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Abstract

Model reduction is a central topic in systems biology and dynamical systems theory, for reducing the complexity of
detailed models, finding important parameters, and developing multi-scale models for instance. While singular
perturbation theory is a standard mathematical tool to analyze the different time scales of a dynamical system and
decompose the system accordingly, tropical methods provide a simple algebraic framework to perform these
analyses systematically in polynomial systems. The crux of these methods is in the computation of tropical
equilibrations. In this paper we show that constraint-based methods, using reified constraints for expressing the
equilibration conditions, make it possible to numerically solve non-linear tropical equilibration problems, out of reach
of standard computation methods. We illustrate this approach first with the detailed reduction of a simple
biochemical mechanism, the Michaelis-Menten enzymatic reaction model, and second, with large-scale performance
figures obtained on the http://biomodels.net repository.
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Background
Model reduction is a central topic in systems biology and
dynamical systems theory, for reducing the complexity
of detailed models, finding important parameters, and
developing multi-scale models for instance.
Indeed, for many of the problems in computation and

analysis of complex systems, the upper limit on the size
of the system that can be studied has been reached.
This limit can be very low, namely tens of variables for
system identification, symbolic calculation or bifurcation
of attractors of large dynamical systems. For instance,
the complexity of extant symbolic solvers of polynomial
equations is exponential in the number of indeterminates
and parameters, that sets a drastic limitation to the size of
the models that can be analyzed [1,2]. Some examples of
computational difficulties that arise when trying to apply
standard tools of algebraic geometry to systems biology
models can be found in [3]. Model reduction is a way
to bypass these limitations by replacing large scale mod-
els with models containing less parameters and variables,
easier to analyse.
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There are mathematical methods, based on singular
perturbations or on the theory of invariant manifolds,
allowing reduction of fully parametrized systems with
separation of time scales. More precisely, in dissipative
systems, fast variables relax rapidly to some low dimen-
sional attractive manifold called invariant manifold [4]
that carries the slow mode dynamics. A projection of
dynamical equations onto this manifold provides the
reduced dynamics. Numerical reductionmethods, such as
computational singular perturbation (CSP, [5]), intrinsic
low dimensional manifold (ILDM, [6]) exploit the sep-
aration of timescales of various processes and compute
approximations of the invariant manifold. Purely struc-
tural reduction methods can handle big models possibly
with lack of kinetic information [7]. However, the case
of biochemical models of intermediate size, with partially
known parameters and that ask for symbolic analysis, is
more open [8].
While singular perturbation theory is a standard math-

ematical tool to analyze the different time scales of a
dynamical system and decompose the system accordingly,
tropical methods provide a simple algebraic framework
to perform these analyses systematically in polynomial
systems, and in situations when model parameters are
known only by their orders of magnitude. Differential
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equations describing kinetics of biochemical reactions are
polynomial or become polynomial after decomposition
of reaction mechanisms into elementary steps. For these
models, quasi-equilibrium or quasi-steady state invari-
ant manifolds allowing reductions are given by systems
of algebraic equations [3]. A potentially crucial applica-
tion of tropical mathematics is to enumerate and describe
asymptotic solutions of algebraic systems of equations [9].
In particular, tropical solutions of polynomial equations
provide the leading terms of their solutions via curves
or in other terms via Newton-Puiseux series [10,11]. At
the basis of our method lies the idea that equilibration
of fast variables on invariant manifolds implies, at low-
est order, equilibration of at least two dominant mono-
mials, one positive and the other negative in the right
hand side of the differential equations. We have called
such a condition, similar to Kapranov’s condition [11] for
existence of Newton-Puiseux series with specified low-
est order terms, tropical equilibration. The crux of our
method lies in the computation of tropical equilibrations
that define some reduced truncated systems with fewer
parameters to identify, thus pointing to fewer experiments
to (in)validate the model [12,13]. Our method copes with
uncertain parameters by replacing exact values by orders
of magnitude and the reduction is performed symboli-
cally in both variables and parameters. With respect to
methods based on singular perturbations, this could be
less precise at lowest order, but it is more general in
implementation.
Solving the tropical equilibration problem boils down

to solving a system of equations in the min-plus algebra
(also known as the tropical semiring). For solving linear
tropical systems there are pseudo-polynomial algorithms,
i.e. whose complexity is polynomial in the size of the sys-
tem and in the absolute values of its coefficients [14]. In
the nonlinear case, the existence of tropical equilibrations,
which is equivalent to the problem of the intersection of
tropical varieties, was shown to be NP-complete [15]. In
this paper we show that constraint-based methods, using
reified constraints for expressing the equilibration con-
ditions, make it possible to numerically solve non-linear
tropical equilibration problems, out of reach of standard
computation methods.
We first illustrate this approach with the detailed reduc-

tion of a simple biochemical mechanism, the Michaelis-
Menten enzymatic reaction model. We detail the general
procedure to obtain truncated systems by identifica-
tion, through equilibration, of fast and slow species, and
relate the obtained reduced systems to the usual notions
of quasi-steady-state and quasi-equilibrium. Then, we
demonstrate that the approach is computationally feasi-
ble, and scales up properly, by treating in an automatic way
all the curated dynamical models of http://biomodels.net
repository [16].

