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Abstract

Background: The selection of an evolutionarymodel to best fit givenmolecular data is usually a heuristic choice. In his
seminal book, J. Felsenstein suggested that certain linear equations satisfied by the expected probabilities of patterns
observed at the leaves of a phylogenetic tree could be used for model selection. It remained an open question,
however, whether these equations were sufficient to fully characterize the evolutionary model under consideration.

Results: Here we prove that, for most equivariant models of evolution, the space of distributions satisfying these
linear equations coincides with the space of distributions arising from mixtures of trees. In other words, we prove that
the evolution of an observed multiple sequence alignment can be modeled by a mixture of phylogenetic trees under
an equivariant evolutionary model if and only if the distribution of patterns at its columns satisfies the linear equations
mentioned above. Moreover, we provide a set of linearly independent equations defining this space of phylogenetic
mixtures for each equivariant model and for any number of taxa. Lastly, we use these results to perform a study of
identifiability of phylogenetic mixtures.

Conclusions: The space of phylogenetic mixtures under equivariant models is a linear space that fully characterizes
the evolutionary model. We provide an explicit algorithm to obtain the equations defining these spaces for a number
of models and taxa. Its implementation has proved to be a powerful tool for model selection.
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Background
The principal goal of phylogenetics is to reconstruct the
ancestral relationships among organisms. Most popular
phylogenetic reconstruction methods are based on math-
ematical models describing the molecular evolution of
DNA. In spite of this, there exists no unified framework
for model selection and the results are highly dependent
on the models and methods used in the analysis (cf. [1]).
In this paper we assume the Darwinian model of evolu-

tion proceeding along phylogenetic trees and address the
following question: how can the data evolving under a par-
ticular model be characterized? In other words, we look
for invariants of the DNA patterns which have evolved fol-
lowing a tree (or a mixture of trees, as we will see below)
under a particularmodel. The answer to this question pro-
vided in this paper leads to a complete characterization
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of the evolutionary model and to a novel model selection
tool, which is valid for any mixture of trees.
In what follows, we briefly explain the motivation for

this work. It has been shown that if the evolution along a
phylogenetic tree is described by a particular model, the
expected probabilities of nucleotide patterns at the leaves
of the tree satisfy certain equalities (see e.g. [2], p.375).
Several authors (e.g. [2-4]) pointed out that these equal-
ities could potentially be used to test the fitness of the
model of base change. The full set of equations required
for viable model selection, however, was unknown. The
objective of this work is to fill in this gap and to go a step
further into practical aplication by providing an algorithm
to compute the required invariants for model selection.
In this work we consider a group of equivariant mod-

els ([5,6]). These models are Markov processes on trees,
whose transition matrices satisfy certain symmetries: the
Jukes-Cantor model, the Kimura 2 and 3 parameter mod-
els, the strand symmetric model, and the general Markov
model. Our first important result, Theorem 17, states that
if evolution occurs according to trees (or even mixtures
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of trees) under these equivariant models, then the model
of evolution is completely determined by the linear space
defined by the aforementioned equalities. By exhaustively
studying the group of symmetries of these models, we also
give a straightforward combinatorial way of determining
the equations of this linear space (see Theorem 22). The
implementation of the algorithm producing the equations
is available as a package SPIn ([7], http://genome.crg.es/
cgi-bin/phylo mod sel/AlgModelSelection.pl.), which has
proved to be a successful tool in evolutionary model
selection.
Our main technique consists in proving that the linear

space above coincides with the space DM of phyloge-
netic mixtures evolving under the model M, i.e. the set
of points that are linear combinations of points lying in
the phylogenetic varietiesCVM

T (see Preliminaries section
for specific definitions). In biological words and in the
stochastic context, this is the set of vectors of expected
pattern frequencies for mixtures of trees evolving under
the model M (not necessarily the same tree topology
in the mixture, and not necessarily the same transition
matrices when the tree topologies coincide). In phylo-
genetics, the so-called i.i.d. hypothesis (independent and
identically distributed) about the sites of an alignment is
prevalent in the most simple models. When the assump-
tion “identically distributed” is replaced it by “distributed
according to the same evolutionary model”, one obtains a
phylogenetic mixture.
Phylogenetic mixtures are useful in modeling heteroge-

neous evolutionary processes, e.g. data comprising mul-
tiple genes, selected codon positions, or rate variation
across sites (e.g. [8]). Among a plethora of applications,
they are used in orthology predictions, gene and genome
annotations, species tree reconstructions, and drug target
identifications.
In addition to the main result, we determine the dimen-

sion of these linear spaces and use it to give an upper
bound, h0(n), on the number of mixtures that should be
used in phylogenetic reconstruction on n taxa. This relates
to the so-called identifiability problem in phylogenetic
mixtures, which can be posed as determining the condi-
tions that guarantee that the model parameters (discrete
parameters in the form of tree topologies and the contin-
uous parameters of the root and model distributions) can
be recovered from the data. Identifiability is crucial for
consistency of the maximum likelihood approaches and,
though extensively studied in the phylogenetic context,
few results are known (see for instance [9-13]).
In brief, in Theorem 30 we prove that either the tree

topologies or the continuous parameters are not generi-
cally identifiable for mixtures on more than h0(n) trees
under equivariant models. Here h0(n) is the quotient
of the dimension of the linear space DM (computed in
Proposition 20) by the number of free parameters of M

on a trivalent tree plus one. For example, for four taxa and
the Jukes-Cantor model (resp. the Kimura 3-parameter
model) this result proves that mixtures on three (resp.
four) or more taxa are not identifiable (i.e. either the dis-
crete or the continuous parameters cannot be fully identi-
fied). A detailed discussion on this subject is provided in
the last section.
The main tools used in this work are algebraic geome-

try and group theory. The reader is referred to [14,15] for
general references on these topics.

Main text
Preliminaries
Phylogenetic trees and Markov models of evolution have
been widely used in the literature. In what follows we fix
the notation needed to deal with them in our setting.
Let n be a positive integer and denote by [ n] the set

{1, 2, . . . , n}. A phylogenetic tree T on the set of taxa [ n]
is a tree (i.e. a connected graph with no loops), whose n
leaves are bijectively labeled by [ n]. Its vertices represent
species or other biological entities and its edges represent
evolutionary processes between the vertices.
We allow internal vertices of any degree and if all the

internal vertices are of degree 3 we say that the tree is
trivalent. We will denote the set of vertices of T by N(T),
the set of edges by E(T), and the set of interior nodes by
Int(T). A rooted tree is a tree together with a distinguished
node r called the root. The root induces an orientation on
the edges of T, whereby the root represents the common
ancestor to all the species represented in the tree. If e is
an edge of a rooted tree T, we write pa(e) and ch(e) for
its parent vertex (origin) and its child vertex (end), respec-
tively. Two unrooted phylogenetic trees on the set of taxa
[ n] are said to have the same tree topology if their labeled
graphs have the same topology.
We fix a positive integer k and an ordered set B =

{b1, b2, . . . , bk}. For example, for most applications we take
B = {A,C,G,T} to be the set of nucleotides in a DNA
sequence. We may think of B as the set of states of a
discrete random variable. We call W the complex vector
spaceW = 〈B〉C spanned by B, so that B is a natural basis
ofW. For algebraic convenience, we usually work over the
complex field and restrict to the stochastic setting when
necessary. Vectors in W are thought of as probability dis-
tributions on the set of states B if their coordinates are
non-negative and sum to one. In this setting the vector∑

cibi means that observation bi occurs with probability
ci. From now on, we will identify vectors in W with their
coordinates in the basis B written as a column vector, e.g.
we identify

∑
k bk with the vector 1 = (1, 1, . . . , 1)t ∈ W .

