
Louza et al. Algorithms Mol Biol (2020) 15:18
https://doi.org/10.1186/s13015-020-00177-y

SOFTWARE ARTICLE

gsufsort: constructing suffix arrays, LCP
arrays and BWTs for string collections
Felipe A. Louza1* , Guilherme P. Telles2, Simon Gog3, Nicola Prezza4 and Giovanna Rosone5*

Abstract

Background: The construction of a suffix array for a collection of strings is a fundamental task in Bioinformatics and
in many other applications that process strings. Related data structures, as the Longest Common Prefix array, the Bur-
rows–Wheeler transform, and the document array, are often needed to accompany the suffix array to efficiently solve
a wide variety of problems. While several algorithms have been proposed to construct the suffix array for a single
string, less emphasis has been put on algorithms to construct suffix arrays for string collections.

Result: In this paper we introduce gsufsort, an open source software for constructing the suffix array and related
data indexing structures for a string collection with N symbols in O(N) time. Our tool is written in ANSI/C and is
based on the algorithm gSACA-K (Louza et al. in Theor Comput Sci 678:22–39, 2017), the fastest algorithm to con-
struct suffix arrays for string collections. The tool supports large fasta, fastq and text files with multiple strings as input.
Experiments have shown very good performance on different types of strings.

Conclusions: gsufsort is a fast, portable, and lightweight tool for constructing the suffix array and additional data
structures for string collections.

Keywords: Suffix array, LCP array, Burrows–Wheeler transform, Document array, String collections

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The suffix array (SA) [1] is one of the most important
data structures in string processing. It enables efficient
pattern searching in strings, as well as solving many other
string problems [2–4]. More space-efficient solutions for
such problems are possible by replacing the suffix array
with an index based on the Burrows–Wheeler transform
(BWT) [5]. Many applications require additional data
structures—most commonly, the longest common pre-
fix (LCP) [6] array and the document array (DA) [7]—on
top of SA or BWT . These structures, possibly stored in
compressed form, serve as a basis for building modern
compact full-text indices, which allow to efficiently pre-
process and query strings in compact space.

There are several internal memory algorithms designed
for constructing the suffix array and additional data
structures when the input consists of a single string [8,
9]. While less emphasis has been put on specialized
algorithms for string collections, in many applications
the input is composed by many strings, and a common
approach is concatenating all strings into a single one and
using a standard construction algorithm. However, this
approach may deteriorate either the theoretical bounds
or the practical behavior of construction algorithms due
to, respectively, the resulting alphabet size or unneces-
sary string comparisons [10–12].

Textual documents and webpages are examples of
widespread large string collections. In Bioinformatics,
important problems on collections of sequences may be
solved rapidly with a small memory footprint using the
aforementioned data structures, for example, finding suf-
fix-prefix overlaps for sequence assembly [13], clustering

Open Access

Algorithms for
Molecular Biology

*Correspondence: louza@ufu.br; giovanna.rosone@unipi.it
1 Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia,
Uberlândia, Brazil
5 Dipartimento di Informatica, Università di Pisa, Pisa, Italy
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-2931-1470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-020-00177-y&domain=pdf

Page 2 of 5Louza et al. Algorithms Mol Biol (2020) 15:18

cDNA sequences [14], finding repeats [15] and sequence
matching [16].

In this paper we present gsufsort, an open source
tool that takes a string collection as input, constructs its
(generalized) suffix array and additional data structures,
like the BWT , the LCP array, and the DA , and writes them
directly to disk. This way, applications that rely on such
data structures may either read them from disk or may
easily include gsufsort as a component. Large collec-
tions, with up to 264 − d − 2 total letters in d strings, may
be handled provided that there is enough memory. This
tool is an extension of previous results [10], with new
implementations of procedures to obtain the BWT and
the generalized suffix array (GSA) from SA during out-
put to disk, and with the implementation of a lightweight
alternative to compute DA.

Implementation
gsufsort is implemented in ANSI C and requires a sin-
gle Make command to be compiled. It may receive a col-
lection of strings in fasta, fastq or raw ASCII text formats
and computes SA and related data structures, accord-
ing to input parameters. gsufsort optionally supports
gzipped input data using zlib1 and kseq2 libraries.
Setting command-line arguments allows selecting which
data structures are computed and written on disk, and
which construction algorithm is used (see below). Addi-
tionally, a function for loading pre-constructed data
structures from disk is also provided.

Given a collection of d strings T 1,T 2, . . . ,Td from an
alphabet � = [1, σ] of ASCII symbols, having lengths
n1, n2, . . . , nd , the strings are concatenated into a single
string T [0,N − 1] = T 1$T 2$ · · · Td# using the same
separator $ and an end-marker #, such that $ and # do not
occur in any string Ti , and # < $ < α for any other symbol
α ∈ � . The total length of T is

∑d
i=1(ni + 1)+ 1 = N .

