
Gatter et al. Algorithms Mol Biol (2021) 16:8
https://doi.org/10.1186/s13015-021-00186-5

RESEARCH

LazyB: fast and cheap genome assembly
Thomas Gatter3* , Sarah von Löhneysen3, Jörg Fallmann3, Polina Drozdova2, Tom Hartmann3 and
Peter F. Stadler1,3,4,5,6*

Abstract

Background: Advances in genome sequencing over the last years have lead to a fundamental paradigm shift in the
field. With steadily decreasing sequencing costs, genome projects are no longer limited by the cost of raw sequenc-
ing data, but rather by computational problems associated with genome assembly. There is an urgent demand for
more efficient and and more accurate methods is particular with regard to the highly complex and often very large
genomes of animals and plants. Most recently, “hybrid” methods that integrate short and long read data have been
devised to address this need.

Results: LazyB is such a hybrid genome assembler. It has been designed specificially with an emphasis on utilizing
low-coverage short and long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively
filtered short-read unitigs. This graph is translated into a long-read overlap graph G. Instead of the more conventional
approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts subgraphs whose global
properties approach a disjoint union of paths. First, a consistently oriented subgraph is extracted, which in a second
step is reduced to a directed acyclic graph. In the next step, properties of proper interval graphs are used to extract
contigs as maximum weight paths. These path are translated into genomic sequences only in the final step. A pro-
totype implementation of LazyB, entirely written in python, not only yields significantly more accurate assemblies
of the yeast and fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational
effort.

Conclusions: LazyB is new low-cost genome assembler that copes well with large genomes and low coverage. It
is based on a novel approach for reducing the overlap graph to a collection of paths, thus opening new avenues for
future improvements.

Availability: The LazyB prototype is available at https:// github. com/ TGatt er/ LazyB.

Keywords: Nanopore sequencing, Illumina sequencing, Genome assembly, Spanning tree, Unitigs, Anchors

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
The assembly of genomic sequences from high through-
put sequencing data has turned out to be a difficult
computational problem in practice. Recent approaches
combine cheap short-read data (typically using Illumina
technology [1]) with long reads produced by PacBio or

Nanopore technologies [2]. Although the short-read data
are highly accurate and comparably cheap to produce,
they are insufficient even at (very) high coverage due to
repetitive elements. Long-read data, on the other hand,
are comparably expensive and have much higher error
rates. HiFi PacBio reads [3] derived from repeat sequenc-
ing of circularized elements rival short read accuracy but
at vastly increased costs.

Several assembly techniques have been developed
recently for de novo assembly of large genomes from
high-coverage (50× or greater) PacBio or Nanop-
ore reads. Recent state-of-the-art methods employ a

Open Access

Algorithms for
Molecular Biology

*Correspondence: thomas@bioinf.uni-leipzig.de; studla@bioinf.uni-leipzig.de
3 Bioinformatics Group, Department of Computer Science,
and Interdisciplinary Center for Bioinformatics, Universität Leipzig,
Härtelstraße 16–18, 04107 Leipzig, Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0001-5567-3016
https://github.com/TGatter/LazyB
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-021-00186-5&domain=pdf

Page 2 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

hybrid assembly strategy using Illumina reads to correct
errors in the longer PacBio reads prior to assembly. For
instance, the 32 Gb axolotl genome was produced in this
manner [4].

Traditional assembly strategies can be classified into
two general categories [5, 6]. The Overlap-layout-consen-
sus (OLC) assembly model attempts to find all pairwise
matches between reads, using sequence similarity as a
metric for overlaps. A general layout is constructed and
post-processed in various ways. Most notably, overlaps
can be transformed into assembly graphs such as string
graphs [7]. This method is flexible to read length and
can be adapted to the diverse error models of different
sequencing technologies. However, finding all overlaps is
very expensive, in particular as read-sizes become large.

In de Bruijn graph strategies [8, 9], reads are decon-
structed to fixed length k-mers, representing nodes.
Edges are inserted between nodes that overlap on (k − 1)

-mers. Ideally, a de Bruijn graph thus represents exactly
one Eulerian path per chromosome, although this prop-
erty is generally violated in practice due to sequencing
errors even in the absence of repetitive elements. With
the help of specialized hashing strategies, k-mers can be
efficiently stored and constructed. Thus, de Bruijn graphs
require much less memory than OLC strategies. An
overall speed up can be attributed to the absence of an
all-vs-all comparison step. However, as k has to be cho-
sen smaller than read size, contiguity information is lost.
With increasing error rates in reads, de Bruijn graphs
tend to become less useful, as k-mers become also less
accurate.

Long read only and hybrid assembly strategies also
largely align to these two categories, although some
more unique methods have emerged over the years.
Canu [10] and Falcon [11] implement the classic OLC
approach, albeit both error-correct long reads before cre-
ating a string graph. MinHash filters [12] can significantly
reduce the costs of comparisons, but overall complexity
remains high. Wtdbg2 [13] also follows OLC, but utilizes
de Bruijn like graphs based on sparse k-mer mapping
for comparison. It avoids all-vs-all mapping by matching
reads that share k-mers under the assumption that even
under high error rates correct pairs share more k-mer
than those with spurious matches. Shasta [14] imple-
ments a full de Bruijn graph strategy by transforming
k-mers into a run-length encoding that is more robust to
sequencing errors in long reads. Newer versions of Canu
also implement a similar encoding [15].

Classic de Bruijn methods have been adapted to com-
bine both long and short reads into a hybrid assembly.
Long reads can serve as “bridging elements” in the same
way as mate pairs to resolve paths in (short read) assem-
bly graphs [16, 17].

Under the assumption that short-read assemblies are
cheap and reliable, various workflows have been pro-
posed to integrate both kinds of data also for OLC-like
approaches. As a general goal, these programs avoid
the costly all-vs-all comparison to create the assembly
graph with the help of various heuristics. MaSuRCA [18]
attempts to join both long and short reads into longer
super-reads by chaining unique k-mers, thereby reducing
the number of reads that need to be tested for overlap.
WENGAN [19] first creates full short-read contigs that are
then scaffolded by synthetic mate pairs generated out of
the long reads. Flye [20], even more uniquely, assembles
intentionally erroneous contigs that are concatenated to
a common sequence. Self-mapping then reveals repeats
that can be resolved much like in a traditional assembly
graph.
HASLR [21] defines an assembly-graph-like structure,

that includes both short and long reads. Short reads
are assembled into contigs that, after k-mer filtering to
remove repeats, are aligned to long reads. In the result-
ing backbone graph, short-read contigs serve as nodes
that are connected by an edge if they map onto the same
long read. While different to e.g. string graphs, standard
tip and bubble removal algorithms are applied to remove
noise. Contigs are extracted as paths. TULIP [22] imple-
ments a very similar strategy, however, does not assemble
short reads into full contigs. Instead, the gaps between
mate-pairs are closed if possible with sufficiently rare
k-mers, resulting in relative short but unique seeds that
serve in the same capacity. In both cases, consensus con-
struction of the resulting sequence is trivial. Edges define
fixed regions on groups of long reads that can be locally
aligned for each edge along a path.
DBG2OLC [23] is methodologically most closely related

to LazyB. The two approaches, however, differ in several
key features. DBG2OLC assembles short reads to full con-
tigs, thereby avoiding repeat resolving techniques such
as gap closing or scaffolding because these introduce too
many errors. The short-read Contigs are then aligned
against the long reads. Each long read implies a neighbor-
hood of contigs. Mappings are corrected prior to graph
construction via consistency checks over all neighbor-
hoods for each contig, i.e., contigs are required to map
in the same order on all long reads. This technique can
help to remove both spuriously matched contigs and chi-
meric long reads, but requires sufficient coverage to allow
for effective voting. Similar to LazyB, long reads serve
as nodes in the DBG2OLC graph, with edges represent-
ing contigs mapping to two long reads. Nodes that map
a subset of contigs of another node are removed as they
are redundant. The resulting graph is error corrected
by classic tip and bubble removal, after which paths are
extracted as contigs, following the edge with the best

Page 3 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

overlap at each step. LazyB instead uses a step-wise pro-
cedure to extract paths that employs a series of heuristics
to edit the initial overlap graph to a collection of paths.
LazyB implements an alternative approach to assem-

bling genomes from a combination of long-read and
short-read data. It not only avoids the expensive, direct
all-vs-all comparison of the error-prone long-read data,
but also the difficult mapping of individual short reads
against the long reads, and the conventional techniques
to error-correct de Bruijn or string graphs. As we shall
see, its step-wise approach of processing the long-read
overlap graph adds the benefit of producing quite good
assemblies with surprisingly low requirements on the
coverage of both short and long reads. Even at just 2×
coverage of long reads the contiguity of assemblies of
complex genomes can be significantly improved using
our method. It lends itself in particular to the explora-
tory assembly of a large numbers of species, where cheap
identification of functional islands is required rather then
expensive finishing.

This contribution, which is a revised, updated, and
extended version of a paper presented at WABI 2020
[24], is organized as follows. We first outline the overall
strategy of LazyB and then describe the pre-processing
of the short-read data and the mapping short-reads-
derived unitigs to long reads. Similar to DBG2OLC and
HASLR, LazyB operates on a long-read overlap graph
whose edges are derived from partially assembled short-
read sequences that map to multiple long-reads. The
main innovation in LazyB is the Processing of the overlap
graph, which proceeds by a series of heuristics inspired
by properties of overlap graphs derived from ideal data,
and avoids the commonly used techniques to correct
assembly graphs. We then briefly describe the construc-
tion of the sequence assembly from the path decompo-
sition of the overlap graph. Benchmarking results are
reported for the assembly of yeast, fruitfly, and human
genomes. We close with a discussion and an outlook to
open problems and future improvements.