In order tomodel molecular evolution on a phylogenetic
tree T, we consider a Markov process specified by a root
distribution, π ∈ W , and a collection of transition matri-
ces, A = (Ae)e∈E(T), where each Ae is a k × k-matrix in

http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl.
http://genome.crg.es/cgi-bin/phylo_mod_sel/AlgModelSelection.pl.
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End(W ). The matrices Ae represent the conditional prob-
abilities of substitution between the states in B from the
parent node pa(e) to the child node ch(e) of e. We adopt
the convention that the matrices Ae act on W from the
right, i.e. a vector ωt in pa(e) maps to ωtAe in ch(e).
Distinct forms of the transition matrices give rise to dif-

ferent evolutionary models. Using the terminology intro-
duced above, we proceed to the definition of evolutionary
models used throughout this work.

Definition 1. An (algebraic) evolutionary model M is
specified by giving a vector subspace W0 ⊂ W such that
1tπ �= 0 for some π inW0, together with amultiplicatively
closed vector subspace Mod (for model) of Mk(C) con-
taining the identity matrix. We will usually denote such
a model by M = (W0,Mod). We define the stochastic
evolutionary model sM = (sW0, sMod) associated to M
by taking sW0 = {π ∈ W0 : 1tπ = 1} and sMod =
{A ∈ Mod : A1 = 1}. The term “stochastic” refers to
the fact that, by restricting to the points in the spaces
with non-negative real entries, we obtain distributions and
Markov matrices. A phylogenetic tree T together with the
parameters π and A = (Ae)e∈E(T) is said to evolve under
the algebraic evolutionary model M if π ∈ W0, and all
matrices Ae lie inMod.

Remark 2. Note that sW0 and sMod are not vector
spaces. The condition 1tπ �= 0 in the above defini-
tion means that the sum of the coordinates of π is not
zero. Since vectors in sW0 with non-negative coordinates
represent the probability distributions for the set of obser-
vations B, this condition implies no restriction from a
biological point of view. Moreover, it ensures that W0 ∩
{∑x∈B πx = 1} has dimension equal to dim(W0) − 1.
In particular, the simplex of stochastic vectors in W0 will
form a semialgebraic set of 〈B〉R of dimension equal to
dim(W0) − 1 (as expected).

Remark 3. The subspace Mod of substitution matrices
is usually required to be multiplicatively closed (as in the
definition above) so that when two evolutionary processes
are concatenated, the final process is of the same kind.
The importance of this requirement is the starting point
of [16], where a different approach to the definition of
“evolutionary mode” is provided.

Our definition of evolutionary models includes most of
the well-known evolutionary models, namely those given
in [17] and the equivariant models (see [5,6]).

Example 4. LetG be a permutation group of B, that is, a
group whose elements are permutations of the set B, G ≤
Sk . Given g ∈ G, write Pg for the k×k-permutationmatrix
corresponding to g: (Pg)i,j = 1 if g(j) = i and 0 otherwise.

The G-equivariant evolutionary model MG is defined by
takingMod equal to

M(G) = {A ∈ Mk(C) | PgAP−1
g = A for all g ∈ G},

and W0 = {π ∈ W | Pgπ = π for allg ∈ G}. These sub-
sets are vector subspaces of Mk(C) and W, respectively.
Moreover, if A1,A2 ∈ M(G), then

PgA1A2P−1
g = (PgA1P−1

g )(PgA2P−1
g ) = A1A2,

and A1A2 ∈ M(G). Therefore, equivariant models pro-
vide a wide family of examples of algebraic evolutionary
models in the sense of Definition 1. For example, if B =
{A, ,̧G,T}, it can be seen that the algebraic versions of
the Jukes-Cantor model [18], the Kimura models with
2 or 3 parameters [19,20], the strand symmetric model
[21] or the general Markov model [22] are instances of
equivariant models:

• if G = S4, thenMG is the algebraic Jukes-Cantor
model JC69,

• if G = 〈(ACGT), (AG)〉, thenMG is the algebraic
Kimura 2-parameter model K80,

• if G = 〈(AC)(GT), (AG)(CT)〉, thenMG is the
algebraic Kimura 3-parameter model K81,

• if G = 〈(AT)(CG)〉, thenMG is known as the strand
symmetric model SSM, and

• if G = 〈e〉, thenMG is the general Markov model
GMM.

Given an evolutionarymodelM and a phylogenetic tree
T, we define the space of parameters as

ParM(T) = W0 ×
⎛
⎝ ∏

e∈E(T)

Mod

⎞
⎠ .

Similarly, we define the space of stochastic parameters
associated to T by

ParsM(T) = sW0 ×
⎛
⎝ ∏

e∈E(T)

sMod

⎞
⎠ .

Though artificial at first glance, the use of tensors in the
framework that includes the distributions on the set of
patterns in B at the leaves of a phylogenetic tree is a natu-
ral choice. Indeed, if px1x2...xn denotes the joint probability
of observing x1 at leaf 1, x2 at leaf 2, and so on, up to xn at
leaf n, then the vector p = (pb1...b1 , pb1b1...b2 , . . . , pbk ...bk )
provides a distribution on the set of patterns in B at the
leaves of T, and this can be regarded as the tensor having
these coordinates in the natural basis,

p =
∑

x1...xn∈B
px1...xnx1 ⊗ . . . ⊗ xn.

This motivates the following definition.
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Definition 5. Given a phylogenetic tree T on the set of
taxa [ n], an [ n]-tensor is any element of the tensor power

L := ⊗[n]W .

Given an algebraic evolutionary model M and a phy-
logenetic tree T with root r, every Markov process on
T (specified by a collection of parameters π and A =
(Ae)e∈E(T)) gives rise to a tensor in L in the following way:
we consider a parametrization

�M
T : ParM(T) −→ L (1)

defined by

�M
T (π ,A) =

∑
xi∈B

px1...xnx1 ⊗ · · · ⊗ xn,

where

px1...xn =
∑

xv∈B,v∈Int(T)

πxr

∏
e∈E(T)

Ae
xpa(e),xch(e) , (2)

xv denotes the state at the vertex v, pa(e) (resp. ch(e))
is the parent (resp. child) node of e, and πx,x ∈ B, are
the coordinates of π . When restricted to the stochas-
tic matrices and distributions in W0, this parametrization
corresponds to the hidden Markov process on the tree T
(the leaves correspond to the observed random variables
and the interior nodes to the hidden variables).
The parametrization (1) restricts to another polynomial

map φM
T : ParsM(T) −→ H , where H ⊂ L is the hyper-

plane defined by H = {
p ∈ L | ∑

x1,...,xn∈B px1...xn = 1
}
.

Because we work in the algebraic setting, the use of the
word “stochastic” in this paper is more general than usual,
as we only request entries summing to one.
From now on, we will refer to this restriction as the

stochastic parametrization φM
T . It is important to note

that when we consider the distributions in sW0 and the
Markov matrices in sMod, its image by φM

T lies in the

standard simplex inL (and thus inH). This in turn implies
that the whole image ImφM

T is contained in H.
We proceed to define the algebraic varieties associ-

ated to the parametrization maps defined above. Roughly
speaking, algebraic varieties are sets of solutions to sys-
tems of polynomial equations (e.g. [14]).

Definition 6. The stochastic phylogenetic variety VM
T

associated to a phylogenetic tree T is the smallest
algebraic variety containing ImφM

T = {
φM
T (πr ,A) :

(πr ,A) ∈ ParsM(T)} (in particular, VM
T ⊂ H).

