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Abstract

Background: Metagenomics is the study of genetic materials derived directly from complex microbial samples,
instead of from culture. One of the crucial steps in metagenomic analysis, referred to as “binning”, is to separate reads
into clusters that represent genomes from closely related organisms. Among the existing binning methods,
unsupervised methods base the classification on features extracted from reads, and especially taking advantage in
case of the limitation of reference database availability. However, their performance, under various aspects, is still
being investigated by recent theoretical and empirical studies. The one addressed in this paper is among those efforts
to enhance the accuracy of the classification.

Results: This paper presents an unsupervised algorithm, called BiMeta, for binning of reads from different species in a
metagenomic dataset. The algorithm consists of two phases. In the first phase of the algorithm, reads are grouped
into groups based on overlap information between the reads. The second phase merges the groups by using an
observation on l-mer frequency distribution of sets of non-overlapping reads. The experimental results on simulated
and real datasets showed that BiMeta outperforms three state-of-the-art binning algorithms for both short and long
reads (≥ 700 bp) datasets.

Conclusions: This paper developed a novel and efficient algorithm for binning of metagenomic reads, which does
not require any reference database. The software implementing the algorithm and all test datasets mentioned in this
paper can be downloaded at http://it.hcmute.edu.vn/bioinfo/bimeta/index.htm.
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Background
As the most diverse forms of life on Earth, microbes
directly affect on human lives. Thus, the understanding
of microbial communities brings benefits in many fields,
e.g., human health, food production, and earth sciences
[1]. Initial efforts in studying microbial samples usually
use traditional methods which only focus on single species
in laboratory culture. However, themethods are limited in
use because 99% percent of microbes cannot be cultured
in the laboratory [2].Moreover, because a sample obtained
from a microbial community may contain many species
which interact with both each other and their habitats, a
clone culture cannot represent the true state of affairs in
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nature [3]. Due to the limitations, the traditional methods
are gradually replaced by metagenomics which enables
the direct study on genomes from an environmental sam-
ple without isolating and culturing single organisms in
laboratory.
Sanger sequencing technology is used in some initial

metagenomic projects [4,5]. Recently, most projects use
next generation sequencing technologies, such as 454
pyrosequencing, Illumina Genome Analyzer, AB SOLiD
[6,7]. The new sequencing technologies can produce mil-
lions of reads with much faster speed and lower cost.
However, the length of sequences generated by these tech-
nologies are very different. For example, Illumina read
length is from 50 to 300 bp, while Roche 454 System can
produce reads with the length of 700 bp [8]. Thus, both of
analysis tools for long reads and short reads are necessary
for metagenomic projects.
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Due to a fact that a metagenomic sample contains reads
from various organisms, an important problem needed to
be solved in a metagenomics project is to separate reads
into groups of closely related organisms. It is referred
to as binning problem. Binning methods can be roughly
classified into three main categories: supervised, semi-
supervised, and unsupervised methods.
Supervised methods require reference databases con-

taining genomes or sequences with known taxonomic
origin. They can be further divided into two kinds of
methods: composition-based and homology-based meth-
ods. Homology-based algorithms [9,10] usually use an
alignment tool (e.g., BLAST) for directly aligning DNA
fragments to reference databases, whereas composition-
based algorithms extract compositional features (e.g.,
oligonucleotide frequencies, GC-content [11-13]) from
reference genomes and use them for classification.
Because the majority of microorganisms on Earth remain
undiscovered [14], those methods may be not efficient in
practice.
Some methods known as semi-supervised techniques

are based on identifying variants of highly conserved
genes (e.g., recA, 16S rRNA [15]) to classify reads. How-
ever, a drawback of the methods is that some species may
contain multiple markers and a maker may be shared by
many species [16]. Furthermore, in some species, there is
a small ratio of their reads containing 16S rRNA genes. For
instance, only 0.4%, and 2.7% of Xylella- and Flexibacter-
like species reads contain 16S rRNA genes, respectively
[17].
To deal with the limited availability of reference

databases, some unsupervised methods were proposed
to perform the classification using features extracted
from reads themselves. LikelyBin [18], a method for bin-
ning long reads, was implemented by using a Markov
Chain Monte Carlo approach in a l-mer feature space.
The approach models a collection of reads from multi-
ple genomes as multiple stochastic processes. Not using
fixed-order Markov chains as LikelyBin, Scimm [19]
used interpolated Markov models, so-called variable-
order Markov chains, to cluster reads. MetaCluster 2.0
[20], MetaCluster 3.0 [21] and MCluster [22] are also
recent algorithms for classifying long reads. Because
of only using a compostional feature, not surprisingly,
most of the methods are not suitable for binning of
short reads which do not contain enough compositional
information.
It is quite obvious that unsupervised metagenomic clas-