Strategy
LazyB does not pursue a “total data” approach. Instead,
it identifies “anchors” that are nearly guaranteed to be
correct and implements an, overall, greedy-like work-
flow to obtain very large long-read contigs. To this end,
the initial overlap graph is first oriented and then edited
in several consecutive steps to graph classes that more
closely approach the desired final results, i.e., a union of
paths. Conceptually, therefore, LazyB does not attempt
solve a single global optimization problem but instead
approximates as sequence of graph editing problems.
This strategy of LazyB is outlined in Fig. 1.

a

b

c

d

e
Fig. 1 Overview of the LazyB assembly pipeline. (a) Short
Illumina reads are filtered to represent only near unique k-mers and
subsequently assembled into unambiguous unitigs. Long Nanopore
reads (ONT) can be optionally scrubbed to include only regions
consistent to at least one other read. For larger data sets scrubbing can
be handled on subsets efficiently. Mapping unitigs against Nanopore
reads yields unique “anchors” between them (b). An undirected graph
(c) is created by adding Nanopore reads as nodes and edges between
all pairs of reads sharing an “anchor”. Each edge is assigned a relative
orientation, depending on whether the “anchor” maps in the same
direction on both Nanopore reads. Cycles with a contradiction in
orientation have to be removed before choosing a node at random
and directing the graph based on its orientation. As Nanopore reads
that are fully contained within another do not yield additional data,
they can be collapsed. Contigs are extracted as maximally supported
paths for each connected component (d). Support in this context is
defined by the number of consistent overlaps transitive to each edge.
Final contigs (e) can be optionally polished using established tools

Page 4 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

The key idea to obtain the overlap graph is to start
from a collection S := {si} of pre-assembled, high-qual-
ity sequences that are unique in the genome. These are
obtained from accurate short-read sequencing data and
serve as “anchors” to determine overlaps among the
long reads R := {rj} . In practice, S can be obtained by
assembling Illumina data with low or moderate cover-
age to the level of unitigs only. The total genomic cover-
age of S only needs to be large enough to provide anchors
between overlapping long reads. This data is therefore
rigorously filtered to be devoid of repetitive and highly
similar sequences. Mapping a sequence s ∈ S against the
set R of long reads implies (candidate) overlaps r1 − r2
between two long reads (as well as their relative orien-
tation) whenever s ∈ S maps to both r1 and r2 . Thus we
obtain a directed overlap graph G of the long reads with-
out an all-vs-all comparison of the long reads.

A series of linear-time filtering and reduction algo-
rithms then prunes first the underlying undirected over-
lap graph and then the directed version of the reduced
graph. Its connected components are reduced to near-
optimal directed acyclic graphs (DAGs) from which
contigs are extracted as best-supported paths. In the fol-
lowing sections the individual steps will be described in
detail. In comparison to DBG2OLC we avoid global cor-
rections of short-read mappings, but instead rely on the
accuracy of assembled unitigs and a series of local cor-
rections. For this, we utilize previously unreported prop-
erties of the class of alignment graphs used by both tools.
This allows LazyB to operate reliably even on very low
coverage. Variations of the dataset dependent assembly
options have little impact on the outcome. In contrast to
the complicated setup of options required for tools such
as DBG2OLC, LazyB comes with robust defaults.

Data preprocessing
A known complication of both PacBio and Nanopore
technologies are chimeric reads formed by the artificial
joining of disconnected parts of the genome [25] that may
cause mis-assemblies [26]. Current methods dealing with
this issue heavily rely on raw coverage [27] and hence are
of little use for our goal of a low-coverage assembler. In
addition, start- and end-regions of reads are known to be
particularly error-prone [28]. We pre-filter low quality
regions, but only consider otherwise problematic reads
later at the level of the overlap graph.

Short‑read unitig‑level assembly
Short-read (Illumina) data is preprocessed by adapter
clipping and trimming. The set S of high quality frag-
ments is obtained from a restricted assembly of the
short-read data. The conventional use case of assembly
pipelines aims to find a minimal set of contigs in trade-off

to both correctness and completeness. For our purposes,
however, completeness is of less importance and frag-
mented contigs are not detrimental to our workflow, as
long as their lengths stay above a statistical threshold.
Instead, correctness and uniqueness are crucial. We
therefore employ two initial filtering steps:

(1) Using a k-mer profile, we remove all k-mers that are
much more abundant than the expected coverage since
these are likely part of repetitive sequences. This process
can be fully automated.

(2) In order to avoid ambiguities, only branch-free
paths are extracted from the short-read assembly graph.
This feature is implemented e.g. in the de Bruijn graph
assembler ABySS [29], which allows to assemble up to
unitig stage. Moreover, a minimal path length is required
for a unitig to serve as a secure anchor.

Since repeats in general lead to branch-points in the de
Bruijn graph, repetitive sequences are strongly depleted
in unitigs. While in theory, every such assembly requires
a fine-tuned k-mer size, a well known factor to be influ-
ential on assembly quality, we found overall results to be
mostly invariant of this parameter. To test this, we sys-
tematically varied the k-mer-size for ABySS. Neverthe-
less, we found little to no effect on the results of LazyB
(Fig. 2). As assembly stops at unitigs, error rates and
genome coverage stay within a narrow range as long as
the unitigs are long enough.

The strategies for filtering short-read data have a
larger impact than the choice of the k-mer size for unitig
assembly (Fig. 3). This is not surprising given that both
chimeric unitigs and unitigs that harbor repetitive DNA
elements introduce spurious edges into the long-read
overlap graph G and thus negatively influence the assem-
bly. In order to exclude short reads that contain highly
frequent k-mers, the maximal tolerated occurrence has
to be set manually and is dependent on the k-mer size.
Setting the cut-off right next to the main peak in the pro-
files has turned out to be a good estimate. After assem-
bling short reads, unitigs are mapped to long reads and a
coverage profile over the length of every unitig is calcu-
lated. Unitigs with maximal coverage above interquartile
range IQR× 1.5+ Q3 are considered outliers. However,
regions below coverage threshold (Q3) spanning more
than 500 bp can be “rescued”. This filter step effectively
reduces ambiguous regions, in particular when no previ-
ous filtering has been applied (Fig. 4). Combining both
short-read filters improves the assembly quality; see
Table 1.

Anchor alignments
The set R of long reads is mapped against the unitig
set. At present we use minimap2 [30] for this purpose.
Regions or whole unitigs significantly exceeding the

Page 5 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

expected coverage are removed from S , as described in
the last section, because they most likely are repetitive or
at least belong to families of very similar sequences such
as coding sequences of multi-gene families. Note that all
repetitive elements connected to a unique region within a
single long read may still be correctly assembled.

Classic alignment tools perform poorly in the pres-
ence of high rates of insertions and deletions (InDels)
[31]. Even methods specifically advertised for this pur-
pose rely on scoring schemes that cannot accurately
represent the extreme abundance of InDels in long-
read data. Instead, they rely on seeds of high quality
matches that are then chained with high error toler-
ance. Currently, minimap2 [30, 32] is one of the most
commonly used tools for this purpose. Since we do not
have a gold standard set of perfect data, we can only
roughly estimate the influence of this heuristic on the
LazyB alignment quality in a related experiment. Spe-
cifically, we tested consistency of anchor alignments on
pairs of long reads to direct alignments of both reads
for fruit fly. Consistency is validated at the level of rela-
tive orientation, the offset indicated by both alignment
methods, the portion of overlap that can be directly
aligned and whether direct alignment of the long reads
is possible at all. Different relative orientations were

observed only in very small numbers. Changes in the
offset by more then 5% of the longer read length are
equally rare (Fig. 5).

However, requiring a direct alignment of at least 75%
of the overlap region marks 4.6% of the anchor links as
incorrect. Removing these “incorrect” anchors, surpris-
ingly, has a negative effect on the final LazyB assembly
and in particular tends to break correct contigs apart; see
Table 2. In our test set 7.7% of direct alignments of two
anchor-linked long reads gave no result. In these cases,
expected overlaps are rather short (Fig. 5). We there-
fore tested whether the assembly could be improved by
excluding those connections between long reads for
which no alignment could be calculated despite the pres-
ence of an overlap of at least 1 kbp (3.7%). We found,
however, that this procedure also causes the loss of cor-
rect edges in G.

Summarizing, we observe three facts: (1) The over-
whelming number of pairs is consistent and therefore
true. (2) Removing inconsistent edges from the assem-
bly not only does not improve the results but results
are worse on average. (3) While we can manually iden-
tify some incorrect unitig matches, the mappings pro-
duced by minimap2 are too inconsistent for proper
testing. Since we have no proper methods to identify
such false positives we also cannot properly estimate

Fig. 2 Assembly statistics as a function of the k-mer size used to construct unitigs from the short-read data for yeast. Top: Illumina unitigs (left:
number of unitigs; middle: fraction of the reference genome covered; right: N50 values); bottom: final LazyB assembly at ∼11× long reads (left:
number of unitigs; middle: fraction of the reference genome covered; right: number of mis-assemblies)

Page 6 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

the number of false negatives, i.e., missing matches in
the graphG, e.g. by computing a transitive completion.

Overall, out tests indicate that a high level trust in
the anchors mapping in warranted. We also conclude
that minimap2 is sufficient for our purposes. How-
ever, the data also suggest that the assembly would
profit substantially from a more accurate handling of
the overlap alignments. This remains a problem for
future research at this point.

Long read overlap graph
As a result of mapping the short-read unitig to the
long reads, we obtain a set of significant matches
V := {(s, r) ∈ S ×R | δ(s, r) ≥ δ∗} with matching scores
δ(s, r) that exceed a user-defined threshold δ∗ . The long-
read overlap graph G has the vertex set R . Conceptually,
two long reads overlap, i.e., there should be an undirected
edge r1r2 ∈ E(G) if and only if there is an s ∈ S such that
(s, r1) ∈ V and (s, r2) ∈ V . The choice of δ∗ therefore has
an immediate effect on the resulting graph. Setting δ∗

a

b

c

Fig. 3 Assembly statistics of yeast as a function of the k-mer size and maximal occurrence cut-off used to remove very frequent k-mers from short
reads prior to unitig assembly. (a) k-mer profiles for k = 50 bp and k = 75 bp. Cut-offs restrict short reads to different degrees. Note logarithmic
axes. (b) Illumina unitigs (left: percentage of remaining short-read data; middle: fraction of the reference genome covered; right: number of unitigs
mapping multiple times to reference). (c) Final LazyB assembly left: number of unitigs; middle: fraction of the reference genome covered; right:
number of mis-assemblies). x: not enough data to assemble

Page 7 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

low will allow more false-postive edges to be introduced
into the graph, as spurious matches become more likely.
Higher values of δ∗ improve the confidence of matches
but may remove true edges. In the current prototype, we
set the matching score as the number of exactly aligned
basepairs in the match and require at least 500 such exact
basepairs. With increasing accuracy of long read base-
callers, long read mappers, unitig assembly, and possibly

also dependent on the organism, this value is subject to
change. In practice, we employ an overall more restric-
tive but robust procedure to introduce edges in order to
reduce the danger of introducing false-positive edges into
G, mitigating also effects of slightly sub-optimal choices
of δ∗.