Model reduction by tropicalization
We consider networks of biochemical reactions with mass
action kinetic laws. The structure of a reaction is defined
by a multiset rewriting rule as

n∑

i=1
αjiAi →

n∑

k=1
βjkAk

where Ai, i = 1, . . . , n denote the chemical species and
αji, βjk are positive integers named stoichiometric coeffi-
cients defining which species are consumed and produced
by the reaction j, 1 ≤ j ≤ r, and in which quantities.
The mass action law means that reaction rates are

monomial functions of the species concentrations xi, 1 ≤
i ≤ n and read

Rj(x) = kjxαj ,

where kj > 0 are kinetic parameters and we use the
shorthand notation xαj = xαj1

1 . . . xαjn
n .

The network dynamics is then described by the follow-
ing differential equations

dxi
dt

=
r∑

j=1
kjSijxαj . (1)

where Sij = βji − αji are entries of the stoichiometric
matrix.
In what follows, the kinetic parameters do not have

to be known precisely, they are given by their orders of
magnitude. A convenient way to represent orders is by
considering that

kj = k̄jεγj ,

where ε is a positive parameter much smaller than 1, γj is
an integer or, more generally, a rational number, and k̄j has
order unity. An approximate integer order can be obtained
from any real positive parameter by

γj = round(log(kj)/ log(ε)),

where round stands for the closest integer. Notice that
in this representation, small quantities have large orders.
Furthermore, the smaller ε, the better the separation
between quantities of different orders, indeed limε→0

ki
kj =

∞, if γi < γj.
We also define orders for species concentrations, using

a vector of orders a = (a1, . . . , an), such that x = x̄εa. We
suppose that various (a1, . . . , an) are integers or rational
numbers with a common denominator. In our method we
will calculate the concentration orders as solutions of the
tropical equilibration problem (see below).
First, let us replace Eqs. (1) by their equivalent rescaled

versions
dx̄i
dt

=
r∑

j=1
εμj−aikjSijx̄αj , (2)
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where

μj = γj+ < a,αj >, (3)

and <,> stands for the vector dot product.
The r.h.s. of each equation in (2) is a sum of multi-

variate monomials in the concentrations. The orders μj
indicate how large are these monomials, in absolute value.
For sufficiently small ε, monomials of different orders are
well separated. For instance a monomial of smallest order
μj < μj′ dominates the other monomials kj|Sij|xαj �
kj′ |Sij′ |xαj′ . One could see all these monomials as “forces”
acting on the chemical species. At steady state, the resul-
tant of all these forces should be naught. A consequence
of this is that the orders of dominant positive and neg-
ative forces should be equal. This is exactly our notion
of tropical equilibration that we introduced in [13]. More
precisely, we say the system (2) is tropically equilibrated iff

min(μj, Sij < 0) = min(μj′ , Sij′ > 0), for all i = 1, . . . , n
(4)

The tropical equilibration problem consists in solving
the system (4) for orders ai, 1 ≤ i ≤ n.
Another way to understand the condition (4) is via

Newton-Puiseux series. Suppose we want to solve the
polynomial equation

P(x, ε) =
∑

j
bjεγj xαj = 0, (5)

where αj are positive integers, γj are rational powers, and
bj are real coefficients. It is well known [10] that solutions
of this equation can be expressed as Newton-Puiseux
series, i.e. have the form

x(ε) = c1ε
a1
q + c2ε

a2
q + . . . ,

where ci are complex coefficients, a1 < a2 < . . . are
integers, q is a positive integer. By substituting x(ε) =
c1ε

a1
q (1+ x1(ε)) (where x1(ε) collects terms with positive

orders in ε) in (5) we get

P(x, ε) =
∑

j
bjc

αj
1 εγj+a1αj/q + r1(ε) = 0,

where r1(ε) collects higher order terms. Necessary condi-
tions for P(x, ε) = 0 read at lowest order

∑

j,γj+a1αj/q=m
bjc

αj
1 = 0 (6)

m = min
j

(γj + a1αj/q) (7)

In order to satisfy (6), the minimum in (7) should be
attained at least twice. Furthermore, if one looks for real
solutions ci ∈ R, then from (6) it follows that at least two
bj corresponding to the minimum (7) should have oppo-
site signs. This means that the lowest order a1/q in the