sification for short reads is a challenging task which
attracts various methodologies. Instead of only using a
compositional feature, some recent methods focus on
classifying of short reads by using other features from
data observations or a combination of different features.
AbundanceBin [23], and Olga et al. [24] are recent binning

algorithms for short reads that only rely on abundance
levels of genomes. Those methods are able to separate
reads which belong to genomes of different abundance
levels into different groups, but they cannot classify reads
from genomes of similar abundance levels. MetaClus-
ter 4.0 [25] is a hybrid method which separates reads
into groups using sequence overlapping of the reads,
then the method classifies the groups basing on fea-
tures extracted from all reads in each group. MetaCluster
5.0 [26] is an extension of MetaCluster 4.0 for deal-
ing with the difference of genome abundance levels in
data. TOSS [27] is another hybrid algorithm which clas-
sifies reads basing on the classification of l-mers. This
method groups unique l-mers into clusters, and then
merges the groups by using an additional property that
most of l-mer repeats (with a sufficient value of l) in a
set of metagenomic reads are specific to an individual
genome. It is definitely stated in [27] that the algorithm
is only suitable for separating reads from genomes with
similar abundance levels and sharing large phylogenetic
distances.
This paper presents a novel unsupervised algorithm

to classify reads from different organisms in a metage-
nomic dataset, called BiMeta (i.e., A Binning algorithm
for Metagenomic reads). As the existing hybrid meth-
ods mentioned above, BiMeta firstly performs a prepro-
cessing phase which groups reads basing on sequence
overlapping information, then it merges the read groups
using features extracted from themselves. A new idea
contributed in this study different from the others is
a way of extracting compositional features of the read
groups. Instead of extracting the features from all reads
of each group, we compute l-mer frequency distribution
of their subgroups which only consists of non-overlapping
reads. The idea is motivated by an observation conducted
by this study that the l-mer frequency distribution of
a group of non-overlapping reads are unique to each
genome.
The next section presents the details of the observation

and the proposed algorithm in which the observation is
applied. The experiments results and discussions section
demonstrates the strength of BiMeta on both simulated
and real metagenomic datasets. The final section is for
conclusions.

Methods
Notations and terms
This section presents some notations and clarifies terms
needed for the statements and analysis ofmethods utilized
in this study.

• Given two DNA reads r and s. If r and s are sampled
from the same genome, we denote it by r �� s.
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• Given two genomes g1, g2, for example:

g1 =“CCTAAGAACGGTT”,
g2 =“AAGTGTGCTTTAT”.

Let’s consider 4 following reads possibly extracted
from g1:

r g11 =“CCTAA”(stating at position 1 in g1),
r g12 =“AAGAA”(at position 4 in g1),
r g13 =“AACGG”(at position 7 in g1),
r g14 =“CGGTT”(at position 9 in g1),

and one read from g2:

rg21 =“AAGTG”(at position 1 in g2).

Considering one strand of the DNA sequences:

i) Because rg11 �� rg12 and the two reads share a
common region of g1, we say that r

g1
1 correctly

overlaps (or overlaps in short) rg12 , denoted by
rg11 � rg12 .

ii) We also say that rg11 does not overlap rg13 , rg14 ,
rg21 , denoted by rg11 � � rg13 , rg11 � � rg14 , and
rg11 � � rg21 . Although rg11 and rg13 share a
substring “AA”on the left end of the first read
and the right end of the second one, they are
not considered to overlap in the scope of this
paper because they are extracted from
different regions of g1. Similarity, rg11 and rg21
are said not to overlap each other because they
are from different genomes.

Observation of l-mer frequency distributions on groups of
non-overlapping reads
The l-mer frequency is known as a DNA composition fea-
ture of each DNA fragment or genome. The authors in
papers [20,28,29] have revealed that the short l-mer fre-
quency distributions of long fragments or whole genome
sequences are unique to each genome. However, most
sequencing technologies used in current metagenomic
projects cannot produce long fragments. Thus, it is not
efficient to directly apply the feature to metagenomic
reads classification.
In this study, instead of observing on long DNA

fragments, we analyse l-mer frequency distributions on
groups of non-overlapping short reads. Each group only
consists of reads which are sampled from the same
genome. This work considers the difference between l-
mer frequency distributions of read groups from the same
and different species genomes as well.