Before giving details on gsufsort implementa-
tion, we briefly recall some data structures definitions.
For a string S of length n let the suffix starting at posi-
tion i be denoted Si , 0 ≤ i ≤ n− 1 . The suffix array SA
of a string S of length n is an array with a permutation
of [0, n− 1] that gives the suffixes of S in lexicographic
order. The length of the longest common prefix of strings
R and S is denoted by lcp(R, S) . The LCP array for S gives
the lcp between consecutive suffixes in the order of SA ,
that is LCP[0] = 0 and LCP[i] = lcp(SSA[i], SSA[i−1]) ,
0 < i ≤ n− 1 . For a suffix array of a collection of strings,
the position i of the document array DA gives the string
to which suffix TSA[i] belongs. For the last suffix TN−1 = #

we have DA[0] = d + 1 . The generalized suffix array gives
the order of the suffixes of every string in a collection,
that is, the GSA is as an array of N pairs of integers (a, b)
where each entry (a, b) represents the suffix Ta

b , with
1 ≤ a ≤ d and 0 ≤ b ≤ na − 1.
gsufsort uses algorithm gSACA-K [10] to construct

SA for the concatenated string T [0,N − 1] , which breaks
ties between equal suffixes from different strings Ti and
Tj by their ranks, namely i and j. gSACA-K can also com-
pute LCP and DA during SA construction, such that LCP
values do not exceed separator symbols. gSACA-K runs
in O(N) time using O(σ) working space.

The BWT is calculated during the output to disk
according to its well-known relation to SA [3]

The generalized suffix array (GSA) can be computed by
gsufsort from SA and DA during the output to disk,
using the identity

We also provide a lightweight version (gsufsort-
light) for the computation of DA . It uses less memory
at the price of being slightly slower. It computes a bit-
vector B[0,N − 1] with O(1) rank support [4] such that
B[i] = 1 if T [i] = $, and B[i] = 0 otherwise. The values in
DA are obtained on-the-fly while DA (or GSA) is written
to disk, through the identity

Results
We compared our tool and mkESA. mkESA [17] is a fast
suffix array construction software designed for bioinfor-
matics applications.

We ran both versions of our tool, gsufsort and
gsufsort-light, to build arrays GSA and LCP , while
mkESA3 was run to build arrays SA and LCP for the con-
catenation of all strings (using the same symbol as sepa-
rators). The experiments were conducted on a single core
of a machine with GNU/Linux (Debian 8, kernel 3.16.0-4,
64 bits) with an Intel Xeon E5-2630 2.40-GHz, 384 GB
RAM and 13 TB SATA storage. The sources were com-
piled by GNU GCC version 4.8.4 with option -O3.

The collections we used in our experiments are
described in Table 1. They comprise real DNAs, real pro-
teins, documents, random DNA and random protein, and
differ by their alphabet size and also by the maximum

BWT[i] = T [(SA[i] − 1) mod N].

(1)GSA[i] =

{

(DA[i],SA[i] − SA[DA[i]]−1) if DA[i] > 1

(DA[i],SA[i]) otherwise .

DA[i] = rank1(SA[i])+ 1.

1 https ://zlib.net
2 http://lh3lh 3.users .sourc eforg e.net/kseq.shtml 3 http://www.bibis erv.cebit ec.uni-biele feld.de/mkesa

https://zlib.net
http://lh3lh3.users.sourceforge.net/kseq.shtml
http://www.bibiserv.cebitec.uni-bielefeld.de/mkesa

Page 3 of 5Louza et al. Algorithms Mol Biol (2020) 15:18

and average lcp , which offer an approximation for suffix
sorting difficulty.

The results are shown in Table 2. The data shows a
clear time/memory tradeoff for DNA sequences, gsuf-
sort being faster while using approximately 1.25 more
memory, gsufsort-light using slightly less memory
then mkESA but taking more time. On proteins, gsuf-
sort-light is only marginally slower than gsufsort
but faster than mkESA. The authors of mkESA reported a
32% gain on a large protein dataset using 16 threads [17],
but larger lcp values seem not to favor mkESA when com-
pared to gsufsort-light, which is 47.9% faster on
proteins and 12.9% faster on DNA.

The memory ratio (bytes/N) of gsufsort and gsuf-
sort-light is constant, 21 and 17 bytes per input sym-
bol respectively, corresponding to the space of the input
string T (N bytes) plus the space for arrays SA and LCP (8N
bytes each) and, only for gsufsort, the space for DA (4N
bytes).

