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Abstract 

Background: In a computed protein multiple sequence alignment, the coreness of a column is the fraction of its sub-
stitutions that are in so-called core columns of the gold-standard reference alignment of its proteins. In benchmark 
suites of protein reference alignments, the core columns of the reference alignment are those that can be confidently 
labeled as correct, usually due to all residues in the column being sufficiently close in the spatial superposition of the 
known three-dimensional structures of the proteins. Typically the accuracy of a protein multiple sequence alignment 
that has been computed for a benchmark is only measured with respect to the core columns of the reference align-
ment. When computing an alignment in practice, however, a reference alignment is not known, so the coreness of its 
columns can only be predicted.

Results: We develop for the first time a predictor of column coreness for protein multiple sequence alignments. This 
allows us to predict which columns of a computed alignment are core, and hence better estimate the alignment’s 
accuracy. Our approach to predicting coreness is similar to nearest-neighbor classification from machine learning, 
except we transform nearest-neighbor distances into a coreness prediction via a regression function, and we learn an 
appropriate distance function through a new optimization formulation that solves a large-scale linear programming 
problem. We apply our coreness predictor to parameter advising, the task of choosing parameter values for an aligner’s 
scoring function to obtain a more accurate alignment of a specific set of sequences. We show that for this task, our 
predictor strongly outperforms other column-confidence estimators from the literature, and affords a substantial 
boost in alignment accuracy.
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Machine learning, Regression
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Background
The accuracy of a multiple sequence alignment computed 
on a benchmark set of input sequences is usually meas-
ured with respect to a reference alignment that repre-
sents the gold-standard alignment of the sequences. For 
protein sequences, reference alignments are often deter-
mined by structural superposition of the known three-
dimensional structures of the proteins in the benchmark. 
The accuracy of a computed alignment is then defined 
to be the fraction of pairs of residues aligned in the so-
called core columns of the reference alignment that are 
also present in columns of the computed alignment. Core 

columns represent those in the reference that are deemed 
to be reliable, which can be objectively defined as those 
columns containing a residue from every input sequence 
such that the pairwise distances between these residues 
in the structural superposition of the proteins are all 
within some threshold (typically a few angstroms). In 
short, given a known reference alignment whose columns 
are labeled as either core or non-core, we can determine 
the accuracy of any other computed alignment of its pro-
teins by evaluating the fraction of aligned residue pairs 
from these core columns that are recovered.

For a column in a computed alignment, we can also 
define the coreness value for the column to be the frac-
tion of its aligned residue pairs that are in core columns 
of the reference alignment. (Note this definition of col-
umn coreness is fully objective when core columns are 
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identified through automated superposition of known 
protein structures, as done for example in the PALI  [1] 
benchmark suite.) A coreness value of 1 means the col-
umn of the computed alignment corresponds to a core 
column of the reference alignment.

When aligning sequences in practice, obviously such a 
reference alignment is not known, and the accuracy of a 
computed alignment, or the coreness of its columns, can 
only be estimated. A good accuracy estimator for computed 
alignments is extremely useful [2]. It can be leveraged to

•  pick among alternate alignments of the same sequences 
the one of highest estimated accuracy, for example, to 
choose good parameter values for an aligner’s scoring 
function as in parameter advising [3, 4]; or

•  select the best result from an ensemble of different 
aligners, naturally yielding a new ensemble aligner, 
which can be far more accurate than any of its individ-
ual aligners  [5].

Similarly, a good coreness predictor for columns in a com-
puted alignment can be used to

•  mask out unreliable regions of the alignment before 
computing an evolutionary tree, to boost the quality of 
phylogeny reconstruction; or

•  improve an alignment accuracy estimator by concen-
trating its evaluation function on columns of higher 
predicted coreness, thereby boosting the performance 
of parameter advising.

In fact, a perfect coreness predictor by itself would in 
principle yield an ideal accuracy estimator.

In this paper, we develop for the first time a column 
coreness predictor for protein multiple sequence align-
ments. Our approach to predicting coreness is similar 
in some respects to nearest-neighbor classification from 
machine learning, except we transform nearest-neigh-
bor distance into a coreness prediction via a regression 
function, and we learn an appropriate distance function 
through a new optimization formulation that solves a 
large-scale linear programming problem. We leverage 
our new coreness predictor to yield an improved align-
ment accuracy estimator, and evaluate its performance 
by applying the improved estimator to the task of param-
eter advising in multiple sequence alignment.

Related work
To our knowledge, this is the first fully general attempt 
to directly predict the coreness of columns in computed 
protein alignments. Tools are available that assess the 

quality of columns in a multiple alignment, and can be 
categorized into: (a)  those that only identify columns 
as unreliable, for removal from further analysis; and 
(b) those that compute a column quality score, which can 
be thresholded. Tools that simply mask unreliable col-
umns of an alignment include GBLOCKS [6], TrimAL [7], 
and ALISCORE  [8]. Popular quality-score tools are 
Noisy [9], ZORRO [10], TCS [11], and GUIDANCE [12].

Our experiments compare our coreness predictor to 
TCS and ZORRO: the most recent tools that provide qual-
ity scores, as opposed to masking columns. Among the 
other quality-score tools listed above, Noisy has been 
shown to be dominated by GUIDANCE, which is in turn 
dominated by ZORRO. (GUIDANCE also requires four 
or more sequences, which excludes many benchmarks.) 
Below we briefly summarize the approaches behind TCS 
and ZORRO.
TCS (short for “transitive consistency score”) extends 

an earlier approach of COFFEE [13]. For a pair i, j of resi-
dues that are aligned in a column and that come from 
sequences A and B, the support for aligned pair i,  j is the 
sum of the scores of all pairwise alignments of every other 
sequence C versus A and B, where the pairwise alignments 
involving C are constrained to align i and  j to a common 
residue of C, and where this sum is normalized so support 
is in the range [0, 1]. The TCS score for a column is then 
the average support of its aligned residue pairs.
ZORRO uses an evolutionary tree over the alignment’s 

sequences to determine a weight for each sequence pair. 
The length of each edge in the tree is apportioned among 
the sequence pairs whose tree paths include that edge; 
the total amount of edge length apportioned to a given 
sequence pair yields a weight for that pair, where these 
weights also take into account both an estimate of the 
evolutionary distance between sequences (estimated by 
the length of the tree path between them), and the corre-
lation between sequence pairs (estimated by the length of 
overlap in the paths between the pairs). The ZORRO score 
for a column is then the weighted sum, over the col-
umn’s aligned residue pairs, of the probability of emitting 
the residue pair’s amino acids by a pair hidden Markov 
model, times the weight of the residue pair’s correspond-
ing sequence pair.

In contrast to the quality scores of TCS and ZORRO, we 
directly predict column coreness. Our approach is also 
not dependent on the choice of an alignment scoring 
scheme as in TCS, or the choice of hidden Markov model 
emission probabilities as in ZORRO.