Calculation of l-mer frequency
An l-mer frequency distribution of a read group is com-
puted as follows. Let G be a group containing n reads:

G = {rj, j = 1, . . . , n}, and |rj| be the length of rj. Each read
rj consists of |rj| − l + 1 l-mers. So, the total number of
l-mers in group G is |G| = ∑n

j=1(|rj| − l + 1).
Because l-mers are composed of 4 kinds of nucleotides

(Adenine (A), Cytosine (C), Guanine (G), and Thymine
(T)), there are at most 4l possibilities of l-mers. Let
hGi , i ∈ [

1, . . . , 4l
]
denote the frequency of l-mer i in read

group G. To compute hGi , a sliding window of length l
is used to slide along all DNA reads of each group. In
practice, because groups may have different number of
reads, and lengths of reads may be different, this study
uses a normalized frequency which is based on the total
number of l-mers in each group. It can be calculated as
follows.

f Gi = hGi
|G| , i = 1, . . . , 4l (1)

where f Gi be the normalized frequency of l-mer i in read
group G. The feature vector of group G will be fG =[
f G1 , f G2 , .., f G4l

]
. (For simplicity, from now, we use frequency

to refer to normalized frequency).
In addition, when considering both strands of DNA

sequences within each group, because l-mers and their
reverse complement l-mers (e.g., 4-mers: AAAA/TTTT,
GCGC/GCGC, ACCC/GGGT) have the same frequen-
cies, a technique as in [20,28] was used to reduce the size
of the vector. If l is odd, size of the feature vector will be
4l/2, and if l is even, the size will be

(
4l + 4l/2

)
/2. The

studies of Chor et al. [29] and Zhou et al. [28] present that
l = 4 is the best choice to extract compositional features
from DNA sequences. In this study, we also choose l = 4.
Therefore, each feature vector of a read group has a size of
136.

Extracted compositional features
In this paper, an experiment is conducted to extract com-
positional features from groups of non-overlapping reads
by using the above method of calculation of l-mer fre-
quency. Each group consists of 60 error-free sequencing
short reads with length of 150 bp. Therefore, the size of
each group (i.e., sum of all read lengths in the group) is
approximately 9000 bp. In addition, all reads r and s in the
same group are sampled such that r �� s and r � � s. There
are totally 150 pairs of read groups used in the experiment.
Among them there are 50 pairs from the same species
genome, 50 pairs from genomes in the same genus but
in different species (the phylogenetic distance of species),
and 50 pairs from genomes in the same order but in
different families (the phylogenetic distance of family).
The Euclidean distance between feature vectors of

groups in each pair are computed (The details are given
in Additional file 1). Let u and v be two different species.
We denote by Gu and Gv groups which consist of reads



Vinh et al. Algorithms for Molecular Biology  (2015) 10:2 Page 4 of 12

belonging to species u and v, respectively. In the experi-
ment, we realize that:

• The Euclidean distance between feature vectors fG1

and fG2 , denoted by ||fG1 − fG2 ||, is quite small if two
read groups G1 and G2 are sampled from the same
species genome (≈ 7.7 × 10−4 in average).

• ||fGu − fGv || is larger if the phylogenetic distance
between u and v is larger (≈ 1.4 × 10−3, and
≈ 2.1 × 10−3 in average for the phylogenic distances
of species and family, respectively).

In addition, Figure 1 shows the 4-mer frequency distri-
bution of 4 groups of non-overlapping reads which belong
to genomes of two species: Bacillus thuringiensis and Ali-
cycliphilus denitrificans. Obviously, the read groups are
sampled from the same species genome have similar 4-
mer frequency distributions, while the 4-mer frequency
distributions of the groups from genomes of the different
species are very different.
This observation demonstrates that tetranucleotide

frequency-based genomic signatures are also preserved in
a group of non-overlapping short reads as in long frag-
ments. Thus, it can be used as a feature for organism
classification.

Fundamentals of proposed method
The above observation motivates us to propose a two-
phase algorithm for the binning problem of metagenomic
reads as follows (Figure 2).

Let R be a set of n metagenomic reads. In the first
phase of the proposed algorithm, the reads are grouped
into groups Gi, i ∈ {1, . . . , p} and p ≤ n basing on their
overlapping information. In the other word, two reads
r, s ∈ R can be grouped if it is concluded that r � s. As
denoted above, this means that all reads r, s ∈ R in the
same group are regarded as belonging to the same genome
(r �� s).
In order to merge the groups into clusters which repre-

