
DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11
DOI 10.1186/s13015-017-0102-3

RESEARCH

Core column prediction for
protein multiple sequence alignments
Dan DeBlasio1,2* and John Kececioglu1

Abstract

Background: In a computed protein multiple sequence alignment, the coreness of a column is the fraction of its sub-
stitutions that are in so-called core columns of the gold-standard reference alignment of its proteins. In benchmark
suites of protein reference alignments, the core columns of the reference alignment are those that can be confidently
labeled as correct, usually due to all residues in the column being sufficiently close in the spatial superposition of the
known three-dimensional structures of the proteins. Typically the accuracy of a protein multiple sequence alignment
that has been computed for a benchmark is only measured with respect to the core columns of the reference align-
ment. When computing an alignment in practice, however, a reference alignment is not known, so the coreness of its
columns can only be predicted.

Results: We develop for the first time a predictor of column coreness for protein multiple sequence alignments. This
allows us to predict which columns of a computed alignment are core, and hence better estimate the alignment’s
accuracy. Our approach to predicting coreness is similar to nearest-neighbor classification from machine learning,
except we transform nearest-neighbor distances into a coreness prediction via a regression function, and we learn an
appropriate distance function through a new optimization formulation that solves a large-scale linear programming
problem. We apply our coreness predictor to parameter advising, the task of choosing parameter values for an aligner’s
scoring function to obtain a more accurate alignment of a specific set of sequences. We show that for this task, our
predictor strongly outperforms other column-confidence estimators from the literature, and affords a substantial
boost in alignment accuracy.

Keywords: Multiple sequence alignment, Core blocks, Alignment accuracy, Accuracy estimation, Parameter advising,
Machine learning, Regression

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
The accuracy of a multiple sequence alignment computed
on a benchmark set of input sequences is usually meas-
ured with respect to a reference alignment that repre-
sents the gold-standard alignment of the sequences. For
protein sequences, reference alignments are often deter-
mined by structural superposition of the known three-
dimensional structures of the proteins in the benchmark.
The accuracy of a computed alignment is then defined
to be the fraction of pairs of residues aligned in the so-
called core columns of the reference alignment that are
also present in columns of the computed alignment. Core

columns represent those in the reference that are deemed
to be reliable, which can be objectively defined as those
columns containing a residue from every input sequence
such that the pairwise distances between these residues
in the structural superposition of the proteins are all
within some threshold (typically a few angstroms). In
short, given a known reference alignment whose columns
are labeled as either core or non-core, we can determine
the accuracy of any other computed alignment of its pro-
teins by evaluating the fraction of aligned residue pairs
from these core columns that are recovered.

For a column in a computed alignment, we can also
define the coreness value for the column to be the frac-
tion of its aligned residue pairs that are in core columns
of the reference alignment. (Note this definition of col-
umn coreness is fully objective when core columns are

Open Access

Algorithms for
Molecular Biology

*Correspondence: deblasio@cmu.edu
2 Computational Biology Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-4110-4431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0102-3&domain=pdf

Page 2 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

identified through automated superposition of known
protein structures, as done for example in the PALI [1]
benchmark suite.) A coreness value of 1 means the col-
umn of the computed alignment corresponds to a core
column of the reference alignment.

When aligning sequences in practice, obviously such a
reference alignment is not known, and the accuracy of a
computed alignment, or the coreness of its columns, can
only be estimated. A good accuracy estimator for computed
alignments is extremely useful [2]. It can be leveraged to

• pick among alternate alignments of the same sequences
the one of highest estimated accuracy, for example, to
choose good parameter values for an aligner’s scoring
function as in parameter advising [3, 4]; or

• select the best result from an ensemble of different
aligners, naturally yielding a new ensemble aligner,
which can be far more accurate than any of its individ-
ual aligners [5].

Similarly, a good coreness predictor for columns in a com-
puted alignment can be used to

• mask out unreliable regions of the alignment before
computing an evolutionary tree, to boost the quality of
phylogeny reconstruction; or

• improve an alignment accuracy estimator by concen-
trating its evaluation function on columns of higher
predicted coreness, thereby boosting the performance
of parameter advising.

In fact, a perfect coreness predictor by itself would in
principle yield an ideal accuracy estimator.

In this paper, we develop for the first time a column
coreness predictor for protein multiple sequence align-
ments. Our approach to predicting coreness is similar
in some respects to nearest-neighbor classification from
machine learning, except we transform nearest-neigh-
bor distance into a coreness prediction via a regression
function, and we learn an appropriate distance function
through a new optimization formulation that solves a
large-scale linear programming problem. We leverage
our new coreness predictor to yield an improved align-
ment accuracy estimator, and evaluate its performance
by applying the improved estimator to the task of param-
eter advising in multiple sequence alignment.

Related work
To our knowledge, this is the first fully general attempt
to directly predict the coreness of columns in computed
protein alignments. Tools are available that assess the

quality of columns in a multiple alignment, and can be
categorized into: (a) those that only identify columns
as unreliable, for removal from further analysis; and
(b) those that compute a column quality score, which can
be thresholded. Tools that simply mask unreliable col-
umns of an alignment include GBLOCKS [6], TrimAL [7],
and ALISCORE [8]. Popular quality-score tools are
Noisy [9], ZORRO [10], TCS [11], and GUIDANCE [12].

Our experiments compare our coreness predictor to
TCS and ZORRO: the most recent tools that provide qual-
ity scores, as opposed to masking columns. Among the
other quality-score tools listed above, Noisy has been
shown to be dominated by GUIDANCE, which is in turn
dominated by ZORRO. (GUIDANCE also requires four
or more sequences, which excludes many benchmarks.)
Below we briefly summarize the approaches behind TCS
and ZORRO.
TCS (short for “transitive consistency score”) extends

an earlier approach of COFFEE [13]. For a pair i, j of resi-
dues that are aligned in a column and that come from
sequences A and B, the support for aligned pair i, j is the
sum of the scores of all pairwise alignments of every other
sequence C versus A and B, where the pairwise alignments
involving C are constrained to align i and j to a common
residue of C, and where this sum is normalized so support
is in the range [0, 1]. The TCS score for a column is then
the average support of its aligned residue pairs.
ZORRO uses an evolutionary tree over the alignment’s

sequences to determine a weight for each sequence pair.
The length of each edge in the tree is apportioned among
the sequence pairs whose tree paths include that edge;
the total amount of edge length apportioned to a given
sequence pair yields a weight for that pair, where these
weights also take into account both an estimate of the
evolutionary distance between sequences (estimated by
the length of the tree path between them), and the corre-
lation between sequence pairs (estimated by the length of
overlap in the paths between the pairs). The ZORRO score
for a column is then the weighted sum, over the col-
umn’s aligned residue pairs, of the probability of emitting
the residue pair’s amino acids by a pair hidden Markov
model, times the weight of the residue pair’s correspond-
ing sequence pair.

In contrast to the quality scores of TCS and ZORRO, we
directly predict column coreness. Our approach is also
not dependent on the choice of an alignment scoring
scheme as in TCS, or the choice of hidden Markov model
emission probabilities as in ZORRO.

Plan of the paper
"Learning a coreness predictor" section describes how we
learn our coreness predictor. We then explain how we use
predicted coreness to improve accuracy estimation for

Page 3 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

protein alignments. "Assessing the coreness predictor"
section evaluates our approach to coreness prediction by
applying the improved accuracy estimator to alignment
parameter advising. Finally, we conclude and give direc-
tions for further research.

Learning a coreness predictor
To describe how we learn a column coreness predictor,
we first discuss our representation of alignment col-
umns, and our grouping of consecutive columns into
window classes. We then present our regression function
for predicting coreness, which transforms the nearest-
neighbor distance from a window to a class into a core-
ness value. Following this we explain how to learn the
window distance function by solving a large-scale linear
programming problem. Finally we show that the result-
ing window distances satisfy the triangle inequality,
which enables the use of data structures for metric-space
nearest-neighbor search when evaluating the regression
function.