Plan of the paper
"Learning a coreness predictor" section describes how we 
learn our coreness predictor. We then explain how we use 
predicted coreness to improve accuracy estimation for 
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protein alignments.  "Assessing the coreness predictor" 
section evaluates our approach to coreness prediction by 
applying the improved accuracy estimator to alignment 
parameter advising. Finally, we conclude and give direc-
tions for further research.

Learning a coreness predictor
To describe how we learn a column coreness predictor, 
we first discuss our representation of alignment col-
umns, and our grouping of consecutive columns into 
window classes. We then present our regression function 
for predicting coreness, which transforms the nearest-
neighbor distance from a window to a class into a core-
ness value. Following this we explain how to learn the 
window distance function by solving a large-scale linear 
programming problem. Finally we show that the result-
ing window distances satisfy the triangle inequality, 
which enables the use of data structures for metric-space 
nearest-neighbor search when evaluating the regression 
function.

Representing alignment columns
The information used by our coreness predictor, beyond 
the multiple sequence alignment itself, is an annotation 
of its protein sequences by predicted secondary structure 
(which can be obtained in a preprocessing step by run-
ning the sequences through a standard protein secondary 
structure prediction tool such as PSIPRED  [14]). When 
inputting a column from such an annotated alignment to 
our coreness predictor, we need a column representation 
that, while capturing the association of amino acids and 
predicted secondary structure types, is also independent 
of the number of sequences in the column. This is nec-
essary as our predictor will be trained on example align-
ments of particular sizes, yet the resulting predictor must 
apply to alignments with arbitrary numbers of sequences.

Let � be the 20-letter amino acid alphabet, and 
Ŵ = {α,β , γ } be the secondary structure alphabet, cor-
responding respectively to types α-helix, β-strand, and 
other (also called coil). We encode the association of an 
amino acid c ∈ � with its predicted secondary structure 
type  s ∈ Ŵ by an ordered pair  (c,  s) that we call a state, 
from the set   Q = (� × Ŵ) ∪ {ξ}. Here ξ = (-,-) is the 
gap state, where the dash symbol ‘–’ �∈ � is the alignment 
gap character.

We represent a multiple alignment column as a distri-
bution over the set of states Q, which we call its profile 
(mirroring standard terminology [15, p. 101]). We denote 
the profile  C for a given column by a function  C(q) on 
states  q ∈ Q satisfying C(q) ≥ 0 and 

∑
q∈Q C(q) = 1. 

Most secondary structure prediction tools output a confi-
dence value (not a true probability) that an amino acid in 
a protein sequence has a given secondary structure type. 

For a column of amino acids (c1 · · · ck) in a multiple align-
ment of k  sequences, denote the confidence that amino 
acid ci has secondary structure type  s ∈ Ŵ by  pi(s) ≥ 0, 
where 

∑
s∈Ŵ pi(s) = 1. For non-gap state q = (a, s) �= ξ, 

profile C has value

In other words, C(q) is the normalized total confidence 
across the column in state q �= ξ. For gap state q = ξ, the 
profile value is

the relative frequency of gap characters in the column.

Classes of column windows
In protein benchmarks, a column of a reference align-
ment is labeled core if the residues in that column are all 
sufficiently close in the structural superposition of the 
known three-dimensional structures of the proteins. The 
folded structure around a residue is not simply a function 
of the amino acid of the residue itself, or its secondary 
structure type, but is also a function of nearby residues 
in the protein. Consequently, to predict the coreness of 
a column in a computed alignment, we need contextual 
information from nearby columns of the alignment. We 
gather this additional context around a column by form-
ing a window of consecutive columns centered on the 
given column. Formally, a window  W of width  w ≥ 1 
is a sequence of 2w+1  consecutive column profiles 
C−w · · ·C−1C0C+1 · · ·C+w centered around profile C0.

We define the following set of window classes  C, 
depending on whether the columns in a labeled training 
window are known to be core or non-core in the refer-
ence alignment. (When later extracting training windows 
from a computed alignment that has a known reference 
alignment, we will label a column in a computed align-
ment as core iff its true coreness value—namely, the 
fraction of its residue pairs that are in core columns of 
the reference alignment—is above a fixed threshold.) 
We denote a column labeled core by  C, and a column 
labeled non-core by N. For window width w=1 (which 
has three consecutive columns), such labeled windows 
correspond to strings of length  3 over alphabet  {C,N} . 
The three classes of core windows are CCC, CCN, NCC; the 
three classes of non-core windows are CNN, NNC, NNN. 
(A window is considered core or non-core depending on 
the label of its center column. We exclude windows NCN 
and CNC, as these almost never occur in reference align-
ments.) Together these six classes comprise set  C. We 
call the five classes with at least one core column C in the 

C(q) :=
1

k

∑

1≤i≤k : ci=a

pi(s).

C(ξ) :=
1

k

∣∣∣
{
i : ci = ‘–’

}∣∣∣,
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window, structured classes; the one class with no core 
columns is the unstructured class, denoted by ⊥ = NNN.

The coreness regression function
We learn a coreness predictor by fitting a regression 
function that first measures the similarity between a col-
umn’s window and training examples of windows with 
known coreness, and then transforms this similarity into 
a coreness value.

The similarity of windows V = V−w · · ·Vw and 
W = W−w · · ·Ww is expressed in terms of the similar-
ity of their corresponding column profiles Vi and Wi . 
We measure the dissimilarity of two such profiles 
from window class  c at position  i, using class- and 
position-specific substitution scores  σc,i(p, q) on pairs 
of states  p,  q. (We describe in later sections how we 
learn these scores.) Given substitution scores  σc,i, the 
distance between windows  V and  W from structured 
class c ∈ C − {⊥} is

These positional σc,i allow distance function dc to score 
dissimilarity higher at positions i near the center of the 
window, and lower towards its edges. These class-spe-
cific σc,i also allow distance functions to score dissimi-
larity differently for core and non-core classes.

The regression function that predicts the coreness of a 
column first forms a window W centered on the column, 
and then performs the following.

(1) (Find distance to closest class) Across all labeled 
training windows, in all structured window classes, 
find the training window that has smallest class-
specific distance to W. Call this closest window V, its 
class c, and their distance δ = dc(V ,W ).

(2) (Transform distance to coreness) If class  c is a core 
class, return the coreness value given by transform 
function  fcore(δ). Otherwise, return value  fnon(δ).

Note this uses two different transform functions to map 
distance to coreness: function  fcore for core classes, 
and  fnon for non-core.

We next explain how we efficiently find distance δ, and 
then describe the transform functions f.

Finding the distance to a class
To find the distance of a window W to a class c, we need to 
find the nearest neighbor of W among the set of training 
windows Tc in class  c, namely argminV∈Tc

{
dc(V ,W )

}
.  