For two distinct long reads r1, r2 ∈ R with a common
s ∈ S , i.e., (s, r1), (s, r2) ∈ V , we denote by [i, j] and [k, l],
respectively, the sequence intervals on s that match inter-
vals on r1 and r2 . The intersection [i, j] ∩ [k , l] is the inter-
val [max{i, k}, min{j, l}] if k ≤ j and the empty interval
otherwise. A non-empty intersection [i, j] ∩ [k , l] corre-
sponds to a direct match of r1 and r2 . The expected bit
score for the overlap is estimated as

(1)
ω(s, r1, r2) :=

1

2
(min{j, l} −max{i, k} + 1)

×

(

δ(s, r1)

(j − i + 1)
+

δ(s, r2)

(l − k + 1)

)

Fig. 4 Exclusion of unitigs based on very high mapping coverage. Thresholds are IQR × 1.5+Q3. Shown are maximal values of coverage profiles
for unitigs assembled with (left) and without (middle) previous k-mer filtering. Note the logarithmic axes. right: exemplary profile; only the
high-coverage peak is excluded. Threshold is Q3

Table 1 Impact of short-read filtering strategies on LazyB
assembly quality in fruit fly

Column descriptions: completeness of the assembly, #ctg: number of contigs,
#MA: number of mis-assemblies (breakpoints relative to the reference assembly)

Filter strategy Compl. [%] #ctg #MA

no filter 82.81 457 302

k-mer filter 80.66 567 104

unitig filter 80.71 563 108

k-mer and unitig filter 80.11 596 99

a b c

Fig. 5 Consistency test of anchor-linked long-read overlaps to direct alignments of both reads on fruit fly. (a) Frequencies of shifted offsets (% of
the longer read); changes up to 5% are tolerated; note logarithmic axis. (b) Frequencies of the percentage at which the direct alignment covers the
overlap. A minimum of 75% is set for consistency. (c) Long read pairs where no direct alignment is possible tend to have shorter anchor-indicated
overlaps. Connections that cannot be confirmed via direct alignments despite an expected overlap of at least 1 kbp are excluded

Page 8 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

if [i, j] ∩ [k , l] �= ∅ . For [i, j] ∩ [k , l] = ∅ we set
ω(s, r1, r2) := 0 . For a given edge r1r2 ∈ E(G) there may
be multiple significant matches, mediated by a set of
unitigs Sr1r2 := {s ∈ S | (s, r1), (s, r2) ∈ V } . In ideal
data all these matches are co-linear and consistent with
respect their orientation. In real data, however, this
may not be the case. It is necessary, therefore, to handle
inconsistencies.

For each significant match (s, r) ∈ V we define the rela-
tive orientation θ(s, r) ∈ {+1,−1} of the reading direc-
tions of the short-read scaffold s relative to the long read
r. The relative reading direction of the two long reads (as
suggested by s) is thus θs(r1, r2) = θ(s, r1) · θ(s, r2).

The position of a significant match (s, r) defined on the
unitig s on interval [i, j] corresponds to an interval [i′, j′]
on the long read r that is determined by the alignment of
s to r. Due to the large number of randomly distributed
InDels in the Nanopore data, the usual dynamic pro-
gramming alignment strategies fail to produce accurate
alignments. This is also the case for minimap2 [30], our
preliminary choice, as it only chains short, high quality
matches into larger intervals. Although more accurate
alignments would of course improve the local error rate
of the final assembled sequence, we expect very little
impact on the overall assembly structure of the assem-
bly from local details of the sequence alignments at (s, r)
matches. We therefore record only the matching inter-
vals and use a coordinate transformation τr that estimates
the position τr(h) ∈ [i′, j′] for some h ∈ [i, j] by linear
interpolation:

The values of τr(h) are rounded to integers and used
to determine intersections of matches. We write

(2)τr(h) :=

{

j′ − (j − h)
j′−i′+1
j−i+1 if j − h ≤ h− i;

i′ + (h− i)
j′−i′+1
j−i+1 if j − h > h− i.

[i, j]r := [τr(i), τr(j)] for the interval on r corresponding
to an interval [i, j] of s.

Definition 1 Two unitigs s, s′ in Sr1r2 are consistent if
(i) θs(r1, r2) = θs′(r1, r2) , (ii) the relative order of [is, js]r1 ,
[ks

′
, ls

′
]r1 on r1 and [is, js]r2 , [ks

′
, ls

′
]r2 on r2 is the same.

For distinct long reads r1, r2 ∈ R , Definition 1 enables
us to determine m ≥ 1 subsets S 1

r1r2
, ...,S m

r1r2
 of Sr1r2

such that each is maximal with respect to inclusion and
contains only unitigs that are pairwise consistent with
respect to r1 and r2 . In addition, we may require that
the difference between the distances of consecutive cor-
responding intervals on r1 and r2 , respectively, is suffi-
ciently similar. Computing the set S ∈ {S 1

r1r2
, ...,S m

r1r2
}

that maximizes the total bit score
∑

s∈S ω(s, r1, r2)
amounts to a classical chaining problem. It can can be
solved by dynamic programming [33] in quadratic time
w.r.t. the number |Sr1r2 | of unitig-mediated matches. An
edge r1r2 is inserted into G if the optimal total bit score
�(r1, r2) :=

∑

s∈S ω(s, r1, r2) exceeds a user-defined
threshold. The signature θ(r1, r2) of the edge r1r2 ∈ E(G)
is the common value θs(r1, r2) for all s ∈ S.

For each edge r1r2 ∈ E(G) we furthermore determine
s, s′ ∈ S such that τr1(is) is the minimal and τr1(js

′
) is

the maximal coordinate of the matching intervals on r1 .
Hence, the interval [is, js′]r1 spans all matching intervals
on r1 . The corresponding pair of coordinates, τr2(ks) and
τr2(l

s′) , spans the matching intervals on r2 . In particular,
the interval [ks, ls′]r2 (resp. [ls′ , ks]r2) spans both match-
ing intervals on r2 if θ(r1, r2) = 1 (resp. θ(r1, r2) = −1).
For the sake of a clear notation, let [ir1 , jr1] := [is, js

′
]r1

and [kr2 , lr2] be the “spanning” interval on r2 , i.e., either
[kr2 , lr2] := [ks, ls

′
]r2 or [kr2 , lr2] := [ls

′
, ks]r2 . Inter-

vals [ir1 , jr1] and [kr2 , lr2] specify the known overlap-
ping regions between r1 and r2 , see also Fig. 6 for an
illustration. If θ(r1, r2) = +1 then r1 extends r2 to the
left if ir1 > kr2 and to the right if |r1| − jr1 > |r2| − lr2 .
For θ(r1, r2) = −1 the corresponding conditions are
ir1 > |r2| − kr2 and |r1| − jr1 > lr2 , respectively. If r1 does
not extend r2 to either side then r1 is completely con-
tained in r2 and does not contribute to the assembly. Sim-
ilarly, if r1 extends r2 on both sides, r2 is fully contained in
r1 . In both cases we contract the edge between r1 and r2
in G. Otherwise, if r1 extends r2 to the left and r2 extends
r1 to the right we record r1 → r2 and analogously, we set
r1 ← r2 if r2 extends r1 to the left and r1 extends r2 to the
right.

The result of this construction is a long-read-overlap
graph G whose vertices are the non-redundant long reads
and whose edges r1r2 record (1) the relative orientation
θ(r1, r2) , (2) the bit score �(r1, r2) , (3) the local direction
of extension, and (4) the overlapping interval.

Table 2 Assessment of different parameters to verify long-read
overlaps and their impact on LazyB assembly quality on fruit fly

Overlaps are indicated by anchors and evaluated by pairwise long-read
alignments. They are considered valid if: the relative direction suggested by
the anchor matches that of the pairwise alignment (direction); the offset is
sufficiently similar for both methods (offset); at least 75% of the overlap is found
as direct alignment (incomplete mapping); the overlap indicated by the anchor
is less than or equal to 1 kbp or a pairwise alignment is possible (no mapping).
Column descriptions: completeness of the assembly, #ctg: number of contigs,
#MA: number of mis-assemblies (breakpoints relative to the reference assembly)

Varification parameters Compl.[%] #ctg #MA

Direction 80.13 608 111

Direction + offset 80.08 622 103

Direction + offset + incom-
plete mapping

80.04 1263 121

No mapping 80.15 801 113

Page 9 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

Processing of the overlap graph
Consistent orientation of long reads
For perfect data it is possible to consistently deter-
mine the reading direction of each read relative to the
genome from which it derives. This is not necessarily
the case in real-life data. The relative orientation of two
reads is implicitly determined by the relative orienta-
tion of overlapping reads, i.e., by the signature θ(r1, r2) of
the edge r1r2 ∈ E(G) . To formalize this idea we consider
a subset D ⊆ E(G) and define the orientation of D as
θ(D) :=

∏

r1r2∈D
θ(r1, r2) . For a disjoint union of two edge

sets D and D′ we therefore have
and, more generally, their symmetric different D⊕ D′
satisfies θ(D⊕ D′) = θ(D)θ(D′) since the edges in D ∩ D′
appear twice in θ(D)θ(D′) and thus each of these edges
contributes a factor (±1)2 = 1.

Definition 2 Two vertices r1, r2 ∈ V (G) are orientable
if θ(P) = θ(P′) holds for any two paths P and P′ connect-
ing r1 and r2 in G. We say that G is orientable if all pairs of
vertices in G are orientable.

Lemma 3 G is orientable if and only if every cycle C in
G satisfies θ(C) = 1.

Proof Let r, r′ be two vertices of G and write C (r, r′)
for the set of all cycles that contain r and r′ . If r = r′
or C (r, r′) = ∅ , then r and r′ are orientable by defini-
tion. Now assume r = r′ , C (r, r′) �= ∅ , and consider
a cycle C ∈ C (r, r′) . Clearly, C can be split into two

edge-disjoint path C1 and C2 both of which connect r
and r′ . If r and r′ are orientable, then θ(C1) = θ(C2) and
thus θ(C) = θ(C1)θ(C2) = 1 . If r and r′ are not orient-
able, then there is a pair of paths P1 and P2 connecting r
and r′ such that θ(P1) = −θ(P2) . Since
is an edge-disjoint union of cycles Ci we have
−1 = θ(P1)θ(P2) =

∏k
i=1 θ(Ci) and thus there is least

one cycle Ci with θ(Ci) = −1 in G. �

The practical importance of Lemma 3 is the implica-
tion that only a small set of cycles needs to be consid-
ered, because every cycle in G can be obtained as an ⊕
-sum of cycles in a cycle basis [34, 35]. Every graph G
with c connected components has a cycle basis com-
prising |E| − |V | − c cycles. Particular cycles bases,
known as Kirchhoff bases, are obtained from a span-
ning tree T of G as the set B of cycles Ce consisting of
the edge e ∈ E \ T and the unique path in T connecting
the endpoints of e [36]. Every cycle C of G can then be
written as C =

⊕

e∈C\T Ce , see e.g. [35].

Theorem 4 Let G be a graph with signature
θ : E(G) → {−1, 1} on its edges, and let B be a cycle basis
of G. Then G is orientable if and only if θ(C) = 1 for all
C ∈ B.

Proof The theorem follows from Lemma 3 and the fact
that every cycle C in G can be written as an ⊕-sum of
basis cycles, i.e., θ(C) = 1 for every cycle in C if and only
if θ(C ′) = 1 for every basis cycle C ′ ∈ B . �

Thm. 4 suggests the following, conservative heuristic
to extract an orientable subgraph from G:

(1) Construct a maximum weight spanning tree TG of
G by using the �-scores as edge weights. Tree TG
can easily be obtained using, e.g., Kruskal’s algo-
rithm [37].

