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Abstract

Background: Short tandem repeats are ubiquitous in genomic sequences and due to their complex evolutionary
history pose a challenge for sequence alignment tools.

Results: To better account for the presence of tandem repeats in pairwise sequence alignments, we propose a
simple tractable pair hidden Markov model that explicitly models their presence. Using the framework of gain
functions, we design several optimization criteria for decoding this model and describe resulting decoding
algorithms, ranging from the traditional Viterbi and posterior decoding to block-based decoding algorithms tailored
to our model. We compare the accuracy of individual decoding algorithms on simulated and real data and find that
our approach is superior to the classical three-state pair HMM.

Conclusions: Our study illustrates versatility of pair hidden Markov models coupled with appropriate decoding
criteria as a modeling tool for capturing complex sequence features.
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Background
In this paper, we explore the use of pair hidden Markov
models (pair HMMs, PHMMs) in improving the quality
of pairwise sequence alignment in the presence of tandem
repeats. We propose a simple tractable model that explic-
itly accounts for short tandem repeats, and we use the
framework ofmaximum expected gain to explore a variety
of decoding optimization criteria for our model.
Pair HMMs have for a long time played a major role

in sequence alignment [1]. The traditional Needleman-
Wunsch algorithm [2] and its variants can be easily for-
mulated as a special case of alignment with PHMMs (we
call this approach Viterbi decoding). The main advantage
of PHMMs is that they allow us to express the scoring
scheme in a principled way in the context of a probabilistic
model.
Sequence alignments are a mainstay of comparative

genomics. By comparing sequences that evolved from a
common ancestor, we can infer their phylogenetic rela-
tionships, discover sites under functional constraint, or
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even shed light on the function of individual sequence ele-
ments. However, comparative genomic methods are very
sensitive to the quality of underlying alignments, and even
slight inaccuracies may lead to artifacts in the results of
comparative methods.
It is very difficult to evaluate alignment accuracy, yet

even simple statistics can reveal artifacts of present-day
algorithms. Lunter et al. [3] demonstrated systematic
biases caused by the optimization criteria set by the
Needleman-Wunsch approach. They show that by using
variants of the posterior decoding instead of the tradi-
tional Viterbi algorithm, one can significantly increase
the alignment quality. The advantage of the posterior
decoding is that it summarizes information from all align-
ments of the two sequences, while the Viterbi decoding
seeks only one highest scoring alignment. The posterior
decoding was also found superior by other authors [4-6].
An algorithm by Hudek [7] is an intermediate between

the Viterbi and posterior decoding, summarizing prob-
abilities of alignments within short blocks. The goal is
to segment the alignment into blocks, where each block
has gaps in only one of the two sequences. The decod-
ing algorithm considers each block as a unit, summing
probabilities of all alignments that have the same block
structure. Finally, Satija et al. [8] have demonstrated that
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fixing a particular alignment is not necessary in some
comparative genomics applications, instead one can con-
sider all possible alignments weighted by their probability
in the PHMM.
In this paper, we concentrate on modeling sequence

alignments in the presence of tandem repeats. Short tan-
dem repeats cover more than 2% of the human genome,
and occur in many genes and regulatory regions [9]; in
fact, majority of recent short insertions in human are due
to tandem duplication [10]. Evolution of tandem repeats is
dominated by tandem segmental duplications resulting in
regions composed of a highly variable number of almost
exact copies of a short segment. Such sequences are diffi-
cult to align with standard scoring schemes, because it is
not clear which copies from the two organisms are orthol-
ogous.Misalignments due to the presence of short tandem
repeats are usually not limited to the repetitive sequence
itself, but may spread into neighboring areas and impact
the overall alignment quality (see Section Experiments).
Sequence alignment with tandem duplication was first

studied by Benson [11]. They propose an extension of
the traditional Needleman-Wunsch algorithm that can
accommodate tandem repeats in O(n4) time. They also
propose several faster heuristic algorithms. Additional
work in this area concentrated on computing variants
of edit distance either on whole sequences with tandem
arrays or on two tandem arrays using different sets of
evolutionary operations [12-14].
The first probabilistic approach to alignment of tandem

duplications was introduced by Hickey and Blanchette
[15], who developed a new probabilisticmodel by combin-
ing PHMMs with tree adjoining grammars. Their model
favors tandem duplications over other insertions, but
the approach does not explicitly model whole arrays of
tandemly repeated motifs. Moreover, algorithms to train
and decode such models are relatively complex.
Some protein families (such as zinc finger proteins) con-

tain repetitive motifs similar in nature to tandem repeats
in DNA. To align such proteins, Kováč et al. [16] com-
bined profile HMMs (capturing the properties of the
repeating motif ) and PHMMs (modeling alignments) into
a single scoring scheme that can be decoded by a newly
proposed algorithm. However, their scoring scheme is no
longer a probabilistic model and the method is focused on
correctly aligning individual occurrences of a single motif
rather than alignment of long sequences interspersed with
multiple motifs.
Here, we propose a simple tractable PHMM for

sequence alignment with tandem repeats, and we explore
various decoding methods for its use in sequence align-
ment. In addition to the classical Viterbi decoding, we
define several variants of the posterior decoding as
well as block-based methods tailored to the specifics
of our model. To demonstrate the differences, we have

implemented several of these methods and compared
their performance.