Finding the nearest neighbor through exhaustive search 
by explicitly evaluating  dc(V ,W ) for every window  V 

dc(V ,W ) :=
∑

−w≤i≤+w

∑

p,q ∈Q

Vi(p)Wi(q) σc,i(p, q).

can be expensive when  Tc is large (and cannot be 
avoided in the absence of exploitable properties of func-
tion dc).

When the distance function is a metric, for which 
the key property is the triangle inequality (namely that 
d(x, z) ≤ d(x, y)+ d(y, z) for any three objects  x,  y,  z), 
faster nearest neighbor search is possible. In this situ-
ation, in a preprocessing step we can first build a data 
structure over the set Tc, which then allows us to per-
form faster nearest neighbor searches on Tc for any query 
window  W. One of the best data structures for near-
est neighbor search under a metric is the cover tree of 
Beygelzimer, Kakade and Langford  [16]. Theoretically, 
cover trees permit nearest neighbor searches over a set 
of n  objects in O(log n)  time, after constructing a cover 
tree in O(n log n) time, assuming that the intrinsic dimen-
sion of the set under metric  d has a so-called bounded 
expansion constant  [16]. (For actual data, the expansion 
constant can be exponential in the intrinsic dimension.) 
In our experiments, for nearest neighbor search we use 
the recently-developed dispersion tree data structure of 
Woerner and Kececioglu [17], which in extensive testing 
on scientific data is significantly faster in practice than 
cover trees.

We build a separate dispersion tree for each structured 
window class c ∈ C − {⊥} over its training set Tc using its 
distance function dc in a preprocessing step. To find the 
nearest neighbor to window W over all training windows  
T =

⋃
c Tc we then perform a nearest neighbor search 

with W on the dispersion tree for each structured class c, 
and merge these |C| − 1 search results by picking the one 
with smallest distance to W.

Transforming distance to coreness
To transform the nearest-neighbor distance  δ from 
Step (1) of the regression procedure into a coreness value 
in Step  (2), we use logistic functions for fcore and  fnon . 
We fit these logistic functions to empirically-measured 
average-coreness values at nearest-neighbor distances 
collected for either core or non-core training examples, 
using the curve-fitting tools in SciPy  [18]. The form of 
the logistic function we use is

where parameters κ and � are respectively the minimum 
and maximum average-coreness values measured on the 
examples, while parameters α and β respectively control 
the slope and location of the logistic function’s inflec-
tion point. For function  fcore parameter α is positive (so 
coreness decreases with distance to a core class); for  fnon
parameter α is negative (so coreness increases with dis-
tance from a non-core class). As Fig. 1 later shows, these 

f (x) := κ + (�− κ)
1

1+ e−α(x−β)
,
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logistic transform functions fit actual coreness data 
remarkably well.

For the fitting process, we first learn the distance func-
tions dc as described in "Learning the distance function 
by linear programming" section, and then fit the trans-
form functions to empirical coreness values measured at 
the distances observed for example windows from our set 
of training windows. To fit function fcore we

(a) take the examples whose nearest neighbor is from 
one of the three core classes,

(b) sort these examples by their observed nearest-neigh-
bor distance,

(c) at each observed distance δ, collect all k≥1 examples 
whose distance equals  δ, the ℓ  successive examples 
whose distance is below δ, and the ℓ successive exam-
ples above δ, where count ℓ is fixed for the fitting pro-
cess, and

(d) compute the average true-coreness value of these 
k + 2ℓ  examples, and associate this average value 
with distance δ.

A logistic curve is then fit to these pairs of average true-
coreness and observed nearest-neighbor distances. To fit 
function  fnon, this same process is repeated separately for 
examples whose nearest neighbor is from one of the two 
structured non-core classes.

To predict coreness for a window from a computed 
alignment, again we (1)  find its nearest-neighbor dis-
tance  δ among all training windows from structured 
classes, and (2)  transform this distance to coreness by 
returning  fcore(δ) if the nearest neighbor is from a core 
class and  fnon(δ) otherwise.

Learning the distance function by linear programming
We now describe the linear program used to learn the 
distance functions on column windows. Again we divide 
the window classes C into two categories: the structured 
classes, containing windows centered on core columns, 
or centered on non-core columns that are flanked on 
at least one side by core columns; and the unstructured 
class, containing windows of only non-core columns. 
We again denote this unstructured class of completely 
non-core windows by ⊥ ∈ C. The linear program learns 
a class-specific distance function dc for each structured 
window class  c ∈ C − {⊥}.

In principle, the linear program tries to find distance 
functions dc that make the following “conceptual” near-
est-neighbor classifier accurate. (We do not actually learn 
such a classifier, but instead ultimately learn a regressor.) 
This classifier forms a window  W centered on the col-
umn to be classified, and finds the nearest neighbor to W 
over all structured classes  C − {⊥} in the training set, 

using their corresponding distance functions dc. Let the 
distance to this nearest neighbor be δ, and its structured 
class be c. The conceptual classifier would then compare 
distance δ to a threshold τ.

  • If δ ≤ τ, the central column of window W is declared 
to be “core” or “non-core” depending on whether 
structured class c is respectively core or non-core.

  • Otherwise, window  W is deemed to be in the 
unstructured non-core class ⊥, and its central col-
umn is declared “non-core.”

The key aspect of this conceptual nearest-neighbor clas-
sifier is that it can recognize a completely non-core win-
dow W from class ⊥, without actually having any examples 
in its training set that are close to W. This is crucial, as the 
set of possible windows from the unstructured class ⊥ is 
enormous and may lack any recognizable structure, which 
would make reliably identifying windows from class ⊥ by 
having a near neighbor in the training set hopeless. On 
the other hand, identifying windows from the structured 
classes is possible by having enough examples in the train-
ing set. The following linear program learns both distance 
functions dc and distance threshold τ.

To construct the linear program, we partition the 
training set T  of labeled windows by window class: sub-
set Tc ⊆ T  contains all training windows of class c ∈ C. 
We then form a smaller training sample Sc ⊆ Tc for each 
class c by choosing a random subset of Tc with a specified 
cardinality |Sc|.

For a sample training window W ∈ Sc we identify other 
windows V ∈ Tc from the same class c in the full training 
set that are close to W (under a default distance d̃c). We 
call these close windows V from the same class c, targets. 
Similarly for W ∈ Sc we identify other windows U ∈ Tb 
from a different class b �= c in the full training set that are 
also close to W (under d̃b). We call these other close win-
dows U from a different class b, impostors (paralleling the 
terminology of Weinberger and Saul [19]).

We call these sets of windows that are close to a given 
window W the neighborhood Nc(W , i) of W for a struc-
tured class c ∈ C − {⊥}, which denotes the set of i-near-
est-neighbors to W (not including W) from training set Tc 
under the class-specific default distance function d̃c. (The 
default distance function that we use in our experiments 
is described later.)

At a high level, the linear program finds a distance 
function that, for sample windows W ∈ Sc

  • pulls in targets V ∈ Nc(W , i), by making dc(V ,W ) 
small, and
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  • pushes away impostors U ∈ Nb(W , i) for b �= c, by 
making db(U ,W ) large.

