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Abstract 

Background: The construction of a suffix array for a collection of strings is a fundamental task in Bioinformatics and 
in many other applications that process strings. Related data structures, as the Longest Common Prefix array, the Bur-
rows–Wheeler transform, and the document array, are often needed to accompany the suffix array to efficiently solve 
a wide variety of problems. While several algorithms have been proposed to construct the suffix array for a single 
string, less emphasis has been put on algorithms to construct suffix arrays for string collections.

Result: In this paper we introduce gsufsort, an open source software for constructing the suffix array and related 
data indexing structures for a string collection with N symbols in O(N) time. Our tool is written in ANSI/C and is 
based on the algorithm gSACA-K (Louza et al. in Theor Comput Sci 678:22–39, 2017), the fastest algorithm to con-
struct suffix arrays for string collections. The tool supports large fasta, fastq and text files with multiple strings as input. 
Experiments have shown very good performance on different types of strings.

Conclusions: gsufsort is a fast, portable, and lightweight tool for constructing the suffix array and additional data 
structures for string collections.
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Background
The suffix array ( SA ) [1] is one of the most important 
data structures in string processing. It enables efficient 
pattern searching in strings, as well as solving many other 
string problems [2–4]. More space-efficient solutions for 
such problems are possible by replacing the suffix array 
with an index based on the Burrows–Wheeler transform 
( BWT ) [5]. Many applications require additional data 
structures—most commonly, the longest common pre-
fix ( LCP ) [6] array and the document array ( DA ) [7]—on 
top of SA or BWT . These structures, possibly stored in 
compressed form, serve as a basis for building modern 
compact full-text indices, which allow to efficiently pre-
process and query strings in compact space.

There are several internal memory algorithms designed 
for constructing the suffix array and additional data 
structures when the input consists of a single string [8, 
9]. While less emphasis has been put on specialized 
algorithms for string collections, in many applications 
the input is composed by many strings, and a common 
approach is concatenating all strings into a single one and 
using a standard construction algorithm. However, this 
approach may deteriorate either the theoretical bounds 
or the practical behavior of construction algorithms due 
to, respectively, the resulting alphabet size or unneces-
sary string comparisons [10–12].

Textual documents and webpages are examples of 
widespread large string collections. In Bioinformatics, 
important problems on collections of sequences may be 
solved rapidly with a small memory footprint using the 
aforementioned data structures, for example, finding suf-
fix-prefix overlaps for sequence assembly [13], clustering 
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cDNA sequences [14], finding repeats [15] and sequence 
matching [16].

In this paper we present gsufsort, an open source 
tool that takes a string collection as input, constructs its 
(generalized) suffix array and additional data structures, 
like the BWT , the LCP array, and the DA , and writes them 
directly to disk. This way, applications that rely on such 
data structures may either read them from disk or may 
easily include gsufsort as a component. Large collec-
tions, with up to 264 − d − 2 total letters in d strings, may 
be handled provided that there is enough memory. This 
tool is an extension of previous results [10], with new 
implementations of procedures to obtain the BWT and 
the generalized suffix array ( GSA ) from SA during out-
put to disk, and with the implementation of a lightweight 
alternative to compute DA.

Implementation
gsufsort is implemented in ANSI C and requires a sin-
gle Make command to be compiled. It may receive a col-
lection of strings in fasta, fastq or raw ASCII text formats 
and computes SA and related data structures, accord-
ing to input parameters. gsufsort optionally supports 
gzipped input data using zlib1 and kseq2 libraries. 
Setting command-line arguments allows selecting which 
data structures are computed and written on disk, and 
which construction algorithm is used (see below). Addi-
tionally, a function for loading pre-constructed data 
structures from disk is also provided.

Given a collection of d strings T 1,T 2, . . . ,Td from an 
alphabet � = [1, σ ] of ASCII symbols, having lengths 
n1, n2, . . . , nd , the strings are concatenated into a single 
string T [0,N − 1] = T 1$T 2$ · · · $Td$# using the same 
separator $ and an end-marker #, such that $ and # do not 
occur in any string Ti , and # < $ < α for any other symbol 
α ∈ � . The total length of T is 

∑d
i=1(ni + 1)+ 1 = N .