sent genomes from closely related organisms, we compute
a feature vector f for each groupGi. An idea applied in this
study is that for each groupGi, the proposedmethod does
not need to compute the feature vector f on all its reads
which can overlap each other. Instead, a subset S(Gi) of
Gi, which is concluded to satisfy that ∀r, s ∈ S(Gi), r � � s,
is firstly extracted from Gi. We call it a seed of Gi. An
example in Figure 2, a group which belongs to Genome
1 consists of 5 reads (presented by 5 lines). A seed of
the group consists of 2 reads (presented by 2 green lines)
which do not overlap each other in the seed. Next, feature
vector f S(Gi) for each subset S(Gi) is calculated.We expect
that ∀r, s ∈ S(Gi), r �� s and r � � s, the feature vector
f S(Gi) serves as a genomic signature to classify micro-
bial organisms, supported by the observation mentioned
above. Thus, f S(Gi) is used as a representative of Gi in
the classification process. In the second phase of the pro-
posed algorithm, the read groups Gi, i ∈ {1, . . . , p} are
merged into k clusters (k ≤ p) using their feature vectors
f S(Gi).
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Figure 1 4-mer frequency distributions of groups of non-overlapping reads. Four groups sampled from genomes of two species: Bacillus
thuringiensis (BT-group1, BT-group2) and Alicycliphilus denitrificans (AD-group1, AD-group2).
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Figure 2 Binning process of BiMeta. Phase 1 groups reads into groups, builds and computes 4-mers frequencies of seeds. Phase 2 merges the
groups into clusters.

Finding overlapping and non-overlapping reads
As mentioned above, a necessary problem which is solved
in the first phase of the proposed algorithm is to deter-
mine whether two reads r, s ∈ R overlap (r � s), or do not
overlap (r � � s) each other. There are many studies have
considered measuring the sequence overlap information
between reads. One of the efficient methods is to count
the number of shared q-mers between reads [25,26,30].
Thosemethods base on a feature that most q-mers are not
shared by different genomes when q is sufficiently large
[25,26]. For example, according to an observation con-
ducted by this work on 100 pairs of bacterial genomes, the
average ratio of common q-mers between the genomes is
less than 1.02% when q ≥ 30. (The details of the observa-
tion are given in Additional file 2). The feature leads to a
fact that most of q-mer repeats in a metagenomic dataset
are caused by overlaps of reads. Thus, there is a great
probability that the reads sharing q-mers with each other
(with a sufficient value of q) are overlapping reads.
In the proposed algorithm, a similar idea is applied to

determine whether two reads r, s ∈ R overlap each other
or not. Given m, q ∈ N, if r and s share at least m q-mers,
they are regarded as overlapping reads (r � s). Otherwise,
r � � s. The values of m and q will be discussed later in the
following sections.

Algorithms
To perform classification process, an unweighted graph
H = (V , E) is firstly built, where V is a set of nodes mod-
eling the set R of metagenomic reads, and E is a set of
edges. Given m, q ∈ N, ∀r, s ∈ V , each edge (r, s) repre-
sents the relation r � s as defined above. For a group of

nodes, denoted by Gi, we call NS(Gi) = Gi \ S(Gi). We
have Gi = {S(Gi),NS(Gi)} and Gi ⊆ V . It is interesting
that a seed S(Gi) is equivalent to an independent set or
stable set of a graph in which there is no pair of adjacent
vertices [31]. The following describes algorithmic aspects
of the proposed method in details.

Phase 1 - Grouping nodes and building seeds of groups
The pseudocode for this phase is provided in Algorithm 1.
The node grouping in this phase is equivalent to the graph
partitioning problem which can be solved by many meth-
ods [32]. In this work, a constructive method based on a
greedy heuristic is suggested. Let Vtemp = V . Firstly, an
empty groupGi, i ≥ 1 is created. Then, a node v ∈ Vtemp is
randomly chosen, removed from Vtemp and assigned into
Gi. We denote by Neighbor(Gi) a set of nodes x ∈ Vtemp
such that ∃w ∈ Gi, (w, x) ∈ E. Next, other nodes u, where
u ∈ Neighbor(Gi), are iteratively chosen, removed from
Vtemp, and assigned into this group.
The seed building is done simultaneously with the build-

ing of groups. A greedy algorithm is applied to build seeds
of the groups. Initially, the first node v ∈ Vtemp assigned
to group Gi is also stored in S(Gi). After that, a node
u ∈ Vtemp assigned to Gi is only stored in its seed S(Gi)
if u is not adjacent to any of S(Gi). Otherwise, u will be
stored inNS(Gi). Finally, when all groups are built, feature
vectors fS(Gi), ∀i ∈ {1, . . . , p} will be calculated.
Sequencing errors and the existing of shared l-mers

between genomes (even with an extremely small ratio)
may lead to grouping errors. To reduce probability of the
errors, the size of created groups is limited by a thresh-
old Smax. The process of building groupGi will be stopped



Vinh et al. Algorithms for Molecular Biology  (2015) 10:2 Page 6 of 12

when the size of seed S(Gi), denoted by |S(Gi)|, exceeds
the given threshold Smax. Note that |S(Gi)| = ∑

r∈S(Gi)
|r|.

