shorter encoding than the matches found in a longer
block. At first sight this might sound counter intuitive.
To the best of our knowledge, no research has been con-
ducted in this area, since the compression gain mainly
depends on the choice of referential entries, i.e. how to
encode positions, length entries and raw base entries. Ref-
erential compression is an optimization problem, where
the longest matches often, but not necessarily, yield the

Figure 3 Compression ratio by block size.We have evaluated the impact of the block size on the compression ratio. The results (average over all
human genomes and chromosomes) are shown in Figure 3. In general, a larger block size will yield better compression ratios.

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 7 of 9
http://www.almob.org/content/7/1/30

shortest compressed representation. For instance, some-
times more (shorter) matches can be encoded more effi-
ciently than less (longer) matches. We think that these
effects are important to be studied in Future Work.
The overall index size for the reference sequence (per

chromosome) is in average 202 MB, while an average
uncompressed input sequence is roughly 130 MB long.
The size of the index structure is decreasing with decreas-
ing block size, since the maximum length of paths in the
suffix tree is limited.
Additional experiments have been conducted on yeast

genomes. We have downloaded3 39 yeast genomes, have
chosen an arbitrary reference sequence (273614N) and
referentially compressed the other 38 genomes (all chro-
mosomes concatenated to each other) with respect to
the reference. The average compression ratio is 61:1. The
lower compression ratio compared to human sequences
is not surprising, since it is well known that two yeast
genomes can be less similar than even a human genome
and a chimpanzee genome. In these cases (unoptimized)
referential compression schemes do not obtain such nice
compression ratios as with human genomes. RLZopt
obtains compression ratios of 50:1, and GDC obtains
compression ratios of 70:1-100:1, depending on speed-
tradeoffs.
In average, the index size of an average yeast gnome

(around 12 MB) was found to be around 17.5 MB.

Compression Times
For serial compression, the compression algorithm per-
forms compression on one block at a time (in a single
thread). The memory requirements during compression
are roughly 6*BS (one reference raw block, one input
genome block, and the compressed suffix tree of the input
block). In addition we use a write buffer for output oper-
ations (size: 1 MB), which can be neglected. The results
for serial compression of the 1000 human genomes are
shown in Figure 4. All the results were averaged over all
chromosomes as input.
Clearly compression time decreases with increasing

block index size, since less time is spent on traversing
other blocks to find best matches. If the block index size
is 1 MB (equals to roughly 6 MB main memory usage),
the compression times are roughly 9 seconds per chromo-
some, i.e. around 200 seconds to compress a whole human
genome. This yields a compression speed of around 15
MB/s. With a block index size of 300 MB (roughly 1.8 GB
main memory usage), the compression time is down to 1.5
seconds per chromosome, i.e. around 35 seconds for com-
pression a whole human genome. This yields a compres-
sion speed of 85 MB/s. The time necessary to create the
compressed suffix tree for the reference is roughly 20 min-
utes. If one takes the position that indexing time should
belong to the online search time, then the compression

speed is reduced to 2.42 MB/s for a single genomes and to
82.87MB/s for 1000 genomes. However, we are convinced
that index construction should be taken as an offline task.
RLZopt obtains a compression speed of 1.34 MB/s,

while GDC achieves compression speeds of 4-35 MB/s,
depending on speed-tradeoffs. Therefore, our adaptive
algorithm seems to be competitive with existing rela-
tive compression schemes, while using less memory in a
controllable (by changing the block size) way.
In addition, we have performed experiments with 39

yeast genomes as in the previous subsection. The com-
pression time is around 70 seconds for one yeast genome,
yielding a compression speed of 0.17 MB/s. As expected,
our local search heuristic does not work as good as with
human genomes. Most of the time is spent on consulting
the compressed suffix tree which often only yields very
short matches of length 10-20. RLZopt has a compression
speed of 1.6 MB/s and GDC achieves compression speeds
of 2-33 MB/s, depending on speed-tradeoffs. In this case,
it seems to be advantageous to use a hash table as an
index structure instead of a suffix tree, as proposed by the
authors of GDC.
The parallelization on multi cores of our approach

is straightforward. Block-processing can be easily dis-
tributed on several CPUs (or even machines). However,
it has to be kept in mind that each compressor might
work on different parts of the reference genome, which
means that for n compressor threads the memory usage
is increased by the factor n. The upper limit main mem-
ory usage for seven threads is 7 GB (maximum size of the
complete index) + 7 ∗BS, if all index structures are loaded
into main memory.
Further investigation showed that the compression time

in the latter case is dominated by loading the index
files into main memory. Basically, in the beginning each
thread requests a set of index blocks, which (due to par-
allel access) might be loaded in a partial random access
manner.
To counter act this effect, we have pre-bulk loaded all

index structures at once after a reboot (taking roughly 80
seconds) and then performed compression. In this set-
ting, a whole human genome can be compressed within 11
seconds with 7 threads.
We think that this bulk-load scenario is actually quite

realistic, as scientists often want to compress/decompress
sets of genomes prior/after analysis.