The neighborhoods N (W , i) that give these sets of tar-
gets and impostors are defined with respect to default 
distance functions d̃. Ideally these neighborhoods should 
be defined with respect to the learned distance func-
tions  dc, but obviously these learned distances are not 
available until after the linear program is solved. We 
address this discrepancy by iteratively solving a series 
of linear programs. The first linear program at itera-
tion  1 defines neighborhoods with respect to distance 
functions d(0) = d̃, and its solution yields the new func-
tions d(1). In general, iteration  i uses the previous itera-
tion’s functions  d(i−1) to formulate a linear program 
whose solution yields the new distance functions  d(i). 
This process is repeated for a fixed number of iterations, 
or until the change in the distance functions is sufficiently 
small.

The target constraints of the linear program, for 
each sample window  W ∈ Sc from each structured 
class c ∈ C − {⊥}, and each target window V ∈ Nc(W , k),  
are

where  eVW  is a target error variable and τ is a thresh-
old variable. In the above, quantity dc(V ,W ) is a linear 
expression in the substitution score variables σc,i(p, q), so 
constraint (1) is a linear inequality in all these variables. 
Intuitively, we would like condition dc(V ,W ) ≤ τ to 
hold (so W will be considered to be in its correct class c); 
in the solution to the linear program, variable eVW  will 
equal  max

{
dc(V ,W )− τ , 0

}
, the amount of error by 

which this ideal condition is violated.
In the target neighborhood  Nc(W , k) above, count  k 

specifies the number of targets for each sample win-
dow W. In our experiments we use a small number of tar-
gets, with k = 2 or 3.

The impostor constraints for each sample win-
dow W ∈ Sc from each structured class c ∈ C − {⊥}, and 
each impostor window V ∈ Nb(W , ℓ) from each struc-
tured class b ∈ C − {⊥} with b �= c, are

where  fW  is an impostor error variable. Intuitively, we 
would like condition db(V ,W ) > τ to hold (so  W will 
not be considered to be in the incorrect class b), which 
we can express by db(V ,W ) ≥ τ + 1 using a margin of 1. 

(1)eVW ≥ dc(V ,W )− τ ,

(2)eVW ≥ 0,

(3)fW ≥ τ − db(V ,W )+ 1,

(4)fW ≥ 0,

(Since the scale of the distance functions is arbitrary, we 
can always pick a unit margin without loss of generality.) 
In the solution to the linear program, variable  fW  will 
equal maxb∈C−{⊥}, V ∈Nb(W , ℓ)

{
τ − db(V ,W )+ 1, 0

}
 , 

the largest amount of error by which this condition is 
violated for W across all b and V.

We also have impostor constraints for each com-
pletely non-core window W ∈ T⊥ and each core win-
dow V ∈ Nb(W , ℓ) from each structured core class b (as 
we do not want W to be considered core), which are of 
the same form as inequalities (3) and (4) above.

In the impostor neighborhood Nb(W , ℓ) above, count ℓ 
specifies the number of impostors for each sample win-
dow W. We use a large number of impostors ℓ ≈ 100 in 
our experiments. Having a single impostor error varia-
ble  fW  per sample window W (versus a target error varia-
ble eVW  for every W and target V) allows us to use a large 
count ℓ while still keeping the number of variables in the 
linear program tractable.

The triangle inequality constraints, for each structured 
class c ∈ C − {⊥}, each window position −w ≤ i ≤ w, 
and all states p, q, r ∈ Q (including the gap state ξ), are

These reduce to simpler inequalities when states  p,  q,  r 
are not all distinct or coincide with the gap state (which 
we do not enumerate here). A consequence of con-
straint (5) is that the resulting distance functions dc also 
satisfy the triangle-inequality property, as we prove in 
"Ensuring the triangle inequality" section. This property 
allows us to use faster metric-space data structures for 
computing the nearest-neighbor distance δ as discussed 
earlier.

The remaining constraints, for all structured 
classes  c ∈ C − {⊥}, positions −w ≤ i ≤ w, states 
p, q ∈ Q, and gap state ξ, are

which ensure the distance functions are symmetric and 
non-negative. (We do not enforce the other metric con-
ditions dc(W ,W ) = 0 and dc(V ,W ) > 0 for V �= W , as 
these are not needed for our coreness predictor, and we 
prefer having a less constrained distance dc that might 
better minimize the following error objective.)

(5)σc,i(p, r) ≤ σc,i(p, q)+ σc,i(q, r).

(6)σc,i(p, q) = σc,i(q, p),

(7)σc,i(p, p) ≤ σc,i(p, q),

(8)σc,i(p, q) ≥ 0,

(9)σc,i(ξ , ξ) = 0,

(10)τ ≥ 0,
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Finally, the objective function minimizes the average 
error over all training sample windows. Formally, we 
minimize

where  0 ≤ α ≤ 1 is a blend parameter controlling 
the weight on target error versus impostor error. We 
note that in an optimal solution to this linear pro-
gram, variables eVW = max

{
dc(V ,W )− τ , 0

}
 and 

fW = maxV ,b

{
τ − db(V ,W )+ 1, 0

}
, since inequali-

ties  (1)–(4) ensure the error variables are at least these 
values, while minimizing the above objective function 
ensures they will not exceed them. Thus solving the lin-
ear program finds distance functions dc given by substi-
tution scores  σc,i(p, q) that minimize the average over 
the training windows W ∈ Sc of the amount of violation 
of our ideal conditions dc(V ,W ) ≤ τ for targets V ∈ Tc 
and db(V ,W ) > τ  for impostors V ∈ Tb.

To summarize, the variables of the linear program are 
the substitution scores σc,i(p, q), the error variables eVW  
and  fW , and the threshold variable τ. For n total training 
sample windows, k  targets per sample window, m  win-
dow classes of width w, and amino-acid alphabet size  s, 
this is �(kn+ s2wm) total variables. The main constraints 
are the target constraints, impostor constraints, and tri-
angle inequality constraints. For ℓ  impostors per sample 
window, this is �

(
(k + ℓm)n+ s3wm

)
 total constraints. 

We ensure that solving the linear program is tractable 
by controlling the number k of targets, the number ℓ of 
impostors, and the total size n of the training sample.

Ensuring the triangle inequality
We now show that the distance functions obtained 
by solving the above linear program obey the triangle 
inequality.

Theorem 1 (Triangle Inequality on Window Distances) 
The class distance functions dc obtained by solving the lin-
ear program satisfy the triangle inequality.