We have also evaluated the performance of gsuf-
sort, gsufsort-light and mkESA on collections of
random DNA and random protein sequences. The col-
lections have a growing number of 1MB sequences. The
running time in seconds and the peak memory usage in
GB are shown in Fig. 1 (logarithmic scale). Using ran-
dom sequences reduces the variation due to lcp among

Table 1 Collections

Columns 2 and 3 show the collection size (in GB) and the alphabet size. Column 4 shows the number of strings (in millions). Columns 5 and 6 show the maximum and
average lengths of strings in a collection. Columns 7 and 8 show the maximum and average lcp of strings in a collection

Collections

shortreads are Illumina reads from human genome trimmed to 100 nucleotides (http://ftp.sra.ebi.ac.uk/vol1/ERA01 5/ERA01 5743/srf);

reads are Illumina HiSeq 4000 paired-end RNA-seq reads from plant Setaria viridis trimmed to 300 nucleotides (http://www.trace .ncbi.nlm.nih.gov/Trace s/
sra/?run=ERR19 42989);

pacbio are PacBio RS II reads from Triticum aestivum (wheat) genome (http://www.trace .ncbi.nlm.nih.gov/Trace s/sra/?run=SRR58 16161);

pacbio.1000 are strings from pacbio trimmed to length 1,000;

uniprot are protein sequences from TrEMBl dowloaded on May 28, 2019 (http://www.ebi.ac.uk/unipr ot/downl oad-cente r);

gutenberg are ASCII books in English from Project Gutenberg (http://www.guten berg.org);

random-dna was generated with even sampling probability on the standard 4 letter alphabet;

random-protein was generated with even sampling probability on the IUPAC 25 letter alphabet

Collection size σ N. of strings Max. len. Avg. len Max. lcp Avg. lcp

shortreads 16.00 5 171.8 100 100 100 32.87

reads 16.00 6 57.3 300 300 300 91.29

pacbio 16.00 5 1.9 71,561 9117 3084 19.08

pacbio.1000 16.00 5 17.2 1,000 1000 876 18.67

uniprot 16.04 25 46.1 74,488 374 74,293 99.24

gutenberg 15.88 255 334.3 757,936 50 9060 18.97

random.dna 16.00 4 16.1 1,048,576 1,048,576 33 16.18

random.protein 16.00 25 16.1 1,048,576 1,048,576 13 6.89

Table 2 Algorithms’ running times and memory usage on different datasets collections

Columns RAM and bytes/N show the peak memory in GB and the bytes per input symbol ratio. Each symbol of T [0,N − 1] uses 1 byte. Results for gutenberg are
reported for gsufsort and gsufsort-light only, as mkESA is restricted to DNA and amino-acid alphabets. The best results are indicated in italics

Collection gsufsort gsufsort-light mkESA

Time RAM Bytes/N Time RAM Bytes/N Time RAM Bytes/N

shortreads 4:25:52 336.00 21.00 5:30:54 272.00 17.00 4:51:48 274.73 17.17

reads 5:00:27 336.00 21.00 5:10:04 272.00 17.00 5:44:58 280.68 17.54

pacbio 4:19:37 336.04 21.00 4:54:21 272.03 17.00 4:26:39 272.58 17.03

pacbio.1000 4:28:22 336.00 21.00 5:20:39 272.00 17.00 4:44:50 272.32 17.02

uniprot 5:11:33 336.90 21.00 5:25:37 272.73 17.00 9:58:03 294.86 18.38

gutenberg 4:17:52 334.40 21.00 4:53:05 269.90 17.00 – – –

random.dna 4:23:56 331.08 21.00 5:41:45 268.02 17.00 4:28:43 268.33 17.02

random.protein 5:20:06 331.08 21.00 5:47:38 268.02 17.00 4:37:16 268.33 17.02

http://ftp.sra.ebi.ac.uk/vol1/ERA015/ERA015743/srf
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=ERR1942989
http://www.trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR5816161
http://www.ebi.ac.uk/uniprot/download-center
http://www.gutenberg.org

Page 4 of 5Louza et al. Algorithms Mol Biol (2020) 15:18

collections. We can see a perfectly steady behavior of
mkESA. While still O(N), gsufsort displays a deviation
due to larger constants.

Conclusions
We have introduced gsufsort, a fast, portable, and
lightweight tool for constructing the suffix array and
additional data structures for string collections. gsuf-
sort may be used to pre-compute indexing structures
and write them to disk, or may be included as a compo-
nent in different applications. As an additional advantage,
gsufsort is not restricted to biological sequences, as it
can process collections of strings over ASCII alphabets.