Decompression Statistics
For all tests - independent of the index block size - we
obtained an average decompression time of 22 seconds.
Further parallelization did not improve these values, since
the decompression algorithm is I/O-bound. During the
compression around 3.1 GB for the decompressed genome
are written on the hard disk. Given that we measured the

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 8 of 9
http://www.almob.org/content/7/1/30

Figure 4 Compression ratio by block size. The results for serial compression of the 1000 human genomes are shown in Figure 4. All the results
were averaged over all chromosomes as input. Clearly compression time decreases with increasing block index size, since less time is spent on
traversing other blocks to find best matches.

write speed of the hard disk with 150 MB/s, it seems hard
to further optimize the decompression time. We have also
tried to write only compressed FASTA files on the disk.
Then, however, the decompression takes several minutes,
because the (self-referential) compression is CPU-bound.
The decompression times for competitors are similar, i.e.
RLZopt achieves 130 MB/s and GDC up to 150 MB/s.
We are convinced that for most decompressor imple-
mentations the actual limitation is the hard disk write
speed.

Conclusions
We have proposed an adaptive referential compression
schemes for genomes. The compression speed can be
controlled by varying the amount of main memory for
the compressor. Our variant with lowest main mem-
ory footprint (12 MB) achieves similar compression rates
and compression speeds, while using almost two orders
of magnitude less main memory. Our greedy variant
using 9 GB of main memory is 2-3 times as fast as
the best known variant. Compression speed can be fur-
ther improved by massive parallelization on different
machines.
Further work should be done on improving the com-

pression ratio. For instance, it would be possible to find
an efficient encoding for inverse complement matches or
approximate matches.
Investigations on inter-species referential compression

is challenging. So far, referential compression only works
well, if input and reference belong to the same species. The
development of a multi-species reference sequence would
allow for multi purpose genome compression algorithms.
Our initial experiments with human genome compression
with respect to a mouse genome indicate that the matches
are usually very short and the advantages of referential
compression are mitigated.

Endnotes
1http://www2.informatik.hu-berlin.de/∼wandelt/
blockcompression
2ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/
20110521/
3ftp://ftp.sanger.ac.uk/pub/dmc/yeast/latest

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors have contributed equally to the main text. Sebastian Wandelt has
implemented the presented algorithms on C++. All authors read and
approved the final manuscript.

Received: 25 July 2012 Accepted: 26 October 2012
Published: 12 November 2012

References
1. Consortium IHGS: Initial sequencing and analysis of the human

genome. Nature 2001, 409(6822):860–921.
2. Schadt EE, Turner S, Kasarskis A: Awindow into third-generation

sequencing. HumanMol Genet 2010, 19(R2):R227–R240. [http://dx.doi.
org/10.1093/hmg/ddq416].

3. International Cancer Genome Consortium Data Portal–a one-stop
shop for cancer genomics data. Database : the journal of biological
databases and curation 2011, 2011(0):bar026. [http://dx.doi.org/10.1093/
database/bar026].

4. Kahn SD: On the future of genomic data. Science 2011, 331(6018):728–
729. [http://www.sciencemag.org/content/331/6018/728.abstract].

5. Fusaro VA, Patil P, Gafni E, Wall DP, Tonellato PJ: Biomedical cloud
computing with amazon web services. PLoS Comput Biol 2011,
7(8):1–6. [https://sremote.pitt.edu:11018/login.aspx?direct=true&db=
aph&AN=67016557&site=ehost-live].

6. Cloud computing and the DNA data race. Nat Biotechnol 2010,
28(7):691–693. [http://dx.doi.org/10.1038/nbt0710-691].

7. The case for cloud computing in genome informatics. Genome Biol
2010, 11(5):207+. [http://dx.doi.org/10.1186/gb-2010-11-5-207].

8. Trelles O, Prins P, Snir M, Jansen RC: Big data, but are we ready? Nat Rev
Genet 2011, 12(3):224. [http://dx.doi.org/10.1038/nrg2857-c1].

9. Pennisim E:Will computers crash genomics? Science 2011,
331(6018):666–668. [http://dx.doi.org/10.1126/science.331.6018.666].

