
Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32
http://www.almob.org/content/7/1/32

RESEARCH Open Access

Towards a practical O(n log n)
phylogeny algorithm
Jakub Truszkowski*, Yanqi Hao and Daniel G Brown

Abstract

Recently, we have identified a randomized quartet phylogeny algorithm that has O(n log n) runtime with high
probability, which is asymptotically optimal. Our algorithm has high probability of returning the correct phylogeny
when quartet errors are independent and occur with known probability, and when the algorithm uses a guide tree on
O(log log n) taxa that is correct with high probability. In practice, none of these assumptions is correct: quartet errors
are positively correlated and occur with unknown probability, and the guide tree is often error prone. Here, we bring
our work out of the purely theoretical setting. We present a variety of extensions which, while only slowing the
algorithm down by a constant factor, make its performance nearly comparable to that of Neighbour Joining , which
requires �(n3) runtime in existing implementations. Our results suggest a new direction for quartet-based
phylogenetic reconstruction that may yield striking speed improvements at minimal accuracy cost. An early prototype
implementation of our software is available at http://www.cs.uwaterloo.ca/∼jmtruszk/qtree.tar.gz.

Keywords: Phylogeny, Random walk, Quartet

Background
Any useful phylogenetic reconstruction algorithm must
use �(n log n) time to reconstruct a phylogeny of n taxa,
because it takes that much time to write down a tree
(see, e.g., [1]). In practice, all commonly used algorithms
take much longer runtimes. To optimize parsimony, like-
lihood or the least-squares objective is NP-hard, and the
best distance-based methods require �(n3) runtime in
the worst case for Neighbour Joining , or �(n2) time for
UPGMA [2]. Typical quartet methods require�(n4) time,
since they enumerate all quartets. Common heuristics for
the problem run in quadratic time, and the recent pro-
gram FastTree has a runtime of �(n1.5 log n) in practice.
Programs with such a subquadratic runtime are necessary:
many projects currently desire trees on hundreds of thou-
sands of taxa, and new projects such as metagenomics or
sequencing individual cells inside a human may require
creating trees from millions of sequences.
We have recently developed a quite different phyloge-

netic approach, based on quartet queries, which achieves
the O(n log n) runtime lower bound, in expectation and

*Correspondence: jmtruszk@uwaterloo.ca
David R. Cheriton School of Computer Science, University of Waterloo,
Waterloo ON N2L 3G1 Canada

with high probability, while giving probabilistic guaran-
tees on the quality of its performance in a simple error
model [3]. It also promises to return the correct topology
with 1 − o(1) probability. Our algorithm is randomized,
so its runtime is a random variable, but its expectation is
O(n log n) regardless of the true topology of the tree.
However, the probabilistic assumptions on which the

program’s error analysis depends are not realistic: we
require that quartet queries err both independently and
with known probability. This presumption is false: for
example, two quartet queries that include the same taxon
are definitely not independent. Moreover, some quartets
may have evidence of being of high quality, while others
are not very good. Our initial description of our algorithm
did not incorporate this evidence. Our algorithm also only
places some taxa into the final tree; with high probability
in the theoretical model, all taxa are placed, but in prelimi-
nary experiments, 40% of taxa were not present in the tree
returned.
Here, we describe our work to bring our algorithm

away from a purely theoretical approach to a substantially
more practical, still extremely fast, phylogenetic recon-
struction method. We describe a number of extensions to
our method which increase both the fraction of taxa in

© 2012 Truszkowski et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://www.cs.uwaterloo.ca/~jmtruszk/qtree.tar.gz

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 2 of 10
http://www.almob.org/content/7/1/32

the returned tree, which we call coverage, and the accu-
racy of the topology of the tree that is returned. As a
result of these extensions, the coverage of our algorithm
is now over 90%, and the accuracy of the tree that results
approaches that of Neighbour Joining : see the experi-
ments section. When combined with local search, our
algorithm can produce trees on the full taxa set whose
accuracy is almost identical to that of FastTree, while
being substantially faster. This paper is an expanded ver-
sion of our earlier conference publication [4].
Ourmethods show that quartet-based algorithms, prop-

erly used, can form the basis of an effective phylogenetic
reconstruction method, in time that is both theoretically
and practically faster than any commonly used approach
for the problem.

Background and Related work
Our algorithm is an incremental phylogeny algorithm: it
starts with a guide tree on a small number of taxa, and
then inserts each new taxon si into the phylogeny created
by the first i−1 taxa, until all n taxa are inserted. We use a
randomized balanced search tree structure to ensure that,
with high probability, it requires O(log i) time to insert
taxon si.

Definitions
A phylogeny T is an unrooted binary tree with n leaves
in 1-to-1 correspondence with a set S of terminal taxa.
Removing an internal node v from a phylogeny yields
three subtrees, ti(T , v) for i = 1, 2, 3. The tree ti(T , v)
joined with its edge to v is the child subtree ci(T , v).
A quartet is a phylogeny of four taxa. A quartet query

q(a, b, c, d), returns one of three possible quartet topolo-
gies: ab|cd, ac|bd and ad|bc: in ab|cd, if we remove the
internal edge, we disconnect {a, b} from {c, d}. In our
work, we assume a quartet query can be done in O(1)
time; we discuss how to perform such queries in Section
“Quartets”.
A node query N(T , v, x) for internal node v of phylogeny

T and new taxon x is a quartet query q(x, a1, a2, a3), where
ai is a leaf of T in ti(T , v). Such a query identifies the
ci(T , v) where taxon x belongs, if the returned quartet is
correct.