(2) Construct a Kirchhoff cycle basis B from TG.
(3) For every cycle C ∈ B , check whether θ(C) = −1 .

If so, find the �-minimum weighted edge ê ∈ C
and remove it from E(G) and (possibly) from TG if
ê ∈ E(TG).

 We delete the offending edge because it is very unlikely
that the preprocessing correctly identified that two
long reads overlap but failed to determine the correct
relative orientation. The edge deletion is simplified by
the following observation:

Lemma 5 If T is maximal �-weight spanning tree of T
and end e is a non-tree edge, then �(e) = mine′∈Ce

�(e′).

Fig. 6 Construction of the overlap of two long reads r1 and r2 (long
black arrows) from all unitigs Sr1r2 := {s1, ..., s5} (short black bars)
that match to both r1 and r2 . A significant match (s, r) of s ∈ Sr1r2
on r ∈ {r1, r2} is illustrated by blue and green thick arrows on r.
The relative orientation of (s, r) is indicated by the direction of its
arrow, that is, θ(s, r) = +1 (resp. θ(s, r) = −1) if its arrow points to
the right (resp. left). The subsets S 1

r1r2
:= {s1, s3, s5} (unitigs with

blue significant matches) and S 2
r1r2

:= {s2, s4} (unitigs with green
significant matches) of Sr1r2 are both inclusion-maximal and consists
of pairwise consistent unitigs. The set S 1

r1r2
 maximizes �(r1, r2) and

thus determines the overlap. It implies θ(r1, r2) = +1 . Moreover,
ir1 (resp. jr1) is the minimal (resp. maximal) coordinate of significant
matches of unitigs from S 1

r1r2
 on r1 . The corresponding coordinates

on r2 are kr2 and lr2 , respectively. The spanning intervals [ir1 , jr1] and
[kr2 , lr2] define the overlap of r1 and r2 . In this example we have ir1 > kr2
and |r1| − jr1 > |r2| − lr2 , implying that r2 extends r1 neither to the left
or right and thus, edge r1r2 is contracted in G

Page 10 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

Proof Let e′ ∈ Ce \ {e} by a tree edge in the cycle
Ce . Then T ′ = T \ {e′} ∪ {e} is again a spanning tree
of G since the vertex set V (Ce) is still connected
and T ′ contains not cycle. Its weight it weight is
�(T ′) = �(T)−�(e′)+�(e) ≤ �(T) , since T is a
maximum weight spanning tree by assumption. Thus
�(e) ≤ �(e′) , i.e., e has minimum �-weight. �

As a consequence, the minimum weight edge of an
offending cycle is always the non-tree edge. Step (3)
above therefore reduces to finding the basis edges ê with
negative signature cycles Cê and to remove these edges.
The removal of ê leaves TG unchanged and thus does not
affect the contiguity of the assembly. The end result of the
procedure outlined above is therefore a connected sub-
graph G′ and a spanning forest TG′ = TG for G′.

Lemma 6 Let G be an undirected connected graph with
signature θ and let G′ be the residual graph produced by the
heuristic steps (1)-(3). Then (i) G′ is connected, (ii) G′ is ori-
entable, and (iii) TG is an �-maximal spanning tree of G′.

Proof (i) By Lemma 5, TG ⊆ E(G′) , hence TG is a span-
ning tree of G′ and thus G′ is connected. (ii) Since the
heuristic removes all non-tree edges e with θ(Ce) = −1 ,
Thm. 4 implies that G′ is orientable. (iii) Since
TG ⊆ E(G′) , Kruskal’s maximum weight spanning tree
algorithm will pick the same spanning tree edges again
from E(G′) , and TG is an �-maximal spanning tree. �

In order to expedite the identification of edges that
violate orientability in G, we define an orientation ϕ for
the vertices of G, i.e., the long reads. To this end, we pick
an arbitrary r∗ ∈ V (G) as reference and set ϕ(r∗) := +1 .
Denote by PT (r) the unique path from r∗ to r and define
ϕ(r) := θ(PT (r)).

Lemma 7 If G is a connected orientable graph with
signature θ , then the vertex orientation ϕ with reference
ϕ(r∗) := +1 is independent of the choice of the spanning
tree T.

Proof Let P be an arbitrary path connecting r and r∗ . By
connectedness, such a path exists and since G is orient-
able w.r.t. θ we have θ(P) = θ(PT) . Furthermore r and r∗
are connected by the backbone of any spanning tree of T,
ϕ is independent of the choice of T. �

As an immediate consequence we observe:

Corollary 8 If G is an orientable graph with signature θ
and vertex orientation ϕ , then every pair of adjacent verti-
ces satisfies ϕ(r′)ϕ(r′′) = θ(r′r′′).

It follows that the heuristic to extract an orientable sub-
graph can be implemented in linear time:

(1) An �-maximal spanning tree TG is obtained in
O(|V | + |E|) time using Kruskal’s algorithm.

(2) The vertex orientation ϕ is computed by traversal
of the spanning tree TG in O(|V |) time.

(3) For each e ∈ E \ TG , one checks in constant time
whether ϕ(r′)ϕ(r′′) �= θ(r′r′′) and if so deletes the
edge r′r′′ . The total effort is therefore O(|E|).

We remark that one could now define a graph G̃ ,
obtained from G by inverting all long-reads r with a
negative orientation ϕ(r) = −1 . This amounts to replac-
ing each long read r by its reverse complement. Since
processing of the overlap graph does not explicitly con-
sider the sequence information, it would be sufficient
to replace the coordinates [p, q] of a match interval
by [ℓ− q + 1, ℓ− p+ 1] and to invert the directional-
ity of extension by another long read. The bit scores of
matches, of course, remain unchanged. In G̃ all edge sig-
natures are θ̃ (e) = +1 . It is not necessary, however, to
construct G̃ explicitly. Instead, we simply keep track of
the vertex orientations ϕ(r).

From here on, we again write G for the orientable graph
G′.

Reduction to a directed acyclic graph
We next make use of the direction of extension of long
read r1 and r2 defined by the mutual overhangs in the case
that r1r2 is an edge in G. We write for the directed ver-
sion of a connected component G of the residual graph G′
constructed above. For each edge r1r2 ∈ E(G) we create
the corresponding edge e ∈ E() as

Suppose the data used to construct are free of repetitive
sequences and contain no false-positive overlaps. In such
perfect data, is a directed interval graph. Since we have
contracted edges corresponding to nested reads (i.e.,
intervals), is in fact a proper interval graph or indif-
ference graph [38]. In addition is directed in a manner
consistent with the ordering of the intervals. More pre-
cisely, there is an ordering ≺ of the vertices (long reads)
that satisfies the umbrella property [39]: r1 ≺ r2 ≺ r3 and
r1r3 ∈ E () implies r1r2, r2r3 ∈ E(). We can interpret
r1 ≺ r2 to mean that r1 extends r2 to the left, i.e., towards
smaller coordinate values in the final assembly. A “nor-
mal interval representation” and a linear order ≺ of the

(3)e :=











r1r2 if ϕ(r1) = +1 and r1 → r2 or
ϕ(r1) = −1 and r1 ← r2;

r2r1 if ϕ(r1) = +1 and r1 ← r2 or
ϕ(r1) = −1 and r1 → r2.

Page 11 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

reads can be computed in O(|R|) time [40, 41] for proper
interval graphs.

Due to the noise in the data, however, we have to
expect that the original overlap graph only approxi-
mates a proper interval graph. On the other hand, we
have already obtained an orientation of the edges that –
in ideal data – would be consistent with interval order.
We therefore consider necessary conditions for directed
indifference graphs and set out to enforce them.

First, we observe that should be acyclic. Orientability
w.r.t. a signature θ , does not guarantee acyclicity since
still may contain some spurious “back-linking” edges
due to unrecognized repetitive elements. The obvious
remedy is to remove a �-minimal set of directed edges.
This amounts to solving an feedback arc set problem,
which is known to be NP-complete in both weighted
and unweighted versions, see [42] for a recent overview.
We therefore resort to a heuristic that makes use of our
expectations on the structure of : In general we expect
multiple overlaps of correctly placed reads, i.e., r is
expected to have several incoming edges from its prede-
cessors and several outgoing edges exclusively to a small
set of succeeding reads. In contrast, we expect incorrect
edges to appear largely in isolation. This suggests to adapt
Khan’s topological sorting algorithm [43]. In its origi-
nal version, it identifies a source u, i.e., a vertex with in-
degree 0, appends it to the list W of ordered vertices, and
then deletes all its out-edges. It stops with “fail” when no
source can be found before the sorting is complete, i.e.,
W does not contain all vertices of the given graph, indi-
cating that a cycle has been encountered. We modify this
procedure in two ways:

First, if multiple sources are available in a given step,
we always pick the one with largest total �-weight of
edges incoming from the sorted set W. As a consequence,
incomparable paths in are sorted contiguously, i.e., a
new path is initiated only after the previous one cannot
be continued any further. Note that keeping track of the
total input weight from W does not alter the O(|V | + |E|)
running time of the Kahn’s algorithm.

Second, we replace the “fail” state by a heuristic to
find an “almost source” to continue the sorting. Denote
by N+(W) the out-neighborhood of the set W that has
been sorted so far and consider the set K := N+(W) \W
the not-yet-sorted out-neighbors of W. These are the
natural candidates for the next source. For each u ∈ K we
distinguish incoming edges xu from x ∈ W , x ∈ K , and
x ∈ V \ (W ∪ K) and consider two cases:

(1) There is a u ∈ K without an in-edge xu from some
other x ∈ K . Then we choose among all vertices
of this type the vertex û with the largest total �
-weight incoming from W because û then overlaps

with most of the previously sorted reads.
(2) If for each u ∈ K there is an in-edge xu from

some other x ∈ K , then the candidate set K forms
a strongly connected digraph. In this case we
choose the candidate û ∈ K with the largest dif-
ference of �-weights incoming from W and K, i.e.,
û := argmaxu∈K

∑

w∈W �(w,u)−
∑

k∈K\{u}�(k ,u)

.

 In either case, we add the edges incoming from V \W
into û to the set F of edges that violate the topological
order. It is clear from the construction that (i) F remains
empty if is a DAG since in this case a source is available
in each step, and (ii) the graphG obtained by from by
deleting the edges in F is acylic since all in-edges to u inG
emanate from W, the set of vertices sorted before u, and
all out-edges from u point to the as yet unsorted set. Thus
F is a feedback arc set for .

Lemma 9 The modified Kahn algorithm can be imple-
mented to run in O(|E| + |V | log |V |) time.