Proof For every class c, and all windows U, V, and W,

α 1

|C|−1

∑

c ∈C−{⊥}

1

|Sc|

∑

W ∈ Sc

1

k

∑

V ∈Nc(W ,k)

eVW

+ (1− α) 1
|C|

∑

c ∈C

1

|Sc|

∑

W ∈ Sc

fW ,

(11)

dc(U ,W ) =

∑

i

∑

p,r

Ui(p)Wi(r) σc,i(p, r)

=

∑

i

∑

p,q,r

Ui (p)Vi(q)Wi(r) σc,i(p, r)

(12)

≤
∑

i

∑

p,q,r

Ui(p)Vi(q)Wi(r)
(
σc,i(p, q) + σc,i(q,r)

)

where equation  (11) follows from the identity ∑
q Vi(q) = 1, inequality (12) follows from constraint (5) 

in the linear program, and equation (13) follows from the 
identities 

∑
r Wi(r) =

∑
p Ui(p) = 1.

In short, dc(U ,W ) ≤ dc(U ,V )+ dc(V ,W ) for all 
windows U, V, W, so the triangle inequality holds on dis-
tances dc.  �

Since window distances satisfy the triangle inequality, 
we can use fast data structures for metric-space nearest-
neighbor search to evaluate the coreness predictor.

Applying coreness to accuracy estimation
The Facet alignment accuracy estimator  [3] is a lin-
ear combination of efficiently-computable feature func-
tions of an alignment that are positively correlated with 
true accuracy. As mentioned earlier, the true accuracy 
of a computed alignment is measured only with respect 
to core columns of the reference alignment. We leverage 
our coreness predictor to improve the Facet estimator 
by: (1)  creating a new feature function that attempts to 
directly estimate true accuracy, and (2) concentrating the 
evaluation of existing feature functions on columns with 
high predicted coreness.

Creating a new coreness feature
Our new feature function on alignments, which we call 
Predicted Alignment Coreness, is similar to the so-called 
total-column score sometimes used to measure align-
ment accuracy. Predicted Alignment Coreness counts the 
number of columns in the alignment that are predicted to 
be core, by taking a window W around each column, and 
counting the number of windows whose predicted core-
ness value χ(W ) exceeds a threshold κ. This count of pre-
dicted core columns in the given alignment is normalized 
by an estimate of the number of true core columns in the 
unknown reference alignment of the sequences.

Formally, the Predicted Alignment Coreness feature 
function FAC for computed alignment A of sequences S is

(13)

=

∑

i

∑

p,q,r

Ui(p)Vi(q)Wi(r) σc,i(p, q)

+

∑

i

∑

p,q,r

Ui(p) Vi(q) Wi(r) σc,i(q, r)

=

∑

i

∑

p,q

Ui(p) Vi(q) σc,i(p, q)

+

∑

i

∑

q,r

Vi(q) Wi(r) σc,i(q, r)

= dc(U ,V ) + dc(V ,W ),

FAC(A) :=
1

L(S)

∣∣∣
{
W ∈ A : χ(W ) ≥ κ

}∣∣∣,
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where the notation W ∈ A refers to all windows of col-
umns of A.

The normalizing function  L in the denominator is 
designed to be positively correlated with the number of 
core columns in the reference alignment for S. (The nor-
malizer L is a function only of S, and not alignment A, so 
that all alternate alignments of S are normalized by the 
same quantity. Thus ranking alternate alignments by FAC 
orders them by the numerator: their predicted number of 
core columns.) The family of functions that we consider 
for the normalizer L of feature FAC are linear combinations 
of products of at most three factors from the following:

  • aggregate measures of the lengths of sequences in S, 
namely their minimum, mean, and maximum length;

  • averages over all pairs of sequences in S of the ratio 
of their longest-common-subsequence length divided 
by an aggregate measure of the lengths of the pair of 
sequences (which can be viewed as forms of “percent 
identity”);

  • averages over all pairs of sequences of the ratio of their 
difference in sequence length divided by an aggregate 
length measure (forms of “percent indel”); and

  • averages over all pairs of sequences of the ratio of 
aggregate length measures for the pair (forms of “rela-
tive indel”).

More precisely, each term of the linear combination is a 
product whose factors are one aggregate length measure, 
and at most two average ratios from different groups in 
the above. Finally, we learn the normalizer from train-
ing data by solving a linear program to find coefficients 
of the linear combination that minimize its L1-norm with 
the true number of core columns, across training protein 
benchmarks.

The final fitted function L(S) that we use for the new 
Predicted Alignment Coreness feature is given later.

Augmenting existing features by coreness
In addition to using the coreness regressor to directly 
estimate the accuracy of an alignment via the new fea-
ture function FAC, we also augment some of the existing 
feature functions in Facet to concentrate their evalu-
ation on columns with higher predicted coreness (since 
only on core columns is true accuracy measured). A full 
description of all feature functions in Facet is in  [3]. 
The existing features that we augment using the coreness 
regressor are Secondary Structure Blockiness, Second-
ary Structure Identity, Amino Acid Identity, and Average 
Substitution Score. Each of these features can be viewed 
as a sum across columns of a quantity computed over 
all residue pairs in a column; in the augmented feature, 

this is now a weighted sum across columns, with columns 
weighted by their predicted coreness value. These aug-
mented features are described in more detail below.

  • Secondary Structure Blockiness  FBL uses secondary 
structure predictions on the alignment’s proteins 
obtained from PSIPRED [14], and returns the maxi-
mum total score of an optimal packing of secondary 
structure blocks in the alignment, normalized by 
the total number of residue pairs in the alignment’s 
columns, where: a block is an interval of columns 
together with a subset of the sequences such that all 
residues in the block have the same secondary struc-
ture prediction, a packing is a set of blocks whose col-
umn intervals are all disjoint, and the score of a block 
is the total number of pairs of residues within the 
columns in the block. (So an optimal packing maxi-
mizes the number of pairs of residues in the align-
ment’s columns that are covered by blocks of consist-
ent predicted secondary structure.) We create a new 
augmented feature F ′

BL
 by weighting the number of 

residue pairs for a column by the column’s predicted 
coreness value.

  • Secondary Structure Identity  FSI is the fraction of 
residue pairs in columns of the computed alignment 
that share the same predicted secondary structure. 
We create a new feature F ′

SI
 by weighting counts of 

column residue pairs by their column’s predicted 
coreness.

  • Amino Acid Identity  FAI is the fraction of column 
residue pairs that share the same amino-acid equiva-
lence class. The augmented feature F ′

AI
 weights resi-

due pairs by their column’s predicted coreness.

  • Average Substitution Score  FAS is the average  
BLOSUM62  score  [20] of all column residue pairs, 
with BLOSUM similarity scores scaled to the 
range [0, 1]. The augmented feature F ′

AS
 weights this 

average by the column’s predicted coreness.

Other existing features not augmented by coreness that 
are used in their original form in the improved Facet 
estimator are the following. (Full details on these features 
are in [3].)

  • Secondary Structure Agreement  FSA uses predicted 
secondary structure confidences from PSIPRED (the 
confidence that a residue is in each of the three sec-
ondary structure states) to estimate the probability 
that each column residue pair shares the same sec-
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ondary structure state, in a weighted window cen-
tered on each pair, and averages these estimates over 
all pairs.