Summary of our previous work
Our algorithm incrementally adds each taxon to the grow-
ing tree, using quartet queries to direct the taxon to
smaller and smaller parts of the tree. By using a struc-
ture that is balanced (with high probability), we ensure
that each search requires logarithmic time, giving the
asymptotically optimal runtime bound.
We direct the queries using a rooted ternary search tree

structure (Figure 1). Each internal node v in our search
tree corresponds to a pair: a contiguous region r(v) of the

Figure 1 A search tree. A phylogeny and a corresponding search
tree. Internal nodes of the search tree correspond to subphylogenies:
two, for r(B) and r(C), are indicated. Leaves of the search tree
correspond to edges of the phylogeny.

phylogeny, and a node s(v) within that region. Each leaf
v of the search tree corresponds to an edge r(v) in the
phylogeny. For an internal node v of the search tree, its
three children correspond to each of the three ti(r(v), s(v))
subtrees. If node queries are always correct, then ask-
ing the node query (T , s(v), x) will identify which of the
ti(r(v), s(v)) subtrees the taxon x belongs in, and a traver-
sal through the search tree to a leaf will identify which
edge of T is the one where the new taxon x belongs.
Quartet errors are common, which would lead to errors

in this simple algorithm. To allow for their existence, we
incorporate a random walk method: rather than requiring
that we only move down the search tree, we allow for the
possibility that we backtrack. Specifically, at node v in the
search tree, we ask up to two node queries, corresponding
to the boundaries of the current region of the phylogeny; if
either of them gives evidence that the new taxon does not
belong in r(v), we move to the parent of the current node
in the search tree. If they are consistent with r(v), we ask
a node query at (T , s(v), x), and that identifies which child
of v we go to in the search tree.
Assuming that there is a bias toward going in the correct

direction, and that query errors are independent, there is
a steady push toward winding up at the correct node in
the search tree: the random walk has positive drift, so it
moves at an expected constant speed toward the true goal.
If we are at a leaf, then we continue the algorithm, but each
query that pushes us to stay at the chosen leaf increments
a counter and each query that pushes us away from the
leaf decrements the counter. We only move up from the
leaf in the search tree when the counter has value zero.
This randomwalkmethod is inspired by an approach for

sorting a list where comparisons are correct with proba-
bility greater than 1/2, but err independently with known
probability [5]. Our adaptation of the approach increases
the number of queries required to insert each new taxon
by a constant factor (depending on error probability) over
simply descending the search tree. It guarantees that each

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 3 of 10
http://www.almob.org/content/7/1/32

new taxon is placed in the correct location with 1−o(1/n)

probability.
Further, the algorithm runs in O(n log n) runtime both

in expectation and with high probability, since if we use
a uniformly-chosen permutation, the search tree remains
balanced with high probability. For full details, we refer
the reader to our original paper [3].
One key technical detail is that we must ensure that the

algorithm never runs out of queries to ask: each new quar-
tet query must be distinct from all the previous ones. This
is achieved by first constructing a “guide tree” phylogeny
for a large enough subset of taxa. We then build a search
tree for the guide tree and insert the remaining taxa into
the search tree in random order. Additionally, we guaran-
tee that the guide tree is accurate; in our original paper
[3], we show this holds with probability 1− o(1) when the
tree is the maximum quartet consistency tree of a set of
log log n taxa.
In practice, larger guide trees are more likely to be accu-

rate, thus improving the accuracy of the whole algorithm.
For guide trees reconstructed usingNeighbour Joining, we
recommend using guide trees on cn1/3 taxa, for a small
enough value of c. This ensures that the time spent on
reconstructing the guide tree is negligible compared to the
running time of the main algorithm, as reconstructing the
guide tree takes linear time.

Quartets
There are several ways of inferring the subtopology of a
phylogeny corresponding to just four taxa, {W ,X,Y ,Z}.
Perhaps the most natural is to compute an estimate di,j
for the pairwise distance between all pairs from the
four taxa, and then use ordinary least-squares estimation
to compute the additive distance matrix closest to the
inferred distance matrix, and return the quartet corre-
sponding to the structure of that distance matrix. This is
equivalent to comparing dW ,X + dY ,Z , dW ,Y + dX,Z and
dW ,Z + dX,Y ; if the smallest of the three values is the
first, we infer topology WX|YZ, if the second is small-
est, we infer WY |XZ, and if the third is smallest, we infer
WZ|XY .
In practice, quartet topology estimation is notably chal-

lenging. If the middle edge of the true quartet is short and
the other four edges are long, uncertainty in estimating
the four pairwise distances that cross the middle edge may
dominate the actual length of the edge, making quartets
whose true topologies are hard to infer. In a balanced phy-
logeny where each edge is of constant length, a constant
fraction of all quartets will have this problem.
As the traversal of the search tree progresses, the region

of the tree that is under search shrinks, so quartets will
correspond to smaller total lengths, meaning that the frac-
tion of the total edge length of the quartet that is falling
on the middle edge will increase; this suggests that quartet

errors may be rarer at lower levels of the search tree, as we
discuss in the next section.
Other methods to infer quartets include the ordinal

quartet method [6], weighted least-squares, and using
maximum-likelihoodmethods. Our algorithm assumes all
of these methods operate inO(1) time on a quartet, as our
runtime does not depend on the phylogenetic source data,
whether it is biological sequences, an alignment of such
sequences, or microsatellite or other data with phyloge-
netic signal. Indeed, our algorithm works in any scenario
in which quartets can be successful with sufficiently high
probability.