Representing alignment columns
The information used by our coreness predictor, beyond
the multiple sequence alignment itself, is an annotation
of its protein sequences by predicted secondary structure
(which can be obtained in a preprocessing step by run-
ning the sequences through a standard protein secondary
structure prediction tool such as PSIPRED [14]). When
inputting a column from such an annotated alignment to
our coreness predictor, we need a column representation
that, while capturing the association of amino acids and
predicted secondary structure types, is also independent
of the number of sequences in the column. This is nec-
essary as our predictor will be trained on example align-
ments of particular sizes, yet the resulting predictor must
apply to alignments with arbitrary numbers of sequences.

Let � be the 20-letter amino acid alphabet, and
Ŵ = {α,β , γ } be the secondary structure alphabet, cor-
responding respectively to types α-helix, β-strand, and
other (also called coil). We encode the association of an
amino acid c ∈ � with its predicted secondary structure
type s ∈ Ŵ by an ordered pair (c, s) that we call a state,
from the set Q = (� × Ŵ) ∪ {ξ}. Here ξ = (-,-) is the
gap state, where the dash symbol ‘–’ �∈ � is the alignment
gap character.

We represent a multiple alignment column as a distri-
bution over the set of states Q, which we call its profile
(mirroring standard terminology [15, p. 101]). We denote
the profile C for a given column by a function C(q) on
states q ∈ Q satisfying C(q) ≥ 0 and

∑
q∈Q C(q) = 1.

Most secondary structure prediction tools output a confi-
dence value (not a true probability) that an amino acid in
a protein sequence has a given secondary structure type.

For a column of amino acids (c1 · · · ck) in a multiple align-
ment of k sequences, denote the confidence that amino
acid ci has secondary structure type s ∈ Ŵ by pi(s) ≥ 0,
where

∑
s∈Ŵ pi(s) = 1. For non-gap state q = (a, s) �= ξ,

profile C has value

In other words, C(q) is the normalized total confidence
across the column in state q �= ξ. For gap state q = ξ, the
profile value is

the relative frequency of gap characters in the column.

Classes of column windows
In protein benchmarks, a column of a reference align-
ment is labeled core if the residues in that column are all
sufficiently close in the structural superposition of the
known three-dimensional structures of the proteins. The
folded structure around a residue is not simply a function
of the amino acid of the residue itself, or its secondary
structure type, but is also a function of nearby residues
in the protein. Consequently, to predict the coreness of
a column in a computed alignment, we need contextual
information from nearby columns of the alignment. We
gather this additional context around a column by form-
ing a window of consecutive columns centered on the
given column. Formally, a window W of width w ≥ 1
is a sequence of 2w+1 consecutive column profiles
C−w · · ·C−1C0C+1 · · ·C+w centered around profile C0.

We define the following set of window classes C,
depending on whether the columns in a labeled training
window are known to be core or non-core in the refer-
ence alignment. (When later extracting training windows
from a computed alignment that has a known reference
alignment, we will label a column in a computed align-
ment as core iff its true coreness value—namely, the
fraction of its residue pairs that are in core columns of
the reference alignment—is above a fixed threshold.)
We denote a column labeled core by C, and a column
labeled non-core by N. For window width w=1 (which
has three consecutive columns), such labeled windows
correspond to strings of length 3 over alphabet {C,N} .
The three classes of core windows are CCC, CCN, NCC; the
three classes of non-core windows are CNN, NNC, NNN.
(A window is considered core or non-core depending on
the label of its center column. We exclude windows NCN
and CNC, as these almost never occur in reference align-
ments.) Together these six classes comprise set C. We
call the five classes with at least one core column C in the

C(q) :=
1

k

∑

1≤i≤k : ci=a

pi(s).

C(ξ) :=
1

k

∣∣∣
{
i : ci = ‘–’

}∣∣∣,

Page 4 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

window, structured classes; the one class with no core
columns is the unstructured class, denoted by ⊥ = NNN.

The coreness regression function
We learn a coreness predictor by fitting a regression
function that first measures the similarity between a col-
umn’s window and training examples of windows with
known coreness, and then transforms this similarity into
a coreness value.

The similarity of windows V = V−w · · ·Vw and
W = W−w · · ·Ww is expressed in terms of the similar-
ity of their corresponding column profiles Vi and Wi .
We measure the dissimilarity of two such profiles
from window class c at position i, using class- and
position-specific substitution scores σc,i(p, q) on pairs
of states p, q. (We describe in later sections how we
learn these scores.) Given substitution scores σc,i, the
distance between windows V and W from structured
class c ∈ C − {⊥} is

These positional σc,i allow distance function dc to score
dissimilarity higher at positions i near the center of the
window, and lower towards its edges. These class-spe-
cific σc,i also allow distance functions to score dissimi-
larity differently for core and non-core classes.

The regression function that predicts the coreness of a
column first forms a window W centered on the column,
and then performs the following.

(1) (Find distance to closest class) Across all labeled
training windows, in all structured window classes,
find the training window that has smallest class-
specific distance to W. Call this closest window V, its
class c, and their distance δ = dc(V ,W).

(2) (Transform distance to coreness) If class c is a core
class, return the coreness value given by transform
function fcore(δ). Otherwise, return value fnon(δ).

Note this uses two different transform functions to map
distance to coreness: function fcore for core classes,
and fnon for non-core.

We next explain how we efficiently find distance δ, and
then describe the transform functions f.

Finding the distance to a class
To find the distance of a window W to a class c, we need to
find the nearest neighbor of W among the set of training
windows Tc in class c, namely argminV∈Tc

{
dc(V ,W)

}
.

Finding the nearest neighbor through exhaustive search
by explicitly evaluating dc(V ,W) for every window V

dc(V ,W) :=
∑

−w≤i≤+w

∑

p,q ∈Q

Vi(p)Wi(q) σc,i(p, q).

can be expensive when Tc is large (and cannot be
avoided in the absence of exploitable properties of func-
tion dc).

When the distance function is a metric, for which
the key property is the triangle inequality (namely that
d(x, z) ≤ d(x, y)+ d(y, z) for any three objects x, y, z),
faster nearest neighbor search is possible. In this situ-
ation, in a preprocessing step we can first build a data
structure over the set Tc, which then allows us to per-
form faster nearest neighbor searches on Tc for any query
window W. One of the best data structures for near-
est neighbor search under a metric is the cover tree of
Beygelzimer, Kakade and Langford [16]. Theoretically,
cover trees permit nearest neighbor searches over a set
of n objects in O(log n) time, after constructing a cover
tree in O(n log n) time, assuming that the intrinsic dimen-
sion of the set under metric d has a so-called bounded
expansion constant [16]. (For actual data, the expansion
constant can be exponential in the intrinsic dimension.)
In our experiments, for nearest neighbor search we use
the recently-developed dispersion tree data structure of
Woerner and Kececioglu [17], which in extensive testing
on scientific data is significantly faster in practice than
cover trees.

We build a separate dispersion tree for each structured
window class c ∈ C − {⊥} over its training set Tc using its
distance function dc in a preprocessing step. To find the
nearest neighbor to window W over all training windows
T =

⋃
c Tc we then perform a nearest neighbor search

with W on the dispersion tree for each structured class c,
and merge these |C| − 1 search results by picking the one
with smallest distance to W.

Transforming distance to coreness
To transform the nearest-neighbor distance δ from
Step (1) of the regression procedure into a coreness value
in Step (2), we use logistic functions for fcore and fnon .
We fit these logistic functions to empirically-measured
average-coreness values at nearest-neighbor distances
collected for either core or non-core training examples,
using the curve-fitting tools in SciPy [18]. The form of
the logistic function we use is

where parameters κ and � are respectively the minimum
and maximum average-coreness values measured on the
examples, while parameters α and β respectively control
the slope and location of the logistic function’s inflec-
tion point. For function fcore parameter α is positive (so
coreness decreases with distance to a core class); for fnon
parameter α is negative (so coreness increases with dis-
tance from a non-core class). As Fig. 1 later shows, these

f (x) := κ + (�− κ)
1

1+ e−α(x−β)
,

Page 5 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

logistic transform functions fit actual coreness data
remarkably well.

For the fitting process, we first learn the distance func-
tions dc as described in "Learning the distance function
by linear programming" section, and then fit the trans-
form functions to empirical coreness values measured at
the distances observed for example windows from our set
of training windows. To fit function fcore we

(a) take the examples whose nearest neighbor is from
one of the three core classes,

(b) sort these examples by their observed nearest-neigh-
bor distance,

(c) at each observed distance δ, collect all k≥1 examples
whose distance equals δ, the ℓ successive examples
whose distance is below δ, and the ℓ successive exam-
ples above δ, where count ℓ is fixed for the fitting pro-
cess, and

(d) compute the average true-coreness value of these
k + 2ℓ examples, and associate this average value
with distance δ.