  • Gap Open Density  FGO is the fraction of gap char-
acters  (‘-’) in the alignment that start a run of such 
characters.

  • Gap Extension Density  FGE is the fraction of align-
ment entries that are gap characters (‘-’).

The final improved Facet estimator that uses these fea-
tures is given later.

Assessing the coreness predictor
We evaluate our new approach to coreness prediction, 
and its use in accuracy estimation for alignment param-
eter advising, through experiments on a collection of 
protein multiple sequence alignment benchmarks. A 
full description of the benchmarks, and the universe of 
parameter choices for parameter advising, is given in [3].

Briefly, the benchmarks in our experiments consist 
of reference alignments of protein sequences largely 
induced by structurally aligning their known three-
dimensional folded structures. We use the BENCH 
benchmark suite of Edgar [21], supplemented by a selec-
tion from the PALI benchmark suite of Balaji et al.  [1]. 
Our full benchmark collection consists of 861  reference 
alignments.

We use 12-fold cross-validation to assess both column 
classification with our coreness predictor, and param-
eter advising with our augmented accuracy estima-
tor. To correct for the overabundance of easy-to-align 
benchmarks when assessing parameter advising, we bin 
the benchmarks according to difficulty, measured by 
the true accuracy of their alignment computed by the 
Opal aligner  [22, 23] under its default parameter set-
ting. We ensure folds are balanced in their representation 
of benchmarks from all difficulty bins. For each fold, we 
generate a training set and testing set of example align-
ments by running Opal on each benchmark for each 
parameter choice from a fixed universe of 243 parameter 
settings.

Constructing the coreness predictor
We first discuss results on learning the distance functions 
for the coreness predictor, and then discuss results on fit-
ting its transform functions.

Learning the distance functions
To keep the size manageable of the linear program 
that we solve to learn the window class distance func-
tions dc , we use a training sample of 2000 total windows 

representing the structured classes. We find targets and 
impostors for windows from the training sample by per-
forming nearest-neighbor searches in training sets that 
for each fold have  4000 windows from each structured 
window class. For each window from the training sam-
ple, the linear program uses 2 targets, and 150 impostors 
from each window class. For testing the accuracy of our 
learned coreness predictor, we use testing sets of  2000 
total windows representing all classes (including the 
unstructured class). The windows for these training sam-
ples, training sets, and testing sets are drawn from corre-
sponding training and testing example alignments.

We form the initial sets of targets and impostors for the 
linear program by either: (1) performing nearest-neighbor 
searches using a default distance function whose posi-
tional substitution score is a convex combination of (a) the 
VTML200 substitution score on the states’ amino acids 
(transformed to a dissimilarity value in the range  [0,  1]), 
and (b) the identity function on the states’ secondary struc-
ture types, with positions weighted so the center column 
has twice the weight of its flanking columns; or (2)  ran-
domly sampling windows from the appropriate classes to 
choose targets and impostors, as further discussed below.

Once a distance function is learned by solving the 
linear program, we can iterate the process by using the 
learned distance function to recompute the sets of targets 
and impostors for another instance of the linear program, 
that is in turn solved to learn a new distance function. 
Table 1 shows results for this iterative process, where we 
use our coreness regressor to classify columns by simply 
thresholding the column’s predicted coreness value to 
obtain a binary classification of “core” (above the thresh-
old) or “non-core” (at most the threshold). Beginning 
with the distance function learned at the first iteration 
from the initial default distance, Table  1 gives the area 
under the curve  (AUC) measure for the receiver operat-
ing characteristic  (ROC) curve, which implicitly consid-
ers all possible thresholds for the classifier, across ten 
iterations on both training and testing data.

Note that the training  AUC steadily increases for the 
first four iterations, and then oscillates around a high pla-
teau. This does not translate, however, into an improve-
ment in the testing AUC, which actually drops and then 
oscillates at a much lower level.

While iterating distance learning markedly improves this 
core column classifier on the training examples, it is overfit-
ting, and does not generalize well to testing examples. This 
may be due to the smaller training sample and training sets 
used to reduce the time for solving the linear program.

Interestingly, we found that using random examples 
from appropriate window classes for the target and impos-
tor sets led to much better generalization. Specifically, 
this achieved a training and testing AUC of 86.0 and 88.6, 
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respectively. Accordingly, in the remainder of the paper we 
use distance functions obtained by solving the linear pro-
gram with random target and impostor sets, and no itera-
tion, when assessing results on parameter advising.

Transforming distance to coreness
Figure 1 shows the fitted logistic functions fcore and  fnon 
used to transform nearest-neighbor distance to predicted 
coreness, superimposed on the underlying true coreness 
data for one fold of training examples. The horizontal 
axis is nearest-neighbor distance δ, while the vertical axis 
is the average true coreness of training examples at that 
distance (where this average is computed as detailed ear-
lier). The blue and red curves show the average true core-
ness of training examples for which the nearest neighbor 
is in respectively either a core class or a structured non-
core class. The top and bottom green curves show the 
logistic transform functions for respectively the core and 
non-core classes, fitted to this training data. Note that 
the green logistic curves fit the data quite well.

Interestingly, when a column’s window is sufficiently far 
away from all structured classes (including core and non-
core classes), the green  fcore and  fnon logistic curves both 
converge to a predicted coreness around  33% (which 
roughly agrees with the blue and red empirical average 
coreness curves).

Improving parameter advising
A parameter advisor and has two components: (1)  an 
accuracy estimator, which estimates the accuracy of a 
computed alignment, and (2) an advisor set, which is a set 
of candidate assignments of values to the aligner’s param-
eters. The advisor picks the choice of parameter values 
from the advisor set for which the aligner yields the com-
puted alignment of highest estimated accuracy.

In our parameter advising experiments, we assess the 
true accuracy of the multiple sequence alignment tool 
Opal  [22, 23] combined with an advisor that uses the 
accuracy estimator Facet  [3] (the best estimator for 
parameter advising in the literature), augmented by our 
new coreness predictor as well as by two other column-
quality tools: TCS  [11] and ZORRO  [10]. We compare 
these advising results against prior approaches using for 
the estimator both the original unmodified Facet as well 
as TCS (the next-best estimator for parameter advising 
in the literature). We also compare against augmenting 
Facet by true coreness, which represents the unattain-
able limit reached by a perfect coreness predictor.

These experiments focus on advising for the Opal 
aligner, as it is an ideal test bed for studying parameter 
advising: in contrast to other aligners, at each node of the 
guide tree during progressive alignment, Opal computes 
subalignments that are optimal with respect to the given 
parameter choice for the sum-of-pairs scoring function 
with affine gap costs [24].