Other fast phylogenetic algorithms
The tree that optimizes the Neighbour Joining objec-
tive is not known to be producible in o(n3) time in
worst case. However, heuristics for this problem have
been a subject of much research; Wheeler [7] gives an
exact Neighbour Joining implementation, using clever
data structures, which seems to require sub-cubic run-
time in typical instances, while other authors [8,9] have
given heuristic algorithms that operate in O(n2) time
and that typically run in O(n

√
n log n) time, but do not

guarantee to optimize the Neighbour Joining objective.
The UPGMA objective can be optimized in O(n2) run-
time [2]. Desper and Gascuel [10] give a heuristic for the
minimum-evolution objective that runs in O(n2 log n) for
most trees.
Erdös and co-authors have shown that the short quar-

tet method can solve the phylogenetic inference problem
in O(n2polylog n) time on most trees, on sufficiently long
sequences, and assuming standardMarkov models of evo-
lution [1]; Csűrös gives a practical algorithm that has sim-
ilar guarantees [11]. There is also a developing literature
on sequence length requirements for various phylogeny
algorithms, and on identifying parts of the tree that can be
reconstructed from a given alignment [12].
Sub-quadratic phylogeny methods are quite rare: King

et al. [13] give an O(n2 log log nlog n)-time algorithm that is not
widely used.When data are error free, our algorithm is not
the first O(n log n) algorithm, as Kannan et al. [14] have
given a rooted-triple algorithm with this runtime.
A more distressing lower bound, also in the same paper

of King et al., shows that any distance-based method
requires �(n2

log n) time to reconstruct correct trees where
a simple Markov model of evolution is assumed, and dis-
tances are inferred using standard techniques, assuming
sequences are quite short.

Quality measures
We present two different quality measures: Robinson-
Foulds quality and quartet quality. Given a ground-truth
topology for a set of taxa and a second topology on the

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 4 of 10
http://www.almob.org/content/7/1/32

same taxa, the Robinson-Foulds quality is the fraction
of the non-trivial splits (internal edges) of one topology
found in the other. The quartet quality (see, e.g., [15,16])
is the fraction of the

(n
4
)
quartets that have the same result

in both tree topologies. The Robinson-Foulds measure is
fragile: a single misplaced taxon can ruin all of the splits of
the tree. By contrast, the quartet distance is robust to indi-
vidual errors: even a randomly-placed taxon will probably
have the correct topology in one-third of its quartets, as
there are only three choices for the topology.

Extensions to improve performance
Our basic algorithm suffers from a number of issues that
greatly limit its practical performance. The accuracy of
quartet inference is often very low, particularly for quar-
tets asked at the top nodes of the search tree; when
running the basic algorithm on the COG840 data set [9],
we found that only 66% of quartets were inferred cor-
rectly, with only 50% of correct inferences at the root
of the search tree. In practice, quartet inference errors
are also not independent, which may cause the random
walk to “drift away” from the optimal placement of the
taxon either to an incorrect place or to drift in the higher
nodes of the search tree, leading to reduced coverage. In
this section, we discuss a number of improvements to the
algorithm to address these problems.

Quartet weights
The basic algorithm considers all quartets to be equally
reliable. In practice, some quartets are more likely to be
correct than others. Assigning equal weight to all quar-
tets can lead to serious errors due to many erroneous
quartets. Various quartet phylogeny algorithms estimate
the reliability of inferred quartet topologies based on
their likelihood scores [17-19] or distances between taxa
(e.g. [20]).
We assign quartet weights based on the inferred mid-

dle edge length normalized by the the sum of all the edge
lengths of the quartet. For a quartet with external edge
lengths a,b,c,d and an internal edge length e, this becomes
w = e/(a + b + c + d + e). The intuition behind this idea
is that if the inferred middle edge is long compared to the
distances between taxa, then the inferred quartet topology
is less likely to have arisen from errors in the distance esti-
mates. The edge lengths are inferred using ordinary least
squares, which was dictated by the speed of this approach.
We note that this weighing scheme is somewhat dif-

ferent than other commonly used schemes. Most quartet
algorithms use likelihood weights as opposed to distances.
Snir et al. [20] use the topological diameter of the quartet
in a preliminary tree constructed by Neighbor Joining.
To incorporate the reliability information into the algo-

rithm, we ask k quartet queries at each node query and
vote according to the weights. We have tested two voting

schemes. In the weighted-majority scheme, the weights of
each quartet pointing in the same direction are added and
the direction with the highest vote total is chosen. In the
winner-takes-all scheme, the direction is chosen accord-
ing to the quartet query with the highest weight from the k
used. We found that the weighted-majority voting scheme
results in better accuracy according to the quartet mea-
sure, while the winner-takes-all approach yields higher
accuracy according to the Robinson-Foulds measure (see
the experiments section).

Biased choice of quartets
Many authors have suggested that large distances between
taxa lower the accuracy of quartet inference [1,20]. While
our algorithm is forced to ask long quartets at the top of
the search tree, biasing the choice towards shorter quar-
tets at the lower nodes of the search tree might reduce the
number of unreliable quartets. When asking a node query
at node y of the search tree, we require that the represen-
tatives for each quartet query are contained in a subtree
r(y∗) associated with a node y∗ that is at most d levels
above y in the search tree. The value d is chosen for each
y so that the number of possible representatives in each
direction is at least 20. Note that this does not change
the behaviour of the algorithm in the upper parts of the
search tree, since the subtrees associated with the upper
nodes are typically much larger. This heuristic is used in
all experiments.