Pair HMMs for alignment with tandem repeats
Tandem repeats may arise by a complicated sequence of
evolutionary events, including multiple rounds of tandem
duplication, deletion, point mutation, gene conversion
and other phenomena. Tandem repeat arrays at ortholo-
gous locations in two related species may have arisen in
the common ancestor and thus share part of their evo-
lutionary history, but they could be further modified by
independent events occurring after speciation. Models
attempting to capture such diverse evolutionary mecha-
nisms usually lead to complex problems in inference and
parameter estimation. We propose two tractable mod-
els, based on classical PHMMs, which still capture the
essence of a tandem repeat array: periodically repeating
motif, which may be shared between the two species, or
be specific to one species only.
A PHMM defines a probability distribution over align-

ments of two sequences X and Y. The standard PHMM
has three states (see Figure 1): match state M generat-
ing ungapped columns of the alignment, and two insert
states IX and IY , where IX generates alignment columns
with a symbol from X aligned to a gap, and IY gener-
ates columns with a symbol from Y aligned with a gap
[1]. In our work, we will use a more complex PHMM, but
standard algorithms for inference are still applicable.
We call our main model SFF, and its details are

shown in Figure 2. The model contains a standard
three-state PHMM and two “sunflower” submodels Ri,X
and Ri,Y for each possible repeating motif i. Sub-
model Ri,X generates several (possibly zero) copies of
the motif in sequence X and submodel Ri,Y gener-
ates motif copies in sequence Y. Each copy of the
motif is generated independently and the number of
copies in X and Y are independent and geometrically
distributed.

Figure 1 The standard three-state PHMMs. The match stateM
generates ungapped columns, insert states IX and IY generate
symbols aligned to a gap.
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Each sunflower submodel is a circularized profile HMM
emitting copies of the motif in one of the two sequences.
For a motif of length p, the submodel contains p match
states M0, . . . ,Mp−1, each match state emitting one sym-
bol of the motif. Insertion state Ij allows to insert addi-
tional characters between symbols emitted by Mj and
M(j+1) mod p. Deletion states Dj and D′

j allow to bypass
match state Mj, and thus correspond to deletions with
respect to the reference motif sequence. Since the sub-
model can emit multiple tandem copies of the motif,
the states in column p − 1 are connected to the states
in column 0. To avoid cycles consisting solely of silent
states, we use two separate chains of deletion states. Chain
D′
0, . . . ,D

′
p−2 can be entered only in state D′

0, and the
model can stay in this chain for at most p− 1 steps. Chain
D1, . . . ,Dp−1 can be entered only after visiting at least one
match or insert state in the current copy of the motif. As
a result, the model can never pass around the whole cir-
cle using delete states. Note that the model prefers integer
number of repeats, even though partial repeat occur-
rences are common in the real data. If desired, this can
be addressed by simple changes in the model topology or
parameters.
The overall model can have sunflower submodels for an

arbitrary number of motifs; we can even define an infi-
nite model, in which every possible finite string serves as
the motif for one pair of sunflowers. In our work, we use
k = 310, 091 motifs chosen as consensus strings of all
tandem repeats found by the TRF program [17] run on
the human chromosome 15 and its orthologous sequences
in the dog genome. The probability of choosing a par-
ticular motif out of all k possibilities can be uniform or
dependent on the motif length or composition. We assign

this probability based on the observed frequency of the
corresponding consensus pattern in the TRF output.
Likewise, we could use a multiple alignment of real

motif occurrences to set individual parameters of the pro-
file HMM. Instead, we use the same set of parameters for
all states of all motif submodels. In particular, we set the
insert and delete rates to 0.005; the match states allow
mutations away from consensus according to the Jukes-
Cantor model with parameter t = 0.05. Parameters of the
three-state PHMM were estimated from the UCSC align-
ment of the human chromosome 15 and its orthologous
regions in the dog genome.
Our model also assumes that individual copies of a fixed