Similarly, the phylogenetic variety CVM
T associated to

T is the smallest algebraic variety in L that contains
Im�M

T = {
�M

T (πr ,A) : (πr ,A) ∈ ParM(T)
}
.

Below we explain the reason for the notation of CVM
T ,

which was adopted from [23].
The reader may note that the position of the root r of

T played a role in the above parameterizations. It can
be shown, however, that under certain mild assumptions,
Im�M

T and ImφM
T are independent of the root position

in the following sense: if two phylogenetic trees have the
same topology as unrooted trees, then the smallest alge-
braic varieties containing the corresponding image sets
are the same. For example, any model M = (W0,Mod)

satisfying (i) π̃ t := π tA belongs to W0 for all π ∈ W0
and all A ∈ Mod, and (ii) D−1

π̃ AtDπ ∈ Mod whenever
D−1

π̃ exists (here Dω denotes the diagonal matrix with
the entries of ω on the diagonal and zeros elsewhere)
has this property (in this case, we say the model is root-
independent). It is not difficult to check that the equiv-
ariant models satisfy these two properties (e.g. adapting
the proof of [24] or [25]). For technical reasons, from now
on we consider only the evolutionary models satisfying (i)
and (ii). Indeed, in this case the notation CVM

T refers to
the fact that the phylogenetic variety is just the cone over
the stochastic phylogenetic variety (see Figure 1 and the
remark below).

Figure 1 On the left, the varietiesVM
T andCVM

T are shown; on the right, the phylogenetic tree described in the proof of Proposition 13
is represented.
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Remark 7. Let M be an evolutionary model satisfying
(i) and (ii) above. For p ∈ L, p = ∑

px1...xnx1 ⊗ . . . ⊗ xn,
define λ(p) := ∑

xi∈B px1...xn . Then

CVM
T = {

p ∈ L| p = λ(p)q , q ∈ VM
T

}
and VM

T = CVM
T ∩ H . This is well known for the general

Markov model [23] and can be easily generalized to any
model satisfying (i) and (ii).

The space of phylogenetic mixtures
In phylogenetics, the hypothesis that the sites of an align-
ment are independent and identically distributed is often
used. When the assumption “identically distributed” is
replaced by “distributed according to the same evolution-
ary model”, one obtains a phylogenetic mixture. Below, we
introduce phylogenetic mixtures from the algebraic point
of view (see also [26]).

Definition 8. Fix a set of taxa [ n] and an algebraic evo-
lutionary modelM. A phylogenetic mixture (on m-classes)
orm-mixture is any vector p ∈ L = ⊗[n]W of the form

p =
m∑
i=1

αipi,

where αi ∈ C and pi ∈ Im(�M
Ti

) for some tree topologies
Ti on the set of taxa [ n]. As �M

Ti
is a homogeneous map,

phylogenetic mixtures are represented by vectors of the
form

∑m
i=1 p̌i, where p̌i ∈ Im(�M

Ti
). We call DM ⊂ L

the space of all phylogenetic mixtures (on any number of
classes) under the algebraic evolutionary modelM.
As mentioned in the introduction, the tree topologies

contained in the mixture can be the same or different. An
example of a phylogenetic mixture is the data modeled by
the discrete Gamma-rates models (see e.g. [8]).
Restricting matrix rows to sum to one requires restrict-

ing the phylogenetic mixtures to the points of the form

q =
m∑
i=1

αiqi where qi ∈ Im(φM
Ti ) , and

∑
i

αi = 1.

We callDsM the space of stochastic phylogenetic mixtures.

Remark 9. The phylogenetic variety of a trivalent tree
topology contains all phylogenetic varieties of the non-
trivalent tree topologies obtained by contracting any of
its interior edges. Indeed, the latter are a particular case
of the former when the matrices associated to the con-
tracted edges are equal to the identity matrix. It follows
that the space of phylogenetic mixtures on the trivalent
tree topologies coincides with the space of phylogenetic
mixtures on all possible topologies.

The following result was proven by Matsen, Mossel
and Steel in [26] for the two state random cluster model
but, as proved below, it can be easily generalized to any
evolutionary model.

Lemma 10. Given a set of taxa [ n] and an algebraic evo-
lutionary model M, the set of all phylogenetic mixtures
DM is a vector subspace of L. Similarly, DsM is a linear
variety and it equals DM ∩ H .

Proof. DM is a C-vector space and DsM is a linear vari-
ety by their definition. It follows that DM is an algebraic
variety that contains Im�M

T for any phylogenetic tree T
on the set of taxa [ n]. Therefore, it also contains CVM

T ,
and DM equals the set of points of the form p = ∑

pi,
where pi ∈ CVM

Ti
. Similarly, DsM is an algebraic variety

that contains ImφM
T , so it also contains VM

T for any phy-
logenetic tree T. It follows that DsM is formed by points
of type q = ∑

αiqi, where qi ∈ VM
Ti

and
∑

i αi = 1.
Now we check that DsM = DM ∩ H . Let q ∈ DsM, so

that q = ∑m
i=1 αiqi for some m, qi ∈ VM

Ti
, and

∑
αi = 1.

Clearly, q ∈ DM. Moreover, the sum of coordinates of
q, λ(q), satisfies λ(q) = ∑

i αiλ(qi) = ∑
i αi = 1. Thus,

q ∈ H . Conversely, let p = ∑m
i=1 pi with pi ∈ CVM

Ti
for certain tree topologies Ti, and assume that λ(p) = 1.
Apply Remark 7 to each pi to get pi = λ(pi)qi for some
qi ∈ VM

Ti
. Then

p =
∑
i
pi =

∑
i

λ(pi)qi

and 1 = λ(p) = ∑
i λ(pi)λ(qi) = ∑

i λ(pi) since each qi
lies on H. This proves that p ∈ DsM.

Remark 11. In the proof of the above lemma, we have
seen that DM and DsM can be alternatively described as
the spaces of mixtures obtained from the respective vari-
eties CVM

T and VM
T (i.e., not only from the images of the

parametrization maps).

The space of phylogenetic mixtures for equivariant
evolutionary models
This section provides a precise description of the space
DM for the equivariant models M listed in Example 4
(JC69, K80, K81, SSM, and GMM). First, we recall some
definitions and facts of group theory and linear represen-
tation theory. From now on, B = {A,C,G,T}, k = 4,
W = 〈B〉C, n is fixed and L = ⊗[n]W .

Background on representation theory
We introduce some tools in group representation theory
needed in the sequel. We refer the reader to [15] as a clas-
sical reference for these concepts. Although some of the
following results are valid for any permutation group, for
simplicity in the exposition we restrict to permutations of
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four elements (as our applications deal only with the case
B = {A,C,G,T}).
LetG ≤ S4 be a permutation group. The trivial element

in S4 will be denoted as e. We write ρG for the restric-
tion to G of the defining representation ρ : S4 → GL(W )

given by the permutations of the basis B ofW. This repre-
sentation induces a G-module structure on W by setting
g · x := ρ(g)(x) ∈ W . In fact, ρ induces a G-module
structure on any tensor power ⊗sW by setting

g · (x1 ⊗ . . . ⊗ xs) := g · x1 ⊗ . . . ⊗ g · xs, (3)

and extending by linearity. From now on, the space L =
⊗nW will be implicitly considered as a G-module with
this action. We call χ the character associated to the rep-
resentation ρG : G → GL(W ), i.e. χ(g) is the trace of
the corresponding permutation matrix or, in other words,
χ(g) equals the number of fixed elements in B by the per-
mutation g ∈ G. Then the character associated to the
induced representation G → GL(⊗nW ) is χn, the n-th
power of χ .
We write N1, . . . ,Nt for the irreducible representations

of G and ω1, . . . ,ωt for the corresponding irreducible
characters, where N1 and ω1 will denote the trivial rep-
resentation and trivial character, respectively. Maschke’s
Theorem applied to the action of G described in (3) states
that there is a decomposition of ⊗sW into its isotypic
components:

⊗sW = ⊕t
i=1(⊗sW )[ωi] , (4)

where each (⊗sW )[ωi] is isomorphic to a number of
copies of the irreducible representation Ni associated to
ωi, (⊗sW )[ωi]∼= Ni ⊗C

mi(s), for some non-negative inte-
germi(s) called themultiplicity of ⊗sW relative to ωi. The
isotypic component of L associated to the trivial repre-
sentation will be denoted by LG and it is composed of the
[ n]-tensors invariant under the action of G defined in (3).
If M is the equivariant evolutionary model associated to
G, LG will also be denoted as LM. It is easy to prove that
CVM

T ⊂ LG (see Lemma 4.3 of [5]).
We recall that the set 
G = {ωi}i=1,...,t of irreducible

characters of G forms an orthonormal basis of the space
of characters relative to the inner product defined by

〈f , h〉 := 1
|G|

∑
g∈G

f (g)h(g). (5)

We introduce the following notion.

Definition 12. An n-word over B is an ordered sequence
X = x1x2 . . .xn, where every letter is taken from the
alphabet B. The set of n-words is equivalent to the carte-
sian power Bn and will be denoted by B.

Words will be denoted in typewritter uppercase font
(like X) and their letters in lowercase (like x). Sometimes it

will be convenient to identify the [ n]-tensors of the form
x1 ⊗ . . . ⊗ xn with the n-words X = x1 . . .xn. Conse-
quently, we will identify B with the natural basis of L.
Given X ∈ B, we will denote by {X}G = {gX | g ∈ G}
theG-orbit of X. We associate aG-invariant tensor, τ {X}G,
to each orbit {X}G: τ {X}G := ∑

g∈G gX. It is straightfor-
ward to see that every G-invariant tensor can be written
as a linear combination of the tensors τ {X}G, X ∈ B.
On the other hand, the set of different τ {X}G’s is linearly
independent, since the corresponding G-orbits {X}G have
non-overlapping composition of the elements of B.

Mixtures for equivariantmodels
For each x ∈ B, we write SG(x) for the stabiliser of x
under the action ofG, that is, SG(x) = {g ∈ G : g · x = x}.

Proposition 13. Let G be a subgroup of S4 such that
SG(x0) = {e} for some x0 ∈ B. Then every tensor of type
τ {X}G, X ∈ B, lies in the image of �

MG
T for some tree

topology T. In particular, LG ⊂ DMG .

Proof. For any G-orbit {Y}G, Y ∈ B, write τ {Y}G = y1 ⊗
. . . ⊗ yn + ∑

g �=e g · y1 ⊗ . . . ⊗ g · yn. We will explicitly
associate a tree topology and parameters (π ,A) to it so
that the tensor τ {T}G is equal to �

MG
T . To this aim, we

denote by B(Y) the set of letters appearing in Y. Then for
every z ∈ B(Y), consider the set LYz = {i ∈[ n] : yi = z}, so
that ∪z∈B(Y)LYz =[ n].
We construct a tree T on the set of taxa [ n] in the fol-

lowing way. We join each taxa in LYz to a common node vz
by an edge. Then each vertex vz is joined to the root of the
tree (we call it r) by an edge that we denote as e(z) (see
Figure 1). Now, in the edges joining any vz with some leaf
in LYz, we consider the identity matrix, while the matrix in
e(z) is defined by taking

Ae(z)
i,j =

{
1 if (i, j) = (h · x0, h · z) for some h ∈ G,
0 otherwise.

Finally, if c is the cardinality of {x0}G, define the distribu-
tion at the root π = (πA,πC,πG,πT) by

πz =
{ 1

c if z ∈ {x0}G,
0 otherwise.

It is straightforward to check that these matrices and the
vector π are G-equivariant, so (π ,A) ∈ ParMG(T). Now,
from (2) and the definition of π , we can write

px1...xn =
∑
g∈G

{xz}z∈B(Y)⊂B

Px1...xn(g, {xz}z∈B(Y))

where

Px1...xn(g, {xz}z∈B(Y)) = πg·x0
∏

z∈B(Y )

⎛
⎝Ae(z)

g·x0,xz
∏
j∈LYxz

δxz,xj

⎞
⎠
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(here δa,b stands for the Kronecker delta, i.e. δa,a = 1,
δa,b = 0 if a �= b). Moreover, from the definition of the
matrix Ae(z), we have

Ae(z)
g·x0,xz =

{
1 if (g · x0,xz) = (h · x0, h · z) for some h ∈ G,
0 otherwise.

The hypothesis SG(x0) = {e} ensures that (g · x0,xz) =
(h · x0, h · z) if and only if g = h. From this, it becomes
clear that Px1...xn(g, {xz}z∈B(Y )) = 0 unless

1. xz = g · z, for z ∈ B, and
2. for each i ∈ LYz, xi is equal to xz = g · z,

in which case Px1...xn(g, {xz}z∈B(Y )) = πg·x0 = 1
c . It

follows that

px1...xn =
{
1 if x1 . . .xn ∈ {Y}G,
0 otherwise,

and �M
T (π ,A) = τ {Y}G. Moreover, as the set of τ {Y}G,

for Y ∈ B, generates the vector spaceLG, the second claim
follows.

Remark 14. The above result is not true if the hypoth-
esis SG(x0) = 〈e〉 is removed. For example, if G =
〈(ACGT), (AG)〉 (so that M = K80), then SG(A) =
SG(G) = {e, (CT)} and SG(C) = SG(T) = {e, (AG)}. In that
case, it can be shown that the G-orbit {ACGT}G is not in
Im�K80

T for any tree topology T with 4 leaves.

Since the above condition on the group holds for G =
S4, G = 〈(AT)(CG)〉, and G = 〈(AG), (ACGT)〉, we deduce
the following claim.

Corollary 15. IfG corresponds to any of the equivariant
models K81, SSM or GMM, we have LG ⊂ DMG .

In phylogenetics, an invariant of a phylogenetic tree T is
an equation satisfied by the expected distributions of pat-
terns at the leaves of T, irrespectively of the continuous
parameters of the model M. In the algebraic geometry
setting, these are the equations satisfied by all p ∈ CVM

T .
Invariants were introduced by Lake (see [27]) and Caven-
der and Felsenstein (see [28]). A phylogenetic invariant
of T is an invariant of T, which is not an invariant of
all other phylogenetic trees (under the same model M).
Equivalently, f is a phylogenetic invariant of CVM

T if it
is an invariant of CVM

T and there exists a tree topology
T ′ such that f is not an invariant of CVM

T ′ . In princi-
ple, phylogenetic invariants can be used for tree topology
reconstruction purposes.

Remark 16. (a) It can be seen that the condition of
trivial stabiliser for some element of B given in
Proposition 13 guarantees that all the irreducible
representations of G will be present in the

decomposition of W into its isotypic components.
Then, by using the results of [6], it follows that the
corresponding equivariant model will have no linear
phylogenetic invariants. This fact was already known
for the models in the above corollary: see [29] for the
GMM, [21] for the SSM and [30] for the K81. Here we
provided an alternative proof based on elementary
tools of group theory.