Newton-Puiseux series solution has to satisfy a tropical
equilibration problem.
We must emphasize that the tropical equilibration con-

dition is weaker than the steady state condition, and
makes sense also away from a steady state. In systems
with slow/fast variables, the fast variables are equilibrated
by compensation of dominant forces whose orders result
from the tropical condition (4). As a consequence, the fast
variables can be expressed as functions of the slow vari-
ables. However, both fast and slow variables can slowly
evolve under the influence of weaker, higher order forces.
This picture is valid as long as the relative dominance
relations between various monomial terms in Eqs.(2) are
preserved. This is true if the rescaled concentrations x̄i
stay between bounds, whereas ε is allowed to tend to zero.
To summarize, the tropical equilibration is a neces-

sary condition for the elimination of fast variables and
model reduction. As we showed in [13], in order to
become sufficient this condition should be combined with
a boundedness condition, called permanency:

Definition 0.1. The system (1) is permanent, if there
are two constants C− > 0 and C+ > 0, a set of renor-
malization exponents ai, and a function T0 of the initial
conditions, such that after renormalization we have

C− < x̄i(t) < C+, for all t > T0(x(0)) and for every i.

A simple example, theMichaelis-Menten reduction
The Michaelis-Menten enzymatic reaction network con-
sists of three reactions:

S + E
k1�
k−1

ES k2→ P + E,

where S,ES,E,P represent the substrate, the enzyme-
substrate complex, the enzyme and the product, respec-
tively.
The corresponding system of polynomial differential

equations reads:

x′
1 = −k1x1x3 + k−1x2
x′
2 = k1x1x3 − (k−1 + k2)x2
x′
3 = −k1x1x3 + (k−1 + k2)x2
x′
4 = k2x2

(8)

where x1 = [S], x2 = [ES], x3 = [E], x4 = [P].
It can be easily checked that the system has two alge-

braic invariants: (x2 + x3)′ = 0, which implies

x2 + x3 = e0, (9)

where e0 is a positive constant (the total amount of
enzyme), and

x1 + x3 + x4 = s0 (10)
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where s0 is a positive constant (the total amount of sub-
strate and product). These conservation laws can be used
to reduce the model by elimination of x4 (by (10)) and x3
(by (9)). It follows:

x′
1 = −k1x1(e0 − x2) + k−1x2
x′
2 = k1x1(e0 − x2) − (k−1 + k2)x2

(11)

The constraint x2 ≤ e0 resulting from the elimination is
also to consider, but we will see that all equilibrations of
the above equations already imply it.

Tropical equilibration equations
By rescaling variables and parameters, we get xi = x̄iεai ,
1 ≤ i ≤ 2, k1 = k̄1εγ1 , k−1 = k̄−1εγ−1 , e0 = ē0εγe .
The tropical equilibration equations for the reduced

system read:

γ1 + γe + a1 = min(γ1 + a1, γ−1) + a2 (12)

γ1 + γe + a1 = min(γ1 + a1,min(γ−1, γ2)) + a2 (13)
The set of integer (or rational) orders endowed with the

⊕ = min and ⊗ = + operations is a semi-field, called
min-plus algebra or tropical semi-field [17]. In this semi-
field, −∞ plays the role of 0 and 0 plays the role of 1.
Themultiplicative inverse of a is denoted−a. Our tropical
equilibration problem means solving a set of polynomial
equations in this semi-field. Using these notations and
properties of semi-field operation, the tropical equations
become:

γ1 ⊗ γe ⊗ a1 ⊗ (−a2) = (γ1 ⊗ a1) ⊕ γ−1 (14)

γ1 ⊗ γe ⊗ a1 ⊗ (−a2) = (γ1 ⊗ a1) ⊕ γ−1 ⊕ γ2 (15)

Classical Michaelis-Menten reduction
The classical derivation of the Michaelis-Menten reduc-
tion is based on the behaviour of the variable x2 for the
complex concentration. Using (8) it follows that:

x′
4 = Vmx2/e0

where Vm = k2e0 is the maximum value of the production
rate x′

4, since x2 ≤ e0.
The variable x2 satisfies equilibration relations and can

be expressed as a function of a slow variable (either the
substrate x1 when x2 is small, or the sum x1 + x2 in
general) in two situations: quasi-stationarity and quasi-
equilibrium.
The quasi-stationarity corresponds to setting x′

2 to zero
and is justified by the smallness of x2 that can be con-
sidered a fast species (radical). More precisely one has
k1x1(e0 − x2) − (k−1 + k2)x2 = 0, leading to x2 =
x1e0/(Km + x1), where Km = (k−1 + k2)/k1, i.e.

x′
4 = Vmx1/(Km + x1) (16)

The quasi-equilibrium corresponds to setting k1x1
(e0 − x2) − k−1x2 = 0, meaning zero net flux of the
first reaction in the mechanism. This leads to x2 =
x1e0/((k−1/k1) + x1), i.e.

x′
4 = Vmx1/((k−1/k1) + x1) (17)

This is justified by having a very fast transformations in
the direct and reverse sense by the first reaction, much
faster than the transformations by the second reaction. In
this case both x1 and x2 are fast, but their sum x1 + x2 is
slow.
We show next, in Section “Tropical equilibrations and

model reductions”, that analysis of tropical equations pro-
vide the conditions for the asymptotic validity of quasi-
stationarity and quasi-equilibrium approximations and
also the exhaustive list of asymptotic regimes.