Before giving details on gsufsort implementa-
tion, we briefly recall some data structures definitions. 
For a string S of length n let the suffix starting at posi-
tion i be denoted Si , 0 ≤ i ≤ n− 1 . The suffix array SA 
of a string S of length n is an array with a permutation 
of [0, n− 1] that gives the suffixes of S in lexicographic 
order. The length of the longest common prefix of strings 
R and S is denoted by lcp(R, S) . The LCP array for S gives 
the lcp between consecutive suffixes in the order of SA , 
that is LCP[0] = 0 and LCP[i] = lcp(SSA[i], SSA[i−1]) , 
0 < i ≤ n− 1 . For a suffix array of a collection of strings, 
the position i of the document array DA gives the string 
to which suffix TSA[i] belongs. For the last suffix TN−1 = # 

we have DA[0] = d + 1 . The generalized suffix array gives 
the order of the suffixes of every string in a collection, 
that is, the GSA is as an array of N pairs of integers (a, b) 
where each entry (a,  b) represents the suffix Ta

b  , with 
1 ≤ a ≤ d and 0 ≤ b ≤ na − 1.
gsufsort uses algorithm gSACA-K [10] to construct 

SA for the concatenated string T [0,N − 1] , which breaks 
ties between equal suffixes from different strings Ti and 
Tj by their ranks, namely i and j. gSACA-K can also com-
pute LCP and DA during SA construction, such that LCP 
values do not exceed separator symbols. gSACA-K runs 
in O(N) time using O(σ ) working space.

The BWT is calculated during the output to disk 
according to its well-known relation to SA [3]

The generalized suffix array ( GSA ) can be computed by 
gsufsort from SA and DA during the output to disk, 
using the identity

We also provide a lightweight version (gsufsort-
light) for the computation of DA . It uses less memory 
at the price of being slightly slower. It computes a bit-
vector B[0,N − 1] with O(1) rank support [4] such that 
B[i] = 1 if T [i] = $, and B[i] = 0 otherwise. The values in 
DA are obtained on-the-fly while DA (or GSA ) is written 
to disk, through the identity

Results
We compared our tool and mkESA. mkESA [17] is a fast 
suffix array construction software designed for bioinfor-
matics applications.

We ran both versions of our tool, gsufsort and 
gsufsort-light, to build arrays GSA and LCP , while 
mkESA3 was run to build arrays SA and LCP for the con-
catenation of all strings (using the same symbol as sepa-
rators). The experiments were conducted on a single core 
of a machine with GNU/Linux (Debian 8, kernel 3.16.0-4, 
64 bits) with an Intel Xeon E5-2630 2.40-GHz, 384 GB 
RAM and 13 TB SATA storage. The sources were com-
piled by GNU GCC version 4.8.4 with option -O3.

The collections we used in our experiments are 
described in Table 1. They comprise real DNAs, real pro-
teins, documents, random DNA and random protein, and 
differ by their alphabet size and also by the maximum 

BWT[i] = T [(SA[i] − 1) mod N ].

(1)GSA[i] =

{

(DA[i],SA[i] − SA[DA[i]]−1) if DA[i] > 1

(DA[i],SA[i]) otherwise .

DA[i] = rank1(SA[i])+ 1.

1 https ://zlib.net
2 http://lh3lh 3.users .sourc eforg e.net/kseq.shtml 3 http://www.bibis erv.cebit ec.uni-biele feld.de/mkesa 

https://zlib.net
http://lh3lh3.users.sourceforge.net/kseq.shtml
http://www.bibiserv.cebitec.uni-bielefeld.de/mkesa
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and average lcp , which offer an approximation for suffix 
sorting difficulty.

The results are shown in Table  2. The data shows a 
clear time/memory tradeoff for DNA sequences, gsuf-
sort being faster while using approximately 1.25 more 
memory, gsufsort-light using slightly less memory 
then mkESA but taking more time. On proteins, gsuf-
sort-light is only marginally slower than gsufsort 
but faster than mkESA. The authors of mkESA reported a 
32% gain on a large protein dataset using 16 threads [17], 
but larger lcp values seem not to favor mkESA when com-
pared to gsufsort-light, which is 47.9% faster on 
proteins and 12.9% faster on DNA.

The memory ratio (bytes/N) of gsufsort and gsuf-
sort-light is constant, 21 and 17 bytes per input sym-
bol respectively, corresponding to the space of the input 
string T (N bytes) plus the space for arrays SA and LCP (8N 
bytes each) and, only for gsufsort, the space for DA (4N 
bytes).