motif are independent. If they share part of their evolu-
tionary history, this assumption is not valid, but it greatly
simplifies the model. We could add some limited depen-
dence by introducing repeat submodels emitting copies in
the two sequences simultaneously; we have used such a
model in a different setting in our previous work [16].
We have also explored a smaller model of tandem

repeats based on an approach developed for repeat mask-
ing by Frith [18]. This approach, called TANTAN, repre-
sents all repeats with consensus of length k by a single
state Rk . To achieve this, state Rk has emission table of
order k. According to a traditional definition [1], in a state
with emission table of order k, the probability of a partic-
ular symbol at position i depends on symbols at positions
i−k, . . . , i−1. In TANTAN, however, the emission at posi-
tion i depends only on the residue at position i− k in such
a way that the two symbols k positions apart are equal
with high probability. Thus a single state of order k can
generate a tandem repeat with period k, allowing for mis-
matches between consecutive motif occurrences. Overall,

Figure 2 SFF (sunflower field) model. A pair hidden Markov model for alignment with tandem repeats. Each submodel Ri,α (left) is a circular
profile hidden Markov model emitting tandem copies of the motif in one sequence. StateMj is the match state generating jth symbol of the motif,
state Ij allows insertions between symbols j and j + 1 of the motif, and states Dj and D′

j allow to skip stateMj . States s and e designate the entry and
exit points from the submodel. The full SFF model (right) contains a standard three-state PHMM with statesM, IX and IY , and two submodels Ri,X , Ri,Y
for each motif i. States and submodels with subscript X and Y generate symbols in the respective sequence X or Y only.
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the TANTAN submodel for a single tandem repeat of
unknown length up to K consists of states R1, . . . ,RK con-
nected to initial and final states, as shown in Figure 3. To
allow insertions and deletions with respect to the motif
consensus, TANTAN uses chains of insertion and deletion
states connecting states of different order.
We have slightly modified the TANTAN model for our

purposes. TANTAN uses the repeat states starting from
the second occurrence of the motif, because only at that
point we start to see correlations with symbols k positions
apart. To include the first repetition of the motif in the
repeat submodel, we have added a prefix path of states
P1, . . . , PK such that Pk is connected to Rk (see Figure 3).
To keep the number of parameters low, we use the same

transition probability pr to move from any Pk to Rk for
any k < K . States Pk and insert states generate symbols
according to the background distribution. Repeat state Rk
assumes that the symbol at current position i has evolved
from the symbol at position i − k according to Jukes-
Cantor model with fixed time t. Finally, parameters pES ,
pER, and pEI govern the probability of transition to end
state from indel state, repeat state and init state, respec-
tively, and pS, pSE denote the probability of starting an
indel and the probability of extending the indel.
To build a full PHMM, we use two copies of the TAN-

TAN submodel, each emitting tandem repeat in one of the
sequences. These two copies are connected to the stan-
dard three-state pair HMM representing non-repetitive
sequence.We call thismodel TANTAN, although it differs
from the model introduced by Frith [18].
Parameters of the TANTAN PHMM were set similarly

as in the SFF model. Parameters pES , pER, pEI and t of the

TANTAN submodels were estimated by the Baum-Welch
algorithm [1] on 500 repeats sampled from SFF.
The size of the SFF model is proportional to the sum

of the lengths of all consensus sequences. In contrast, the
size of the TANTAN model is proportional only to the
length K of the longest represented motif. Thus SFF can
be exponentially larger than TANTAN if it includes all
possible consensus motifs of length up to K. Both SFF and
TANTAN share the same overall structure, each consist-
ing of the three-state pair HMM and a repeat submodel
generating repeats separately in the two sequences. In
the next section, we describe several inference methods
appropriate for both of these models.

Inference criteria and algorithms
Given one of the PHMMs introduced in the previous
section, and two sequences X = x1 . . . xn and Y =
y1 . . . ym, we wish to find the alignment of these two
sequences best agreeing with the model. We can also
annotate this alignment by labeling individual alignment
columns with additional information.We start by defining
an alignment and its annotation more formally (see
Figure 4). An alignment of X and Y is a sequence of
pairs (a1, b1), . . . (at , bt), each pair representing one align-
ment column. Symbol ai represents either a position in
X, or a gap annotated with the position of the nearest
non-gap symbol on the left; formally ai ∈ {1, . . . , n} ∪
{−0,−1, . . . ,−n}. To specify a valid alignment, a1 must
be 1 or −0, at must be n or −n, and if ai ∈ {j,−j}, ai+1
must be j + 1 or −j. The conditions on symbols bi repre-
senting positions in sequence Y are analogous. The state
annotation of an alignment is a sequence of states s1 . . . st