Geometrical interpretation
It was discussed in [13] that there is a bijection between
the set of solutions of each tropical equation and parts of
the tropical curves of the polynomials defining the ordi-
nary differential equations. A tropical curve is defined
as the locus of species concentration values (x, y) where
at least two monomials of the considered polynomial
are equal and larger than all the others. In logarithmic
scale, this locus is made of lines, half-lines, or line seg-
ments [13,18]. There is one tropical curve for each differ-
ential equation. For instance, the tropical curve defined by
the polynomial −k1e0x1 +k1x1x2 +k−1x2 is made of three
half-lines with a common origin depicted in Figure 1,
namely

log(x2) = log(e0), log(x1) > log(k−1/k1) (18)

log(x1) = log(k−1/k1), log(x2) > log(e0) (19)

log(x2) = log(x1)+log(e0k1/k−1), log(x1) < log(k−1/k1)
(20)

The solutions of the tropical equation (14) form two
branches, corresponding to the two situations (γ1 ⊗ a1) ⊕
γ−1 = (γ1 ⊗ a1) and (γ1 ⊗ a1) ⊕ γ−1 = γ−1, respectively.
These are two half-lines in the plane of concentration
orders:

a2 = γe, γ1 +a1 < γ−1

(21)

a2 = a1 + γ1 + γe − γ−1, γ1 + a1 > γ−1

(22)
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Figure 1 Tropical curves in the planes of concentrations and orders for the two variables Michaelis-Mentenmodel. Tropical curves are
defined as the locus of points where two monomials of a polynomial describing a differential equation are equal. The tropical curves for each
differential equations are indicated by colors, blue for the first equation and red for the second equation. The vertical half-line of each of the tripods
does not carry tropical equilibrations because it corresponds to equality of two monomials of the same sign. The horizontal and the oblique
half-lines of the tripods carry tropical equilibrations. We have represented the two situations when k−1 > k2 and when k−1 < k2. All the tropical
equilibrations are double (both variables are equilibrated) in the first case, and can be simple (only one variable is equilibrated) in the latter.

The two branches of solutions can be also related to
parts of the tropical curves corresponding to the equili-
bration of monomials of different signs. More precisely
(21) corresponds to (18), and (22) corresponds to (20). The
branch (19) of the tropical curve corresponds to the equal-
ity of two positive monomials and has no correspondence
in the set of tropical equilibrations.
Similarly to computing steady states as intersections of

null-clines, we are considering multiple tropical equilibra-
tions as intersections of tropical curves.
We therefore consider the second tropical equation (15),

in two situations γ−1 ⊕ γ2 = γ−1 and γ−1 ⊕ γ2 = γ2. In
the first case the tropical equation (15) is equivalent to the
tropical equation (14) (also, the tropical curves coincide).
Therefore, the two solutions (21) and (22) equilibrate both
equations. In the second case, the solutions of the trop-
ical equation (15) form two branches, corresponding to
(γ1 ⊗ a1) ⊕ γ2 = γ1 ⊗ a1 and (γ1 ⊗ a1) ⊕ γ2 = γ2, respec-
tively. They correspond to two half-lines in the plane of
orders (a1, a2), namely a2 = γe, a1 < γ2 − γ1 and
a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1. A simple graph-
ical inspection of the relative positions of these half-lines
with respect to the half-lines carrying solutions of the first
tropical equation shows that there are four branches of
tropical equilibrations:

a2 = γe, a1 < γ2 − γ1 (23)

a2 = γe, γ2 − γ1 < a1 < γ2 − γ1 (24)

a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1 (25)

a2 = a1 + γ1 + γe − γ−1, a1 > γ−1 − γ1 (26)

The branch (23) equilibrates the two variables. The
branch (25) equilibrates only the second variable, whereas
the branches (24), (26) equilibrate only the first variable.