Algorithm 1 Grouping nodes and building seeds of
groups
Input: Graph H = (V , E); maximum size of seedmaxS
Output: List of node groups Gi and their feature vectors

fS(Gi), i ∈ {1, . . . , p}
1: Vtemp = V
2: repeat
3: Create new group Gi = {S(Gi),NS(Gi)}
4: S(Gi) = ∅
5: NS(Gi) = ∅
6: Randomly choose v ∈ Vtemp
7: Vtemp = Vtemp \ {v}
8: S(Gi) = S(Gi) ∪ {v}
9: repeat

10: Find u, where u ∈ Neighbor(Gi)
11: Vtemp = Vtemp \ {u}
12: if ∀t ∈ S(Gi), (t, u) /∈ E then
13: S(Gi) = S(Gi) ∪ {u}
14: else
15: NS(Gi) = NS(Gi) ∪ {u}
16: end if
17: until |S(Gi)| > Smax or Neighbor(Gi) = ∅
18: until Vtemp = ∅
19: ∀i ∈ {1, . . . , p}, Compute fS(Gi).

Phase 2 -Merging groups
In this phase, a k-means clustering algorithm [33] is used
to merge the node groups Gi, i ∈ {1, . . . , p}, created in the
first phase, into clusters using feature vectors fS(Gi). Let
C1,C2, . . . ,Ck be a set of output clusters, and note that,
Cj ⊆ {G1, . . .Gp}. The objective of the algorithm in this
phase is to minimize the within-cluster sum of squares as
the following formulation.

minimize
k∑

j=1

∑
Gi∈Cj

||fS(Gi) − f̄Cj ||2 (2)

In which f̄Cj is themean of clusterCj, computed as follows.

f̄Cj =
∑

Gw∈Cj fS(Gw)

|Cj| (3)

In which |Cj| is the number of groups in cluster Cj.
This phase is presented by pseudocode in Algorithm 2.

Firstly, the means of clusters f̄newCj
are randomly chosen

from feature vectors fS(Gi). Then, two following steps
are repeated: (Assignment step) compute the distances
between each fS(Gi) and the means of clusters f̄newCj

, and
assign Gi to the cluster of the nearest mean Cz ; (Update

step) store the current means into f̄oldCj
and recompute the

means of recreated clusters f̄newCj
. The iteration stops when

the algorithm converges (there is no change on mean of
clusters) or a predefined number of iterations is exceeded.

Algorithm 2Merging groups
Input: List of node groups Gi; List of feature vectors

fS(Gi), 1 ≤ i ≤ p; number of clusters k
Output: Clusters Cj, j ∈ {1, . . . , k}
1: ∀j ∈ {1, . . . , k}, randomly choose f̄newCj

from fS(Gi)

2: repeat
3: //Assignment step
4: ∀j ∈ {1, . . . , k},Cj = ∅
5: for i = 1 to p do
6: z = argmin

1≤j≤k
||fS(Gi) − f̄newCj

||2

7: Cz = Cz ∪ Gi
8: end for
9: //Update step

10: ∀j ∈ {1, . . . , k}, f̄oldCj
= f̄newCj

11: ∀j ∈ {1, . . . , k} Compute f̄newCj
by using Eq. 3

12: until f̄oldCj
= f̄newCj

, ∀j ∈ {1, . . . , k} or a predefined
number of iterations is exceeded

Performance evaluation
Three commonly used performance metrics, namely, pre-
cision, recall, and F-measure are used to evaluate the
binning algorithm. Let m be the number of species in a
metagenomic dataset, and k be the number of clusters
returned by the binning algorithm. Let Aij be the number
of reads from species j assigned to cluster i. The precision
and recall are defined as follows (same as used in [26]).

precision =
∑k

i=1 maxj Aij∑k
i=1

∑m
j=1 Aij

recall =
∑m

j=1 maxi Aij∑k
i=1

∑m
j=1 Aij + # unassigned reads

In which recall presents the ratio of reads from the same
species that are assigned in the same cluster, precision
shows the ratio of reads assigned in a cluster that belong to
the same species. The two metrics need to be considered
together because each of them itself does not reflect the
performance of a binning approach. Besides, we also use
F-measure which emphasizes comprehensively on both
precision and recall. It is defined as in [34]:

F − measure = 2/(1/precision + 1/recall)
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Experiments results and discussions
The performance of BiMeta is evaluated on simulated
and real datasets. In these experiments, the number of
species in data samples is assumed to be known. BiMeta
is compared with several state-of-the-art binning algo-
rithms for short or long reads. For short reads, ourmethod
is compared with MetaCluster 5.0 [26], and Abundance-
Bin [23] (version 1.01, February 2013). MetaCluster 3.0
[21] and MetaCluster 2.0 [20] are two recent methods for
binning of long reads. Because MetaCluster 3.0 does not
support fixing the number of species in datasets, for a
fair comparison, in these experiments, we only compare
BiMeta with MetaCluster 2.0. The computer used for the
experiments is an Intel Xeon with 20GB RAM running at
2.3 GHz.
As mentioned above, when q ≥ 30, most q-mers are

not shared by genomes. Thus, q = 30 is chosen. In addi-
tion, the precision of the first phase for read grouping
and seed building of BiMeta depends on the detection of
correct overlaps between reads. Using a larger value of
threshold m (i.e., the number of shared q-mers between
reads) can increase the probability of finding correct over-
laps as well as increase the precision of this phase of the
proposed algorithm. However, there is no guarantee for
the algorithm to achieve better overall performance by
this. Considering the classification performance on tested
cases (presented in section of Parameter evaluation), we
choose m = 5 for short reads datasets, and m = 45
for long reads datasets for the following experiments.
Besides, it is realized from the observation above that
groups with a length of 9000 bp are suitable for extract-
ing genomic signatures, we set this value for the threshold
Smax.

Datasets
Simulated datasets
Due to the lack of standard metagenomic datasets, simu-
lated datasets are widely used to evaluate the performance
of binning algorithms. A tool used for generating metage-
nomic reads is MetaSim [35] which allows us to select
a sequencing model and control considered parameters
(e.g., read length, genome coverage, error rate). We simu-
latemetagenomic datasets based on the bacterial genomes
which are downloaded from the NCBI (National Center
for Biotechnology Information) database.
There are 25 synthetic datasets used in our experi-

ments. Among them, 9 long reads datasets are generated
as described in [27,36]. The datasets contain Roche 454
single-end long reads with the length of approximately
700 bp and sequencing error rate of 1%, (denoted by from
R1 to R9, presented in Table 1). Besides, 16 datasets of
paired-end short reads (length of approximately 80 bp) are
created following the Illumina error profile with an error
rate of 1% (denoted by from S1 to S10, and L1 to L6,

Table 1 Simulated datasets of long reads as described in
[27,36]

Samples No. of Phylogenetic Ratio No. of
species distance reads

R1 2 Species 1:1 82960

R2 2 Genus 1:1 77293

R3 2 Genus 1:1 93267

R4 2 Family 1:1 34457

R5 2 Family 1:1 40043

R6 2 Order 1:1 70550

R7 3 Family and 1:1:8 290473

Order

R8 3 Order and 1:1:8 374830

Phylum

R9 6 Species, Order, 1:1:1:1:2:14 588258
Family, Phylum,
and Kingdom

presented in Table 2). A list of species or strains used to
generate the datasets are given in Additional file 3.

Real dataset
Our method is also evaluated on a real dataset obtained
from the acid mine drainage (AMD) [4]. The dataset
is downloaded from NCBI trace archive. It consists
of 124805 Sanger reads, which are shown to belong
to five dominant species: Leptospirillum sp. Group III,
Ferroplasma acidarmanus Type I, Thermoplasmatales
archaeon Gpl, Ferroplasma sp. Type II, and Leptospirillum
sp. Group II with a ratio of 1:1:1:5:5, respectively. We also
download scaffolds of the five species assembled from the
AMD dataset for result evaluation.

Results on simulated data
Results on short reads data
The performance of BiMeta are firstly compared with
MetaCluster 5.0 and AbundanceBin on short read
datasets with different numbers of species and different
phylogenetic distances. Table 3 presents the overall F-
measure values of the algorithms for samples from S1 to
S10. BiMeta can achieve higher accuracy than both Meta-
Cluster 5.0 and AbundanceBin inmost of the cases (8 of 10
cases). When the number of species in data increases, the
performance of the three algorithms decreases. Despite
of this, as we can see the results on samples S9 and S10,
which contain a large number of species, BiMeta still
gets better F-measure than that of MetaCluster 5.0 and
AbundanceBin.
In addition, we also consider the precision and recall of

the algorithms on those samples. Figure 3 demonstrates
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Table 2 Simulated datasets of short reads

Samples No. of Phylogenetic Ratio No. of
species distance reads

S1 2 Species 1:1 96367

S2 2 Species 1:1 195339

S3 2 Order 1:1 338725

S4 2 Phylum 1:1 375302

S5 3 Species and 1:1:1 325400

Family

S6 3 Phylum and 3:2:1 713388

Kingdom

S7 5 Order, Order 1:1:1:4:4 1653550

Genus, Order

S8 5 Genus, Order 3:5:7:9:11 456224

Order, Order

S9 15 various distances 1:1:1:1:1: 2234168

2:2:2:2:2:

3:3:3:3:3

S10 30 various distances 4:4:4:4:4: 4990632

6:6:6:6:6:

7:7:7:7:7:

8:8:8:8:8:

9:9:9:9:9:

10:10:10:10:10

L1 2 Class 1:1 176688

L2 2 Class 1:2 259568

L3 2 Class 1:3 342448

L4 2 Class 1:4 425328

L5 2 Class 1:5 508209

L6 2 Class 1:6 591089

that for most of the cases the proposedmethod gets much
higher both recall and precision values in comparison with
those of MetaCluster 5.0 and AbundanceBin. Note that
MetaCluster 5.0 makes an effort to get high precision by
using the techniques of removing extremely low-coverage
reads from classification process and generating more
clusters if needed. However, BiMeta still gets considerably
higher precision values than that of MetaCluster 5.0 for 6
of 10 cases.
Finding a cause for the low classification performance

on sample S2 of the proposed algorithm, we randomly
pick 10 pairs of non-overlapping read groups from
genomes of species which are used in the sample. In each
pair, a group is generated from Lactobacillus salivarius
genome, and the other is from Lactobacillus sanfrancis-
censis genome (the two species are in the same genus). The

Table 3 The F-measures of MetaCluster 5.0, AbundanceBin
and BiMeta on samples from S1 to S10

Samples MetaCluster 5.0 AbundanceBin BiMeta

S1 67.11% - 98.02%

S2 88.68% 72.63% 60.14%

S3 71.98% 83.53% 97.72%

S4 77.20% - 99.35%

S5 80.08% 56.38% 89.32%

S6 88.74% 64.24% 99.29%

S7 91.04% 58.49% 77.24%

S8 57.94% 47.87% 70.27%

S9 67.56% 27.92% 77.01%

S10 52.17% 4.95% 65.37%

The symbol “-” indicates that the approaches fail to classify reads on the
samples.BiMeta achieves higher F-measure in comparison with that of
MetaCluster 5.0 and AbundanceBin for 8 out of 10 samples, while MetaCluster
5.0 gets the highest value for sample S2 and S7 in comparison with that of the
remaining approaches.

Euclidean distance between their feature vectors is com-
puted. From the test, we realize that the average distance
computed for all pairs is very small (≈ 7.8 × 10−4) and
much smaller than the average distance between groups in
genus level (≈ 1.4×10−3) which is computed in the above
observation. It is even approximately equal to the average
distance between groups generated from the same species
(≈ 7.7×10−4). Obviously, in this case the l-mer frequency
distribution is not good for discriminating the two species,
and this may explain the reason why our algorithm gets
low performance on the sample.
The abundance of species is one of the major fac-

tors affecting to the classification performance of existing
binning methods. To assess the effect of this factor on
BiMeta, we run the algorithm on samples from L1 to L6
and compare with MetaCluster 5.0 and AbundanceBin.
The samples are generated from genomes of two species
(Eubacterium eligens and Lactobacillus amylovorus), but
they have different abundance ratios. Figure 4 illustrates
the F-measure value of the three algorithms on those sam-
ples. The results demonstrate that BiMeta is stable for
different ratios of species abundances, and returns bet-
ter overall results comparing with the other algorithms.
For more details, the proposed algorithm can achieve F-
measure of greater than 97.5%, whichmeans it is 4% - 38%
higher than that of MetaCluster 5.0 for all of the tests. In
addition, BiMeta outperforms AbudanceBin (has higher
F-measure from 2% to 28%) when they are tested on the
datasets with low abundance ratios (1:1, 1:2, and 1:3, in
samples L1, L2, and L3, respectively), and it still achieves
as high scores as AbundanceBin (≥ 98.79%) for the
datasets with high abundance ratios (1:4, 1:5, and 1:6, in
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Figure 3 The performance of MetaCluster 5.0, AbundanceBin and BiMeta on samples from S1 to S10. The left bar graph shows precision
values, and the right bar graph shows recall values of the algorithms. Note that AbundanceBin fails to classify reads for sample S1 and S4.

samples L4, L5 and L6, respectively). Moreover, on com-
putational performance, the proposed algorithm needs
smaller computing time than that of both AbundanceBin
and MetaCluster 5.0 to execute on those samples (data is
given in Additional file 3).

Results on long reads data
BiMeta and MetaCluster 2.0 are tested on the long read
datasets from R1 to R9 (presented in Table 1). Table 4
shows that BiMeta has significantly higher F-measure than
MetaCluster 2.0 for the all tests. With sample R9, while
the proposed method achieves a high result, MetaClus-
ter 2.0 cannot execute successfully because the number

of reads are too large. Furthermore, BiMeta can obtain
0.5% - 20% higher precision in 6 of the 8 compara-
ble cases, and 3% - 36% higher recall in those cases
than MetaCluster 2.0 (Figure 5). In the tests on R7,
R8, and R9, although the samples contain reads from
genomes of very different abundance levels, BiMeta still
reaches high accuracy (F-measure is from 86.42% to
97.92%).