Figure 3 TANTAN-like repeat model for repeat motifs of length up to K = 4. (a)Model by Frith [18] representing one tandem repeat without
indels. States s and e are silent, state Rk has emission table in which symbol at position i depends on symbol at position i − k. (b) Full model by Frith
[18] allows insertions using states I1, . . . Ik−1 and deletions using silent states D1, . . . ,DK . Our modification includes states P1 . . . PK for the first
occurrence of the motif. (c) Full pair HMM consists of two copies TX and TY of the model from part (b), one for each input sequence, and the
traditional three-state pair HMM for non-repeat regions.
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such that state si generated alignment column (ai, bi). The
repeat annotation is a binary sequence r1 . . . rt , where
ri = 1 if the state si generating the i-th column is one
of the states in the repeat submodels. While the state
annotation can be used with any PHMM generating the
alignment, the repeat annotation is appropriate only for
PHMMs explicitly modeling repeats.
We will explore several inference criteria for choosing

the best alignment. To describe them, we will use the ter-
minology of gain functions [19]; analogous notion of a
loss functions is frequently used in statistics and machine
learning. A gain function G(A,AT ) evaluates similarity
between a predicted alignment A and the correct align-
ment AT ; higher gain means that the prediction is of
higher quality. Since the true alignment AT is not known,
we will consider the expected gain EAT [G(A,AT )|X,Y ]
of alignment A, assuming that sequences X and Y were
generated by our model

EAT [G(A|AT )|X,Y ]=
∑

AT

G(A,AT )Pr(AT |X,Y ).

In each optimization criterion, we choose a particular
gain function and look for alignment A∗ maximizing the
expected gain A∗ = argmaxA EAT [G(A,AT )|X,Y ]. Note
that the gain function is only a way of defining the optimal
solution; the corresponding decoding algorithm needs to
be designed on a case-by-case basis.

Decoding criteria for the three-state PHMM
For simplicity, we start with criteria for the three-state
PHMM, where the state annotation is uniquely deter-
mined by the alignment itself.

Viterbi decoding
Perhaps the simplest gain function assigns gain +1 if the
predicted alignment A is identical to the true alignment
AT , and 0 otherwise. To optimize this gain function, we
need to find the alignment with the highest overall prob-
ability in the model. In the simple three-state PHMM,
this alignment can be found by the classical Viterbi algo-
rithm in time O(nmE), where E is the number of non-zero
transitions in the model.

Posterior decoding
While the Viterbi decoding assigns gain only if the
whole alignment is correctly predicted, posterior decod-
ing assigns gain +1 for each correctly identified alignment
column. Recall that the column is a pair (ai, bi), and it
is considered correct, if the same column also occurs
somewhere in the true alignment. The optimal align-
ment under this gain function can be found by computing
the posterior probability of each alignment column using
the forward and backward algorithms for PHMMs, and
then finding the alignment as a collection of compatible
columns with the highest sum of posterior probabilities.
A similar algorithm is considered for example by Lunter
et al. [3], except that the column posteriors are multiplied
rather than added. The running time of this algorithm is
again O(nmE).

Marginalized posterior decoding
Lunter et al. [3] also consider a variant of posterior
decoding, where column (i,−j) is considered correct and
receives gain +1, if the true alignment contains column
(i,−�) for any value of �. In other words, when symbol
xi is aligned to a gap, we do not distinguish where is the
location of this gap with respect to sequence Y. Columns
(−j , i) are treated symmetrically. To optimize this gain
function, we again start by computing posteriors of all
columns. Then we marginalize the probabilities of gap
columns, effectively replacing posterior of column (i,−j)
with the sum of posteriors of columns (i,−�) for all �. As
before, we then find the alignment maximizing the sum of
posteriors of its columns. The algorithm runs in O(nmE)

time.

Decoding criteria for the SFF Model
In more complex models, including ours, one alignment
can be generated by several different state paths. Gain
functions can thus take into account also the state or
repeat annotation of the alignment.

Viterbi decoding
In more complex models, the classical Viterbi algorithm
optimizes a gain function in which the alignment is

Figure 4 Example of an alignment represented in our notation, together with its state and repeat annotation. State r in the state sequence
is a shorthand for the stateM1 within submodel Rj,Y of the SFF, where Rj,Y represents motif A.
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annotated with the state path generating it, and gain +1 is
awarded only when both the alignment and the state path
are completely correct.

Posterior andmarginalized posterior decoding
We will consider a variant of the posterior decoding, in
which alignment columns are annotated by the repeat
annotation, and an alignment column gets a gain +1, if
the true alignment contains the same column with the
same label. The only change in the algorithm is that the
forward-backward algorithm produces posterior proba-
bilities of columns annotated with the state, which are
then marginalized over all states with the same repeat
label. The running time is still O(nmE). Similar modifi-
cation can be done for marginalized posterior decoding,
where we marginalize gap columns based on both state
and gap position.
Note that we might wish to completely marginalize over

annotations and award gain only based on alignment.
This method is however not appropriate for our models,
because it would treat repeats as gaps, even if they have
orthologs in the other sequence.