Multiple insertion rounds
Due to the ambiguity in inferred quartets, the random
walk will often terminate at an internal node in the search
tree, resulting in the taxon not being inserted into the phy-
logeny. After the algorithm has attempted to insert every
taxon in the search tree, we try reinserting the taxa that
did not make it to a leaf in the first round. We have two
such rounds of reinsertions.

Confidence threshold
Incorrectly inserting a taxon can prevent subsequent taxa
from being inserted in the correct place. To mitigate this,
we only add a new taxon to the phylogeny if it has spent
more than the � = 30 last steps of the random walk at the
current leaf.

Repeating the randomwalk
To improve our confidence in the placement of new taxa,
we ran the randomwalk two times for each inserted taxon.
The taxon was then inserted only if both walks terminated
at the same leaf node.

As-yet unsuccessful ideas
Several natural methods for improving our algorithm’s
performance have not yet been successful. We note these

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 5 of 10
http://www.almob.org/content/7/1/32

extensions here to document the challenging process of
improving a theoretical prototype into a useful method for
phylogenetic inference.
Increasing the number of quartet queries without

weighting them improved the fraction of taxa inserted,
but decreased the accuracy. This emphasizes the need for
weighing quartets.
We have tried various other methods of estimating the

reliability of quartets. Earlier work on short quartet meth-
ods [1,20] suggested using the diameter of the quartet for
estimating its reliability. Contrary to our expectations, this
approach did not provide satisfactory results. This may
be because the diameter of the inferred quartets varies
widely between different levels of the search tree. Quar-
tets inferred near the root of the search tree tend to have
large distances between taxa, whereas quartets inferred
in the deeper parts of the search tree are shorter since
they only span a small fraction of the overall tree. Using
least squares fit of the distances to the quartet topology to
weigh the quartets also did not seem to improve the accu-
racy of node queries. Using weighted least squares did not
improve the accuracy of quartet inferences.
We have tried to find a good starting point for the ran-

dom walk by using profile search. For each of the top
log n nodes of the search tree, we constructed a profile
of sequences in the subtree associated with that search
tree node. Before starting the random walk for the new
taxon, we aligned its sequence to each profile and started
the random walk from the subtree whose profile gave the
highest alignment score. This did not have a significant
effect on the results, perhaps because of the large diversity
of sequences within the top subtrees.

Experiments
We have evaluated our algorithm on several simulated
data sets. The simulated data sets are taken from Price
et al. [9] who used them to evaluate their heuristic pro-
gram FastTree, which has O(n1.5 log n) runtime on typical
instances. These data sets were generated by taking real
protein alignments and their maximum likelihood trees,
and then simulating evolution of sites along that phylo-
genetic tree, treating it as ground truth. The evolutionary
rates varied across sites.
In most experiments, the initial guide tree was created

using Neighbor Joining on a randomly chosen subset of
200 taxa. For protein sequences, our algorithm uses Score-
Dist [21] to estimate distances. FastTree uses a similar, but
distinct, distance measure [9]. For nucleotide sequences,
both algorithms use the standard log-corrected Jukes-
Cantor distance. For a fair comparison of accuracies and
running times, we only compare against the initial Neigh-
bor Joining phase of FastTree. FastTree then performs
nearest neighbour interchanges to improve the quality of
the resultant tree, which takes up much of its runtime;

we have not incorporated these into our algorithm, either,
so we compare against the initial phase of FastTree for
consistency of comparison.
In the first experiment, we assessed how various

improvements discussed in the previous section changed
the performance of the algorithm. We ran each version
of the algorithm 100 times on the COG840 data set. The
results are given in Table 1.
Overall, the improvements to the algorithm boosted the

RF accuracy from 46% to around 60%, and increased the
proportion of inserted taxa from 56% to 82-95%, depend-
ing on the settings. The biggest gains were achieved by
introducing quartet weights and a confidence thresh-
old. Multiple rounds of insertions increased the coverage
of the taxa set. Increasing the number of quartets and
running the random walk twice increased the accuracy,
but at the cost of increased running time. It should be
noted, however, that the increase in running time was not
directly proportional to the number of quartets per query:
one run of the algorithm for 5 quartets per query takes
around 11 seconds, compared to just under 20 seconds for
20 quartets per query. This is because the running time is
dominated by computing the distances, which we save and
reuse in the subsequent quartet queries.
In general, WTA voting tended to produce trees with

higher RF accuracy than weighted-majority voting. In

Table 1 The effect of heuristics on the performance of
the algorithm

method
% taxa RF

inserted accuracy

basic RW+NJ guide tree 56.3 ± 2.4 46.3 ± 4.6

basic RW+true guide tree
57.3 ± 2.1 49.4 ± 5.0

(not feasible in practice)

5 quartets per node query, UM 76.4 ± 2.0 41.0 ± 3.8

5 quartets, WM 85.6 ± 1.6 48.6 ± 3.7

5 quartets, WM, 2E 95.4 ± 1.0 45.5 ± 3.4

5 quartets, WM, CT, 2E 84.1 ± 1.8 57.4 ± 3.5

5 quartets, WM, re-running the RW, 2E 78.8 ± 2.4 59.5 ± 3.7

5 quartets, WTA, CT, 2E 80.2 ± 2.1 62.3 ± 2.9

20 quartets, WTA, CT, 2E 92.1 ± 1.4 60.8 ± 2.9

NJ n/a 62.6

Shown are results for the COG840 data set with 1250 taxa. We show our
algorithm’s performance in various settings, and compare it to Neighbor Joining.
We report accuracies using the Robinson-Foulds measure. Our algorithm places
approximately 80% − 90% of taxa with accuracy around 60%. We ran each
version of the algorithm 100 times. In all cases, the guide tree is on 200 taxa;
except in the second line of the table, this was generated with Neighbor Joining,
and had RF accuracy of 50% ± 3%. Three voting schemes were used in the
experiments: unweighted majority (UM), weighted majority (WM), and
winner-takes-all (WTA). In some experiments, we also added 2 additional rounds
of insertions (2E), and a confidence threshold for insertion (CT).