We have also evaluated the performance of gsuf-
sort, gsufsort-light and mkESA on collections of 
random DNA and random protein sequences. The col-
lections have a growing number of 1MB sequences. The 
running time in seconds and the peak memory usage in 
GB are shown in Fig.  1 (logarithmic scale). Using ran-
dom sequences reduces the variation due to lcp among 

Table 1 Collections

Columns 2 and 3 show the collection size (in GB) and the alphabet size. Column 4 shows the number of strings (in millions). Columns 5 and 6 show the maximum and 
average lengths of strings in a collection. Columns 7 and 8 show the maximum and average lcp of strings in a collection

Collections

shortreads are Illumina reads from human genome trimmed to 100 nucleotides (http://ftp.sra.ebi.ac.uk/vol1/ERA01 5/ERA01 5743/srf );

reads are Illumina HiSeq 4000 paired-end RNA-seq reads from plant Setaria viridis trimmed to 300 nucleotides (http://www.trace .ncbi.nlm.nih.gov/Trace s/
sra/?run=ERR19 42989 );

pacbio are PacBio RS II reads from Triticum aestivum (wheat) genome (http://www.trace .ncbi.nlm.nih.gov/Trace s/sra/?run=SRR58 16161 );

pacbio.1000 are strings from pacbio trimmed to length 1,000;

uniprot are protein sequences from TrEMBl dowloaded on May 28, 2019 (http://www.ebi.ac.uk/unipr ot/downl oad-cente r);

gutenberg are ASCII books in English from Project Gutenberg (http://www.guten berg.org);

random-dna was generated with even sampling probability on the standard 4 letter alphabet;

random-protein was generated with even sampling probability on the IUPAC 25 letter alphabet

Collection size σ N. of strings Max. len. Avg. len Max. lcp Avg. lcp

shortreads 16.00 5 171.8 100 100 100 32.87

reads 16.00 6 57.3 300 300 300 91.29

pacbio 16.00 5 1.9 71,561 9117 3084 19.08

pacbio.1000 16.00 5 17.2 1,000 1000 876 18.67

uniprot 16.04 25 46.1 74,488 374 74,293 99.24

gutenberg 15.88 255 334.3 757,936 50 9060 18.97

random.dna 16.00 4 16.1 1,048,576 1,048,576 33 16.18

random.protein 16.00 25 16.1 1,048,576 1,048,576 13 6.89

Table 2 Algorithms’ running times and memory usage on different datasets collections

Columns RAM and bytes/N show the peak memory in GB and the bytes per input symbol ratio. Each symbol of T [0,N − 1] uses 1 byte. Results for gutenberg are 
reported for gsufsort and gsufsort-light only, as mkESA is restricted to DNA and amino-acid alphabets. The best results are indicated in italics

Collection gsufsort gsufsort-light mkESA

Time RAM Bytes/N Time RAM Bytes/N Time RAM Bytes/N

shortreads 4:25:52 336.00 21.00 5:30:54 272.00 17.00 4:51:48 274.73 17.17

reads 5:00:27 336.00 21.00 5:10:04 272.00 17.00 5:44:58 280.68 17.54

pacbio 4:19:37 336.04 21.00 4:54:21 272.03 17.00 4:26:39 272.58 17.03

pacbio.1000 4:28:22 336.00 21.00 5:20:39 272.00 17.00 4:44:50 272.32 17.02

uniprot 5:11:33 336.90 21.00 5:25:37 272.73 17.00 9:58:03 294.86 18.38

gutenberg 4:17:52 334.40 21.00 4:53:05 269.90 17.00 – – –

random.dna 4:23:56 331.08 21.00 5:41:45 268.02 17.00 4:28:43 268.33 17.02

random.protein 5:20:06 331.08 21.00 5:47:38 268.02 17.00 4:37:16 268.33 17.02

http://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
http://www.ebi.ac.uk/uniprot/download-center
http://www.gutenberg.org
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collections. We can see a perfectly steady behavior of 
mkESA. While still O(N), gsufsort displays a deviation 
due to larger constants.

Conclusions
We have introduced gsufsort, a fast, portable, and 
lightweight tool for constructing the suffix array and 
additional data structures for string collections. gsuf-
sort may be used to pre-compute indexing structures 
and write them to disk, or may be included as a compo-
nent in different applications. As an additional advantage, 
gsufsort is not restricted to biological sequences, as it 
can process collections of strings over ASCII alphabets.

Availability and requirements

• Project name: gsufsort
• Project home page: http://www.githu b.com/felip 

elouz a/gsufs ort
• Operating system(s): Platform independent

• Programming language: ANSI C
• Other requirements: make, zlib (optional)
• License: GNU GPL v-3.0.
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