In parameter advising, the choice of advisor set is crucial, 
as the performance of the advisor is limited by the quality 
of the computed alignments generated by this set of param-
eter choices. We consider two types of advisor sets [25, 26]:

  • estimator-independent oracle sets, which are learned 
for a conceptual oracle advisor that has access to true 
accuracy for its estimator, by solving an integer lin-
ear program to achieve optimal advising accuracy on 
training data; and

Table 1 Core column classifier area-under-the-curve (AUC) for training and testing data with iterated distance learning

Iteration

1 2 3 4 5 6 7 8 9 10

Training 88.7 94.3 99.2 99.4 99.5 99.7 99.6 99.7 99.4 99.7

Testing 84.7 81.3 80.8 80.0 83.4 82.5 81.2 80.9 80.3 81.6

Fig. 1 Fit of the distance transform functions to true coreness. The 
blue and red curves track on the vertical axis the average true core-
ness of training examples, whose nearest neighbor is respectively 
from a core or non-core class, at their corresponding nearest-neigh-
bor distance on the horizontal axis. Average coreness is computed 
as described earlier with count ℓ = 100. The top and bottom green 
curves respectively show the fitted logistic functions fcore and fnon that 
are used by the coreness regressor to transform nearest-neighbor 
distance into predicted coreness
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  •  estimator-aware greedy sets, which are learned for a 
specific concrete estimator by a greedy approximation 
algorithm that guarantees near-optimal training accu-
racy, and which tend to perform better than oracle sets 
in practice when used with their concrete estimator.

(We emphasize that when using oracle sets for the advi-
sor set in our experiments, they are always used in con-
junction with a concrete imperfect accuracy estimator.) 
These advisor sets are drawn from a larger universe 
of possible parameter choices. We use the universe of 
243 parameter choices enumerated in [25].

As mentioned earlier, we bin alignments according to 
difficulty to correct for the overabundance of easy-to-
align benchmarks. Figure  2 lists in parentheses above 
the bars the number of benchmarks in each bin. When 
reporting advising accuracy, we give the true accuracy of 
the alignments chosen by the advisor, uniformly averaged 
over bins (rather than uniformly averaging over bench-
marks). With this equal weighting of bins, an advisor that 
uses only the single optimal default parameter choice 
will achieve an average advising accuracy of roughly 50% 
(demonstrated by the black “default” bar on the far right 

in Fig. 2). This establishes, as a point of reference, advis-
ing accuracy 50% as the baseline against which to com-
pare advising performance.

The augmented Facet estimator
We use our coreness predictor to modify the Facet 
accuracy estimator by including the new Predicted Align-
ment Coreness feature, and augmenting existing fea-
ture functions by coreness. We learned coefficients for 
these feature functions, as well as all the features origi-
nally in  Facet, using the difference-fitting technique 
described in [3].

The new alignment accuracy estimator that uses our 
coreness predictor has non-zero coefficients for

  • the new feature: Predicted Alignment Coreness FAC ;
  • two features augmented by our coreness predictor: 

Secondary Structure Identity  F ′
SI

 , and Secondary 
Structure Blockiness F ′

BL
 ; and

  • five original unaugmented features: Secondary Struc-
ture Agreement  FSA , Secondary Structure Iden-
tity FSI , Secondary Structure Blockiness FBL , Gap 
Extension Density FGE , and Gap Open Density FGO .

Fig. 2 Advising accuracy within benchmark bins. This bar chart shows results within each bin of benchmarks, where bins group benchmarks by 
difficulty, for parameter advising with greedy advisor sets of cardinality 7. For each of the ten bins listed along the horizontal axis, the vertical axis 
gives advising accuracy, averaged over the benchmarks in the bin; on the far right is an average of all ten bin-averages. Bins are labeled on the 
horizontal axis by the upper limit of their difficulty range, where the difficulty of a benchmark is the true accuracy of its alignment computed by the 
Opal aligner under its default parameter setting. The colored bars in each bin show average advising accuracy for Opal using: its optimal default 
parameter setting, in black; advising with the original unaugmented Facet estimator, in green; and advising with Facet augmented by predicted 
coreness, in red. The dashed line shows average advising accuracy for each bin if Facet were augmented by true coreness: the limit achieved by a 
perfect coreness predictor. In parentheses above the bars is the number of benchmarks in each bin (while on the far right is their total number)
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To give an idea of how these augmented and unaug-
mented features behave, Fig.  3 shows the correlation 
between feature values and true accuracy for computed 
alignments. On the left is Secondary Structure Identity, 
on the right is Secondary Structure Blockiness, and on 
the top and bottom are respectively the original and aug-
mented versions of these features. (For reference, least-
squares lines are shown fitted to the data, where points 
are weighted so each accuracy decile has the same total 
weight.) Note in the scatterplots that the augmented fea-
tures have somewhat higher slope and lower spread than 
their unaugmented versions. This can yield a stronger 
feature for discriminating high-accuracy from low-accu-
racy alignments, which may explain their inclusion in the 
new fitted estimator.

The resulting augmented accuracy estimator is

(The above coefficients are fitted over all benchmarks; 
in our cross-validation experiments, the estimator used 
for each fold is fitted only over the benchmarks in the 

(0.656) F ′
SI

+ (0.128) F ′
BL

+ (0.123) FSA + (0.089) FSI+

(0.064) FBL + (0.015) FAC + (0.007) FGE + (0.006) FGO.

training set for that fold.) We mention that these feature 
functions have different ranges, so the magnitudes of 
their coefficients should not necessarily be interpreted in 
terms of the importance of the feature.

To illuminate how the new augmented estimator 
behaves, Fig. 4 shows the correlation on computed align-
ments between estimator value and true accuracy for the 
final augmented Facet estimator, original unaugmented 
Facet, and the TCS estimator. (Fitted least-squares lines 
are shown, with points weighted so each accuracy decile 
has the same weight.) Note that augmented Facet again 
has somewhat higher slope and lower spread than its 
original version. On the other hand, TCS has the highest 
slope, but also the highest spread. This may explain why 
augmented Facet performs better for parameter advis-
ing (as shown later in our experiments).

The coreness feature normalizer
The normalizer function  L(S) used in Predicted Align-
ment Coreness (feaure  FAC), gives an estimate of the 
number of core columns in the unknown reference align-
ment of sequences S, and is a linear combination of basic 
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Fig. 3 Correlation of augmented and unaugmented feature functions with true accuracy. The scatterplots show the correlation with true accuracy 
of alignment feature functions for the Facet accuracy estimator. Points in the scatterplots correspond to computed alignments for benchmarks 
with known reference alignments; all scatterplots are over the same set of alignments. The vertical axis is the feature function value, while the 
horizontal axis is true accuracy of the computed alignment with respect to the reference. The top and bottom scatterplots correspond respectively 
to unaugmented and augmented versions of the same feature function: on top is the original unaugmented Facet feature, and on the bottom is 
this feature augmented with predicted coreness. The plotted feature functions are: a original Secondary Structure Identity FSI, b original Secondary 
Structure Blockiness FBL, c augmented Secondary Structure Identity F′SI, and d augmented Secondary Structure Blockiness F′BL
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measures of S, as described earlier. Optimal coefficients 
for this linear combination are learned by minimizing its 
L1-norm with the true number of core columns in train-
ing benchmarks.