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 6 of 10
http://www.almob.org/content/7/1/32

contrast, weighted-majority voting resulted in higher
quartet accuracy, as we shall see in the next experiment.
We see that there is a trade-off between the proportion

of the inserted taxa and the RF accuracy. This is not sur-
prising since incorrectly inserting a hard-to-place taxon
into the phylogeny can cause many splits to be incorrect.
The accuracy of guide trees was considerably lower than

that of the NJ tree for the full data set. To investigate the
impact of errors in the guide tree on the accuracy of the
algorithm, we ran the algorithm starting from a guide tree
consistent with the true phylogeny. Contrary to our expec-
tations, errors in the guide tree have little impact on the
accuracy; substituting the NJ guide tree with the true one
improved the accuracy by 2 to 3 percent, depending on
the version of the algorithm.
In the second experiment, we evaluated the algorithm

on three unrelated data sets having 250, 1250, and 5000
taxa, respectively. For each data set, we ran the algorithm
in four different configurations, using two voting schemes
and varying the number of quartet queries per node query.
The size of the guide tree was 200 except for the 250 taxon
data set, where it was set to 100. The results are shown in
Table 2.
We see that the weighted-majority voting scheme tends

to produce trees with higher quartet accuracy, whereas
the winner-takes-all voting scheme yields higher RF accu-
racy. In general, we see that the two measures are very
different: an algorithm can have relatively good perfor-
mance according to one while being considerably worse in
the other, though the difference between voting schemes
tends to be more pronounced for RF accuracy. In most
cases, the accuracy of the random walk algorithm is lower
than the accuracy of Neighbor Joining.
In the next experiment, we measured the running time

of our algorithm on large data sets. For this experiment,

we took a large simulated nucleotide alignment based on
a real 16S alignment and compared the runtimes of the
initial phase of FastTree and our algorithm. We ran the
algorithms on the full alignment and on two smaller align-
ments created by randomly sampling 20000 and 40000
sequences from the large alignment. All running times
were measured on a standard desktop computer with an
AMD 7750 Dual Core 2712MHz processor and 4 GB
RAM. In all cases, our algorithm runs faster, with the
relative speedup increasing with the size of the data set;
Table 3 shows the running times. Table 4 shows the accu-
racies obtained in these runs. In contrast to the previous
experiment, our algorithm achieves higher accuracy than
FastTree.
On the data set with 20000 sequences, the QuickTree

implementation of Neighbour Joining [22] took over 360
minutes to complete and produced a tree almost identical
to the one produced by FastTree, with over 99% of splits
agreeing between the two trees. We were not able to run
Neighbour Joining on larger data sets due to QuickTree’s
memory consumption.
To investigate the differing relative performance of our

algorithm and FastTree on different data sets, we gen-
erated more data sets under varying conditions. When
designing this series of experiments, we wanted to test two
hypotheses: first, that our algorithm is more accurate than
FastTree when sequences of sufficient length are avail-
able; second, that our algorithm is more accurate when the
branch lengths are short. Both of these are consistent with
the differences between the COG data sets used in the
first experiment and the 16S data sets used in the second
experiment.
We simulated 10 trees on 20000 taxa from the pure-

birth process. We then multiplied the length of each
branch by a factor chosen uniformly at random from

Table 2 Comparison of different algorithms

data set

COG1011 COG840 COG1028

250 sequences 1250 sequences 5000 sequences

method % taxa RF QA % taxa RF QA % taxa RF QA

weighted majority, 5 quartets 88.5 66.2 72.8 84.1 57.4 85.8 74.4 51.4 59.5

WTA-vote, 5 quartets 86.0 69.4 70.8 80.2 62.3 85.4 70.1 57.0 59.6

weighted majority, 20 quartets 95.6 60.4 69.9 96.4 50.6 83.9 94.3 41.1 56.5

WTA-vote, 20 quartets 94.0 69.4 73.4 92.1 60.8 83.1 89.7 57.6 55.3

NJ 100 73.6 70.0 100 62.6 88.0 100 73.0 66.3

FastTree (NJ phase only) 100 69.7 85.9 100 61.0 86.6 100 73.6 66.4

weighted majority, 5 quartets, force all taxa 100 59.0 69.7 100 48.7 80.8 100 37.3 52.4

Performance of the randomwalk algorithm on synthetic alignments. The size of the guide tree was 200 except for the 250 taxon data set, where it was set to 100. The
average RF accuracy of the guide trees was 65,50, and 46% for the 250,1250, and 5000-taxon data sets, respectively. The average quartet accuracies for the guide trees
were 73,83 and 55%. When all taxa are forced into the randomwalk tree (see text), the RF accuracy decreases by 7 − 14%, depending on the data set. All randomwalk
runs use the confidence threshold heuristic and two additional rounds of insertions.