10. Giancarlo R, Scaturro D, Utro F: Textual data compression in
computational biology: algorithmic techniques.
Comput Sci Rev January 2012, 6(1):1–25 .

http://www2.informatik.hu-berlin.de/~{}wandelt/blockcompression
http://www2.informatik.hu-berlin.de/~{}wandelt/blockcompression
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/
ftp://ftp.sanger.ac.uk/pub/dmc/yeast/latest
http://dx.doi.org/10.1093/hmg/ddq416
http://dx.doi.org/10.1093/hmg/ddq416
http://dx.doi.org/10.1093/database/bar026
http://dx.doi.org/10.1093/database/bar026
http://www.sciencemag.org/content/331/6018/728.abstract
https://sremote.pitt.edu:11018/login.aspx?direct=true&db=aph&AN=67016557&site=ehost-live
https://sremote.pitt.edu:11018/login.aspx?direct=true&db=aph&AN=67016557&site=ehost-live
http://dx.doi.org/10.1038/nbt0710-691
http://dx.doi.org/10.1186/gb-2010-11-5-207
http://dx.doi.org/10.1038/nrg2857-c1
http://dx.doi.org/10.1126/science.331.6018.666

Wandelt and Leser Algorithms for Molecular Biology 2012, 7:30 Page 9 of 9
http://www.almob.org/content/7/1/30

11. Nalbantoglu ÖU, Russell DJ, Sayood K: Data compression concepts and
algorithms and their applications to bioinformatics. Entropy 2010,
12:34–52. [http://www.mdpi.com/1099-4300/12/1/34/].

12. Antoniou D, Theodoridis E, Tsakalidis A: Compressing biological
sequences using self adjusting data structures. In 10th IEEE
International Conference on Information Technology and Applications in
Biomedicine; 2010:1–5.

13. Pratas D, Pinho AJ: Compressing the Human Genome Using
Exclusively Markov Models. In PACBB, Volume 93 of Advances in
Intelligent and Soft Computing. Edited by Rocha MP, JMC Rodŕıguez,
Fdez-Riverola F, Valencia A: Springer; 2011:213–220. [http://dblp.uni-trier.
de/db/conf/pacbb/pacbb2011.html#PratasP11].

14. Deorowicz S, Grabowski S: Robust relative compression of genomes
with random access. Bioinformatics 2011, 27(21):2979–2986. [http://dx.
doi.org/10.1093/bioinformatics/btr505].

15. Kuruppu S, Puglisi S, Zobel J: Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In String Processing and
Information Retrieval, Volume 6393 of Lecture Notes in Computer Science.
Edited by Chavez E, Lonardi S. Berlin / Heidelberg: Springer; 2010:201–206.

16. Kuruppu S, Puglisi SJ, Zobel J: Relative Lempel-Ziv compression of
genomes for large-scale storage and retrieval. In Proceedings of the
17th international conference on String processing and information retrieval,
SPIRE’10. Berlin, Heidelberg: Springer-Verlag; 2010:201–206. [http://dl.acm.
org/citation.cfm?id=1928328.1928353].

17. Ukkonen E: On-line construction of suffix trees. Algorithmica 1995,
14:249–260 doi:10.1007/BF01206331. [http://dx.doi.org/10.1007/
BF01206331].

18. Ohlebusch E, Fischer J, Gog S: CST++. In String Processing and Information
Retrieval -17th International Symposium, SPIRE 2010; 2010:322–333.

19. Kuruppu S, Beresford-Smith B, Conway T, Zobel J: Iterative dictionary
construction for compression of large DNA data sets. IEEE/ACM Trans
Comput Biol Bioinformatics 2012, 9:137–149. [http://dx.doi.org/10.1109/
TCBB.2011.82].

20. Duc Cao M, Dix TI, Allison L, Mears C: A simple statistical algorithm for
biological sequence compression. In Proceedings of the 2007 Data
Compression Conference. Washington, DC, USA: IEEE Computer Society;
2007:43–52. [http://dl.acm.org/citation.cfm?id=1251981.1252877].

21. Christley S, Lu Y, Li C, Xie X: Human genomes as email attachments.
Bioinformatics 2009, 25(2):274–275. [http://dx.doi.org/10.1093/
bioinformatics/btn582].

22. Grabowski S, Deorowicz S: Engineering relative compression of
genomes. ArXiv 2011, [http://arxiv.org/abs/1103.2351].

23. Kreft S, Navarro G: LZ77-like compression with fast random access. In
Proceedings of the 2010 Data Compression Conference, DCC ’10.
Washington, DC, USA: IEEE Computer Society; 2010:239–248. [http://dx.
doi.org/10.1109/DCC.2010.29].