Tropical equilibrations and conservation laws
The reduced Michaelis-Menten mechanism with two
dynamical variables has been obtained by elimination of
a variable using an exact conservation law. It is interest-
ing to compute the tropical equilibrations directly, in the
unreducedmodel. In this three variables model, two of the
equilibrium equations are identical. Like for computation
of steady states, we need the conservation law as an extra
constraint. If we treat this constraint exactly, we obtain the
reduced model. An approximate treatment of Eqs. (8), (9),
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considering equilibration of dominant terms, leads to the
tropical problem:

γ1 ⊗ a1 ⊗ a3 = γ−1 ⊗ a2 (27)

γ1 ⊗ a1 ⊗ a3 = (γ−1 ⊗ a2) ⊕ (γ2 ⊗ a2) (28)

a2 ⊕ a3 = γe (29)
This tropical problem is different from (14), (15) and

leads to different solutions in general. Firstly, let us
notice that elimination is not possible in semi-fields,
because there is no additive inverse in general. Hence,
(27), (28) (29) can not be reduced to an equivalent system
of two tropical equations. Secondly, dominant monomial
equilibration in the reduced model does not always cor-
respond to monomial equilibrations in the unreduced
model. A typical example is the monomial x1x3 that
becomes the difference x1e0 − x1x2 in the reduced model.
The two monomials can equilibrate each other in the
reduced model, but the same quantity is an unique, un-
equilibrated monomial in the full model.
There are six branches of tropical solutions of the sys-

tem (27), (28), (29). Two branches are obtained when
γ−1 ⊗ a2 = γ−1. In this case the two tropical
equations (27), (28) are identical. Depending on a2 ⊕a3 =
a2, or a2 ⊕ a3 = a3 we get:

a2 = γe, a1 < γ−1 − γ1 (30)

a2 = a1 + γ1 + γe − γ−1, a1 > γ−1 − γ1

(31)

These branches correspond to equilibrations of all the
variables.
When γ−1 ⊗ a2 = γ2 the two tropical Eqs. 27, (28)

are incompatible. Depending on a2 ⊕ a3 = a2, or a2 ⊕
a3 = a3 and further choosing only one of the two tropical
Eqs. 27, (28) we get the following branches:

a2 = γe, a1 < γ−1 − γ1 (32)

a2 = γe, a1 < γ2 − γ1 (33)

a2 = a1 +γ1 +γe −γ−1, a1 > γ−1 −γ1, (34)

a2 = a1 + γ1 + γe − γ2, a1 > γ2 − γ1 (35)

In the branches (32), (34), the variables x2, x3 are not
equilibrated, whereas in the branches (33), (35), the vari-
able x1 is not equilibrated.
Comparison of Eqs. (30)-(35) and Eqs. (21)-(26) proves

that the tropical equations of the unreduced model have

the same set of solutions as the reduced model. However,
the branch of solutions (33) equilibrates all the variables
in the reduced model and does not equilibrate the vari-
able x1 in the reduced model. The reason is exactly the
one given above: the monomial x1x3 is dominant and un-
equilibrated in the unreduced model, becomes x1e0−x1x2
with equilibrated monomials in the reduced model.

Tropical equilibrations andmodel reductions
Tropical equilibrations can be used for model reduction.
The reduction starts by tropical truncation. We call trop-
ically truncated model the model obtained by elimination
of all dominated monomials from the r.h.s. of the ordinary
differential equations. The next step is ordering the vari-
ables according to the values of the exponentsμi−ai. This
allows to determine which variables are slow and fast.
An additional construction is needed in the case when

the tropically truncated system of fast variables has con-
servation laws that are not conserved by the un-truncated
system. The conservation laws define species pools that
are supplementary slow variables. The pools follow differ-
ential equations involving previously dominatedmonomi-
als.
For instance, in the two variables Michaelis-Menten

model, we found essentially two types of reduced
models, corresponding to quasi-equilibrium and quasi-
stationarity approximations [19].
The branch (21) of tropical solutions leads to the follow-

ing truncated system:

x′
1 = −k1x1e0 + k−1x2
x′
2 = k1x1e0 − k−1x2

(36)

This truncated system has conserved quantity z = x1 +
x2. The variable z is not conserved by the full model
described by (11). Indeed, addition of Eqs. (11) leads
to z′ = −k−1x2. As the variable x2 can be eliminated
from −k1x1e0 + k−1x2 = 0 and x1 + x2 = z we have
the reduced dynamics z′ = −kzz, where kz = k−1/(1 +
k−1/(k1e0)). For small ε, we can consider that kz ∼ εγz ,
with γz = γ−1 − min(0, γ−1 − γ1 − γe). Because μ1 −
a1 = γ1 + γe, μ2 − a2 = γ1 + γe + a1 − a2 = γ−1
the relation kz > μ1 − a1, kz > μ2 − a2 are always
satisfied guaranteeing that z is slower than x1, x2. The
form (36) of the truncated equations and the conservation
of x1 + x2 by the fast dynamics shows that this case cor-
responds to quasi-equilibrium of the first reaction in the
Michaelis-Menten model, as described in Section “Classi-
cal Michaelis-Menten reduction”, equation 17.
The branches (23) and (24) lead to quasi-equilibrium

with the following truncated system:

x′
1 = −k1x1(e0 − x2)
x′
2 = k1x1(e0 − x2)