Proof Our modified Kahn algorithm keeps the not-
yet-sorted vertices in a priority queue instead of a
simple queue. The priority of a vertex u ∈ V \W
depends on the number of total �-scores of the in-
edges wu with w ∈ W ∩ N−(u)| , w ∈ K ∩ N−(u) , and
w ∈ N−(u) ∩ V \ (W ∪ K) respectively. Every time a
vertex v is added to W, these values have to be updated
for the out-neighbors u ∈ N+(v) . Each update only com-
prises of the addition or subtraction of �(v,u) and the
decision whether the second and/or third values are zero,
and thus require total time O(E(G)) . Highest priority is
given to vertices u with N−(u) ⊆ W , i.e., true sources,
next vertices u ∈ K with N−(u) ∩ K = ∅ , and the last tier
is formed by the remaining vertices. Assuming an effi-
cient implementation of the priority queue as a heap, the
total effort for its maintenance is O(E) plus O(|V | log |V |)
for the dequeuing operations, see e.g. [44, 45]. �

It is possible thatG is not connected. In this case, each
connected component can be processed independently in
subsequent processing steps. If the feedback set F is dis-
joint from TG , then TG is still a �-maximal spanning tree
ofG. Otherwise, edges in F ∩ TG need to be replaced.
Lemma 5 that the replacement edges have to be drawn
from non-tree edges between the vertex sets spanned by
the connected components of TG \ F . In principle, this
can be done efficiently with specialized data structures
for dynamic connectivity queries, in particular if F ∩ TG
is small [46]. However, the effort to run Kruskal’s

Page 12 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

algorithm again onG is by no means prohibitive, since
the update has to be done only once.

Golden paths
For perfect data, the directed proper interval graph
has a single source and a single sink vertex, correspond-
ing to the left-most and right-most long reads r′ and r′′ ,
respectively. Furthermore, every directed path connect-
ing r′ and r′′ is a golden path, that is, a sequence of over-
lapping intervals that covers the entire chromosome.
Even more stringently, every read r = r′, r′′ has at least
one predecessor and at least one successor inG. An undi-
rected graph is a proper interval graph if there is a set of
intervals, corresponding to the vertices, such that (i) no
interval is properly contained within another, and (ii) two
vertices are adjacent iff their intervals intersect. For per-
fect data, therefore, the overlap graph is a proper interval
graph.

Lemma 10 [47] A connected proper interval graph
has a unique vertex order (other than the reversal of the
order).

The vertex order of a connected proper interval graph
is therefore completely determined by fixing the orienta-
tion of single edge. In our case, the orientation is fixed
by r∗ . We choose the ascending vertex order, i.e., r1 ≺ r2
for every directed edge r1r2 . A proper interval graph with
such an orientation of edges is a directed proper interval
graph.

For perfect data, therefore, is directed proper interval
graph and thus it would suffice to compute the unique
topological sorting of . For real-life data, however, we
cannot expect that even the acyclic graphG is a directed
proper interval graph. Ploidy in eukaryotes may consti-
tute a valid exception to this assumption, as differences in
chromosomes ideally also cause diverging structures.
However, given the high error rate of long reads, low
sequence variation can only be differentiated in very high
coverage scenarios or with the help of known ancestral
relationships [48]; both are explicitly not targeted by
LazyB. In practice, ploidy is commonly reduced even
when sufficient coverage is available but can be recovered
via variant calling [49]. High accuracy short read assem-
blies originating from different alleles can be expected to
match equally well to the same long reads given their low
quality. Therefore, also ploidy variation will normally be
merged to a single consensus. Accordingly, we did not
detect any mayor duplication issues in the human, fly, or
yeast.

Our aim now is to approximate the DAGG by a disjoint
union of connected directed proper intervals graphs. To

gain some intuition for this task, we first consider reduc-
tions of directed graphs that expose longest paths.

A transitive reduction of some directed graph is a
subgraph of with as few edges as possible such that two
vertices x and y are connected by a directed path in if
and only if they are connected by a directed path in H [50,
51]. It is well-known that every directed acyclic graph has
a unique transitive reduction [51, Thm. 1]. This property
allows us to call an edge e of an acyclic digraph redun-
dant if e /∈ E(). Unfortunately, computation of the
transitive reduction requires O(|V | |E|) time in sparse
graphs and O(|V |ω) , where ω ≈ 2.3729 is the matrix mul-
tiplication constant. This is impractical for our purposes.

As a simpler analog of transitive reduction, we define
the triangle reduction of H as the digraph obtained
from by removing all edges uw ∈ E () for which there
is a vertex v with uv, vw ∈ E().

Lemma 11 If is a connected directed proper interval
graph then (i) is a path, and (ii) = .

Proof By Lemma 10, has a unique topological sort-
ing, i.e., ≺ is a unique total order. Property (ii) now is an
immediate consequence of the umbrella property, and
(iii) follows from the fact the transitive reduction is a sub-
graph of the triangle reduction and preserves connected-
ness. �

As an immediate consequence of Lemma 11 we observe
that if is a connected induced subgraph of a directed
proper interval graph , then is an induced path in the
triangle reduction of . Of course, Lemma 11 does
not imply that the triangle reduction is a path. It
serves as motivation, however, to identify long-read con-
tigs as maximal paths in the triangle reduction of the
directed acycling graphG. Since the topological sorting
along any such path is unique, it automatically identifies
all redundant non-triangle edges along a path.

We note that it is not necessary to first compute the
transitive or triangle reduction if one is only interested in
the maximal paths.

Lemma 12 Let be a directed acyclic graph with trian-
gle reduction and transitive reduction . Then P is a
maximal path in if and only if it is a also maximal path
in or .

Proof Every maximal path in connects a source with a
sink, since otherwise it could be extended at one the the
ends. Now suppose that a longest path P contains an edge
e = r′r′′ that this not contained in the transitive reduc-
tion. By definition, then there is a path Pr′r′′ of length at
least 2 from r′ and r′′ , and since H is acyclic, no vertex

Page 13 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

in Pr′r′′ lies along the path P. Thus P′ obtained from P
by replacing e with Pr′r′′ is again a path, which is strictly
longer then P, contradicting the assumption that P was
maximal. Thus P is contained and . Since and
is a subgraph of and P is maximal in , it is also maxi-
mal in and . �

We note, furthermore, that the modified Kahn algo-
rithm described above has the useful side effect of pro-
ducing long runs of consecutive vertices
ri, ri+1, . . . rj−1, rj . These can be used to effectively reduce
the graphG by removing all arcs connecting non-consec-
utive vertices with any such run.

The longest path terminating in a given vertex x can
be computed with O(|E|) effort [52], suggesting that
the explicit computation of reductions will not be help-
ful in practice. It also does not address the issue that the
triangle-reduction differs from a unique golden path
by bubbles, tips, and crosslinks, see Fig. 7. Tips and bub-
bles predominantly are caused by edges that are missing
e.g. due to mapping noise between reads that belong to a
shared contig region. Remember that ploidy is collapsed
to one haplotype due to the high error rates of long reads.
Hence, any path through a bubble or superbubble yields
essentially the same assembly of the affected region and
thus can be chosen arbitrarily whereas tips may pre-
maturely end a contig. Node-disjoint alternative paths
within a (super-)bubble [53] start and end in the neigh-
borhood of the original path. Tips either originate or end
in neighborhood of the chosen path. As tips themselves
may also be subject to mild noise, and crosslinks may
occur near the start- or end-sites of the true paths, both

are not always easily distinguished. Crosslinks represent
connections between two proper contigs by spurious
overlaps, caused, e.g., by repetitive elements that have
escaped filtering. As crosslinks can occur at any position,
a maximal path may not necessarily follow the correct
connection and thus may introduce chimeras into the
assembly.

We therefore have to expect that solving the longest
path problem onG will sometimes follow spurious edges
rather than locally more plausible choices since these
may lead to overall shorter paths. As a remedy, we there-
fore aim to resolve the path choices based on local infor-
mation. More precisely, we measure how well an edge e
fits into a local region that forms an induced proper
interval graph. Recall that a tournament is an orientation
of a complete graph, and is called transitive if and only if
it is acyclic [54].

Lemma 13 If is a directed proper interval graph, then
the subgraph induced by the closed outneighbor-
hood N+(r) := N+(r) ∪ {r} is a transitive tournament.

Proof By definition there is an arc from r to every
u ∈ N+(r) . Furthermore, we already know that has
a unique topological ordering. The umbrella property
therefore implies that there is an arc from u to v when-
ever u preceeds v in the unique topological ordering.
Thus is a transitive tournament. �

For ideal data, the out-neighborhoods form
transitive tournaments, and their triangle reductions

Fig. 7 Examples of assembly graph defects in . Given two nodes , an s− t path is a path starting in s and ending in t. A simple bubble
consists of two vertex disjoint s− t paths. This construct can be extended to super-bubbles, defined as a set of s− t paths, exactly including all
nodes reachable from s without passing t and vice versa. Bubbles and superbubbles are primarily the result of unrecognized overlaps. Tips are “side
branches” that do not reconnect with the dominating paths and thus have distinct end-points. Crosslinks, finally, are connecting edges between
two golden paths

Page 14 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

form induced subpath of . In fact, collecting results
from the literature, it can be shown that is also necessary:

Theorem 14 A connected directed graph H is a directed
proper interval graph if and only if the out-neighorhood
N+(r) is complete (and hence a transitive tournament) for
every r ∈ V and forms an interval in the (unique) vertex
order.

Proof The equivalence of proper interval graphs and so-
called closed graphs is shown in [55]. By definition, H is
closed if it has so-called closed vertex ordering equiva-
lent to the umbrella property [55]. Prop.2.2 in [56] states
that a vertex ordering ≺ is closed if and only if the out-
neighborhood is complete and forms an interval w.r.t. ≺ .
Together with the forward-orientation of the edges of H
w.r.t. ≺ , this in particular implies that N+(r) is transitive
tournament. �

An analogous result holds for the in-neighbors. Equiv-
alently, proper interval graphs are also characterized by
the fact that they admit a straight vertex order in which
the in-neighbors of r, r itself, and then the out-neighbors
of r appear consecutively [47].

For real data the subgraph induced by the
out-neighbors of r will in general violate the transitive
tournament property. The problem of finding the maxi-
mum transitive tournament in an acyclic graph is NP-
hard [57]. An approximation can be obtained, however,
using the fact that a transitive tournament has a unique
directed Hamiltonian path. Thus candidates for transitive
tournaments in can be retrieved efficiently as
the maximal path Prq in that connects r with an
endpoint q, i.e., a vertex without an outgoing edge
within . Using the topological order ofG, the
maximal paths Prq can be traced back in O(|N+(r)|) time
for each endpoint Prq.