Results on real data
BiMeta and MetaCluster 2.0 are tested on the AMD
dataset. To evaluate results of the two methods, BLAST
tool is used to map reads of each output cluster against

Figure 4 The performance of MetaCluster 5.0, BiMeta and AbundanceBin on samples from L1 to L6.
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Table 4 The F-measures of MetaCluster 2.0 and BiMeta on
samples from R1 to R9

Samples MetaCluster 2.0 BiMeta

R1 75.61% 97.82%

R2 80.40% 87.19%

R3 66.83% 77.59%

R4 96.42% 98.94%

R5 94.75% 98.97%

R6 95.40% 96.09%

R7 69.96% 91.63%

R8 96.74% 97.92%

R9 - 86.42%

The symbol “-” indicates that MetaCluster 2.0 fails to perform on sample R9.
BiMeta achieves higher F-measure than that of MetaCluster 2.0 for the all
samples.

assembled scaffolds of the five dominant species in this
dataset with BLAST E-value of ≤ 1e−50 (other parame-
ters are set default). Note that from our experiments, only
69% percent of all reads in the dataset can be mapped
to assembled scaffolds of the five species by BLAST. The
numbers of BLAST hits give us a rough estimation of
the classification accuracy. AlthoughMetaCluster 2.0 gets
slightly higher precision score than BiMeta (57.15% and
55.8%, respectively), BiMeta returns much better recall
than MetaCluster 2.0 (88.09% and 70.93%, respectively).
In total, the overall F-measure score of the classifica-
tion achieved by BiMeta is higher than MetaCluster 2.0
(68.32% and 63.30%, respectively).

Parameter evaluation
In the proposed algorithm, parameter m is a threshold to
determine whether two reads are overlapped each other
or not. We conduct experiments on samples from S1
to S5 and from R1 to R5 to compute the average pre-
cision of the read merging in phase 1 and the average
final F-measure of the algorithm with different values of
m. Two graphs in Figure 6 show the effect of m to the
performance of BiMeta. From the graphs, the proposed
algorithm achieves the best results when m is from 0 to 5
for short read datasets, and from 20 to 65 for long reads
datasets.
Besides, there is a slightly increase in the precision of the

task of read grouping with respect to a decrease of m. For
example, on datasets of short reads (samples from S1 to
S5), the average precision is 98.68% withm = 0, while the
score is 99.82%withm = 25. This is obviously understood
because when the number of shared l-mers between reads
is set to be larger, the probability of identified correct
overlap of reads is higher.
However, as seen from the graphs, the performance of

BiMeta is not proportional to the performance of this
grouping task. For instance, on datasets of long reads
(samples from R1 to R5), when m increases from 60 to
100, although the precision of the reads grouping increases
from 99.6% to 99.82%, the final F-measure of BiMeta
decreases from 83.43% to 80.54%. Considering the results,
we realize that when m is larger, phase 1 of the pro-
posed algorithm usually produces the larger number of
read groups. This means that the size of the groups as well
as their seeds are smaller. As a result, although the pre-
cision of the merging task is higher, because there is less

Figure 5 The performance of MetaCluster 2.0 and BiMeta on samples from R1 to R9. The left bar graph shows precision values, and the right
bar graph shows recall values of the two algorithms. Note that MetaCluster 2.0 fails to perform on sample R9.
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Figure 6 The average precision of the reads grouping in phase 1, and average final F-measure of BiMeta with different values ofm - the
minimum number of shared q-mers between reads. The left line graph shows tests results on samples from S1 to S5 (short reads). The right line
graph shows tests results on samples from R1 to R5 (long reads).

information for extracting genomic signature (4-mers fre-
quencies) from the seeds, the classification performance
may decreases.

Conclusions
This paper presents a two-phase algorithm for the binning
of metagenomic reads without using reference genomes.
Instead of directly clustering reads, the main idea of the
proposed algorithm is to provide an additional prepro-
cessing phase in which reads potentially belonging to the
same cluster are grouped and each group is presented
by a so-called seed of non-overlapping reads. The idea
is motivated by a careful observation of the l-mer fre-
quency distributions on sets of non-overlapping reads
extracted from microbial genomes. The proposed algo-
rithm demonstrates to be able to achieve higher perfor-
mance than the state-of-the-art binning algorithms on
both simulated and real metagenomic datasets. Another
strength of our method is that it can work well with both
short and long reads. Besides, because the second phase
only performs on reads in the seed of a group, instead
of the group, the algorithm runs fast with a moderate
memory usage.
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Additional file 1: This file contains the details of datasets and results
for the observation of l-mer frequency distribution on groups of
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Experimental result and discussions section, and execution time of
BiMeta, AbundanceBin andMetaCluster 5.0 on samples from L1 to L6.
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