(37)
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These cases correspond to saturation of the enzyme (x2
has the same order as e0). A slow variable z = x1 + x2 has
to be introduced as before, but the reduced dynamics is
z′ = −k−1x2 = −k−1e0.
The branch (25) leads to quasi-stationarity of the

enzyme/substrate complex. In this case we have the trop-
ical truncated system:

x′
1 = −k1x1e0
x′
2 = k1x1e0 − k2x2

(38)

The variable x1 is not equilibrated, which still allows
for model reduction because this variable is slow. The
fast variable x2 is equilibrated, and the equilibration
equation corresponds to the classical notion of quasi-
stationary approximation, as described in Section “Clas-
sical Michaelis-Menten reduction”, equation 16. In this
case, μ1 −a1 = γ1 +γe, μ2 −a2 = γ1 +γe +a1 −a2 = γ2.
The condition that x1 is slower than x2 reads μ1 − a1 >

μ2 − a2 and we get the additional condition γ1 + γe > γ2,
which is a low enzyme concentration condition.
The branch (26) leads to quasi-stationarity of the sub-

strate with the following truncated system:

x′
1 = −k1x1e0 + k−1x2,
x′
2 = −k2x2

(39)

The variable x2 is not equilibrated, which is allowed only
if this variable is slower than x1. In this case, μ1 − a1 =
γ1 +γe, μ2 −a2 = γ2. The condition that x2 is slower than
x1 readsμ1−a1 < μ2−a2 and leads to the additional con-
dition γ1 + γe < γ2, which is a high enzyme concentration
condition.
Finally, the branch (24) leads to the truncated system:

x′
1 = −k1x1(e0 − x2)
x′
2 = −k2x2

(40)

The variable x1 is equilibrated, but it can not satisfy per-
manency. Indeed, at fixed x2 this variable will converge to
zero. Therefore, this tropical equilibration does not lead
to a reduced model.

Tropical equilibration as a constraint satisfaction
problem
As explained in Section “Model reduction by tropical-
ization”, given a biochemical reaction system with its
Mass-Action kinetics, and a small ε, the problem of trop-
ical equilibration is to look for a rescaling of the variables
such that the dominating positive and negative term in
each ODE equilibrate as per Eqs. (4), i.e., are of the same
degree in ε.
Section “A simple example, the Michaelis-Menten

reduction” showed that it is possible to iteratively reduce
the equilibration problem to a linear system of equations
for each possible pair of positive and negative dominating

monomial. It is actually possible to consider fewer pairs by
restricting that search to the pairs denoting edges of the
Newton polygon [13]. Nevertheless, the number of linear
systems to consider remains exponential in the number
of species, and may lead to redhibitory computational
costs, especially when handling biochemical systems with
hub molecules, i.e., molecules involved in a high num-
ber of reactions (e.g., E2F, p53, cMyc in cell-cycle control
or NFκB in signalling), which corresponds to a Newton
polygon with many vertices.
In order to tackle that complexity, we propose a numer-

ical approach based on Constraint Programming, that
encodes the equilibration problem as a Constraint Satis-
faction Problem (CSP) [20-22] and uses reified constraints
to prune the search space. Constraint Programming is a
paradigm that has showed great success at solving combi-
natorial decision or optimization problems, in particular
for real-world instances of NP-hard problems, e.g., in the
field of production planning and scheduling. It is there-
fore an interesting way to approach the combinatorial
explosion described above.
In presence of invariants (conservation laws) in the orig-

inal system, Section “Conservation law constraints” has
shown that some constraints related to rescaling need be
added.We have shown in [23] that finding these conserva-
tion laws can be efficiently solved by constraint methods.
Here we will thus assume that the conservation laws are
given in input. In our prototype implementation, both
the computation of conservation laws and the following
equilibration are performed for a given system.

Reified constraints
Key to the modeling of tropical equilibration problems as
CSP are reified constraints. Reified constraints are special
constraints that link in a bidirectional way the value of a
boolean variable to the satisfaction of another constraint.
They allow for powerful cuts in the search space by prop-
agating the truth value of some constraints of the problem
to the truth value of the Boolean variable, and vice versa.
For instance, the reified constraint

B# <==> X# = Y

states that the Boolean variable B is true (i.e. equal to 1) if
and only if the constraints X = Y is satisfied. That con-
straint posts the constraint X = Y (resp. X �= Y ) as soon
as B gets value 1 (resp. 0), and vice versa, sets B = 1
(resp. B = 0) as soon as X = Y (resp. X �= Y i.e. when the
domains of X and Y become disjoint).
For the tropical equilibration problem, these constraints

are at the core of our representation of the minimum
constraints as they enforce the propagation of existing
knowledge before branching on the two possible values.
Indeed, if A is the minimum of B and C, you can derive
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many things on the domains of A, B and C before even-
tually trying A = B or A = C. For instance it is safe to
add that A ≤ B and A ≤ C, but also if you have, from
other equations, that B ≥ minB and C ≥ minC then you
can add the fact that A ≥ min(minB,minC). If later you
obtain that actually A = B then you can enforce C ≥ B,
etc. Section “Minimum constraints” shows in more detail
how reified constraint do precisely this kind of conditional
addition of cuts and can therefore be used to handle mini-
mum constraints while postponing enumerative search as
much as possible.