A logistic curve is then fit to these pairs of average true-
coreness and observed nearest-neighbor distances. To fit
function fnon, this same process is repeated separately for
examples whose nearest neighbor is from one of the two
structured non-core classes.

To predict coreness for a window from a computed
alignment, again we (1) find its nearest-neighbor dis-
tance δ among all training windows from structured
classes, and (2) transform this distance to coreness by
returning fcore(δ) if the nearest neighbor is from a core
class and fnon(δ) otherwise.

Learning the distance function by linear programming
We now describe the linear program used to learn the
distance functions on column windows. Again we divide
the window classes C into two categories: the structured
classes, containing windows centered on core columns,
or centered on non-core columns that are flanked on
at least one side by core columns; and the unstructured
class, containing windows of only non-core columns.
We again denote this unstructured class of completely
non-core windows by ⊥ ∈ C. The linear program learns
a class-specific distance function dc for each structured
window class c ∈ C − {⊥}.

In principle, the linear program tries to find distance
functions dc that make the following “conceptual” near-
est-neighbor classifier accurate. (We do not actually learn
such a classifier, but instead ultimately learn a regressor.)
This classifier forms a window W centered on the col-
umn to be classified, and finds the nearest neighbor to W
over all structured classes C − {⊥} in the training set,

using their corresponding distance functions dc. Let the
distance to this nearest neighbor be δ, and its structured
class be c. The conceptual classifier would then compare
distance δ to a threshold τ.

 • If δ ≤ τ, the central column of window W is declared
to be “core” or “non-core” depending on whether
structured class c is respectively core or non-core.

 • Otherwise, window W is deemed to be in the
unstructured non-core class ⊥, and its central col-
umn is declared “non-core.”

The key aspect of this conceptual nearest-neighbor clas-
sifier is that it can recognize a completely non-core win-
dow W from class ⊥, without actually having any examples
in its training set that are close to W. This is crucial, as the
set of possible windows from the unstructured class ⊥ is
enormous and may lack any recognizable structure, which
would make reliably identifying windows from class ⊥ by
having a near neighbor in the training set hopeless. On
the other hand, identifying windows from the structured
classes is possible by having enough examples in the train-
ing set. The following linear program learns both distance
functions dc and distance threshold τ.

To construct the linear program, we partition the
training set T of labeled windows by window class: sub-
set Tc ⊆ T contains all training windows of class c ∈ C.
We then form a smaller training sample Sc ⊆ Tc for each
class c by choosing a random subset of Tc with a specified
cardinality |Sc|.

For a sample training window W ∈ Sc we identify other
windows V ∈ Tc from the same class c in the full training
set that are close to W (under a default distance d̃c). We
call these close windows V from the same class c, targets.
Similarly for W ∈ Sc we identify other windows U ∈ Tb
from a different class b �= c in the full training set that are
also close to W (under d̃b). We call these other close win-
dows U from a different class b, impostors (paralleling the
terminology of Weinberger and Saul [19]).

We call these sets of windows that are close to a given
window W the neighborhood Nc(W , i) of W for a struc-
tured class c ∈ C − {⊥}, which denotes the set of i-near-
est-neighbors to W (not including W) from training set Tc
under the class-specific default distance function d̃c. (The
default distance function that we use in our experiments
is described later.)

At a high level, the linear program finds a distance
function that, for sample windows W ∈ Sc

 • pulls in targets V ∈ Nc(W , i), by making dc(V ,W)
small, and

Page 6 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

 • pushes away impostors U ∈ Nb(W , i) for b �= c, by
making db(U ,W) large.

The neighborhoods N (W , i) that give these sets of tar-
gets and impostors are defined with respect to default
distance functions d̃. Ideally these neighborhoods should
be defined with respect to the learned distance func-
tions dc, but obviously these learned distances are not
available until after the linear program is solved. We
address this discrepancy by iteratively solving a series
of linear programs. The first linear program at itera-
tion 1 defines neighborhoods with respect to distance
functions d(0) = d̃, and its solution yields the new func-
tions d(1). In general, iteration i uses the previous itera-
tion’s functions d(i−1) to formulate a linear program
whose solution yields the new distance functions d(i).
This process is repeated for a fixed number of iterations,
or until the change in the distance functions is sufficiently
small.

The target constraints of the linear program, for
each sample window W ∈ Sc from each structured
class c ∈ C − {⊥}, and each target window V ∈ Nc(W , k),
are

where eVW is a target error variable and τ is a thresh-
old variable. In the above, quantity dc(V ,W) is a linear
expression in the substitution score variables σc,i(p, q), so
constraint (1) is a linear inequality in all these variables.
Intuitively, we would like condition dc(V ,W) ≤ τ to
hold (so W will be considered to be in its correct class c);
in the solution to the linear program, variable eVW will
equal max

{
dc(V ,W)− τ , 0

}
, the amount of error by

which this ideal condition is violated.
In the target neighborhood Nc(W , k) above, count k

specifies the number of targets for each sample win-
dow W. In our experiments we use a small number of tar-
gets, with k = 2 or 3.

The impostor constraints for each sample win-
dow W ∈ Sc from each structured class c ∈ C − {⊥}, and
each impostor window V ∈ Nb(W , ℓ) from each struc-
tured class b ∈ C − {⊥} with b �= c, are

where fW is an impostor error variable. Intuitively, we
would like condition db(V ,W) > τ to hold (so W will
not be considered to be in the incorrect class b), which
we can express by db(V ,W) ≥ τ + 1 using a margin of 1.

(1)eVW ≥ dc(V ,W)− τ ,

(2)eVW ≥ 0,

(3)fW ≥ τ − db(V ,W)+ 1,

(4)fW ≥ 0,

(Since the scale of the distance functions is arbitrary, we
can always pick a unit margin without loss of generality.)
In the solution to the linear program, variable fW will
equal maxb∈C−{⊥}, V ∈Nb(W , ℓ)

{
τ − db(V ,W)+ 1, 0

}
 ,

the largest amount of error by which this condition is
violated for W across all b and V.

We also have impostor constraints for each com-
pletely non-core window W ∈ T⊥ and each core win-
dow V ∈ Nb(W , ℓ) from each structured core class b (as
we do not want W to be considered core), which are of
the same form as inequalities (3) and (4) above.

In the impostor neighborhood Nb(W , ℓ) above, count ℓ
specifies the number of impostors for each sample win-
dow W. We use a large number of impostors ℓ ≈ 100 in
our experiments. Having a single impostor error varia-
ble fW per sample window W (versus a target error varia-
ble eVW for every W and target V) allows us to use a large
count ℓ while still keeping the number of variables in the
linear program tractable.

The triangle inequality constraints, for each structured
class c ∈ C − {⊥}, each window position −w ≤ i ≤ w,
and all states p, q, r ∈ Q (including the gap state ξ), are

These reduce to simpler inequalities when states p, q, r
are not all distinct or coincide with the gap state (which
we do not enumerate here). A consequence of con-
straint (5) is that the resulting distance functions dc also
satisfy the triangle-inequality property, as we prove in
"Ensuring the triangle inequality" section. This property
allows us to use faster metric-space data structures for
computing the nearest-neighbor distance δ as discussed
earlier.

The remaining constraints, for all structured
classes c ∈ C − {⊥}, positions −w ≤ i ≤ w, states
p, q ∈ Q, and gap state ξ, are

which ensure the distance functions are symmetric and
non-negative. (We do not enforce the other metric con-
ditions dc(W ,W) = 0 and dc(V ,W) > 0 for V �= W , as
these are not needed for our coreness predictor, and we
prefer having a less constrained distance dc that might
better minimize the following error objective.)

(5)σc,i(p, r) ≤ σc,i(p, q)+ σc,i(q, r).