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 7 of 10
http://www.almob.org/content/7/1/32

Table 3 Running times on large data sets

of sequences

20,000 40,000 78,132

weighted majority, 5 quartets 6m 41s 15m 52s 34m

FastTree (NJ phase only) 13m 52s 41m 15s 116m

Running times of the randomwalk algorithm compared to FastTree. We used
the huge.1 alignment from the original FastTree paper [9]. Smaller data sets
were created by choosing a random subset of sequences from the large
alignment. Our algorithm runs 2.1 to 3.4 times faster than FastTree on these very
large data sets.

interval [0.5,2] to deviate the trees from ultrametricity.
This methodology follows the previous work of Liu et al.
[23]. We then scaled the branch lengths by several con-
stant factors. For each choice of tree and scaling factor,
we generated nucleotide alignments whose length var-
ied between 250 and 4000 positions. The sequences were
simulated from the Jukes-Cantor model, with variable
evolutionary rates across sites drawn from the exponential
distribution. No indels were introduced in the simulation.
We used rose [24] to generate the sequences and r8s [25]
to generate the trees.
We see that the accuracy of both algorithms improves

as more sequence data is available. However, the accu-
racy of the random walk algorithm improves faster than
that of FastTree as sequences get longer. For trees with
shorter branches, the advantage of the random walk algo-
rithm is visible for shorter sequence lengths. Even for
long sequences, the advantage of the random walk algo-
rithm over FastTree was not as large as on the simulated
16S data set. Figure 2 shows the performance of the

Table 4 Accuracies on large data sets

of sequences

20,000 40,000 78,132

weighted majority, 5 quar-
tets

80.8 ±1.1 78.9 ±1.4 80.8 ±1.1

weighted majority, 5 quar-
tets, all taxa forced

79.9 ±1.1 77.8 ±1.4 75.3 ±1.6

weighted majority, 5 quar-
tets+local search

96.1 94.4 92.8

weighted majority, 5 quar-
tets, all taxa forced+local
search

95.8 93.8 92.0

FastTree (NJ phase only) 62.9 58.1 52.2

FastTree + local search 95.8 93.8 92.0

Robinson-Foulds accuracies of FastTree and the randomwalk algorithm for the
huge.1 data set [9]. The figures for the randomwalk algorithm represent the
average accuracy over 10 runs of the algorithm, together with empirical
standard deviations. We used a confidence threshold, with two additional
rounds of insertions. The average taxon coverage for weighted majority was
98.6, 98.6, and 98.0 per cent for the 20,000, 40,000, and 78,132 taxa alignments,
respectively. After applying local search, the variance between the runs of the
randomwalk algorithm is negligible.

two algorithms in various conditions. The average taxon
coverage for random walk trees was 97.3%, with only
three experimental settings yielding coverage below 95%.
Unsurprisingly, coverage was lower for short sequences
and long branches.

The impact of local search
FastTree uses local search to improve the accuracy of the
Neighbour Joining tree. The improvement can be quite
dramatic: for the huge.1.20000 alignment, local search
improved the accuracy from 62% to 96%.
We ran FastTree’s local search procedure starting from

trees obtained from our algorithm and the Neighbour
Joining phase of FastTree for the tree sets used in the
previous experiment. We inserted the remaining taxa into
the random walk trees by running the random walk fol-
lowed by a simple descent down the search tree. We
then ran local search on the resultant trees. The results
are shown in Figure 2. Despite huge differences in the
accuracy of starting trees for some data sets, the trees
improved by local search have very similar accuracies.
This suggests that our algorithm can be combined with
the local search phase of FastTree to produce trees that are
very similar to FastTree, in less runtime. We also obtained
similar results for the huge.1 data set (see Table 4).
The quality of the starting tree did not have much

impact on the running time of the local search procedure.
For all datasets we investigated, the differences between
the two runs of local search were less than 15% of the over-
all running time. Table 5 shows the running times for the
huge.1 data set.
Trees produced by running local search on incomplete

random walk trees (without forcing) had very similar
accuracies compared to those obtained from the full taxa
set; for all data sets, the difference was at most 3%. In most
cases, the differences in accuracy were less than 1%. Before
local search, the loss of accuracy was more substantial,
with the RF accuracy dropping by up to 10% when the
remaining taxa were inserted into the random walk tree.
In most cases, this negative effect is much more minor,
averaging less than 2%.

Aggregating information frommany trees
Our random walk algorithm is not limited to quartets
inferred from aligned sequences. It can also be used with
other types of quartet queries, e.g. evaluating how many
times a given quartet topology appears in a collection of
phylogenetic trees. We investigated how our algorithm
can be used to aggregate conflicting information from
many phylogenetic analyses to create a single, more accu-
rate tree. Such algorithms are known as supertree methods
or consensus methods.
In the first experiment, we ran the random walk algo-

rithm five times on the COG840 data set, generating five

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 8 of 10
http://www.almob.org/content/7/1/32

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

sequence length

R
F

 a
cc

ur
ac

y

scale=25

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1
scale=100

sequence length

R
F

 a
cc

ur
ac

y

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1
scale=50

sequence length

R
F

 a
cc

ur
ac

y

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1
scale=200

sequence length

R
F

 a
cc

ur
ac

y

random walk

FastTree

RW+local search

FT+local search

Figure 2 Comparison of the randomwalk algorithm and FastTree. The performance of the random walk algorithm and FastTree as a function
of the length of the sequences. The four graphs represent the performance on 10 tree topologies with branch lengths scaled by constant factors
25,50,100, and 200. In all cases, the random walk algorithm compares increasingly favourably with FastTree as the sequence length increases. After
applying local search, the differences between the average accuracies of the two methods are less than 1% for all the settings except the shortest
sequences in the data set scaled by 200, where trees obtained from FastTree are 3.8% more accurate. The average taxon coverage for random walk
trees was 97.3%, with only three experimental settings yielding coverage below 95%. Missing taxa were inserted into random walk trees before
applying local search.