Block decoding
We will consider also a stricter gain function, which
requires that repeat regions have correctly identified
boundaries. We will split the alignment annotated with
repeats into blocks, so that each maximal region of con-
secutive columns labeled as a repeat forms a block. Each
column annotated as a non-repeat also forms a separate
block. The gain function awards gain +1 for each non-
gap symbol in every correctly predicted and labeled block.
Correctness of non-repeat columns is defined as in the
posterior decoding. A repeat block is considered correct,
if exactly the same region in X and the same region in Y
are also forming a repeat block in the true alignment. Note
that the gain for each block is proportional to the num-
ber of non-gap symbols in the block to avoid biasing the
algorithm towards predicting many short blocks.
To optimize this gain function, we first compute poste-

rior probabilities for all blocks. Note that a block is given
by a pair of intervals, one in X and one in Y. Therefore
the number of blocks is O(n2m2). The expected gain of a
block is its posterior probability multiplied by the number
of its non-gap symbols. After computing expected gains
of individual blocks, we can find the highest scoring com-
bination of blocks by dynamic programming in O(n2m2)
time.
To compute block posterior probabilities, we transform

the SFF model to a generalized PHMM [20], in which all
repeat states are replaced by a single generalized state R.
In generalized HMMs, emission of a state in one step can
be an arbitrary string, rather than a single character. In
our case, the new state R generates a pair of sequences

from the same distribution as defined by one pass through
the repeat portion of the original SFF model. The pair
of sequences generated by R represents one block of the
resulting alignment. We call this new model the block
model. Using the forward-backward algorithm for gener-
alized HMMs, we can compute posterior probabilities of
all blocks in O(n2m2f ) time where f is the time necessary
to compute emission probability for one particular block.
If we naively compute each emission separately, we get

f = O(nmE). However, we can reduce this time for the
SFF model as follows. If the SFF contains only one motif,
the emission probability of sequences x and y in the R
model is simply

Pr (x, y | R) = Pr
(
x | R1,X

)
Pr

(
y | R1,Y

)
,

because the model first generates x in the sunflower sub-
model R1,X and then generates y in the model R1,Y . Note
that these two models are connected by a transition with
probability 1. In the general case, we sum the probabil-
ities for all k motifs, each multiplied by the transition
probability of entering that motif. To compute block emis-
sion probabilities fast, we precompute Pr

(
x | Ri,X

)
and

Pr
(
y | Ri,Y

)
for all substrings x and y of sequences X and

Y respectively. This can be done by the forward algorithm
inO((n2 +m2)E) time. After this preprocessing, the com-
putation of emission probability is O(k), and the overall
running time of this algorithm is O(kn2m2 + (n2 +m2)E).

Block Viterbi decoding
The final gain function we consider is a variant of the
Viterbi decoding. The Viterbi decoding assigns gain +1
for a completely correct alignment labeled with a correct
state annotation. One alternative is to assign gain +1 if the
alignment and its repeat annotation are completely cor-
rect. This gain function considers as equivalent all state
paths that have the same position of repeat boundaries
but use different motifs or different alignments of the
sequence to the motif profile HMM.
In the SFF model, location of a repeat block uniquely

specifies alignment within the block, because all sym-
bols from sequence X must come first (aligned to gaps),
followed by symbols from sequence Y. However, some
models may emit repeat bases from the two sequences
aligned to each other. We wish to abstract from exact
details of repeat alignment, and consider different align-
ments within a repeat as equivalent. Therefore, we will
reformulate the gain function in terms of blocks. The
alignment labeled with repeat annotation gets a gain 1,
if all its blocks are correct, where block correctness is
determined as in the block decoding. This formulation is
similar to the one solved by Hudek [7].
To optimize this gain function, we use the Viterbi algo-

rithm for generalized HMMs applied to the block model,
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which leads to running time O(kn2m2 + (n2 + m2)E), by
similar reasoning as above.