(6)σc,i(p, q) = σc,i(q, p),

(7)σc,i(p, p) ≤ σc,i(p, q),

(8)σc,i(p, q) ≥ 0,

(9)σc,i(ξ , ξ) = 0,

(10)τ ≥ 0,

Page 7 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

Finally, the objective function minimizes the average
error over all training sample windows. Formally, we
minimize

where 0 ≤ α ≤ 1 is a blend parameter controlling
the weight on target error versus impostor error. We
note that in an optimal solution to this linear pro-
gram, variables eVW = max

{
dc(V ,W)− τ , 0

}
 and

fW = maxV ,b

{
τ − db(V ,W)+ 1, 0

}
, since inequali-

ties (1)–(4) ensure the error variables are at least these
values, while minimizing the above objective function
ensures they will not exceed them. Thus solving the lin-
ear program finds distance functions dc given by substi-
tution scores σc,i(p, q) that minimize the average over
the training windows W ∈ Sc of the amount of violation
of our ideal conditions dc(V ,W) ≤ τ for targets V ∈ Tc
and db(V ,W) > τ for impostors V ∈ Tb.

To summarize, the variables of the linear program are
the substitution scores σc,i(p, q), the error variables eVW
and fW , and the threshold variable τ. For n total training
sample windows, k targets per sample window, m win-
dow classes of width w, and amino-acid alphabet size s,
this is �(kn+ s2wm) total variables. The main constraints
are the target constraints, impostor constraints, and tri-
angle inequality constraints. For ℓ impostors per sample
window, this is �

(
(k + ℓm)n+ s3wm

)
 total constraints.

We ensure that solving the linear program is tractable
by controlling the number k of targets, the number ℓ of
impostors, and the total size n of the training sample.

Ensuring the triangle inequality
We now show that the distance functions obtained
by solving the above linear program obey the triangle
inequality.

Theorem 1 (Triangle Inequality on Window Distances)
The class distance functions dc obtained by solving the lin-
ear program satisfy the triangle inequality.

Proof For every class c, and all windows U, V, and W,

α 1

|C|−1

∑

c ∈C−{⊥}

1

|Sc|

∑

W ∈ Sc

1

k

∑

V ∈Nc(W ,k)

eVW

+ (1− α) 1
|C|

∑

c ∈C

1

|Sc|

∑

W ∈ Sc

fW ,

(11)

dc(U ,W) =

∑

i

∑

p,r

Ui(p)Wi(r) σc,i(p, r)

=

∑

i

∑

p,q,r

Ui (p)Vi(q)Wi(r) σc,i(p, r)

(12)

≤
∑

i

∑

p,q,r

Ui(p)Vi(q)Wi(r)
(
σc,i(p, q) + σc,i(q,r)

)

where equation (11) follows from the identity ∑
q Vi(q) = 1, inequality (12) follows from constraint (5)

in the linear program, and equation (13) follows from the
identities

∑
r Wi(r) =

∑
p Ui(p) = 1.

In short, dc(U ,W) ≤ dc(U ,V)+ dc(V ,W) for all
windows U, V, W, so the triangle inequality holds on dis-
tances dc. �

Since window distances satisfy the triangle inequality,
we can use fast data structures for metric-space nearest-
neighbor search to evaluate the coreness predictor.

Applying coreness to accuracy estimation
The Facet alignment accuracy estimator [3] is a lin-
ear combination of efficiently-computable feature func-
tions of an alignment that are positively correlated with
true accuracy. As mentioned earlier, the true accuracy
of a computed alignment is measured only with respect
to core columns of the reference alignment. We leverage
our coreness predictor to improve the Facet estimator
by: (1) creating a new feature function that attempts to
directly estimate true accuracy, and (2) concentrating the
evaluation of existing feature functions on columns with
high predicted coreness.

Creating a new coreness feature
Our new feature function on alignments, which we call
Predicted Alignment Coreness, is similar to the so-called
total-column score sometimes used to measure align-
ment accuracy. Predicted Alignment Coreness counts the
number of columns in the alignment that are predicted to
be core, by taking a window W around each column, and
counting the number of windows whose predicted core-
ness value χ(W) exceeds a threshold κ. This count of pre-
dicted core columns in the given alignment is normalized
by an estimate of the number of true core columns in the
unknown reference alignment of the sequences.

Formally, the Predicted Alignment Coreness feature
function FAC for computed alignment A of sequences S is

(13)

=

∑

i

∑

p,q,r

Ui(p)Vi(q)Wi(r) σc,i(p, q)

+

∑

i

∑

p,q,r

Ui(p) Vi(q) Wi(r) σc,i(q, r)

=

∑

i

∑

p,q

Ui(p) Vi(q) σc,i(p, q)

+

∑

i

∑

q,r

Vi(q) Wi(r) σc,i(q, r)

= dc(U ,V) + dc(V ,W),

FAC(A) :=
1

L(S)

∣∣∣
{
W ∈ A : χ(W) ≥ κ

}∣∣∣,

Page 8 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

where the notation W ∈ A refers to all windows of col-
umns of A.

The normalizing function L in the denominator is
designed to be positively correlated with the number of
core columns in the reference alignment for S. (The nor-
malizer L is a function only of S, and not alignment A, so
that all alternate alignments of S are normalized by the
same quantity. Thus ranking alternate alignments by FAC
orders them by the numerator: their predicted number of
core columns.) The family of functions that we consider
for the normalizer L of feature FAC are linear combinations
of products of at most three factors from the following:

 • aggregate measures of the lengths of sequences in S,
namely their minimum, mean, and maximum length;

 • averages over all pairs of sequences in S of the ratio
of their longest-common-subsequence length divided
by an aggregate measure of the lengths of the pair of
sequences (which can be viewed as forms of “percent
identity”);

 • averages over all pairs of sequences of the ratio of their
difference in sequence length divided by an aggregate
length measure (forms of “percent indel”); and

 • averages over all pairs of sequences of the ratio of
aggregate length measures for the pair (forms of “rela-
tive indel”).

More precisely, each term of the linear combination is a
product whose factors are one aggregate length measure,
and at most two average ratios from different groups in
the above. Finally, we learn the normalizer from train-
ing data by solving a linear program to find coefficients
of the linear combination that minimize its L1-norm with
the true number of core columns, across training protein
benchmarks.

The final fitted function L(S) that we use for the new
Predicted Alignment Coreness feature is given later.

Augmenting existing features by coreness
In addition to using the coreness regressor to directly
estimate the accuracy of an alignment via the new fea-
ture function FAC, we also augment some of the existing
feature functions in Facet to concentrate their evalu-
ation on columns with higher predicted coreness (since
only on core columns is true accuracy measured). A full
description of all feature functions in Facet is in [3].
The existing features that we augment using the coreness
regressor are Secondary Structure Blockiness, Second-
ary Structure Identity, Amino Acid Identity, and Average
Substitution Score. Each of these features can be viewed
as a sum across columns of a quantity computed over
all residue pairs in a column; in the augmented feature,

this is now a weighted sum across columns, with columns
weighted by their predicted coreness value. These aug-
mented features are described in more detail below.

 • Secondary Structure Blockiness FBL uses secondary
structure predictions on the alignment’s proteins
obtained from PSIPRED [14], and returns the maxi-
mum total score of an optimal packing of secondary
structure blocks in the alignment, normalized by
the total number of residue pairs in the alignment’s
columns, where: a block is an interval of columns
together with a subset of the sequences such that all
residues in the block have the same secondary struc-
ture prediction, a packing is a set of blocks whose col-
umn intervals are all disjoint, and the score of a block
is the total number of pairs of residues within the
columns in the block. (So an optimal packing maxi-
mizes the number of pairs of residues in the align-
ment’s columns that are covered by blocks of consist-
ent predicted secondary structure.) We create a new
augmented feature F ′

BL
 by weighting the number of

residue pairs for a column by the column’s predicted
coreness value.

 • Secondary Structure Identity FSI is the fraction of
residue pairs in columns of the computed alignment
that share the same predicted secondary structure.
We create a new feature F ′

SI
 by weighting counts of

column residue pairs by their column’s predicted
coreness.

 • Amino Acid Identity FAI is the fraction of column
residue pairs that share the same amino-acid equiva-
lence class. The augmented feature F ′

AI
 weights resi-

due pairs by their column’s predicted coreness.

 • Average Substitution Score FAS is the average
BLOSUM62 score [20] of all column residue pairs,
with BLOSUM similarity scores scaled to the
range [0, 1]. The augmented feature F ′

AS
 weights this

average by the column’s predicted coreness.