Variables and domains
For practical reasons, mainly the lack of an efficient
solver over rationals with reified constraints, we use a
finite domain solver and therefore only look for inte-
ger solutions (whereas solutions are rational). In practice
this did not seem to change much the nature of results,
see Figure 2. Extensions of the approach to cope with
half-integer solutions or with rational solutions with a
common, small denominator are straightforward.
For each original equation dxi/dt, 1 ≤ i ≤ n is intro-

duced a variable ai ∈ Z that is used to rescale the system
by posing xi = εai x̄i. These are the variables of our CSP.
Note that they require a solver handlingZ like for instance
SWI-Prolog [24,25] with the clpfd library by Markus
Triska, which we used for our implementation.

Tropical equilibration constraints
For each differential equation that should be equilibrated
is a list of positive monomials M+

i , and a list of negative
monomials M−

i . The degrees in ε of all these monomials
are integer linear expressions in the ai. Now, to obtain an
equilibration one should enforce for each i that the min-
imum degree in M+

i is equal to the minimum degree in
M−

i . This corresponds to the Eqs. 4. We will see how they
can be implemented with reified constraints, but for now,

let us assume a constraint min(L, M)| that enforces that
the variable M of Z is the minimum value of a list L of lin-
ear expressions over variables of Z. We have in our CSP,
for each 1 ≤ i ≤ n, min(PositiveMonomialDegrees, M)
and min(NegativeMonomialDegrees, M).

Conservation law constraints
The second kind of constraint comes from conservation
laws. Each conservation law is an equality between a
linear combination of the xi and a constant ci. By rescal-
ing, we obtain a sum of rescaled monomials equal to
εlog(ci)/ log(ε)c̄i. We want this equality to hold when ε goes
to zero, which implies that the minimal degree in ε in the
left hand side is equal to (the round of) the degree of the
right hand side. Since once again the degrees on the left
are linear combinations of our variables ai, this is again
a constraint of the form: min(ConservationLawDegrees,
K) where K is equal to round(log(ci)/ log(ε)). This corre-
sponds to the tropical equation (29).

Minimum constraints
Furthermore, if the system under study is not at steady
state, the minimum degree should not be reached only
once, which would lead to a constant value for the corre-
sponding variable when ε goes to zero, but at least twice.
This is the case for the example treated in [12]. The con-
straint we need is therefore slightly more general than
min/2: we need the constraint min(L, M, N) which is true
if M is smaller than each element of L and equal to N
elements of that list. Note that using CLP notation, we
have:

min(M,L) : − C# >= 1, min(M,L, C).

In order to enforce that the minimum is reached at
least a required number of times, one obvious solution
is to try all pairs of positive and negative monomials and

Figure 2 Comparison of the theoretical and computed equilibrations in the cases k−1 > k2 and k−1 < k2. The circles are equilibrations
computed for the simplified two variables Michaelis-Menten model, the crosses are for the full three variables model. The lines indicate the
theoretical equilibrations.
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count the successful pairs [26]. However, this is not nec-
essary, the min(L, M, N) constraint directly expresses the
cardinality constraint on the minimums and can be imple-
mented using reified constraints to propagate information
between L, M and N in all directions, without enumera-
tion. Using SWI-Prolog notations, the implementation of
min/3 by reified constraints is as follows:

min([ ] ,, 0).
min([ HT] ,M,C) : −M# =< H, B# <==>

M# = H,C# = B + CC,min(T,M,CC).

The translation of this predicate into words is roughly as
follows, first ignoring the counts: M is smaller than a list
with head H and tail T, if it is smaller than the tail T and it
is smaller than the head, i.e., M≤H. Now, we also impose
that the valueM is reached C times as follows: it is reached
CC times in the tail and C = B + CC where B is a variable
equal to 1 iff M is equal to the head and 0 otherwise. Note
that this latest statement is enforced through a reified con-
straint, it will therefore not lead to immediate branching
but to the propagation of as much information as possi-
ble (e.g., if some values in the list are already known to
be strictly greater than others, the corresponding boolean
for each of them will be set to 0, and thus the sum will
by necessity enforce some other values to be equal to the
required minimum).
This concise and portable implementation will probably

improve when the minimum and minn global constraints
are available (see [27] for a reference). However it already
proves very efficient as demonstrated in the next section.
When C is equal to one, we can fall back to using the

built-in min construct in a constraint (e.g., M #= min(L1,
min(L2, L3))). Some preliminary benchmarking showed
that the reified version is more efficient if the length of the
list is greater than 3 or 4.