Practical considerations
Even the fastest algorithms described above require
O(nmE) time, where sequence lengths n and m can be
quite high when aligning long genomic regions and the
size E of the SFF model depends on the sum of the lengths
of all repeat motifs, which can be potentially even infinite.
However, we can use several heuristic approaches tomake
the running time reasonable.
First of all, we can use the standard technique of band-

ing, where we restrict the alignment to some window
around a guide alignment obtained by a faster algorithm.
A simpler form of banding is to split the guide alignment
to non-overlapping windows and realign each window
separately. These techniques reduce the O(nm) factor. In
practical experiments we use Muscle [21] to create guide
alignments and restrict the new alignment to be within 30
base window from the guide alignment.
To restrict the size of the model, we first find tandem

repeats inX and Y independently by running the TRF pro-
gram [17]. Then we include in the SFF model only those
motifs which appear at least once in the TRF output. If
we process only relatively short windows of the banded
alignment, the size of the model will be quite small. Note
however, that we keep the transition probabilities entering
these models the same as they are in the full SFF model. If
the TRF finds a consensus not included in the original SFF
model, we add its two submodels with a small probability
comparable to the rarest included motifs.
These two heuristics sufficiently speed up algorithms

running in O(nmE) time. The block decoding and the
block Viterbi decoding need to consider all possible
blocks, which is prohibitive even within short alignment
windows. Therefore, we allow repeat blocks only around
intervals annotated as repeats by repeat annotators. Let
us assume that we have a set of intervals TX annotated as
repeats in sequence X and a set of intervals TY annotated
as repeats in sequence Y. Note that intervals in each set
are not necessarily disjoint. We restrict blocks by allow-
ing the generalized repeat state R to generate the block
of substrings x and y if each of these substrings is either
empty or one of the intervals in TX or TY respectively
has both its endpoints within 10 bases from the respective
endpoints of x or y. Therefore, we try at most (100|TX | +
n)(100|TY | + m) blocks.
For running algorithms with the TANTAN model, it

is not necessary to know consensus motifs beforehand,
but we restrict possible repeats to the same intervals as
with the SFF model for block decoding and block Viterbi
decoding.
To define repeat interval sets TX and TY , we first include

all intervals found as tandem repeats by the TRF. However,

the TRF searches for repeats in each sequence indepen-
dently, which can cause problems. For example, a tandem
repeat can be found in only one of the species, if it is
less conserved in the other species or has there only one
copy of the motif. The TRF can also find repeats in both
sequences, but with slightly different consensusmotifs, for
example rotated by several bases. To solve these problems,
we reannotate both sequences using a simple HMMwhich
we call SRF (sunflower repeat finder). The SRF model for
a motif consensus c consists of the sunflower submodel
for motif c connected to a background state B, as shown in
Figure 5. We use the Viterbi algorithm to annotate possi-
ble locations of tandem repeats with consensus motif c in
each of the two sequencesX and Y and add these locations
to the sets of intervals TX and TY . We repeat this process
for every consensus c discovered by the TRF in the input
sequences X and Y. In this way, if the TRF discovers a tan-
dem repeat with consensus c in X, we have a better chance
to discover appropriate orthologous region matching this
consensus in Y and add its interval to TY .
The final consideration is that our PHMMs do not

align tandem repeats at orthologous locations, even if
they share a common evolutionary history. This might
be impractical for further use. Therefore we postpro-
cess the alignments by realigning all blocks annotated
as repeats using the standard three-state PHMM. In
this realignment, we also include gaps adjacent to these
repeats.

Experiments
We have compared decoding methods described in the
previous section and several baseline algorithms on sim-
ulated data (see Table 1). The data set contained 200
alignments of length at least 200 each generated from
the SFF model (the same model parameters were used in
the sampling and for the alignments). In generating the
dataset, we required that each tandem repeat had at least
three copies in both species; otherwise, we would obtain
many regions that would be labeled as tandem repeats,
but would in fact only have a single copy. The error rate
(in the first column of the table) measures the fraction
of true alignment columns that were not found by a par-
ticular algorithm. It was measured only on the alignment

Figure 5 Sunflower Repeat Finder model. The model consists of a
sunflower for a tandem repeat with a fixed consensus and a state
generating non-repetitive part of the sequence.
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columns that were generated fromnon-repeat states in the
simulation, as the SFF model does not give any alignment
in repeat regions.
The methods based on the SFF model (the first block

of the table) outperform the baseline method (the Viterbi
algorithm on the three-state model), reducing the error
rate by 15–30%. In general, the methods that score indi-
vidual alignment columns are more accurate than the
Viterbi-based methods, which is not surprising, because
error rate as a measure of accuracy is closer to the gain
function they optimize.
The SFF-based algorithms use the tandem repeat motifs

predicted by the TRF, as well as approximate repeat inter-
vals (block-based methods). The TRF predictions are not
exact and may contribute to the overall error rate. We
attempted to quantify this effect by using the real tandem
repeat motifs and real boundary positions instead of the
TRF predictions (the second block of Table 1). We can
see that the use of TRF predictions indeed leaves space
for improvement, with the best performing algorithm