24. Grumbach S, Tahi F: Compression of DNA sequences. In Data
Compression Conference; 1993:340–350.

25. Chen X, Kwong S, Li M: A compression algorithm for DNA sequences
and its applications in genome comparison. In Proceedings of the
fourth annual international conference on Computational molecular biology,
RECOMB ’00. New York, NY, USA: ACM; 2000:107. [http://doi.acm.org/10.
1145/332306.332352].

26. Manzini G, Rastero M: A simple and fast DNA compressor. Software -
Practice and Experience 2004, 34:1397–1411.

27. Behzadi B, Le Fessant F: DNA compression challenge revisited: a
dynamic programming approach. In Combinatorial Pattern Matching,
Volume 3537 of Lecture Notes in Computer Science. Edited by Apostolico A,
Crochemore M, Park K. Berlin / Heidelberg: Springer; 2005:85–96.

28. Cherniavsky N, Ladner R: Grammar-based compression of DNA
sequences. 2004. [Unpublished work].

29. Cao MD, Dix TI, Allison L, Mears C: A simple statistical algorithm for
biological sequence compression. Data Compression Conference 2007,
0:43–52.

30. Matsumoto T, Sadakane K, Imai H: Biological sequence compression
algorithms. Genome Informatics 2000, 11:43–52.

31. Sakib MN, Tang J, Zheng WJ, Huang CT: Improving transmission
efficiency of large sequence alignment/map (SAM) files. PLoS ONE
2011, 6(12):e28251. [http://dx.doi.org/10.1371].

32. Hsi-Yang Fritz M, Leinonen R, Cochrane G, Birney E: Efficient storage of
high throughput sequencing data using reference-based

compression. Genome Res 2011, 21(5):734–740. [http://genome.cshlp.
org/content/early/2011/01/18/gr.114819.110.abstract].

33. BOOST C++ Libraries. [http://www.boost.org].
34. Ohlebusch E, Fischer J, Gog S: CST++. In SPIRE’10; 2010:322–333.
35. Consortium GP: Amap of human genome variation from

population-scale sequencing. Nature 2010, 467(7319):1061–1073.
[http://dx.doi.org/10.1038/nature09534].

36. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA,
Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000
Genomes Project Analysis Group: The variant call format and VCFtools.
Bioinformatics (Oxford, England) 2011, 27(15):2156–2158. [http://dx.doi.
org/10.1093/bioinformatics/btr330].

37. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler
D: The human genome browser at UCSC. Genome Res 2002,
12(6):996–1006. [http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=
Retrieve&db=PubMed&dopt=Citation&list uids=12045153].

doi:10.1186/1748-7188-7-30
Cite this article as: Wandelt and Leser: Adaptive efficient compression of
genomes. Algorithms for Molecular Biology 2012 7:30.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://www.mdpi.com/1099-4300/12/1/34/
http://dblp.uni-trier.de/db/conf/pacbb/pacbb2011.html#PratasP11
http://dblp.uni-trier.de/db/conf/pacbb/pacbb2011.html#PratasP11
http://dx.doi.org/10.1093/bioinformatics/btr505
http://dx.doi.org/10.1093/bioinformatics/btr505
http://dl.acm.org/citation.cfm?id=1928328.1928353
http://dl.acm.org/citation.cfm?id=1928328.1928353
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/TCBB.2011.82
http://dx.doi.org/10.1109/TCBB.2011.82
http://dl.acm.org/citation.cfm?id=1251981.1252877
http://dx.doi.org/10.1093/bioinformatics/btn582
http://dx.doi.org/10.1093/bioinformatics/btn582
http://arxiv.org/abs/1103.2351
http://dx.doi.org/10.1109/DCC.2010.29
http://dx.doi.org/10.1109/DCC.2010.29
http://doi.acm.org/10.1145/332306.332352
http://doi.acm.org/10.1145/332306.332352
http://dx.doi.org/10.1371
http://genome.cshlp.org/content/early/2011/01/18/gr.114819.110.abstract
http://genome.cshlp.org/content/early/2011/01/18/gr.114819.110.abstract
http://www.boost.org
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1093/bioinformatics/btr330
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12045153
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12045153

	Abstract
	Keywords

	Background
	General Idea
	Algorithm 1: Sketch of our Compression Algorithm

	Genome Compression
	Index Construction
	Compression and Decompression
	Algorithm 2: Compression Algorithm
	Algorithm 3: FIND-MATCH Function
	Algorithm 4: ENCODE-REF Function
	Algorithm 5: ENCODE-RAW Function
	Algorithm 6: HAS-LOCAL-ALTERNATIVE Function

	Related Work
	Evaluation
	Compression Ratio
	Compression Times
	Decompression Statistics

	Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	References