Other existing features not augmented by coreness that
are used in their original form in the improved Facet
estimator are the following. (Full details on these features
are in [3].)

 • Secondary Structure Agreement FSA uses predicted
secondary structure confidences from PSIPRED (the
confidence that a residue is in each of the three sec-
ondary structure states) to estimate the probability
that each column residue pair shares the same sec-

Page 9 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

ondary structure state, in a weighted window cen-
tered on each pair, and averages these estimates over
all pairs.

 • Gap Open Density FGO is the fraction of gap char-
acters (‘-’) in the alignment that start a run of such
characters.

 • Gap Extension Density FGE is the fraction of align-
ment entries that are gap characters (‘-’).

The final improved Facet estimator that uses these fea-
tures is given later.

Assessing the coreness predictor
We evaluate our new approach to coreness prediction,
and its use in accuracy estimation for alignment param-
eter advising, through experiments on a collection of
protein multiple sequence alignment benchmarks. A
full description of the benchmarks, and the universe of
parameter choices for parameter advising, is given in [3].

Briefly, the benchmarks in our experiments consist
of reference alignments of protein sequences largely
induced by structurally aligning their known three-
dimensional folded structures. We use the BENCH
benchmark suite of Edgar [21], supplemented by a selec-
tion from the PALI benchmark suite of Balaji et al. [1].
Our full benchmark collection consists of 861 reference
alignments.

We use 12-fold cross-validation to assess both column
classification with our coreness predictor, and param-
eter advising with our augmented accuracy estima-
tor. To correct for the overabundance of easy-to-align
benchmarks when assessing parameter advising, we bin
the benchmarks according to difficulty, measured by
the true accuracy of their alignment computed by the
Opal aligner [22, 23] under its default parameter set-
ting. We ensure folds are balanced in their representation
of benchmarks from all difficulty bins. For each fold, we
generate a training set and testing set of example align-
ments by running Opal on each benchmark for each
parameter choice from a fixed universe of 243 parameter
settings.

Constructing the coreness predictor
We first discuss results on learning the distance functions
for the coreness predictor, and then discuss results on fit-
ting its transform functions.

Learning the distance functions
To keep the size manageable of the linear program
that we solve to learn the window class distance func-
tions dc , we use a training sample of 2000 total windows

representing the structured classes. We find targets and
impostors for windows from the training sample by per-
forming nearest-neighbor searches in training sets that
for each fold have 4000 windows from each structured
window class. For each window from the training sam-
ple, the linear program uses 2 targets, and 150 impostors
from each window class. For testing the accuracy of our
learned coreness predictor, we use testing sets of 2000
total windows representing all classes (including the
unstructured class). The windows for these training sam-
ples, training sets, and testing sets are drawn from corre-
sponding training and testing example alignments.

We form the initial sets of targets and impostors for the
linear program by either: (1) performing nearest-neighbor
searches using a default distance function whose posi-
tional substitution score is a convex combination of (a) the
VTML200 substitution score on the states’ amino acids
(transformed to a dissimilarity value in the range [0, 1]),
and (b) the identity function on the states’ secondary struc-
ture types, with positions weighted so the center column
has twice the weight of its flanking columns; or (2) ran-
domly sampling windows from the appropriate classes to
choose targets and impostors, as further discussed below.

Once a distance function is learned by solving the
linear program, we can iterate the process by using the
learned distance function to recompute the sets of targets
and impostors for another instance of the linear program,
that is in turn solved to learn a new distance function.
Table 1 shows results for this iterative process, where we
use our coreness regressor to classify columns by simply
thresholding the column’s predicted coreness value to
obtain a binary classification of “core” (above the thresh-
old) or “non-core” (at most the threshold). Beginning
with the distance function learned at the first iteration
from the initial default distance, Table 1 gives the area
under the curve (AUC) measure for the receiver operat-
ing characteristic (ROC) curve, which implicitly consid-
ers all possible thresholds for the classifier, across ten
iterations on both training and testing data.

Note that the training AUC steadily increases for the
first four iterations, and then oscillates around a high pla-
teau. This does not translate, however, into an improve-
ment in the testing AUC, which actually drops and then
oscillates at a much lower level.

While iterating distance learning markedly improves this
core column classifier on the training examples, it is overfit-
ting, and does not generalize well to testing examples. This
may be due to the smaller training sample and training sets
used to reduce the time for solving the linear program.

Interestingly, we found that using random examples
from appropriate window classes for the target and impos-
tor sets led to much better generalization. Specifically,
this achieved a training and testing AUC of 86.0 and 88.6,

Page 10 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

respectively. Accordingly, in the remainder of the paper we
use distance functions obtained by solving the linear pro-
gram with random target and impostor sets, and no itera-
tion, when assessing results on parameter advising.

Transforming distance to coreness
Figure 1 shows the fitted logistic functions fcore and fnon
used to transform nearest-neighbor distance to predicted
coreness, superimposed on the underlying true coreness
data for one fold of training examples. The horizontal
axis is nearest-neighbor distance δ, while the vertical axis
is the average true coreness of training examples at that
distance (where this average is computed as detailed ear-
lier). The blue and red curves show the average true core-
ness of training examples for which the nearest neighbor
is in respectively either a core class or a structured non-
core class. The top and bottom green curves show the
logistic transform functions for respectively the core and
non-core classes, fitted to this training data. Note that
the green logistic curves fit the data quite well.

Interestingly, when a column’s window is sufficiently far
away from all structured classes (including core and non-
core classes), the green fcore and fnon logistic curves both
converge to a predicted coreness around 33% (which
roughly agrees with the blue and red empirical average
coreness curves).

Improving parameter advising
A parameter advisor and has two components: (1) an
accuracy estimator, which estimates the accuracy of a
computed alignment, and (2) an advisor set, which is a set
of candidate assignments of values to the aligner’s param-
eters. The advisor picks the choice of parameter values
from the advisor set for which the aligner yields the com-
puted alignment of highest estimated accuracy.

In our parameter advising experiments, we assess the
true accuracy of the multiple sequence alignment tool
Opal [22, 23] combined with an advisor that uses the
accuracy estimator Facet [3] (the best estimator for
parameter advising in the literature), augmented by our
new coreness predictor as well as by two other column-
quality tools: TCS [11] and ZORRO [10]. We compare
these advising results against prior approaches using for
the estimator both the original unmodified Facet as well
as TCS (the next-best estimator for parameter advising
in the literature). We also compare against augmenting
Facet by true coreness, which represents the unattain-
able limit reached by a perfect coreness predictor.

These experiments focus on advising for the Opal
aligner, as it is an ideal test bed for studying parameter
advising: in contrast to other aligners, at each node of the
guide tree during progressive alignment, Opal computes
subalignments that are optimal with respect to the given
parameter choice for the sum-of-pairs scoring function
with affine gap costs [24].

In parameter advising, the choice of advisor set is crucial,
as the performance of the advisor is limited by the quality
of the computed alignments generated by this set of param-
eter choices. We consider two types of advisor sets [25, 26]:

 • estimator-independent oracle sets, which are learned
for a conceptual oracle advisor that has access to true
accuracy for its estimator, by solving an integer lin-
ear program to achieve optimal advising accuracy on
training data; and

Table 1 Core column classifier area-under-the-curve (AUC) for training and testing data with iterated distance learning

Iteration

1 2 3 4 5 6 7 8 9 10

Training 88.7 94.3 99.2 99.4 99.5 99.7 99.6 99.7 99.4 99.7

Testing 84.7 81.3 80.8 80.0 83.4 82.5 81.2 80.9 80.3 81.6

Fig. 1 Fit of the distance transform functions to true coreness. The
blue and red curves track on the vertical axis the average true core-
ness of training examples, whose nearest neighbor is respectively
from a core or non-core class, at their corresponding nearest-neigh-
bor distance on the horizontal axis. Average coreness is computed
as described earlier with count ℓ = 100. The top and bottom green
curves respectively show the fitted logistic functions fcore and fnon that
are used by the coreness regressor to transform nearest-neighbor
distance into predicted coreness

Page 11 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

 • estimator-aware greedy sets, which are learned for a
specific concrete estimator by a greedy approximation
algorithm that guarantees near-optimal training accu-
racy, and which tend to perform better than oracle sets
in practice when used with their concrete estimator.