Enumeration strategy
Constraints over finite domains come with domain fil-
tering algorithms which dynamically prune the domain
of variables when the domain of other variables change
in a constraint. However this strategy is not complete
and must be combined with a search procedure for vir-
tually enumerating all possible values of the variables.
For this application we obtained good performances with
dichotomic search by bissecting the domain of the vari-
ables (bisect option in SWI-Prolog) without any particular
heuristics for choosing the variables.
Note that since this approach is numerical, contrary to

solving symbolically an exponential but finite number of
linear systems as done in Section “A simple example, the
Michaelis-Menten reduction” and in [13], there can be
an infinite number of solutions. This situation denotes an

under-constrained linear system and remains to be inter-
preted biologically. In practice bounds are put on variables
in order to force finiteness. This is not a restriction in
practice since biochemical species’ concentrations usually
do not vary by more than a hundred of magnitude orders.
Furthermore, in order to speed-up the computation of

all solutions in such large domains, we used an iterative
domain expansion strategy: the problem is first tried with
a domain of [−2, 2] for all variables , i.e., equilibrations are
searched by rescaling in the 10−2, 102 interval. If that fails,
the domain is doubled and the problem tried again until a
limit of 10−128, 10128.

Computation results on Biomodels.net
To benchmark our approach, we applied it systematically
to all the dynamical models of the curated part of the
http://biomodels.net repository [16] of biological systems,
with ε set arbitrarily to 0.1.
We used release r24 from 2012-12-12 which includes

436 curated models. Among them, only 55 models have
non-trivial purely polynomial kinetics (ignoring events if
any). Our computational results on those are summarized
in Table 1, where the first column indicates whether a
complete equilibration was found, and the times are in
seconds.
The domain expansion strategy coupled with dicho-

tomic search by domain bisections allowed us to gain two
orders of magnitude of computation time on the biggest
models.
Only one of the models (number 002) used values far

from 0 in the equilibration (up to ε40) and has no complete
equilibration if the domain is restricted to [−32, 32]. This
is because themodel is written with units such that the ini-
tial concentrations are of the order 10−21, translating the
search accordingly. We thus do not believe that enlarging
the domains even more would lead to more equilibra-
tions. Nevertheless, choosing a smaller ε might increase
the number of equilibrations.
18 of the 23 models for which there is a complete equi-

libration are actually under-constrained and appear to
have an infinity of such solutions (typically linear rela-
tions between variables). For the 5 remaining ones, we
computed all complete equilibrations as shown in Table 2.

Table 1 Number of models of the BioModels repository,
with a polynomial kinetics, for which tropical
equilibrations were found or not, with corresponding size
of themodel and computation time

Found #models Variables (avg/min/max) Time in seconds
(avg/min/max)

yes 23 17.348/3/ 86 0.486/0.004/2.803

no 32 17.812/1/194 0.099/0.000/1.934

http://biomodels.net
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Table 2 Number of equilibrations and computation time
for themodels of the BioModels database with finitely
many numerical solutions

Model # variables # equilibrations Total time (s)

BIOMD0000000002 13 18 53

BIOMD0000000122 14 9 4.1

BIOMD0000000156 3 1 <1ms

BIOMD0000000229 7 1 0.07

BIOMD0000000413 5 5 0.4

Conclusions
In this paper we have shown that constraint-based meth-
ods can be efficiently used to numerically solve tropical
equilibration problems in biological models of real-size
in the BioModels.net repository. These calulations are
important for model reduction and for determining the
unknown orders of the variables. Once the orders of the
variables are known, the rapid variables can be identified
and the system reduced to a simpler one. This trunca-
tion, described in Section “Tropical equilibrations and
model reductions” coupled with the proposed constraint-
based method for finding equilibrations therefore pro-
vides an automatic way to reduce models and to identify
fast/slow variables. We have started the application of
such technique on non-trivial models provided by biolo-
gists and modellers and hope to be able to improve both
the understanding, through that identification of fast/slow
variables, and the analysis, through the size reduction, of
those models.
Even with the progress of high-throughput technolo-

gies, having more focused models, with fewer species and
parameters to measure, will definitely permit an improve-
ment in the quality and speed of development of the
models. Furthermore, the structural methods for com-
paring models in model repositories, such as [7], can be
refined by filtering the structural reduction relationships
according to the kinetics of the reactions and the tropical
reasoning on the magnitude orders.
In many cases, it makes sense biologically to only look

for partial equilibrations. Strategies to decide when such
decision has to be made remain unclear. Nevertheless
the framework of partial constraint satisfaction and more
specifically Max-CSP [28] would allow us to easily handle
the maximization of the number of equilibrated variables.
One of the limits of this approach, is that it is not

particularly well suited to equilibration problems with
an infinite number of solutions. As discussed at the end
of previous section, in such situations symbolic solu-
tions would be more appropriate. Nevertheless, even the
approximate detection of such a case by the very high
number of (bounded) numerical solutions was shown to
be not very costly in practice.
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