(b) The models JC69 and K80 are known to have linear
phylogenetic invariants, but these are the only linear
invariants which do not define hyperplanes
containing LG, as can be deduced from [3,30]. In
fact, for these two models, the claim of the corollary
is still true as stated in the following theorem.
Nevertheless, we have not been able to provide a
unified proof of this fact because of the different
properties of the corresponding groups. There is no
description of the space of linear invariants for other
equivariant models not listed in Example 4, so we
cannot claim that the result below still holds.

Theorem 17. IfMG is one of the equivariant evolution-
arymodelsJC69, K80, K81, SSM, or GMM, then the space of
phylogenetic mixturesDMG coincides with LG, andDsMG
equals LG ∩ H.

This theorem allows to identify the set of all phyloge-
netic mixtures DMG with LG, which is a vector subspace
of L whose linear equations are easy to describe. In other
words, LG is the smallest linear space containing the data
coming from any mixture of trees evolving under the
model MG. One can therefore use LG to select the most
suitable model for the given data. This has been studied
in [7].
Proof of Theorem 17. For equivariant models we have

thatCVMG
T ⊂ LG for any tree T. Hence, by Lemma 10 and

the definition ofDMG ,DMG is a vector subspace of LG.
From Corollary 15, we infer the equality LG = DMG for

the models K81, SSM and GMM. For the other two mod-
els, JC69 and K80, it remains to prove that there does not
exist any hyperplane 
 containingDMG and not contain-
ingLG. If such a hyperplane existed, then it would contain
all the points of CVMG

T for any tree topology T. It suffices
to prove that for these models there are no homogeneous
linear polynomials vanishing on all tree topologies, except
for the linear equations vanishing on LG. This has been
seen in Remark 16(b).
The equalityDsMG = LG∩H follows immediately from

Lemma 10 and the first assertion in the statement of this
theorem. �

Remark 18. We are indebted to one of the referees of
this paper for pointing out that the preceeding result, as
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well as the second part of Proposition 13, can also be
inferred from Proposition 4.9 of [5]: under the assumption
that the stabiliser of some state is trivial, Draisma and Kut-
tler show that the star tree is the smallest algebraic variety
containing the tensors τ {X}G, for pure tensors X (that is,
tensors of rank 1). It follows that the set of mixtures on the
star tree equals the space LG.

Remark 19. It is not difficult to check that for M =
K81, SSM or GMM, DM coincides with the space of mix-
tures on the star tree (see also [26], where the same result
is proven for a 2-state model). On the contrary, this is
not true for JC69 and K80 models because in this case
the star tree lies in a smaller linear space as a conse-
quence of the existence of phylogenetic linear equations
(see Remark 16(b)).

Equations for the spaceLG

Our goal here is to compute the dimension of LG for the
groups associated to the equivariant models listed in Def-
inition 4, and to list a set of independent linear equations
defining this space.

Proposition 20. Using the notations above,

(i) dimLSSM = 22n−1,
(ii) dimLK81 = 4n−1,
(iii) dimLK80 = 22n−3 + 2n−2, and
(iv) dimLJC69 = 22n−3+1

3 + 2n−2.

Proof. Let M be any equivariant model. By definition,
we know that LG is the isotypic component of ⊗nW asso-
ciated to the trivial representation (⊗nW )[ω1]. Since the
dimension of the trivial representation is one, it follows
that the dimension of LM is precisely the multiplicity
m1(n), i.e. the number of times the trivial representa-
tion appears in the decomposition of ⊗nW into isotypic
components. This multiplicitym1(n) equals (see (5))

〈χn,ω1〉 = 1
|G|

∑
g∈G

χn(g)ω1(g).

The proof ends by grouping the elements of G in the con-
jugacy classes of G for SSM, K81, K80, or JC69. Recall
that the conjugacy classes of a groupG are the disjoint sets

of the form C(g) = {h−1gh : h ∈ G}. If C1, . . . ,Cs are the
conjugacy classes for G, write C(G) = (|C1|, . . . , |Cs|) for
the s-tuple of their cardinalities, so that

∑s
i=1 |Ci| = |G|.

Recall that χn(g1) = χn(g2) whenever g1 and g2 lie in the
same conjugacy class, so we can represent χn by an s-tuple
χn
C(G) = (t1, . . . , ts), where ti = χn(g) for any g ∈ Ci. Thus,

we have m1(n) = 1
|G|

∑s
i=1 χn(gi)|Ci|, where gi is any ele-

ment in the conjugacy class Ci. The result for M = SSM,
K81, K80, or JC69 follows by applying the Table 1.

Our next goal is to provide a set of independent linear
equations for LG. Before stating the main result, let us
introduce some useful notation.

Notation 21. We consider the following subsets of B =
Bn:

B0 = {A . . .A,C . . .C,G . . .G,T . . .T},
BAC|GT = {A,C}n ∪ {G,T}n,
BAG|CT = {A,G}n ∪ {C,T}n,
BAT|CG = {A,T}n ∪ {C,G}n, and

B2 = BAC|GT ∪ BAG|CT ∪ BAT|CG.

The set B0 is composed of all n-words with only one letter
and it is contained inBAC|GT,BAG|CT, andBAT|CG. Similarly,
B2 is composed of all n-words with two letters at most.
It is straightforward to check that |BAC|GT| = |BAG|CT| =
|BAT|CG| = 2n+1 and |B2| = 3 · 2n+1 − 8.
We adopt multiplicative notation for n-words,

for instance, we write Cl for the word C . . .C
l

, and

(Al)(Gm)xl+m+1 . . .xn for A . . .A
l

G . . .G
m

xl+m+1 . . .xn,

where xl+m+1, . . . ,xn represent any letters.

The main result of this section is the following:

Theorem 22. A set of linearly independent equations
E
M defining LM for M = JC69, K80, K81, or SSM is

given by

E
SSM : equations pX = p(AT)(CG)X for all X ∈ B with

x1 ∈ {A,C};
E
K81 : the equations in E

SSM, and the equations
{pX = p(AC)(GT)X} for all X ∈ B with x1 = A;

Table 1 Details of the conjugacy classes of some permutation groups needed in the proof of Proposition 20

G ≤ S4 M Representatives of conj. classes C(G) χn
C(G)

〈(AT)(CG)〉 SSM {e, (AT)(CG)} (1, 1) (4n , 0)

〈(AC)(GT), (AG)(CT)〉 K81 {e, (AT)(CG), (AC)(GT), (AG)(CT)} (1, 1, 1, 1) (4n , 0, 0, 0)

〈(ACGT), (AG)〉 K80 {e, (AC)(GT), (AG)(CT), (ACGT), (AG)} (1, 2, 1, 2, 2) (4n , 0, 0, 0, 2n)

S4 JC69 {e, (AC)(GT), (ACGT), (AG), (ACG)} (1, 3, 6, 6, 8) (4n , 0, 0, 2n , 1)

For each permutation group in the column on the left, the corresponding equivariant model and conjugacy classes are described. For each conjugacy class, we give a
list of representatives, its cardinality and the value taken by the character χn on it.
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E
K80 : the equations in E

K81, plus the equations
{pX = p(AG)X} for all X ∈ B \ BAC|GT having x1 = A
and satisfying the following condition: if T appears in
X, then there is a C in a preceding position;

E
JC69 : the equations in E

K80, together with the equations
{pX = p(AT)X} for all X ∈ BAC|GT \ B0 of the form
(Al)(Cm)xl+m+1 . . .xn; plus the equations
{pX = p(AC)X} and {pX = p(AT)X} for all X ∈ B \ B2 of
the form (Al)(Cm)xl+m+1 . . .xn and satisfying the
condition: if T appears in X, then there is a G in a
preceding position.