For Prq we compute the number .
The subgraph with the largest value of hrq serves
as approximation for the maximal transitive tournament
with r as its top element. Its edge set is
used to define the interval support of an edge as

Here, d(r, e) is the minimal number of edges in the
unique path from r to e in the path formed by the edges
in Hr . The interval support can be interpreted as the
number of triangles that support e as lying within an
induced proper interval graph. Importantly, it suffices to
compute ν(e) for . The idea is now to choose,
at every vertex r with more than one successor or

(4)

precedssor in the edges in N+(r) and N+(r) that have
the maximal interval support. We observed empirically
that determining the best path by greedily optimizing
ν(e) at branch points results in contigs with a better solu-
tion quality compared to optimizing the weight �(e) of
the spanning tree edges of TG . Taken together, we arrive
at the following heuristic to iteratively extract meaningful
paths:

(i) Find a maximal path p = r1, . . . , rn in such that
at every junction, we choose the incoming and
outgoing edges e with maximal interval support
ν(e).

(ii) Add the path p to the contig set if it is at least two
nodes long and neither the in-neighborhood
N−(r1) nor the out-neighborhood N+(rn) is
already marked as “visited” inG. Otherwise, we
have found a tip if one of N−(r1) or N+(rn) was
visited before and a bubble if both were visited.
Such paths are assumed to have arisen from more
complex crosslinks and can be added to the contig
set if they exceed a user-defined minimum length.

(iii) The path p is marked “visited” inG and all corre-
sponding nodes and edges are deleted from .

(iv) The procedure terminates when is empty.

 As the result, we obtain a set of paths, each defining a
contig.

Post processing of the path decomposition
Consensus sequence
The final step is the retrieval of a consensus sequence
for each path p . This step is more complicated than
usual due to the nature of our initial mappings. While
we enforce compatible sets of unitigs for each pair of
long reads, a shared unitig between edges does not nec-
essarily imply the same genomic coordinate. We have to
consider four distinct situations: (i) Unitigs can be long
enough that we gain triples ri, ri+1, ri+2 ∈ V (p) such that
an s ∈ Sriri+1 ∩Sri+1ri+2 exists but ri and ri+2 share no
interval on s. Such triples can occur chained. (ii) Unitigs
of genomic repeats may remain in the data. Such unit-
igs may introduce pairwise distinct edges ei, ej , ek that
appear in this order, denoted by ei ≺ ej ≺ ek , along the
path p such that s ∈ Sei and s ∈ Sek but s /∈ Sej , there-
fore creating disconnected occurrences of s. (iii) Simi-
larly, proximal repeats may cause inversions in the order
of two unitigs s, s′ ∈ Sei ∩Sek , w.l.o.g ei ≺ ek . This sce-
nario cannot appear on neighboring edges, as the shared
node has a unique order of s and s′ . Hence, either s or s′
must be missing in an intermediary edge el due to the

Page 15 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

consistency constraints in the original graph, resulting in
a situation as described in (ii). (iv) Finally, true matches of
unitigs may be missing for some long reads due to align-
ment noise, which may also yield a situation as in (ii).

To address (i), we collect all instances of a unitig
in the path independent of its context. We cre-
ate an undirected auxiliary graph Us with a vertex set
V (Us) := {e ∈ E(p) | s ∈ Se} . We add edges for all edge-
pairs that share an overlap in s. Any clique in this graph
then represents a set of edges that share a common inter-
val in s. We assign each edge a unique cluster index ces ,
according to a minimal size clique decomposition. As
finding a set of maximal cliques is NP-hard, we instead
resort to a O(|V |/(log |V |)2) heuristic [58]. We address
(ii-iv) with the help of a second index ges , where geis = g

ek
s

for two edges ei, ek if and only if an edge ej exists such that
ei ≺ ej ≺ ej and s /∈ Sej.

Finally, we can now create a multigraph M consisting of
vertex triples {(s, ces , ges) | s ∈ Se with e ∈ E(p)} . We add
edges (s, ces , ges) → (s′, c′es , g

′e
s) if and only if s ≺ s′ on an

edge e and no element s′′ exists such that s ≺ s′′ ≺ s′ . The
resulting graph M is cycle free and thus uniquely defines
the positions of all unitigs. Nodes represent the sequence
of the common interval on the unitig s as attributed to
the clique ces . Edges represent the respective sequence of
long reads between s and s′ , or a negative offset value if
unitigs overlap. We take an arbitrary node in M and set
its interval as the reference point. Positions of all other
nodes are progressively built up following a topological
order in this graph. If multiple edges exist between two
nodes in this process an arbitrary but fixed edge is cho-
sen to estimate the distance between nodes.

At this point, all sequence features are embedded in
the same coordinate system. The reference contig is
obtained as an in principle arbitrary projection of the
read sequences. In practice, the short-read unitigs are
used wherever available because of their much higher
sequence quality. At the same time, we can map the fea-
tures of each long read to their respective position in this
newly constructed reference. This information can be
directly fed into consensus based error correction sys-
tems such as racon [59].

Benchmarking
To demonstrate the feasibility of our assembly strategy
we applied LazyB to data sets from previously published
benchmarks of Nanopore assemblies. For yeast (S. cerevi-
siae) we used Nanopore sets ERR1883389 for lower cov-
erage, ERR1883399 for higher coverage, and short-reads
set ERR1938683, all from bioproject PRJEB19900 [60].
For comparison we used the reference genome R64.2.1
of strain S288C from the SGD. For fruit fly (D. mela-
nogaster) we used the Oxford Nanopore and Illumina

raw data of bioproject PRJNA433573 [61], and the Fly-
Base reference genome 6.30 (http:// www. flyba se. org). For
Human we uses accession SRX6356866-8 of bioproject
PRJNA549351 [62] for long reads and SRA292482 [63]
for short reads. Assemblies are compared against the
NCBI reference genome GRCh38.p13.

Sequencing data were downsampled to approxi-
mately 5 × and 10× nanopore coverage for long reads,
respectively, and Illumina coverage sufficient for short-
read anchors. We compare results to the most wide-
spread competing assembler Canu [10] and the faster
Wtdbg2 [13], both demonstrating the disadvantages
of long-read-only strategies especially in low coverage
scenarios, although Wtdbg2 requires considerately less
coverage in comparison. Additionally, we benchmarked
two tools implementing the most closely related concept:
DBG2OLC [23] and most recent competitor HASLR [21].
Finally, we added Wengan [19] as a leading but concep-
tually very unique alternative. Wengan uses long reads
to scaffold a short read assembly and therefore exhibits
very high levels of completeness even when presented
with very few reads. It defaults to the pre-existing con-
tigs or statistically insignificant scaffolds when nothing
else can be done. This behavior can be mimicked par-
tially with LazyB by merging our assembly to the same
short-read-only assembly as used by Wengan. However,
we strictly limit merging to regions with strong support
from long read contigs to avoid spurious scaffolds. While
not ideal, we used the pre-existing tool Quickmerge
[64] to investigate such effects. At very low long read
coverage, integration with a short read assembly is gen-
erally advisable to close gaps in long reads unavoidably
arising on complex genomes. For reference, we also pro-
vide the statistics for short-read only assemblies created
with ABySS [29] on the same sets of reads used to create
the “anchors” to show the advantage of hybrid assembly
even at a low coverage of long reads. The same short read
assembly was used also for Wengan and Quickmerge
on LazyB. Quality was assessed via alignment to a refer-
ence genome by the QUAST tool [65].

Table 3 summarizes the benchmarking results. Unsur-
prisingly, LazyB produced consistently better results
than Canu and Wtdbg2, increasing genomic coverage
at a lower contig count. Due to our inclusion of accu-
rate short-read unitigs, overall error counts are also sig-
nificantly lower than on Canu. Most notably, Canu was
unable to properly operate at the 5 × mark for both data
sets. Only insignificant portions of the yeast genome
could be assembled, accounting for less than 15% of the
genome. Canu completely failed for fruit fly, even after
adapting settings to low coverage. Wtdbg2 performed
only marginally better, although it managed to assemble
6% of fruit fly at low coverage. Even at 5 × , LazyB already

http://www.flybase.org

Page 16 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

significantly reduces the number of contigs compared to
the respective short-read assemblies, while retaining a
reasonably close percentage of genome coverage. At only
10× coverage for fruit fly, we were able to reduce the con-
tig count 10-fold at better error rates. For human, LazyB
manages at 39-fold decrease of the number contigs, albeit
at a loss of greater 10% coverage. This difference appears

to be a consequence of the high fragmentation of unitigs
in the abundant repeat regions of the genome, rendering
them too unreliable as anchors. Results are indeed in line
with unitig coverage. While HASLR produced the fewest
mis-assemblies, it creates significantly more and shorter
contigs that cover a much smaller fraction of the genome.
As a consequence it has the least favorable NA50 values

Table 3 Assessment of assembly qualities for LazyB, Canu Wtdbg2, HASLR, Wengan and short-read only assemblies for two
model organisms

LazyB outperforms Canu and Wtdbg2 in all categories, while significantly reducing contig counts compared to short-read only assemblies. While HASLR is more
accurate, it covers significantly lower fractions of genomes at a higher contig count and drastically lower NA50. DBG2OL produces few contigs at a high NA50 for
higher coverage cases, but calls significantly more mis-assemblies. Wengan performs well for yeast, but produces more misassemblies at a higher contig count on
fruit fly. Merging LazyB assemblies to the set of short read contigs (+QM) has a positive effect at 5 × long-read coverage but negligible influence at higher coverage.
Mismatches and InDels are given per 100 kb. Accordingly, errors in LazyB ’s unpolished output constitute < 1 % except for human. Wtdbg2 assemblies were not
polished. Column descriptions: X coverage of sequencing data, completeness of the assembly. #ctg: number of contigs, #MA: number of mis-assemblies (breakpoints
relative to the reference assembly) M is Matches and InDels relative to the reference genomes. NA50 of correctly assembled contigs. We follow the definition of
QUAST: Given a set of fragments as the sub-regions of the original contigs that were correctly aligned to the reference, the NA50 (also named NGA50) is defined as the
minimal length of a fragment needed to cover 50% of the genome. This value is omitted when < 50% is correctly recalled