(We emphasize that when using oracle sets for the advi-
sor set in our experiments, they are always used in con-
junction with a concrete imperfect accuracy estimator.)
These advisor sets are drawn from a larger universe
of possible parameter choices. We use the universe of
243 parameter choices enumerated in [25].

As mentioned earlier, we bin alignments according to
difficulty to correct for the overabundance of easy-to-
align benchmarks. Figure 2 lists in parentheses above
the bars the number of benchmarks in each bin. When
reporting advising accuracy, we give the true accuracy of
the alignments chosen by the advisor, uniformly averaged
over bins (rather than uniformly averaging over bench-
marks). With this equal weighting of bins, an advisor that
uses only the single optimal default parameter choice
will achieve an average advising accuracy of roughly 50%
(demonstrated by the black “default” bar on the far right

in Fig. 2). This establishes, as a point of reference, advis-
ing accuracy 50% as the baseline against which to com-
pare advising performance.

The augmented Facet estimator
We use our coreness predictor to modify the Facet
accuracy estimator by including the new Predicted Align-
ment Coreness feature, and augmenting existing fea-
ture functions by coreness. We learned coefficients for
these feature functions, as well as all the features origi-
nally in Facet, using the difference-fitting technique
described in [3].

The new alignment accuracy estimator that uses our
coreness predictor has non-zero coefficients for

 • the new feature: Predicted Alignment Coreness FAC ;
 • two features augmented by our coreness predictor:

Secondary Structure Identity F ′
SI

 , and Secondary
Structure Blockiness F ′

BL
 ; and

 • five original unaugmented features: Secondary Struc-
ture Agreement FSA , Secondary Structure Iden-
tity FSI , Secondary Structure Blockiness FBL , Gap
Extension Density FGE , and Gap Open Density FGO .

Fig. 2 Advising accuracy within benchmark bins. This bar chart shows results within each bin of benchmarks, where bins group benchmarks by
difficulty, for parameter advising with greedy advisor sets of cardinality 7. For each of the ten bins listed along the horizontal axis, the vertical axis
gives advising accuracy, averaged over the benchmarks in the bin; on the far right is an average of all ten bin-averages. Bins are labeled on the
horizontal axis by the upper limit of their difficulty range, where the difficulty of a benchmark is the true accuracy of its alignment computed by the
Opal aligner under its default parameter setting. The colored bars in each bin show average advising accuracy for Opal using: its optimal default
parameter setting, in black; advising with the original unaugmented Facet estimator, in green; and advising with Facet augmented by predicted
coreness, in red. The dashed line shows average advising accuracy for each bin if Facet were augmented by true coreness: the limit achieved by a
perfect coreness predictor. In parentheses above the bars is the number of benchmarks in each bin (while on the far right is their total number)

Page 12 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

To give an idea of how these augmented and unaug-
mented features behave, Fig. 3 shows the correlation
between feature values and true accuracy for computed
alignments. On the left is Secondary Structure Identity,
on the right is Secondary Structure Blockiness, and on
the top and bottom are respectively the original and aug-
mented versions of these features. (For reference, least-
squares lines are shown fitted to the data, where points
are weighted so each accuracy decile has the same total
weight.) Note in the scatterplots that the augmented fea-
tures have somewhat higher slope and lower spread than
their unaugmented versions. This can yield a stronger
feature for discriminating high-accuracy from low-accu-
racy alignments, which may explain their inclusion in the
new fitted estimator.

The resulting augmented accuracy estimator is

(The above coefficients are fitted over all benchmarks;
in our cross-validation experiments, the estimator used
for each fold is fitted only over the benchmarks in the

(0.656) F ′
SI

+ (0.128) F ′
BL

+ (0.123) FSA + (0.089) FSI+

(0.064) FBL + (0.015) FAC + (0.007) FGE + (0.006) FGO.

training set for that fold.) We mention that these feature
functions have different ranges, so the magnitudes of
their coefficients should not necessarily be interpreted in
terms of the importance of the feature.

To illuminate how the new augmented estimator
behaves, Fig. 4 shows the correlation on computed align-
ments between estimator value and true accuracy for the
final augmented Facet estimator, original unaugmented
Facet, and the TCS estimator. (Fitted least-squares lines
are shown, with points weighted so each accuracy decile
has the same weight.) Note that augmented Facet again
has somewhat higher slope and lower spread than its
original version. On the other hand, TCS has the highest
slope, but also the highest spread. This may explain why
augmented Facet performs better for parameter advis-
ing (as shown later in our experiments).

The coreness feature normalizer
The normalizer function L(S) used in Predicted Align-
ment Coreness (feaure FAC), gives an estimate of the
number of core columns in the unknown reference align-
ment of sequences S, and is a linear combination of basic

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a
True Accuracy

b
True Accuracy

c d
True Accuracy True Accuracy

S
ec

o
n

d
ar

y
S

tr
u

ct
u

re
 Id

en
ti

ty

O
ri

g
in

al
A

u
g

m
en

te
d

S
ec

o
n

d
ar

y
S

tr
u

ct
u

re
 B

lo
ck

in
es

s

O
ri

g
in

al
A

u
g

m
en

te
d

r2 = 0.52

r2 = 0.60

r2 = 0.54

r2 = 0.63

Fig. 3 Correlation of augmented and unaugmented feature functions with true accuracy. The scatterplots show the correlation with true accuracy
of alignment feature functions for the Facet accuracy estimator. Points in the scatterplots correspond to computed alignments for benchmarks
with known reference alignments; all scatterplots are over the same set of alignments. The vertical axis is the feature function value, while the
horizontal axis is true accuracy of the computed alignment with respect to the reference. The top and bottom scatterplots correspond respectively
to unaugmented and augmented versions of the same feature function: on top is the original unaugmented Facet feature, and on the bottom is
this feature augmented with predicted coreness. The plotted feature functions are: a original Secondary Structure Identity FSI, b original Secondary
Structure Blockiness FBL, c augmented Secondary Structure Identity F′SI, and d augmented Secondary Structure Blockiness F′BL

Page 13 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

measures of S, as described earlier. Optimal coefficients
for this linear combination are learned by minimizing its
L1-norm with the true number of core columns in train-
ing benchmarks.

The fitted estimator L(S) for Predicted Alignment
Coreness is

where

 • ℓmin, ℓavg, ℓmax are respectively the minimum, aver-
age, and maximum sequence lengths in S;

 • pmin, pavg, pmax, similar to percent identity meas-
ures, are the longest-common-subsequence length
for each pair of sequences normalized by respectively
the minimum, average, and maximum sequence
length for the pair, averaged over all pairs;

 • qmin, qavg are quotients of respectively the minimum
or average sequence length for each pair of sequences
divided by the maximum length for the pair, averaged
over all pairs; and

 • rmin, ravg are ratios of the difference in sequence
lengths for each pair of sequences divided by respec-
tively the minimum and average sequence length for
the pair, averaged over all pairs.

(The above coefficients are fitted over all benchmarks;
in our cross-validation experiments, the normalizer for
each fold is fitted only over the training benchmarks for
that fold.)

Figure 5 shows in a scatterplot the correlation between
this estimate of the number of core columns and the true
number of core columns for each benchmark. While the
fitted estimator does correlate with the true number of
core columns, it tends to overestimate, possibly due to
larger benchmarks having more columns that are close
to—but not quite—core.

Performance on parameter advising
We assess the performance of parameter advising when
the advisor uses for its accuracy estimator:

 • the augmented Facet estimator (“Facet/pre-
dicted”),

in comparison with

 • the original unaugmented Facet estimator
(“Facet/none”),

 • Facet augmented by TCS (“Facet/TCS”),

(1.020)ℓmin pmax qmin + (0.151)ℓmin qmin+

(0.035) ℓavg pmax qavg + (0.032)ℓavg pmin rmin+

(0.003)ℓmax pavg ravg,

0

0.2

0.4

0.6

0.8

1

a

0

0.2

0.4

0.6

0.8

1

b

0

0.2

0.4

0.6

0.8

1

c

True Accuracy

A
u

g
m

en
te

d
 F
a
c
e
t

 V
al

u
e

True Accuracy

O
ri

g
in

al
 F
a
c
e
t

 V
al

u
e

True Accuracy

T
C
S

 V
al

u
e

r2 = 0.50

r2 = 0.52

r2 = 0.60

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

Fig. 4 Correlation of estimators with true accuracy. The scatterplots
show the correlation with true accuracy of alignment accuracy esti-
mators. Points correspond to computed alignments for benchmarks;
all scatterplots show the same alignments. The vertical axis is the
estimator value; the horizontal axis is alignment true accuracy. The
plotted accuracy estimators are: a the Facet estimator augmented
with predicted coreness, b the original unaugmented Facet estima-
tor, and c the TCS estimator

Page 14 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

 • Facet augmented by ZORRO (“Facet/ZORRO”),
and

 • Facet augmented by true coreness (“Facet/true”).