The number of equations added in each case is 22n−1 for
SSM, 22n−2 for K81, 22n−3 − 2n−2 for K80, and 2n−1 − 1+
2( 22n−3+1

3 − 2n−2) for JC69.

Before proving this theorem, we explain how these sets
of equations were obtained. Notice that a system of linear
equations of LG is given by

{
pgX = pX | g ∈ G, X ∈ B

}
.

The role played by the G-orbits on B becomes apparent.
Indeed, the idea is to relate the equations to the orbits of a
subgroup of G. To this aim, let H be a subgroup of G and
write H \ G = {Hg : g ∈ G} for the set of right cosets of H
in G. We consider a transversal of H \ G, i.e. a collection
{g1, . . . , g[G:H]} such that G = ⊔[G:H]

i=1 Hgi. Then the orbit
of any X ∈ B can be decomposed as

{X}G =
⋃

i=1,...,[G:H]
{giX}H . (6)

This decomposition establishes the connection between
the G-orbits and the H-orbits. In order to obtain a sys-
tem of equations for LG, once EH has been computed, it
is enough to add the equations involving the permutations
in a transversal {g1 = e, g2, . . . , g[G:H]} of H \ G:

pX = pg2X
pX = pg3X
. . .

pX = pg[G:H]X

⎫⎪⎪⎬
⎪⎪⎭ for all X ∈ B.

Notice that the union in (6) is not necessarily disjoint as it
may happen that {giX}H = {gjX}H for i �= j. In this case,
the equality pgjX = pgjX already holds in the space LH and
does not provide any new restriction. In order to avoid
this situation and obtain a minimal set of equations for
LG, we request the special conditions on the X ∈ B in the
statement of the theorem.

Proof. For each model M, we prove that the corre-
sponding equations are linearly independent and there are

as many equations as the codimension of LM. By Propo-
sition 20, the codimension ofLM is 22n−1 for SSM, 3 ·4n−1

for K81, 7 · 22n−3 − 2n−2 for K80, and 4n − 22n−3+1
3 − 2n−2

for JC69. In the sequel, we refer to the groups by the name
of the equivariant model associated to them.

SSM: As SSM is the group {e, (AT)(CG)}, a set of equations
for SSM is {pX = p(AT)(CG)X}. Fixing x1 in {A,C} we
obtain 22n−1 linearly independent equations
(equations involving different coordinates). The
codimension of LSSM is equal to 22n−1, which
coincides with the number of equations given, and
thus this set of equations defines LSSM.

K81: Since a transversal of SSM \ K81 is {e, (AC)(GT)}, the
hyperplanes pX = p(AC)(GT)X contain LK81 but not
LSSM. Moreover, using (6) we see that the orbit
{X}K81 decomposes into the disjoint union of {X}SSM
and {(AC)(GT)X}SSM for any X ∈ B. Therefore, the
equations given for K81 involve different coordinates
than those in E

SSM. Requiring x1 = A, we obtain 4n−1

linearly independent new equations. Thus EK81

defines the space LK81 because the number of
linearly independent equations provided,
22n−1 + 4n−1 = 3 · 4n−1, coincides with the
codimension of LK81.

K80: The set {e, (AG)} is a transversal of K81 \ K80. In
order to show that the equations provided are linearly
independent to those of EK81, we apply (6) to this
transversal to obtain {X}K80 = {X}K81 ∪ {(AG)X}K81.
If X /∈ BAG|CT, then {(AG)X}K81 and {X}K81 are
disjoint, so each equation pX = p(AG)X is linearly
independent from E

K81. The set B \ BAG|CT has
cardinal 4n − 2n+1 and, if X ∈ B \ BAG|CT, each orbit
{X}K80 has cardinality 8. Therefore, the number of
different orbits for X ∈ B \ BAG|CT is
(4n − 2n+1)/8 = 22n−3 − 2n−2. Moreover, the choice
of X’s in B \ BAG|CT with x1 = A and satisfying “if T
appears in X, there is a C in a preceding position”
guarantees that we take only one element in each
{X}K80, and thus we are adding exactly one equation
for each of these X′s. Overall, there are
3 · 4n−1 + (22n−3 − 2n−2) = 7 · 22n−3 − 2n−2 linearly
independent equations in E

K80. This number
coincides with the codimension of LK80 and these
equations define LK80.

JC69: A transversal of K80 \ JC69 is {e, (AC), (AT)},
therefore (6) applies to give
{X}JC69 = {X}K80 ∪ {(AC)X}K80 ∪ {(AT)X}K80.

◦ if X ∈ BAC|GT \ B0, then {(AC)X}K80 = {X}K80
and {X}JC69 is the disjoint union of {X}K80
and {(AT)X}K80. As such, each equation
pX = p(AT)X is linearly independent from
E
K80.
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Moreover, if X ∈ BAC|GT \ B0 is of the form
(Al)(Cm)xl+m+1 . . .xn, we have 2n−1 − 1 such
equations and they are linearly independent.

◦ if X ∈ B \ B2 then the three orbits
{(AC)X}K80, {(AT)X}K80, and {X}K80 have 8
elements each and are disjoint. Therefore, for
these X’s, each equation of type {pX = p(AC)X}
or {pX = p(AT)X} is linearly independent from
E
K80.Moreover, as B \ B2 has cardinal

4n−3 ·2n+1+8 and is covered by these orbits,
we have 4n−3·2n+1+8

24 = 1
3 (2

2n−3 + 1) − 2n−2

different orbits. The restriction to the
elements of the form (Al)(Cm)xl+m+1 . . .xn
and satisfying that “if T appears in X, there is
some G in a preceding position” guarantees
that the equations are written only only once
for each orbit.

Summing up, there are

7·22n−3−2n−2+
(
2n−1 − 1 + 2

(
1
3
(22n−3 + 1) − 2n−2

))

linearly independent equations in E
JC69 that contain

LJC69. As this number is equal to the codimension
4n − 22n−3+1

3 − 2n−2 of LJC69, the proof is complete.

All the equalities among orbits used in this proof are
summarized in Table 2.

Remark 23. The sets of equations of Theorem 22
has been successfully used in [7] for model selection.
Although the dimensions of these linear spaces are expo-
nential in n, in practice it is not necessary to consider
the full set of equations, but only those containing the
patterns observed in the data. This is crucial for the
applicability of the method, since the number of different
columns in an alignment is really small compared to the
dimension of these spaces.

Example 24. As an example, we compute a minimal
system of equations for SSM, K81, K80, and JC69 in the
case of 3 leaves.

Equations for LSSM: ESSM is composed of the following
equations:

pAAA = pTTT, pAAC = pTTG, pAAG = pTTC,
pAAT = pTTA, pACA = pTGT, pACC = pTGG,
pACG = pTGC, pACT = pTGA, pAGA = pTCT,
pAGC = pTCG, pAGG = pTCC, pAGT = pTCA,
pATA = pTAT, pATC = pTAG, pATG = pTAC,
pATT = pTAA, pCAA = pGTT, pCAC = pGTG,
pCAG = pGTC, pCAT = pGTA, pCCA = pGGT,
pCCC = pGGG, pCCG = pGGC, pCCT = pGGA,
pCGA = pGCT, pCGC = pGCG, pCGG = pGCC,
pCGT = pGCA, pCTA = pGAT, pCTC = pGAG,
pCTG = pGAC, pCTT = pGAA.