Org. X Tool Compl. [%] #ctg #MA MM InDels NA50

Yeast ∼5× LazyB 90.466 127 9 192.56 274.62 118843

LazyB+QM 94.378 64 12 174.77 245.05 311094

Canu 14.245 115 5 361.47 2039.15 –

Wtdbg2 22.237 177 0 849.07 805.31 –

HASLR 64.158 111 1 14.87 34.86 60316

DBG2OLC 45.645 53 20 2066.64 1655.92 –

Wengan 95.718 41 11 49.14 68.47 438928

∼11× LazyB 97.632 33 15 193.73 300.20 505126

LazyB+QM 94.211 34 14 234.59 329.4 453273

Canu 92.615 66 15 107.00 1343.37 247477

Wtdbg2 94.444 42 8 420.96 1895.28 389196

HASLR 92.480 57 1 7.89 33.91 251119

DBG2OLC 97.689 38 25 55.06 1020.48 506907

Wengan 96.036 37 4 32.35 53.04 496058

∼80× Abyss 95.247 283 0 9.13 1.90 90927

Fruit fly ∼5× LazyB 71.624 1879 68 446.19 492.43 64415

LazyB+QM 75.768 1164 79 322.49 349.29 167975

Canu – – – – – –

Wtdbg2 6.351 2293 2 916.77 588.19 –

HASLR 24.484 1407 10 31.07 58.96 –

DBG2OLC 25.262 974 141 1862.85 969.26 –

Wengan 81.02 2129 192 105.35 123.33 77215

∼10× LazyB 80.111 596 99 433.37 486.28 454664

LazyB+QM 80.036 547 100 416.34 467.14 485509

Canu 49.262 1411 275 494.66 1691.11 –

Wtdbg2 41.82 1277 155 2225.12 1874.01 –

HASLR 67.059 2463 45 43.83 84.89 36979

DBG2OLC 82.52 487 468 739.47 1536.32 498732

Wengan 84.129 926 237 114.96 154.03 221730

∼45× Abyss 83.628 5811 123 6.20 8.31 67970

Human ∼10× LazyB 67.108 13210 2915 1177.59 1112.84 168170

∼43× Unitig 69.422 4146090 252 93.07 13.65 338

∼43× Abyss 84.180 510315 2669 98.53 25.03 7963

Page 17 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

of all tools. For fruit fly at 10× , it results in four times as
many contigs and covers 10% less of the genome, with a
12 times lower NA50. While an improvement to Canu,
it also struggles on datasets with low Nanopore cover-
age. DBG2OLC shows great promise compared to our
own method, but similarly fails to operate well on very
low coverage datasets. For yeast at 5 × , less then 50%
the genome can be reconstructed. In fruit fly even less
then 25% can be assembled at about 2 times the error
rate of LazyB. At 10× , DBG2OLC reconstruct a simi-
lar proportion of the genome, albeit at high error rates.
While it produces about 100 fewer contigs for fruit fly,
this achievement is offset by over 350 (4.7 times more)
mis-assemblies.

A Comparison with Wengan is more complex due
to its unique method. Integration of the AByss short-
read assembly has little effect on LazyB at 10× , as the
genomes of both yeast and fruit fly are already well cov-
ered. At 5 × , contigs are around halved with negligible
adverse consequence to misassemblies, furthering our
advantage. Since the merging step cannot significantly
increase genome coverage, we did not consider it for
other tools. On yeast, Wengan improves LazyB results
marginally both at 5 × and 10× . On fruit fly, in turn,
LazyB produced substantially better assemblies. At 5 × ,
250 fewer contigs (11%) were created at nearly 3 times
fewer misassemblies, although 10% less of the genome is
covered. Integration of the short read assembly widens

the gap to 965 (45%) fewer contigs and increases the frac-
tion of covered reference by an additional 5%. At 10×
LazyB calls over 1.5-times fewer contigs with less than
half the number of misassemblies out of the box.

In order to establish the limits of suitable coverage for
our method, we set up two simple range tests: coverage of
either long reads and short reads is systematically varied
while the other remains fixed; see Figs. 8 and 9. Unsur-
prisingly, the quality of LazyB assemblies increases with
coverage, for both short and long reads. Short read cov-
erage is positively correlated to assembly quality with
only some notable saturation in fruit fly. Conversely, long
read coverage reaches its optimum at 10× in both organ-
ism. While no notable improvements can be achieved
after this point, also no negative trend can be seen in the
tested range up to 30× . At 5 × long reads the number of
contigs increases, but genome coverage remains nearly
stable. Only at 2.5x also a notable drop in coverage. The
quality of the assembly remains respectable even then,
however.

We chose human for further testing of this thresh-
old since it is the largest and most complex genome
with a high quality reference for which suitable Oxford
Nanopore data were available to us. In line with our
previous tests, we consider even lower long read cov-
erage than before (1–2.5× ; see Table 4). Wtdbg2 and
DBG2OLC failed to assemble significant regions of the
genome. Canu had to be excluded as the pipeline failed

Fig. 8 Variation of short (Top) and long read (Bottom) coverage for yeast. Long read coverage is set fixed at 10× or short read coverage at maximum
(∼ 82×) respectively. Result are given as the statistics of LazyB assembly : (Left) number of contigs, (Middle) fraction of the reference genome
covered, and (Right) the number of misassemblies

Page 18 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

completely. Wengan’s results appear impressive at first
glance, calling up to nearly 75% of the genome cor-
rectly, at over 6 times fewer contigs than the short-read
assembly.

However, the mystery behind this result is hidden in
the vastly increased number of misassemblies, close
to doubling the already high misassembly rate of the
underlying short-read assembly. While LazyB produces
shorter contigs and covers much less of the genome (up

Fig. 9 Variation of short-(Top) and long-read (Bottom) coverage for fruit fly. Long read coverage is set fixed at 10× or short read coverage at
maximum (∼ 43×) respectively. Result are given as the statistics of LazyB assembly: (Left) number of contigs, (Middle) fraction of the reference
genome covered, and (Right) the number of misassemblies

Table 4 Assessment of assembly qualities for very low coverage of long reads at maximum short read coverage (∼ 43×) on human

Column descriptions: X: coverage of sequencing data, complcompleteness of the assembly. #ctg: number of contigs, #MA: number of mis-assemblies (breakpoints
relative to the reference assembly) M isMatches and InDels: relative to the reference genomes

X Tool Compl.[%] #ctg #MA MM InDels

1× LazyB 10.329 38342 109 831.14 773.86

LazyB+QM 19.023 39588 280 418.26 332.60

Wtdbg2 0.285 6724 21 1477.08 313.01

DBG2OLC 0.771 9475 10 1050.82 202.51

Wengan 67.220 116201 4057 208.38 142.51

2× LazyB 25.865 69043 432 938.26 814.44

LazyB+QM 35.151 68180 693 648.35 521.57

Wtdbg2 2.069 24346 126 1334.25 384.36

DBG2OLC 3.904 34069 58 959.98 492.63

Wengan 72.915 90784 4954 259.42 195.63

2.5× LazyB 32.126 70690 692 978.28 825.80

LazyB+QM 39.796 69053 917 753.19 606.78

Wtdbg2 3.702 32031 163 1202.70 412.21

DBG2OLC 7.104 42864 170 1044.31 679.40

Wengan 74.835 80605 5115 271.25 211.36

∼43× ABySS 84.180 510315 2669 98.53 25.03

Page 19 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

to 32%) in comparison, it does so at an error rate propor-
tional to or better than the short read assembly. At this
level of coverage, it seems unlikely to recover the genome
both completely and correctly, but rather, a trade-off
between both occurs. Unfortunately, we were not able to
adjust settings on either tool to match the behavior of the
other for a direct comparison. Yet, we can conclude that
LazyB is well suited to improve the contiguity of short
reads assemblies ad hoc. LazyB produces significantly
larger contigs at 2 × and 2.5× . Total counts of large contigs
increase despite covering significantly less of the genome
(84% vs 25-32%); see Fig. 10. Merging short and long
read assembly with Quickmerge improves recall and
reduces the number of contigs (except for 1 ×) at the cost
of a commensurate increase of misassemblies.

To address our assertion that ploidy is effectively
reduced to a mixed haplotype by our method, we can
follow two general strategies for verification. Given
a reference, the presence of separated haplotypes will
appear as duplicate overlapping alignments against the
reference. None of the QUAST statistics gathered for
LazyB show duplication beyond 2%. As a secondary,
reference independent, method, copy number spec-
trum plots can be used. Multiplicty of k-mers of short
read is gather and colored by the number of times it
is found in a given assembly. In diploid assemblies, we
would expect two peaks: at 2 times base coverage for
shared stretches of the genome and at base coverage for
unique regions. Analysis with Merqury [66] revealed

only a single peak (Fig. 11) at twice the coverage for the
most complex assembly on human, thus indicating a
mixed haplotype as predicted.

The resource footprint of LazyB is small enough to run
on an off-the-shelf desktop machine or even a laptop. The
total effort is, in fact, dominated by the computation of
the initial unitig set from the short reads. We expect that
an optimized re-implementation of LazyB will render its
resource consumption negligible. Compared to the com-
peting Canu assembler, the combination of ABySS and
the python-prototype of LazyB is already more than
a factor of 60 faster. In terms of memory, given precom-
puted unitigs LazyB also requires 3− 18 times less RAM
than Canu, see Table 5. LazyB is also significantly faster
than the more resource efficient Wtdbg2 and Wen-
gan. Most notably, we were able to assemble the human
genome within only 3 days, while Canu could not be run
within our resource constraints. HASLR shows a simi-
lar distribution of running times between tasks, overall
operating slightly faster. We could not process our human
test set with HASLR, however. A human DBG2OLC
assembly can be estimated to take several weeks without
manual parallelization for a single set of parameters, with
authors recommending several possible alternatives for
optimization. We therefore include only the results for
LazyB here, and leave a more detailed comparison of

Fig. 10 Length distribution of contigs for the human short read
assembly of ABySS at 43× contrasted to LazyB assemblies at 1 × ,
2 × and 2.5× coverage. Counts for ABySS at low contig lengths have
been cut off to allow better visibility of the desired region. LazyB
surpasses total counts

Fig. 11 Copy number spectrum plot generated by Merqury as
k-mers (k = 21 as recommended) plotted as stacked histograms
colored by the copy numbers found in the 10× long-read coverage
assembly of LazyB. The typical peak generated at slightly less than
twice the short-read coverage (2 · 43× = 86×) in concordance with
the absence of higher copy numbers clearly indicate the presence
of only a single mixed haplotype. The small elevation of k-mers only
found in reads at the level short-read coverage can be attributed to
few haplotype regions not fitting well to the mixture. The slight shift
in short-read coverage versus k-mers arises out of the uncorrected
high error rate of long reads

Page 20 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

the performance for very complex genomes for a proper
follow-up experiment.

Discussion and outlook
We demonstrated here the feasibility of a new strat-
egy for sequence assembly with low coverage long-read
data. Already the non-optimized prototype LazyB, writ-
ten entirely in python, not only provides a significant
improvement of the assembly but also requires much
less time and memory than state-of-the-art tools. This is
achieved by avoiding both a correction of long reads and
an all-vs-all comparison of the long reads. Instead, we use
rigorously filtered short-read unitigs as anchors, spar-
sifying the complexity of full string-graph construction.
LazyB then uses a series of fast algorithms to consist-
ently orient this sparse overlap graph, reduce it to a DAG,
and sort it topologically, before extracting contigs as
maximum weight paths. This workflow relies on enforc-
ing properties of ideal overlap graphs that have not been
exploited in this manner in competing sequence assem-
bly methods.