We also compare with

 • TCS (the next-best estimator for advising in the lit-
erature).

For the advisor set of parameter choices that the advisor
picks from using these estimators, we consider both ora-
cle and greedy sets [26].

Performance when expanding the parameter choices
Figures 6 and 7 show parameter advising performance
using oracle and greedy advisor sets, respectively. In
both figures, the horizontal axis is advisor set cardinal-
ity (the number of different parameter choices avail-
able to the advisor), while the vertical axis is advising
accuracy for testing folds (the true accuracy on testing
benchmarks of the aligner combined with the parame-
ter advisor), uniformly averaged across bins. The curves
show performance with the Opal aligner [22, 23]. For
reference, the default alignment accuracy for three
other popular aligners, MAFFT [27], MUSCLE [28], and
Clustal Omega [29], is also shown with dashed hori-
zontal lines.

Figure 6 shows that on oracle advisor sets, Facet/
predicted compared to Facet/none boosts the average
accuracy of parameter advising by more than 3%. This
increase is in addition to the improvement of Facet
over TCS.

Figure 7 shows that on greedy advisor sets, Facet/
predicted boosts advising accuracy as well: for example,
at cardinality 7, by more than 1%. (Note that accuracies
for the greedy set curves are already higher than for ora-
cle sets.) Up to cardinality 7, the accuracy for Facet/
predicted is about halfway between Facet/none and
Facet/true (the unattainable perfect coreness predic-
tor). Interestingly, Facet/TCS and Facet/ZORRO actu-
ally have worse accuracy than Facet/none.

Performance when generalizing to new data
While with greedy advisor sets, using predicted coreness
to augment Facet does boost advising accuracy, a larger
improvement might be realized by pairing with a better
approach to finding estimator-aware advisor sets than
greedy set-finding. The boost in accuracy we observe may
actually be limited by the methods we are using to find
advisor sets for the improved estimator. As an indication,
Fig. 8 contrasts average training and testing accuracy for
advising with Facet/predicted on greedy sets: specifi-
cally, the accuracy using greedy sets that were learned on
training benchmarks when these same sets are applied to

0 100 200 300 400

True Number of Core Columns

0

100

200

300

400

E
st

im
at

ed
 N

u
m

b
er

 o
f

C
o

re
 C

o
lu

m
n

s

r2 = 0.47

Fig. 5 Correlation of the estimated and true number of core
columns. Each point in the scatterplot corresponds to a reference
alignment from the collection of 861 benchmarks. The horizontal axis
is the true number of core columns in the alignment, while the verti-
cal axis is the estimated number of core columns for the alignment’s
sequences S, computed using the fitted function L(S) given earlier
when discussing the coreness feature normalizer

46%

48%

50%

52%

54%

56%

58%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Advisor Set Cardinality

 Facet/true
 Facet/predicted
 Facet/none
 Facet/Zorro
 Facet/TCS
 TCS

Clustal Omega

MAFFT

Muscle

Facet/true
Facet/predicted
Facet/none
Facet/Zorro
Facet/TCS
TCS

Fig. 6 Advising accuracy using oracle sets. This figure plots average
advising accuracy using oracle advisor sets with different estima-
tors, at varying set cardinalities. The horizontal axis is the cardinality
of the advisor set: the number of parameter choices from which
the advisor selects. The vertical axis is average true accuracy of the
parameter advisor, where the average accuracy within each difficulty
bin is then averaged across bins. The curves plot advisors using: the
Facet estimator augmented by predicted coreness, the original
Facet estimator with no augmentation, Facet augmented by
TCS column quality scores, Facet augmented by ZORRO quality
scores, and using TCS as the estimator. The dashed black curve is
Facet augmented by true coreness: the limit attained with a perfect
coreness predictor. As baselines for comparison, the dashed grey lines
are the average accuracies of the standard aligners MAFFT, MUSCLE,
and Clustal Omega, under their default parameter settings

Page 15 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

testing benchmarks. The upper dashed curve is average
training advising accuracy, while the lower solid curve
is testing accuracy. The drop between these curves indi-
cates greedy set-finding is overfitting to training data, and
not generalizing well to testing data. With better gener-
alization, we might also continue to get improved per-
formance at set sizes beyond cardinality 7, where greedy
advisor sets currently plateau.

Performance within difficulty bins
Advising accuracy within difficulty bins for greedy sets of
cardinality 7 is shown earlier in Fig. 2. In this bar chart,
for the bin at each difficulty on the horizontal axis, advis-
ing accuracy averaged over just the benchmarks in the
bin is shown on the vertical axis. The final chart on the
right gives accuracy averaged across all bins. On diffi-
cult benchmarks, Facet/predicted boosts the accuracy
of Facet/none by more than 3%. Note also how close
Facet/predicted is to Facet/true: the advising accu-
racy is already quite close to what could be achieved aug-
menting with a perfect coreness predictor.

For a point of reference, advising accuracy uniformly-
averaged over benchmarks (rather than bins), on greedy
sets of cardinality 10, is: for Facet/none, 81.9%; and for
Facet/predicted, 82.2%. By comparison, on these same
benchmarks the corresponding average accuracy of other
popular aligners using their default parameter settings
is: Clustal Omega, 77.3%; MUSCLE, 78.1%; MAFFT,
79.4%; and Opal, 80.5%.

Conclusion
We have developed a column coreness predictor for pro-
tein multiple sequence alignments that uses a regression
function on nearest neighbor distances for class distance
functions learned by solving a new linear programming
formulation. When applied to alignment accuracy esti-
mation and parameter advising, the coreness predictor
strongly outperforms other column confidence estima-
tors from the literature, and provides a substantial boost
in advising accuracy.

Further research
A key issue left to explore is how to improve the gen-
eralization of distance-function learning and greedy
advisor-set learning. Currently both tend to overfit to
training data, resulting in a loss of testing accuracy. One
way to address overfitting in distance learning would be
to lower the number of substitution-score parameters in
the learned distance functions by using reduced protein-
sequence alphabets with amino-acid equivalence classes,
which should aid generalization.

Another very promising research direction is to apply
the improved accuracy estimator to ensemble multiple
sequence alignment [5], where the estimator is used to
pick the alignment output by an ensemble of sequence
aligners. Any improvement in the estimator should yield
further accuracy boosts for ensemble alignment.

Authors’ contributions
Conceptualization of the research, data analysis, and writing of the manuscript
by JK and DD. Coding and implementation by DD. Work of DD originally
performed at the University of Arizona. Both authors read and approved the
final manuscript.

46%

48%

50%

52%

54%

56%

58%

60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
ng

 A
cc

ur
ac

y

Advisor Set Cardinality

 Facet/true
 Facet/predicted
 Facet/none
 Facet/Zorro
 Facet/TCS
 TCS

Greedy sets

MAFFT

Muscle
Clustal Omega

Facet/true
Facet/predicted
Facet/none
Facet*Zorro
Facet*TCS
TCS

Fig. 7 Advising accuracy using greedy sets. Similar to Fig. 6, this
plots average advising accuracy using greedy advisor sets learned for
different estimators. The horizontal axis is the cardinality of the advisor
set; the vertical axis is the average true accuracy of the parameter
advisor. The curves plot the average accuracy of advisors that use
greedy sets learned for the following estimators: Facet augmented
by predicted coreness, unaugmented Facet, Facet augmented
by TCS, Facet augmented by ZORRO, and TCS alone. The dashed
black curve represents Facet augmented by true coreness. The
dashed grey lines are the average accuracies of MAFFT, MUSCLE and
Clustal Omega using default parameter settings

50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
dv

is
in

g
A

cc
ur

ac
y

Advisor Set Cardinality

 training
 testing

Greedy sets

Fig. 8 Training and testing accuracy using greedy advisor sets. The
figure plots average advising accuracy on training and testing bench-
marks, using greedy advisor sets learned for the Facet accuracy
estimator augmented by predicted coreness. The horizontal axis is
advisor set cardinality; the vertical axis is advising accuracy uniformly
averaged across difficulty bins. The dashed and solid curves give accu-
racies for training and testing benchmarks respectively, averaged over
cross-validation folds. Since each benchmark is in the testing set of
exactly onefold, and the training set of all other folds, averaging over
folds uniformly averages over benchmarks

Page 16 of 16DeBlasio and Kececioglu Algorithms Mol Biol (2017) 12:11

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

Author details
1 Department of Computer Science, The University of Arizona, Tucson, AZ
85721, USA. 2 Computational Biology Department, Carnegie Mellon University,
Pittsburgh, PA 15213, USA.