Equations for LK81: EK81 is formed by ESSM and

pAAA = pCCC, pAAC = pCCA, pAAG = pCCT,
pAAT = pCCG, pACA = pCAC, pACC = pCAA,
pACG = pCAT, pACT = pCAG, pAGA = pCTC,
pAGC = pCTA, pAGG = pCTT, pAGT = pCTG,
pATA = pCGC, pATC = pCGA, pATG = pCGT,
pATT = pCGG.

Equations for LK80: EK80 is formed by EK81 and

pAAG = pGAA, pACG = pGCA, pACT = pGCT,
pAGA = pGAG, pAGC = pGAC, pAGG = pGAA.

Equations for LJC69: EJC69 is formed by EK80 and

pAAC = pTTC, pACA = pTCT, pACC = pTCC,
pACG = pCAG, pACG = pTCG.

Identifiability of phylogenetic mixtures
In this section we study the identifiability of phylogenetic
mixtures. To this end, we use projective algebraic vari-
eties and techniques from algebraic geometry. It is not our
intention to give the reader a background on these tools,

Table 2 Equalities among orbits used in the proof of Theorem 22

{X}GMM {X}SSM {X}K81 {X}K80 {X}JC69
B0 {X} · · · ∪ {(AT)(CG)X} · · · ∪ {(AC)(GT)X}SSM . . . . . .

BAG|CT ” ” ” . . . · · · ∪ {(AC)X}K80
BAC|GT ” ” ” · · · ∪ {(AG)X}K81 · · · ∪ {(AT)X}K80
BAT|CG ” ” ” · · · ∪ {(AG)X}K81 · · · ∪ {(AC)X}K80
B \ B2 ” ” ” · · · ∪ {(AG)X}K81 · · · ∪ {(AC)X}K80 ∪ {(AT)X}K80
For eachword X inB, the orbit in the model that indexes the column is described. The dots . . . mean the set on the left and ” means the set on the top.
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so we refer to the algebraic geometry book [14] and, more
specifically, to [10] for the usage of these techniques in the
study of phylogenetic mixtures.
There is a natural isomorphism between the points

lying in the hyperplane H considered above, H = {p =
(pA...A, . . . , pT...T) ∈ L :

∑
px1...xn = 1}, and the open

affine subset {p =[ pA...A : · · · : pT...T] :
∑

px1...xn �= 0} of
P
4n−1 = P(L). We use the notation [ pA...A : · · · : pT...T]

for projective coordinates (in contrast to (pA...A, . . . , pT...T)

used for affine coordinates). The projective phylogenetic
variety PVM

T associated to a phylogenetic tree T is the
projective closure in P(L) of the image of the stochas-
tic parameterization φM

T defined above. That is, it is the
smallest projective variety in P(L) containing ImφM

T via
the above isomorphism.
In what follows, we explain the relationship between

this new variety and CVM
T and VM

T . By Remark 7, it
becomes clear that CVM

T equals the affine cone over
the projective phylogenetic variety PVM

T (for the gen-
eral Markov model, see also [23], Proposition 1). This
implies that dimCVM

T = dimPVM
T + 1, and if p =

(pA...A, . . . , pT...T) belongs to CVM
T , then q :=[ pA...A :

· · · : pT...T] belongs to PVM
T . Moreover, if λ := ∑

px1...xn
is not zero, then (

pA...A
λ

, . . . , pT...T
λ

) is a point in the affine
stochastic phylogenetic variety VM

T .
Before defining identifiability of mixtures, we consider

the following construction of projective algebraic vari-
eties.

Definition 25. Given two projective varieties X,Y ⊂
P
m, the join of X and Y, X ∨ Y , is the smallest variety

in P
m containing all lines xy with x ∈ X, y ∈ Y , and

x �= y (see [14], 8.1 for details). Similarly, one defines the
join of projective varieties X1, . . . ,Xh ⊂ P

m, ∨h
i=1Xi, as the

smallest subvariety in Pm containing all the linear varieties
spanned by x1, . . . , xh with xi ∈ Xi and xi �= xj. It is known
that

dim (∨h
i=1Xi) ≤ min {

h∑
i=1

dim (Xi) + h − 1,m}.

The right hand side of this inequality is usually known as
the expected dimension of ∨h

i=1Xi.

For instance, if we consider the join ∨h
i=1PVM

Ti
for cer-

tain tree topologies Ti on the leaf set [ n] and a given
evolutionarymodelM, then there is a (dominant rational)
map

PVM
T1 ×PVM

T2 ×. . .×PVM
Th

×P
h−1 ��� ∨h

i=1PV
M
Ti ⊂ P(L),

(7)

which is the projective closure of the parameterization
φT1 ∨ . . . ∨ φTh defined by

ParsM(T1) × . . . × ParsM(Th) × 
 −→ L
(ξ1, . . . , ξh, a) �→ ∑

j aiφM
Ti

(ξi).

Here, 
 = {a = (a1, . . . , ah) | ∑
i ai = 1} is isomor-

phic to an affine open subset of Ph−1 . In this setting, an
h-mixture on {T1, . . . ,Th} corresponds to a point in the
variety ∨h

i=1PV
M
Ti

. We will use this algebraic variety to
study the identifiability of phylogenetic mixtures.
When considering unmixed models M on trivalent

trees on n taxa, generic identifiability of the tree topology
is equivalent to the projective varieties PVM

T and PVM
T ′

being different when T �= T ′ (see [31]). The identifiabil-
ity of the continuous parameters must take into account
the possibility of permuting the labels of the states at the
interior nodes, as such permutations give rise to the same
joint distribution at the leaves. In the language of algebraic
geometry, generic identifiability of the continuous param-
eters of the model implies that the map φM

T is generically
finite (i.e. the preimage of a generic point is a finite num-
ber of points; see [31]). In this case, the fiber dimension
Theorem ([14], Theorem 11.12) applies and we have that
dimPVM

T is equal to the number of stochastic parameters
of the model, dimParsM(T). Therefore, if the continuous
parameters are generically identifiable for the unmixed
trees under M, then the dimension of the variety PVM

T
is the same for all trivalent tree topologies on n taxa. This
dimension is denoted by sM(n).

Example 26. The tree topologies and the continuous
parameters are generically identifiable for the unmixed
equivariant models JC69, K80, K81, SSM, and GMM on
trees with any number of leaves (see [9] and [6], Corollary
3.9).

From now on we only consider trees without nodes of
degree 2, so that the number of free stochastic parameters
on a phylogenetic tree on n taxa underM is ≤ sM(n).
We recall the definition of generic identifiability of the

tree topologies on h-mixtures (see [10]).

Definition 27. The tree topologies on h-mixtures under
M are generically identifiable if for any set of triva-
lent tree topologies {T1, . . . ,Th} and a generic choice of
(ξ1, . . . ξh, a) ∈ ParsM(T1) × . . . × ParsM(Th) × 
, the
equality

φT1 ∨. . .∨φTh(ξ1, . . . ξh, a) = φT ′
1
∨. . .∨φT ′

h
(ξ ′

1, . . . ξ ′
h, a

′),

for tree topologies {T ′
1, . . . ,T ′

h} and (ξ ′
1, . . . ξ ′

h, a
′) ∈

ParsM(T ′
1) × . . . × ParsM(T ′

h) × 
 implies

{T1, . . . ,Th} = {T1,′ . . . ,T ′
h}.
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In terms of algebraic varieties this is equivalent to saying
that the variety ∨h

i=1PV
M
Ti

is not contained in ∨h
i=1PV

M
T ′
i

and vice versa.

The tree topologies are the discrete parameters of h-
mixtures. When considering the continuous parameters
of h-mixtures, the above mentioned label-swapping can
be disregarded.We give the following definition according
to [12].