distinct trees. We then ran the algorithm for the sixth
time, this time answering quartet queries based on the
most common quartet topology found in the five trees
constructed in the previous phase. The quartets were
weighted by the square root of the proportion of the input
trees that contained the majority quartet.
The results are shown in Table 6. Somewhat surpris-

ingly, aggregating several inferred trees did not improve
the accuracy, but the coverage was increased from 83%
to 94%. The quartet accuracy remained roughly the same,
while the Robinson-Foulds accuracy dropped. The quar-
tet accuracy remained the same when the remaining taxa

were forced into the tree by running the random walk
and inserting the taxon at the first leaf that was reached.
However, the Robinson-Foulds accuracy dropped further
as a result of inserting those remaining taxa.
One problem with using our algorithm for amalgamat-

ing trees on different taxa sets is that many quartets
needed by our algorithm are not contained in all the input
trees. For example, if all the input trees have coverage of
83%, the probability that an input tree contains a random
quartet is roughly 0.834 ≈ 0.5, meaning that most quar-
tets will be decided based on just 2 or 3 votes, and some
of them might not appear in any of the input trees, which

Table 5 Running times on large data sets

of sequences

20,000 40,000 78,132

weighted majority, 5 quartets+local search 20m 40s (27m 21s) 41m 33s (57m 25s) 79m (113m)

FastTree + local search 21m 27s (35m 19s) 42m 29s (83m 44s) 80m (196m)

Running times of the local search procedure of FastTree applied to trees produced by our algorithm and the Neighbour Joining phase of FastTree on the huge.1 data
set. Total runtimes, including the time required to produce the initial tree, are shown in brackets.

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 9 of 10
http://www.almob.org/content/7/1/32

Table 6 Aggregatingmultiple trees

% taxa R-F Quartet

inserted Accuracy Accuracy

5 input trees (average) 83 62 85

output tree 94 48 85

output tree with forcing 100 39 83

The performance of the randomwalk algorithm as a supertree method. We
generated 5 input trees by running the randomwalk five times independently
on the COG840 alignment. We then ran the randomwalk algorithm with quartet
queries evaluated by taking the induced quartet in each tree, and choosing the
most common one. The guide tree was chosen as the subtree induced by 200
randomly chosen taxa on one of the 5 input trees.

means that another quartet query has to be asked. This
problemwill be more challenging for datasets where input
trees have even lower coverage.
In the second experiment, we generated 100 bootstrap

samples from the COG840 alignment and ran Neighbour
Joining 100 times. We then ran the random walk algo-
rithm with the majority vote quartet oracle, as in the
previous experiment. The resulting tree contained over
98% of the taxa and had quartet accuracy of 94%, com-
pared to the average accuracy of 88% for the input trees.
The Robinson Foulds acccuracy dropped from 62% to
50%.
These experiments show that our random walk algo-

rithm may be potentially useful in aggregating informa-
tion frommultiple trees. However, the trees obtained from
the algorithm tend to sacrifice Robinson-Foulds accuracy
to increase quartet accuracy or coverage, which may be
considered a drawback of the method. If the input trees
have low coverage, many quartets asked by the algorithm
do not appear in any of the trees, which may harm speed
and accuracy.We leave the solution to these two problems
for future work.

Conclusions
We have presented our work in progress to move our
extremely fast quartet phylogeny algorithm from being
a theoretical result to a practical algorithm for inferring
trees. A variety of sensible heuristics, including weighting
quartets by our confidence in them, using multiple quar-
tet queries per insertion, and using multiple rounds of
insertions, can increase both coverage and accuracy sub-
stantially over our original implementation. If we force all
taxa into the tree and use local search, accuracy is com-
parable to existing programs. At present, our algorithm is
close to being competitive with Neighbour Joining, while
being much faster. For very large data sets, it may be
suggested as one of few heuristics for the task.
There is still much future work: in particular, we are

currently limited in part due to bad quartet inferences.
If there were a way to bias our quartet choice toward

high-quality quartets, this could substantially improve our
quality. Also, it would be helpful if, after each round of
insertions of taxa, we could remove taxa that are likely in a
poor placement, and re-insert them. Finally, we are inves-
tigating a profiling technique, as described in the improve-
ments section, to pre-identify a good starting search node
for each new taxon, instead of the search tree root, where
we predict errors are more common.
It remains to be seen whether a very fast quartet-based

phylogeny method of our sort can in fact be competitive
with the best algorithms. However, over the years, a num-
ber of othermethods have grown up trading off speedwith
accuracy. We see evidence that that speed can be pushed
to the theoretical limit, and that good trees can result from
such procedures.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JT and DGB jointly conceived the approach. JT designed and implemented
most of the algorithms and performed most of the experiments. YH
implemented some of the algorithms and performed some of the
experiments. DGB directed the project. All authors wrote parts of the
manuscript. All authors read and approved the manuscript.

Acknowledgements
Funding for this research came from the Natural Sciences and Engineering
Research Council of Canada, through a Discovery Grant to DGB and through
an Undergraduate Student Research Assistant award to YH; from the Province
of Ontario through an Early Researcher Award to DGB; and from a Cheriton
Scholarship to JT.