reducing the error rate by 37% compared to the base-
line. It would be interesting to explore other programs
for detecting tandem repeats, such as mreps [22] or
ATRhunter [23].
In addition to the baseline three-state model, we have

compared our approach to other alignment programs
Context [15] and Muscle [21]. The Context program,
which uses context-sensitive indels, was trained on a sep-
arate set of 200 alignments sampled from our model.
Muscle was run with default parameters. Both programs
produced alignments with higher error rate than the base-
line three-state model. In case of Context, the high error
rate may be due to insufficient training data or software
issues.
A traditional approach to the problem of aligning

sequences with repeats is to first mask repeats in each
sequence independently and then perform sequence
alignment. To compare to this approach, we have masked
tandem repeats using TRF and then used the three-state
model with posterior decoding. However, this introduced

Table 1 Accuracy of several decodingmethods on simulateddata

Alignment Repeat Block
Algorithm error sn. sp. sn. sp.

SFF marginalized 3.37% 95.97% 97.78% 43.07% 44.87%

SFF posterior 3.53% 95.86% 97.87% 42.70% 47.37%

SFF block 3.51% 93.09% 98.07% 36.50% 41.67%

SFF block Viterbi 3.91% 93.26% 97.96% 35.77% 40.66%

SFF Viterbi 4.04% 95.29% 97.85% 42.70% 48.95%

TANTAN block 5.05% 61.38% 97.48% 0.00% 0.00%

TANTAN block Viterbi 6.17% 67.86% 96.51% 0.00% 0.00%

SFF marginalized∗ 3.02% 98.93% 99.64% 77.01% 76.17%

SFF posterior∗ 3.42% 98.84% 99.51% 75.91% 80.93%

SFF block∗∗ 3.21% 97.70% 99.87% 80.66% 94.44%

SFF block Viterbi∗∗ 3.71% 98.12% 99.85% 81.75% 92.18%

SFF Viterbi∗ 3.94% 98.54% 99.45% 75.55% 83.47%

TANTAN block† 3.42% 60.45% 99.90% 0.36% 0.46%

TANTAN block Viterbi† 3.83% 61.74% 99.88% 0.00% 0.00%

Context 5.98%

Muscle 5.62%

3-state posterior 4.41%

3-state posterior with masked repeats†† 5.03% 99.23% 74.16% 7.66% 7.24%

3-state Viterbi (baseline) 4.78%

SFF marginalized� 3.63% 96.03% 97.74% 42.70% 43.33%

SFF marginalized�� 3.36% 95.99% 97.81% 40.88% 43.08%

∗ : method uses the real consensus motifs.
∗∗ : method uses the real consensus motifs and intervals from the real repeat blocks.
† : method uses intervals from the real repeat blocks.
†† : Columns with at least one masked character are considered as repeats.
� : Parameters for the three-state submodel were estimated from human-chicken alignment.
�� : Parameters for SFF submodel were perturbed randomly.



Nánási et al. Algorithms for Molecular Biology 2014, 9:3 Page 9 of 11
http://www.almob.org/content/9/1/3

Figure 6 Alignment error rate of three decodingmethods as a
function of the distance from the nearest repeat.

even more errors than running the same model on the
unmasked sequences, ignoring the repeat issue altogether.
One could object to our tests, since we have used the

same model for generating data and for testing. There-
fore, we were interested in how robust is our approach
to changes in model parameters. In the first experi-
ment, we estimated parameters of the 3-state submodel of
the SFF model from human-chicken alignments (human
chromosome 20) instead of human-dog alignments. In
the second experiment, we randomly perturbed param-
eters of the sunflower submodel (each parameter was
changed randomly by an additive term ranging from
0.02 to 0.05). In both cases, the results have changed
only slightly (Table 1), showing that our model is quite
robust.
The decoding methods that use the SFF model produce

an alignment and a repeat annotation. Comparing anno-
tation of each base in both sequences with the true repeat
annotation sampled from themodel (table columns repeat
sensitivity and specificity), we note that the marginal-
ized posterior decoding is the most sensitive, and the
block decoding the most specific method. Specificity was
quite high for all methods, low sensitivity for block-based

methods was probably caused by wrong repeat intervals
predicted by the TRF, since it improves markedly by using
correct intervals.
We have also compared the accuracy of predicting

repeat block boundaries (table columns block sensitiv-
ity and specificity). The number of blocks with correctly
predicted boundaries is quite low, most likely because
usually there are many high-probability alternatives with
slightly shifted boundaries. However, even though more
than half of the repeat blocks have some error in the
boundary placement, the SFF-basedmethods improve the
alignment accuracy most markedly close to repeat bound-
aries, as shown in Figure 6. This is expected, because far
from repeats, the model works similarly to the three-state
PHMM.
Since the alignments were sampled from the SFF model,