The fitted estimator  L(S) for Predicted Alignment 
Coreness is

where

  • ℓmin, ℓavg, ℓmax are respectively the minimum, aver-
age, and maximum sequence lengths in S;

  • pmin, pavg, pmax, similar to percent identity meas-
ures, are the longest-common-subsequence length 
for each pair of sequences normalized by respectively 
the minimum, average, and maximum sequence 
length for the pair, averaged over all pairs;

  • qmin, qavg are quotients of respectively the minimum 
or average sequence length for each pair of sequences 
divided by the maximum length for the pair, averaged 
over all pairs; and

  • rmin, ravg are ratios of the difference in sequence 
lengths for each pair of sequences divided by respec-
tively the minimum and average sequence length for 
the pair, averaged over all pairs.

(The above coefficients are fitted over all benchmarks; 
in our cross-validation experiments, the normalizer for 
each fold is fitted only over the training benchmarks for 
that fold.)

Figure 5 shows in a scatterplot the correlation between 
this estimate of the number of core columns and the true 
number of core columns for each benchmark. While the 
fitted estimator does correlate with the true number of 
core columns, it tends to overestimate, possibly due to 
larger benchmarks having more columns that are close 
to—but not quite—core.

Performance on parameter advising
We assess the performance of parameter advising when 
the advisor uses for its accuracy estimator:

  • the augmented Facet estimator (“Facet/pre-
dicted”),

in comparison with

  • the original unaugmented Facet estimator 
(“Facet/none”),

  • Facet augmented by TCS (“Facet/TCS”),
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Fig. 4 Correlation of estimators with true accuracy. The scatterplots 
show the correlation with true accuracy of alignment accuracy esti-
mators. Points correspond to computed alignments for benchmarks; 
all scatterplots show the same alignments. The vertical axis is the 
estimator value; the horizontal axis is alignment true accuracy. The 
plotted accuracy estimators are: a the Facet estimator augmented 
with predicted coreness, b the original unaugmented Facet estima-
tor, and c the TCS estimator
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  • Facet augmented by ZORRO (“Facet/ZORRO”), 
and

  • Facet augmented by true coreness (“Facet/true”).

We also compare with

  • TCS (the next-best estimator for advising in the lit-
erature).

For the advisor set of parameter choices that the advisor 
picks from using these estimators, we consider both ora-
cle and greedy sets [26].

Performance when expanding the parameter choices
Figures  6 and  7 show parameter advising performance 
using oracle and greedy advisor sets, respectively. In 
both figures, the horizontal axis is advisor set cardinal-
ity (the number of different parameter choices avail-
able to the advisor), while the vertical axis is advising 
accuracy for testing folds (the true accuracy on testing 
benchmarks of the aligner combined with the parame-
ter advisor), uniformly averaged across bins. The curves 
show performance with the Opal aligner  [22, 23]. For 
reference, the default alignment accuracy for three 
other popular aligners, MAFFT  [27], MUSCLE  [28], and 
Clustal Omega [29], is also shown with dashed hori-
zontal lines.

Figure  6 shows that on oracle advisor sets, Facet/
predicted compared to Facet/none boosts the average 
accuracy of parameter advising by more than  3%. This 
increase is in addition to the improvement of Facet 
over TCS.

Figure  7 shows that on greedy advisor sets, Facet/
predicted boosts advising accuracy as well: for example, 
at cardinality 7, by more than 1%. (Note that accuracies 
for the greedy set curves are already higher than for ora-
cle sets.) Up to cardinality  7, the accuracy for Facet/
predicted is about halfway between Facet/none and 
Facet/true (the unattainable perfect coreness predic-
tor). Interestingly, Facet/TCS and Facet/ZORRO actu-
ally have worse accuracy than Facet/none.

Performance when generalizing to new data
While with greedy advisor sets, using predicted coreness 
to augment Facet does boost advising accuracy, a larger 
improvement might be realized by pairing with a better 
approach to finding estimator-aware advisor sets than 
greedy set-finding. The boost in accuracy we observe may 
actually be limited by the methods we are using to find 
advisor sets for the improved estimator. As an indication, 
Fig. 8 contrasts average training and testing accuracy for 
advising with Facet/predicted on greedy sets: specifi-
cally, the accuracy using greedy sets that were learned on 
training benchmarks when these same sets are applied to 
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testing benchmarks. The upper dashed curve is average 
training advising accuracy, while the lower solid curve 
is testing accuracy. The drop between these curves indi-
cates greedy set-finding is overfitting to training data, and 
not generalizing well to testing data. With better gener-
alization, we might also continue to get improved per-
formance at set sizes beyond cardinality 7, where greedy 
advisor sets currently plateau.

Performance within difficulty bins
Advising accuracy within difficulty bins for greedy sets of 
cardinality 7 is shown earlier in Fig. 2. In this bar chart, 
for the bin at each difficulty on the horizontal axis, advis-
ing accuracy averaged over just the benchmarks in the 
bin is shown on the vertical axis. The final chart on the 
right gives accuracy averaged across all bins. On diffi-
cult benchmarks, Facet/predicted boosts the accuracy 
of Facet/none by more than  3%. Note also how close 
Facet/predicted is to Facet/true: the advising accu-
racy is already quite close to what could be achieved aug-
menting with a perfect coreness predictor.

For a point of reference, advising accuracy uniformly-
averaged over benchmarks (rather than bins), on greedy 
sets of cardinality 10, is: for Facet/none, 81.9%; and for 
Facet/predicted, 82.2%. By comparison, on these same 
benchmarks the corresponding average accuracy of other 
popular aligners using their default parameter settings 
is: Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT, 
79.4%; and Opal, 80.5%.

Conclusion
We have developed a column coreness predictor for pro-
tein multiple sequence alignments that uses a regression 
function on nearest neighbor distances for class distance 
functions learned by solving a new linear programming 
formulation. When applied to alignment accuracy esti-
mation and parameter advising, the coreness predictor 
strongly outperforms other column confidence estima-
tors from the literature, and provides a substantial boost 
in advising accuracy.

Further research
A key issue left to explore is how to improve the gen-
eralization of distance-function learning and greedy 
advisor-set learning. Currently both tend to overfit to 
training data, resulting in a loss of testing accuracy. One 
way to address overfitting in distance learning would be 
to lower the number of substitution-score parameters in 
the learned distance functions by using reduced protein-
sequence alphabets with amino-acid equivalence classes, 
which should aid generalization.

Another very promising research direction is to apply 
the improved accuracy estimator to ensemble multiple 
sequence alignment  [5], where the estimator is used to 
pick the alignment output by an ensemble of sequence 
aligners. Any improvement in the estimator should yield 
further accuracy boosts for ensemble alignment.
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