Received: 1 February 2012 Accepted: 4 November 2012
Published: 26 November 2012

References
1. Erdös PL, Steel MA, Székely LA, Warnow T: A Few Logs Suffice to Build

(almost) All Trees: Part II. Theor. Comput. Sci 1999, 221(1-2):77–118.
2. Gronau I, Moran S: Optimal implementations of UPGMA and other

common clustering algorithms. Inf. Process. Lett 2007, 104(6):205–210.
3. Brown DG, Truszkowski J: Fast error-tolerant quartet phylogeny

algorithms. In Proceedings of CPM 2011: Palermo, Italy; LNCS
6661:147–161.

4. Brown DG, Truszkowski J: Towards a practicalO(n log n) phylogeny
algorithm . In Proceedings of WABI 2011. Saarbrücken, Germany; LNCS
6833:14–25.

5. Karp RM, Kleinberg R: Noisy binary search and its applications. In
Proceedings of SODA 2007. USA: New Orleans, Louisiana:881–890.

6. Kearney PE: The ordinal quartet method. In Proceedings of RECOMB
1998. New York, New York, USA :125–134.

7. Wheeler TJ: Large-Scale Neighbor-Joining with NINJA. In Proceedings
of WABI 2009. Philadelphia, Pennsylvania, USA; LNCS 5724:375–389.

8. Elias I, Lagergren J: Fast Neighbor Joining. In Proceedings of ICALP 2005.
Lisbon, Portugal; LNCS 3580:1263–1274.

9. Price MN, Dehal PS, Arkin AP: FastTree: Computing Large Minimum
Evolution Trees with Profiles instead of a Distance Matrix.Mol Biol
Evol 2009, 26(7):1641–1650.

10. Desper R, Gascuel O: Fast and Accurate Phylogeny Reconstruction
Algorithms Based on the Minimum-Evolution Principle. J Comp Biol
2002, 9(5):687–706.

11. Csűrös M: Fast Recovery of Evolutionary Trees with Thousands of
Nodes. J Comp Biol 2002, 9(2):277–297.

12. Daskalakis C, Mossel E, Roch S: Phylogenies without Branch Bounds:
Contracting the Short, Pruning the Deep. In Proceedings of RECOMB
2009. Budapest, Hungary; LNCS 5817:451–465.

Truszkowski et al. Algorithms for Molecular Biology 2012, 7:32 Page 10 of 10
http://www.almob.org/content/7/1/32

13. King V, Zhang L, Zhou Y: On the complexity of distance-based
evolutionary tree reconstruction. In Proceedings of SODA 2003.
Baltimore, Maryland, USA:444–453.

14. Kannan SK, Lawler EL, Warnow TJ: Determining the Evolutionary Tree
Using Experiments. J Algorithms 1996, 21:26–50.

15. Bryant D, Tsang J, Kearney PE, Li M: Computing the quartet distance
between evolutionary trees. In Proceedings of SODA 2000. San Francisco,
California, USA:285–286.

16. Brodal GS, Fagerberg R, Pedersen CNS: Computing the Quartet
Distance between Evolutionary Trees in Time O(n log n). Algorithmica
2003, 38(2):377–395.

17. Strimmer K, von Haeseler, A: Quartet puzzling: a quartet
maximum-likelihoodmethod for reconstructing tree topologies.
Mol Biol Evol 1996, 13(7):964–969.

18. Strimmer K, Goldman N, von Haeseler A: Bayesian Probabilities and
Quartet Puzzling.Mol Biol Evol 1996, 14(2):210–211.

19. Ranwez V, Gascuel O: Quartet-Based Phylogenetic Inference:
Improvements and Limits.Mol Biol Evol 2001, 18(6):1103–1116.

20. Snir S, Warnow T, Rao S: Short Quartet Puzzling: A New Quartet-Based
Phylogeny Reconstruction Algorithm. J Comp Biol 2008, 15:91–103.

21. Sonnhammer ELL, Hollich V: Scoredist: A simple and robust protein
sequence distance estimator. BMC Bioinf 2005, 6:108.

22. Howe KL, Bateman A, Durbin R: QuickTree: building huge Neighbour
Joining trees of protein sequences. Bioinformatics 2002,
18(11):1546–1547.

23. Liu K, Raghavan S, Nelesen S, Linder C, Warnow T: Rapid and accurate
large-scale coestimation of sequence alignments and phylogenetic
trees. Science 2009, 324(5934):1561–1564.

24. Stoye J, Evers D, Meyer F: Rose: generating sequence families.
Bioinformatics 1998, 14(2):157–163.

25. Sanderson MJ: r8s: inferring absolute rates of molecular evolution,
divergence times in the absence of a molecular clock. Bioinformatics
2003, 19(2):301-302.

doi:10.1186/1748-7188-7-32
Cite this article as: Truszkowski et al.: Towards a practical O(n log n)

phylogeny algorithm. Algorithms for Molecular Biology 2012 7:32.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Keywords

	Background
	Background and Related work
	Definitions
	Summary of our previous work
	Quartets
	Other fast phylogenetic algorithms
	Quality measures

	Extensions to improve performance
	Quartet weights
	Biased choice of quartets
	Multiple insertion rounds
	Confidence threshold
	Repeating the random walk

	As-yet unsuccessful ideas
	Experiments
	The impact of local search

	Aggregating information from many trees
	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