Availability and requirements

• Project name: gsufsort
• Project home page: http://www.githu b.com/felip

elouz a/gsufs ort
• Operating system(s): Platform independent

• Programming language: ANSI C
• Other requirements: make, zlib (optional)
• License: GNU GPL v-3.0.

Acknowledgements
The authors thank Prof. Nalvo Almeida (UFMS, Brazil) for granting access to the
machine used for the experiments.

Authors’ contributions
FAL and GR devised the main algorithmic idea. FAL, GPT, SG, NP and GR con-
tributed to improve the algorithms and participated to their implementations.
NP designed and performed the experiments. All authors read and approved
the final manuscript.

Funding
FAL and GPT acknowledge the financial support of Brazilian Agencies CNPq
and CAPES. GR is partially and NP is supported by the project MIUR-SIR
CMACBioSeq (“Combinatorial methods for analysis and compression of bio-
logical sequences”) grant n. RBSI146R5L.

Availability
The source code of the proposed algorithm is available at https ://www.githu
b.com/felip elouz a/gsufs ort.

Fig. 1 Running time in seconds and peak memory in GB (in logarithmic scale) on an random DNA and protein collections

http://www.github.com/felipelouza/gsufsort
http://www.github.com/felipelouza/gsufsort
https://www.github.com/felipelouza/gsufsort
https://www.github.com/felipelouza/gsufsort

Page 5 of 5Louza et al. Algorithms Mol Biol (2020) 15:18

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your research ? Choose BMC and benefit from:

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Faculdade de Engenharia Elétrica, Universidade Federal de Uberlândia, Uber-
lândia, Brazil. 2 Instituto de Computação, Universidade Estadual de Campinas,
Campinas, Brazil. 3 eBay Inc., San Jose, USA. 4 LUISS Guido Carli, University,
Rome, Italy. 5 Dipartimento di Informatica, Università di Pisa, Pisa, Italy.

Received: 24 April 2020 Accepted: 8 September 2020

References
 1. Manber U, Myers EW. Suffix arrays: a new method for on-line string

searches. SIAM J Comput. 1993;22(5):935–48.
 2. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale algorithm

design. Cambridge: Cambridge University Press; 2015.
 3. Ohlebusch E. Bioinformatics algorithms: sequence analysis, genome

rearrangements, and phylogenetic reconstruction. Bremen: Oldenbusch;
2013.

 4. Navarro G. Compact data structures: a practical approach. Cambridge:
Cambridge University Press; 2016.

 5. Burrows M, Wheeler DJ. A block-sorting lossless data compression algo-
rithm. Technical report, Digital SRC Research Report; 1994.

 6. Fischer J. Wee LCP. Inf Process Lett. 2010;110(8–9):317–20.
 7. Muthukrishnan S. Efficient algorithms for document retrieval problems.

In: Proceedings of the ACM-SIAM symposium on discrete algorithms
(SODA). ACM/SIAM, San Franciso-CA, USA; 2002. p. 657–66.

 8. Puglisi SJ, Smyth WF, Turpin AH. A taxonomy of suffix array construction
algorithms. ACM Comput Surv. 2007;39(2):1–31.

 9. Dhaliwal J. Faster semi-external suffix sorting. Inf Process Lett.
2014;114(4):174–8.

 10. Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string col-
lections. Theor Comput Sci. 2017;678:22–39.

 11. Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Bur-
rows–Wheeler transform. Theor Comput Sci. 2007;387(3):298–312.

 12. Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for construct-
ing and inverting the BWT of string collections. Theor Comput Sci.
2013;483:134–48.

 13. Simpson JT, Durbin R. Efficient construction of an assembly string graph
using the FM-index. Bioinformatics. 2010;26(12):367–73.

 14. Hazelhurst S, Lipták Z. Kaboom! A new suffix array based algorithm for
clustering expression data. Bioinformatics. 2011;27(24):3348–55.

 15. Askitis N, Sinha R. Repmaestro: scalable repeat detection on disk-based
genome sequences. Bioinformatics. 2010;26(19):2368–74.

 16. Vyverman M, De Baets B, Fack V, Dawyndt P. essaMEM: finding maximal
exact matches using enhanced sparse suffix arrays. Bioinformatics.
2013;29:802–4.

 17. Homann R, Fleer D, Giegerich R, Rehmsmeier M. mkESA: enhanced suffix
array construction tool. Bioinformatics. 2009;25:1084–5.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	gsufsort: constructing suffix arrays, LCP arrays and BWTs for string collections
	Abstract
	Background:
	Result:
	Conclusions:

	Background
	Implementation
	Results
	Conclusions
	Availability and requirements
	Acknowledgements
	References