Definition 28. The continuous parameters of h-
mixtures on T1, . . . ,Th under an evolutionary model
M are generically identifiable if, for a generic choice of
stochastic parameters (ξ1, . . . , ξh, a), the equality

φT1∨. . .∨φTh(ξ1, . . . ξh, a) = φT1∨. . .∨φTh(ξ
′
1, . . . ξ ′

h, a
′)

for stochastic parameters (ξ ′
1, . . . , ξ ′

h, a
′) implies that there

is a permutation σ ∈ Sh such that σ · (T1, . . . ,Th) =
(T1, . . . ,Th), ξ ′

i = ξσ(i), and a′
i = aσ(i) for i = 1, . . . r.

In other words, we only allow swapping of the continuous
parameters when at least two tree topologies coincide.

Definition 29. An h-mixture under a model M is said
to be identifiable if both its tree topologies and its contin-
uous parameters are generically identifiable.

In terms of algebraic varieties, generic identifiability of
continuous parameters on h-mixtures implies that the
generic fibers (i.e. preimages of generic points) of the map
φT1 ∨ . . . ∨ φTh are finite. In this case, the fiber dimension
theorem applied to (7) (cf. [14], Theorem 11.12) gives

dim (∨h
i=1PVTi) =

h∑
i=1

dim (PVTi) + h − 1.

The following result demonstrates the need for care-
ful inspection of identifiability of mixtures with many
components (i.e. large values of h).

Theorem 30. Let [ n] be a set of taxa and M be an
evolutionary model for which the continuous parameters
are generically identifiable on trivalent (unmixed) trees. In
addition, let sM(n) be the dimension of PVM

T for any triva-
lent tree T, and set h0(n) := dimDM

sM(n)+1 . Then the h-mixtures
of trees on [ n] evolving under M are not identifiable for
h ≥ h0(n).

Remark 31. Note that, in the above definition of h0(n),
dimDM also depends on n.

Corollary 32. Let [ n] be a set of taxa and M be one
of the equivariant models JC69, K80, K81, SSM, or GMM.

Then the phylogenetic h-mixtures under these models are
not identifiable for h ≥ h0(n), where

h0(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4n
12(2n−3)+4 , if M = GMM,

22n−1

6(2n−3)+2 , if M = SSM,

4n−1

3(2n−3)+1 , if M = K81,

22n−3+2n−2

2(2n−3)+1 , if M = K80,

22n−3+3·2n−2+1
3(2n−2) , if M = JC69.

Proof. Theorem 17 shows that LM = DM and Proposi-
tion 20 gives the dimension of LM in each case. Next, we
calculate: sGMM(n) = 12(2n−3)+3, sSSM(n) = 6(2n−3)+1,
sK81(n) = 3(2n− 3), sK80(n) = 2(2n− 3), and sJC69(n) =
2n− 3. Applying Theorem 30, we conclude the proof.

Example 33. Consider the Kimura 3-parameter model
K81 on n = 4 taxa. For any h ≥ 4, phylogenetic h-
mixtures are not identifiable by Corollary 32. We are not
aware of any result proving thatmixtures of 2 or 3 different
tree topologies under this model are identifiable (either for
the tree parameters or for the continuous parameters).

Example 34. Consider the Jukes-Cantor model JC69
on n = 4 taxa. Then Corollary 32 tells us that for h ≥ 3, h-
mixtures are not identifiable. Therefore, for this particular
model on four taxa the cases in which the identifiability
holds are known: the tree and the continuous parame-
ters are generically identifiable for the unmixedmodel; the
tree parameters are generically identifiable for 2-mixtures
([10], Theorem 10); the continuous parameters are gener-
ically identifiable for 2-mixtures on different tree topolo-
gies and not identifiable for the same tree topology ([10],
Theorem 23); neither the continuous parameters nor the
tree topologies are generically identifiable for mixtures
with more than two components (Corollary 32).

Proof of Theorem 30. Let edim(h) := hsM(n) + h − 1.
Then the variety ∨h

i=1PVTi has dimension ≤ edim(h).
Indeed, as ∨iφTi is a parameterization of an open sub-
set of ∨h

i=1PVTi , then the dimension of ∨h
i=1PVTi is less

than or equal to
∑

dimPVTi + h − 1. Moreover, the
dimension of PVTi is equal to sM(n) if Ti is trivalent
(since the continuous parameters for the unmixed mod-
els under consideration are generically identifiable) and
is less than sM(n) for non-trivalent trees. Therefore,
dim(∨h

i=1PVTi) ≤ edim(h).
If all Ti are trivalent trees, then

∑
dimPVTi + h − 1 =

edim(h) and, therefore, dim(∨h
i=1PVTi) < edim(h) if and
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only if dim(∨h
i=1PVTi) <

∑
dimPVTi + h − 1. Moreover,

by the fiber dimension theorem applied to∨φTi , the equal-
ity of dimensions holds if and only if the generic fiber of
∨φTi has dimension 0. In particular, if dim(∨h

i=1PVTi) <

edim(h), then the continuous parameters of this phyloge-
netic mixture are not identifiable.
As h0(n) = dimDM

sM(n)+1 , we have that edim(h0(n)) =
h0(n)(sM(n)+1)−1 = dimDM−1. Now, we fix an h ∈ N

with h ≥ h0(n), so that edim(h) ≥ dim(DM) − 1.
There are two possible scenarios:

(a) For any set of tree topologies {T1, . . . ,Th}, the
dimension of ∨h

i=1PVTi is less than dim(DM) − 1.
(b) There exists a set of tree topologies {T1, . . . ,Th} for

which dim(∨h
i=1PVTi) = dim(DM) − 1.

Case (a) implies that the dimension of ∨h
i=1PVTi is

less than edim(h) for any set of trivalent tree topologies
{T1, . . . ,Th}. Based on the conclusions drawn above, this
implies that the continuous parameters are not generically
identifiable.
In case (b), ∨h

i=1PVTi coincides with P(DM). Indeed,
∨h
i=1PVTi is contained in P(DM), both varieties are

irreducible, and dim(∨h
i=1PVTi) = dim(DM) − 1 =

dim(P(DM)), which implies that both varieties coin-
cide. In particular, any h-mixture (which is a point in
P(DM)) would be contained in ∨h

i=1PVTi , and therefore
the topologies are not generically identifiable. �

Remark 35. The negative result of Theorem 30 should
be complemented with the following positive result of
Rhodes and Sullivant in [12]: if M = GMM and one
restricts to h-mixtures on the same trivalent tree topology
T, then the tree topology and the continuous parameters
are generically identifiable if h < 4� n

4 �−1.

Conclusions
In this paper, we have dealt with the space of phylogenetic
mixtures for evolutionary equivariant models. We have
shown that for the case of the Jukes-Cantor model, the
Kimura models with two or three parameters, the strand
symmetric model and the general Markov model, this lin-
ear space is defined by the set of linear equations satisfied
by the distributions of the patterns at the leaves of a tree
that evolves under that model. It follows that this space
completely characterizes the model. The use of tools from
group theory and group representation theory played a
major role, and allowed us to design a procedure to pro-
duce minimal systems of equations for these spaces and
for any number of taxa. This procedure has been imple-
mented successfully in a new method for model selection
in phylogenetics based on linear invariants (see [7]), which
is available online at http://genome.crg.es/cgi-bin/phylo
mod sel/AlgModelSelection.pl,.

In the last part of the paper, we proved new results
concerning the identifiability of phylogenetic mixtures.
Namely, we provided an upper bound for the number of
components (classes) of a mixture so that the identifiabil-
ity of both the continuous and the discrete parameters is
still possible.
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