Acknowledgements
The authors thank the reviewers for their helpful comments. An earlier confer-
ence version of this paper appeared as [30].

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The benchmarks used for training and testing, as well as the original version of
the Facet estimator, are available at http://facet.cs.arizona.edu.

Funding
JK and DD were supported at the University of Arizona by US National Sci-
ence Foundation Grant IIS-1217886 to JK. DD was also partially supported at
Carnegie Mellon University by NSF Grant CCF-1256087, NSF Grant CCF-
131999, NIH Grant R01HG007104, and Gordon and Betty Moore Foundation
Grant GBMF4554, to Carl Kingsford. Open access charges for this paper were
covered by the University of Arizona Open Access Publishing Fund.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Received: 18 January 2017 Accepted: 28 February 2017

References
 1. Balaji S, Sujatha S, Kumar SSC, Srinivasan N. PALI—a database of Phylog-

eny and ALIgnment of homologous protein structures. Nucleic Acids Res.
2001;29(1):61–5.

 2. DeBlasio DF, Wheeler TJ, Kececioglu JD. Estimating the accuracy of
multiple alignments and its use in parameter advising. In: Proceedings
of the 16th Conference on Research in Computational Molecular Biol-
ogy (RECOMB); 2012. pp. 45–59.

 3. Kececioglu J, DeBlasio D. Accuracy estimation and parameter advising for
protein multiple sequence alignment. J Comput Bio. 2013;20(4):259–79.

 4. DeBlasio DF. Parameter Advising for Multiple Sequence Alignment. PhD
dissertation. Department of Computer Science, The University of Arizona;
2016.

 5. DeBlasio D, Kececioglu J. Ensemble multiple sequence alignment via
advising. In: Proceedings of the 6th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB). 2015; pp.
452–461. doi:10.1145/2808719.2808766.

 6. Castresana J. Selection of conserved blocks from multiple alignments for
their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.

 7. Capella-Gutierrez S, Silla-Martinez JM, Gabaldón T. trimAl: a tool for
automated alignment trimming in large-scale phylogenetic analyses.
Bioinformatics. 2009;25(15):1972–3.

 8. Kück P, Meusemann K, Dambach J, Thormann B, von Reumont BM,
Wägele JW, Misof B. Parametric and non-parametric masking of random-
ness in sequence alignments can be improved and leads to better
resolved trees. Front Zool. 2010;7(10):1–10.

 9. Dress AW, Flamm C, Fritzsch G, Grünewald S, Kruspe M, Prohaska SJ,
Stadler PF. Noisy: identification of problematic columns in multiple
sequence alignments. Algorithms Mol Biol. 2008;3(1):7.

 10. Wu M, Chatterji S, Eisen JA. Accounting for alignment uncertainty in
phylogenomics. PLoS ONE. 2012;7(1):30288.

 11. Chang JM, Tommaso PD, Notredame C. TCS: a new multiple
sequence alignment reliability measure to estimate alignment
accuracy and improve phylogenetic tree reconstruction. Mol Biol Evol.
2014;31:1625–37.

 12. Sela I, Ashkenazy H, Katoh K, Pupko T. GUIDANCE2: accurate detection
of unreliable alignment regions accounting for the uncertainty of multi-
ple parameters. Nucleic Acids Res. 2015;43(W1):7–14.

 13. Notredame C, Holm L, Higgins DG. COFFEE: an objective function for
multiple sequence alignments. Bioinformatics. 1998;14(5):407–22.

 14. Jones DT. Protein secondary structure prediction based on position-
specific scoring matrices. J Mol Biol. 1999;292(2):195–202.

 15. Durbin R, Eddy SR, Krogh A, Mitchison G. Biological Sequence Analysis:
Probablistic Models of Proteins and Nucleic Acids. Cambridge: Cam-
bridge University Press; 1998.

 16. Beygelzimer A, Kakade S, Langford J. Cover trees for nearest neighbor.
In: Proceedings of the 23rd International Conference on Machine Learn-
ing (ICML); 2006.

 17. Woerner A, Kececioglu J. Faster metric-space nearest-neighbor search
using dispersion trees. In preparation. 2017.

 18. Jones E, Oliphant T, Peterson P, et al. SciPy: open source scientific tools
for Python; 2001. http://www.scipy.org/.

 19. Weinberger KQ, Saul LK. Distance metric learning for large margin nearest
neighbor classification. J Mach Learn Res. 2009;10:207–44.

 20. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein
blocks. Proc Natl Acad Sci USA. 1992;89(22):10915–9.

 21. Edgar RC. BENCH. drive5.com/bench. 2009.
 22. Wheeler TJ, Kececioglu JD. Multiple alignment by aligning alignments.

Bioinformatics. 2007;23(13):559–68 (Proceedings of ISMB).
 23. Wheeler TJ, Kececioglu JD. Opal: software for sum-of-pairs multiple

sequence alignment. 2012. opal.cs.arizona.edu.
 24. Kececioglu J, Starrett D. Aligning alignments exactly. In: Proceedings of

the 8th Conference on Research in Computational Molecular Biol-
ogy (RECOMB); 2004. pp. 85–96.

 25. DeBlasio DF, Kececioglu JD. Learning parameter sets for alignment
advising. In: Proceedings of the 5th ACM Conference on Bioinformatics,
Computational Biology, and Health Informatics (ACM-BCB); 2014. pp.
230–9.

 26. DeBlasio DF, Kececioglu JD. Learning parameter-advising sets for multiple
sequence alignment. IEEE/ACM Transactions on Computational Biology
and Bioinformatics; 2017. (To appear)

 27. Katoh K, Kuma K-I, Toh H, Miyata T. MAFFT version 5: improvement
in accuracy of multiple sequence alignment. Nucleic Acids Res.
2005;33(2):511–8.

 28. Edgar RC. Muscle: a multiple sequence alignment method with
reduced time and space complexity. BMC Bioinform. 2004;5(113):1–19.

 29. Sievers F, et al. Fast, scalable generation of high-quality protein
multiple sequence alignments using Clustal Omega. Mol Syst Biol.
2011;7(1):1–539.

 30. DeBlasio D, Kececioglu J. Predicting core columns of protein multiple
sequence alignments for improved parameter advising. In: Proceedings
of the 16th Workshop on Algorithms in Bioinformatics (WABI); 2016. pp.
77–89.

http://facet.cs.arizona.edu
http://dx.doi.org/10.1145/2808719.2808766
http://www.scipy.org/

	Core column prediction for protein multiple sequence alignments
	Abstract
	Background:
	Results:

	Background
	Related work
	Plan of the paper

	Learning a coreness predictor
	Representing alignment columns
	Classes of column windows
	The coreness regression function
	Finding the distance to a class
	Transforming distance to coreness

	Learning the distance function by linear programming
	Ensuring the triangle inequality

	Applying coreness to accuracy estimation
	Creating a new coreness feature
	Augmenting existing features by coreness

	Assessing the coreness predictor
	Constructing the coreness predictor
	Learning the distance functions
	Transforming distance to coreness

	Improving parameter advising
	The augmented Facet estimator
	The coreness feature normalizer
	Performance on parameter advising
	Performance when expanding the parameter choices
	Performance when generalizing to new data
	Performance within difficulty bins

	Conclusion
	Further research

	Authors’ contributions
	References