it is expected that the TANTAN model will be less accu-
rate than the SFF model on this data. Somewhat surpris-
ingly, TANTAN-based methods have even higher error
rate than the baseline which uses a much simpler model.
The TANTAN also had a significantly lower repeat sensi-
tivity than the SFF and did not predict almost any block
correctly. We believe that this is due to the inaccurate
modeling of the first copy of the repeat, since annotations
of TANTAN methods almost always skip the first copy of
the repeat motif in both sequences. Merging prefix states
P1, . . . , PK in both copies of the TANTAN submodel into
one chain of match states might improve the annotation
of the first copy of the motif and thus possibly also the
overall error rate.
To illustrate the feasibility of running our methods on

real genomic data, we attempted to improve the quality
of the alignment of the human chromosome 21 to the
dog genome. In particular, we have downloaded mam-
malian alignments from the UCSC genome browser [24]
and extracted the pairwise alignment of human (assem-
bly hg19) and dog (assembly canFam2) from the multiple
alignment for the human chromosome 21. In this way,
we have obtained 20.8M alignment columns. We used the
TRF to annotate tandem repeats in both species. Then we
selected short windows covering annotated repeats and
their surrounding regions (average window length was

Table 2 Evaluationof realignments of human-dog alignments (human chromosome 21)

Clean Detected errors
Algorithm transcripts Start Stop 5’splice 3’splice Nonsense Frameshifts
Out of (dataset size) 2207 2190 2180 18898 18898

3-state Viterbi 730 292 459 236 401 174 309

UCSC alignments 743 294 427 239 415 173 348

SFF posterior 750 288 425 251 384 174 358

SFF marginalized 682 292 425 251 384 174 438

SFF block 714 292 432 254 388 169 392
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Figure 7 Repeat-aware alignment may result in a significant change compared to the standard alignment methods. Lowercase letters
show a tandem repeat annotated by the SFF upstream of RefSeq gene NM_153681.While the first alignment aligned the start codon ATG in human
with GTG in dog, the SFF posterior aligned it to a potential ATG start codon.

109 bases) and realigned each window by several of the
methods described above.
Since we do not know the ground truth for these

alignments, only indirect evaluation is possible. We have
downloaded RefSeq, ENSEMBL, VEGA and UCSC gene
annotation catalogs from the UCSC genome browser and
selected 2207 (possibly overlapping) transcripts that cor-
rectly matched the human reference (correct start codons,
stop codons, splice sites, no in-frame stop codons). We
have used our alignments to remap each transcript into
the dog genome, and evaluated resulting transcripts for
correctness in the dog genome using the clean_genes tool
from the PHAST package [25].
Table 2 shows success and error rates of variety of indi-

cators of the resulting dog transcript annotation. The best
performing SFF posterior approach was able to remap 750
transcripts from the human to the dog genome (compared
to 730 transcripts using the baseline three-state Viterbi
approach and 743 transcripts in the original UCSC align-
ments). The SFF-based models tended to decrease the
error rate around 3’ splice sites; on the other hand, they
increase the error rate in some other parameters (e.g.
5’ splice sites or frame-shifts). Many of these differences
are due to small shifts in gap locations, but occasionally
we see a substantial alignment change, as illustrated in
Figure 7. However, problems inmapped transcripts do not
always indicate an alignment error, because gene and exon
boundaries may change in evolution due to indels or sub-
stitutions, particularly near 3’ ends of genes. Also note
that the UCSC alignments are extracted from multiple
alignments of many species, thus incorporating additional
information that was not available to our alignments
based on the SFF model.

Conclusions
We have designed two new pair hidden Markov models
for aligning sequences with tandem repeats and explored
a variety of decoding optimization criteria for their use.
The new SFF model coupled with appropriate decod-
ing algorithm reduces the error rate on simulated data,
especially around boundaries of tandem repeats. With
suitable heuristics, our approach can be used to realign
long genomic regions.

Our experiments are the first study comparing a variety
of different decoding criteria for PHMMs. Our criteria for
the SFFmodel optimize both the alignment and the repeat
annotation. Depending on the application, one or the
other may be of greater interest, and thus one may want to
marginalize over all alignments and optimize the annota-
tion, as in [8], or marginalize over labels and optimize the
alignment.
Our model does not take into the account the depen-

dencies between the repeat occurrences in the two
species. A tractable model allowing such dependencies
would be of great interest. Previously, we have explored
the problem of aligning two sequences simultaneously to
a profile HMM, but we were not able to design a simple
generative model for this purpose [16].
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