The prototype implementation leaves several avenues
for improvements. We have not attempted here to pol-
ish the sequence but only to provide a common coor-
dinate system defined on the long reads into which the
short-reads unitigs are unambiguously embedded to yield
high-quality parts of the LazyB -assembly. The remain-
ing intervals are determined solely by long-read data with
their high error rate. Multiple edges in the multigraph
constructed in the assembly step correspond to the same
genome sequence, hence the corresponding fragments of
reads can be aligned. This is also true for alternative paths
between two nodes. This defines a collection of align-
ments distributed over the contig, similar to the situation
in common polishing strategies based on the mapping
of (more) short-read data or long reads to a preliminary
assembly. Preliminary tests with off-the-shelf tools such
as racon [59], however, indeed improve sequence iden-
tity but also tend to introduce new translocation break-
points. We suspect this is the consequence of InDels
being much more abundant than mismatches in Nanop-
ore data, which is at odds with the Needleman–Wunsch
alignments used by polishing tools.

We suspect that further improvements can be
achieved by improving the quality of the initial over-
lap graph. Conceivably, more stringent filtering of the
short-read unitigs against multi-copy sequences with

Table 5 Assessment of running times for all tools. Resource
consumptions for LazyB are shown for the complete assembly
process comprising (1) ABySS unitig assembly; (2) Mapping of
unitigs to long reads and (3) running LazyB itself, denoted by
A+m+ LazyB, and the the last step only, denoted by LazyB

Step (1) is often not needed as short-read assemblies are available for many
organisms

Similarly, Wengan requires a full ABySS assembly as a its basis. Resources are
only compared for yeast and fruit fly, because Canu cannot be run for human
in acceptable time and resource-constraints on our equipment. As all tools
except LazyB and DBG2OL are parallelized, running times are given as the sum

× Tool Time RAM (MB)

Yeast

ABySS unitig 00:00:11:03 2283

ABySS full 00:00:20:01 2283

∼5× Mapping 00:00:00:05 540

LazyB 00:00:00:30 136

A+m+ LazyB 00:00:11:38 2283

Canu 00:10:23:55 2617

Wtdbg2 00:00:13:08 698

HASLR 00:00:06:44 4922

DBG2OL 00:00:31:46 1141

Wengan 00:00:06:45 4400

A+Wengan 00:00:26:46 4400

∼11× Mapping 00:00:00:15 1544

LazyB 00:00:01:46 362

A+m+ LazyB 00:00:13:04 2283

Canu 00:13:44:16 6779

Wtdbg2 00:00:29:28 1142

HASLR 00:00:08:09 4922

DBG2OL 00:00:51:13 1264

Wengan 00:00:14:29 4421

A+Wengan 00:00:34:30 4421

Fruit fly

ABySS untig 00:02:32:39 25344

ABySS full 00:04:56:03 25346

∼5× Mapping 00:00:02:43 6433

LazyB 00:00:08:33 613

A+m+ LazyB 00:02:43:55 25344

Canu 02:13:51:39 7531

Wtdbg2 00:01:37:41 3395

HASLR 00:01:30:33 5531

DBG2OL 00:07:58:22 6151

Wengan 00:01:41:26 5394

A+Wengan 00:06:10:29 25346

∼10× Mapping 00:00:06:11 9491

LazyB 00:00:11:57 2241

A+m+ LazyB 00:02:50:47 25344

Canu 07:04:08:28 7541

Wtdbg2 00:04:02:43 5024

HASLR 00:01:43:21 5553

DBG2OL 02:07:32:01 17171

Wengan 00:02:28:51 5323

A+Wengan 00:07:24:54 25346

of time spent by all CPUs. Therefore, computational effort is measured rather
than wallclock time. ABySS greatly dominates the LazyB pipeline and to a
lesser degree also Wengan. Nevertheless, LazyB is faster by a factor of > 60
compared to Canu, ≈ 3 compared to DBG2OL, and ≈ 2.5 to Wengan

Table 5 (continued)

Page 21 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

similarities comparable to the expected error levels in
the long reads can reduce spurious edges. It may also
be worthwhile to compute pairwise alignments of the
long-read sequences that form edges in overlap graph
to confirm overlapping intervals. However, as we have
seen, classical aligners do not perform satisfactorily,
presumably due to the InDel-dominated error profile
of the current long read sequencing methods. Better
alignment approaches would also be required in the
finishing steps. It remains to be seen whether dedi-
cated aligners methods, such as the current-level mod-
eling approach of QAlign [67] are able to resolve these
issues.

A prominent category of mis-assemblies within the
LazyB contigs are inherited from chimeric reads. This
therefore suggests an iterative approach: Subsampling
the long-read set will produce more fragmented con-
tigs, but statistically remove chimeric reads from the
majority of replicate assemblies. Final contigs are con-
structed in a secondary assembly step by joining inter-
mediary results. It might appear logical to simply run
LazyB again to obtain a “consensus” assembly, where
intermediary contigs play the role of longer reads with
mapped anchors. In preliminary tests, however, we
observed that this results in defects that depend on the
sampling rate. The question of how to properly design
the majority calling to construct a consensus assembly
remains yet to be answered.

Finally, a proper pipeline needs to be established
to join short-read assemblies and very low coverage
LazyB assemblies. While Quickmerge appears to
produce satisfying results (and short-read contigs in
regions not covered by the long-read assembly could be
fished out as the set of uninvolved contigs in this pro-
cess), we presume a dedicated method may yield even
better results.

Abbreviations
GO: Gene ontology; miRNA: MicroRNA; ML: Maximum likelihood; ncRNA: Non-
coding RNA.

Authors’ contributions
All authors contributed to the interpretation of the data and the final
manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was
funded in part by the German Research Foundation (DFG, 850/19-2 within SPP
1738 to PFS), the German Federal Ministry of Education and Research (BMBF
031L0164C, de.NBI-RBC, to PFS), the RSF / Helmholtz Association programme
(18-44-06201 to PD), and the German Academic Exchange Service (DAAD, to
PD).
The funding bodies played no role in the design of the study and collection,
analysis, and interpretation of data and in writing the manuscript.

Availability of data and materials
The reported data can be accessed at http:// tunic atadv exill um. bioinf. uni- leipz
ig. de/ Home. html.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Biology Department, Universidad Nacional de Colombia, Carrera 45 # 26-85,
Edif. Uriel Gutiérrez, Bogotá, D.C, Colombia. 2 Institute of Biology, Irkutsk
State University, RU-664003 Irkutsk, Russia. 3 Bioinformatics Group, Depart-
ment of Computer Science, and Interdisciplinary Center for Bioinformatics,
Universität Leipzig, Härtelstraße 16–18, 04107 Leipzig, Germany. 4 Max Planck
Institute for Mathematics in the Sciences, Inselstraße 22, 04103 Leipzig, Ger-
many. 5 Department of Theoretical Chemistry, University of Vienna, Währinger
Straße 17, 1090 Vienna, Austria. 6 Santa Fe Institute, 1399 Hyde Park Rd., Santa
Fe NM87501, USA.

Received: 31 January 2021 Accepted: 6 May 2021

References
 1. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of

next-generation sequencing technologies. Nat Rev Genet. 2016;17:333–
51. https:// doi. org/ 10. 1038/ nrg. 2016. 49.

 2. Amarasinghe SL, Su SS, Dong X, Zappia L, Ritchie ME, Gouil Q. Opportuni-
ties and challenges in long-read sequencing data analysis. Genome Biol.
2020;21:30. https:// doi. org/ 10. 1186/ s13059- 020- 1935-5.

 3. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT,
Ebler J, Fungtammasan A, Kolesnikov A, Olson ND, Töpfer A, Alonge
M, Mahmoud M, Qian Y, Chin C-S, Phillippy AM, Schatz MC, Myers G,
DePristo MA, Ruan J, Marschall T, Sedlazeck FJ, Zook JM, Li H, Koren
S, Carroll A, Rank DR, Hunkapiller MW. Accurate circular consensus
long-read sequencing improves variant detection and assembly of a
human genome. Nat Biotech. 2019;37:1155–62. https:// doi. org/ 10. 1038/
s41587- 019- 0217-9.

 4. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AW, Pippel M, Winkler
S, Hastie AR, Young G, Roscito JG, Falcon F, Knapp D, Powell S, Cruz A, Cao
H, Habermann B, Hiller M, Tanaka EM, Myers EW. The axolotl genome and
the evolution of key tissue formation regulators. Nature. 2018;554:50–5.
https:// doi. org/ 10. 1038/ natur e25458.

 5. Li Z, Chen Y, Mu D, Yuan J, Shi Y, Zhang H, Gan J, Li N, Hu X, Liu B, Yang
B, Fan W. Comparison of the two major classes of assembly algorithms:
overlap-layout-consensus and de-bruijn-graph. Briefings Funct Genom.
2012;11:25–37. https:// doi. org/ 10. 1093/ bfgp/ elr035.

 6. Rizzi R, Beretta S, Patterson M, Pirola Y, Previtali M, Della Vedova G, Boniz-
zoni P. Overlap graphs and de Bruijn graphs: data structures for de novo
genome assembly in the big data era. Quant Biol. 2019;7:278–92. https://
doi. org/ 10. 1007/ s40484- 019- 0181-x.

 7. Myers EW. The fragment assembly string graph. Bioinformatics.
2005;21:79–85. https:// doi. org/ 10. 1093/ bioin forma tics/ bti11 14.

 8. Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. J
Comput Biol. 1995;2:291–306. https:// doi. org/ 10. 1089/ cmb. 1995.2. 291.

 9. Compeau PEC, Pevzner PA, Tesler G. Why are de Bruijn graphs useful for
genome assembly? Nat Biotechnol. 2011;29:987–91. https:// doi. org/ 10.
1038/ nbt. 2023.

 10. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu:
scalable and accurate long-read assembly via adaptive k-mer weighting
and repeat separation. Genome Res. 2017;27:722–36. https:// doi. org/ 10.
1101/ gr. 215087. 116.

http://tunicatadvexillum.bioinf.uni-leipzig.de/Home.html
http://tunicatadvexillum.bioinf.uni-leipzig.de/Home.html
https://doi.org/10.1038/nrg.2016.49
https://doi.org/10.1186/s13059-020-1935-5
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1038/nature25458
https://doi.org/10.1093/bfgp/elr035
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1007/s40484-019-0181-x
https://doi.org/10.1093/bioinformatics/bti1114
https://doi.org/10.1089/cmb.1995.2.291
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1038/nbt.2023
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116

Page 22 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

 11. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A,
Dunn C, O’Malley R, Figueroa-Balderas R, Morales-Cruz A, Cramer GR,
Delledonne M, Luo C, Ecker JR, Cantu D, Rank DR, Schatz MC. Phased
diploid genome assembly with single-molecule real-time sequencing.
Nat Methods. 2016;13:1050–4. https:// doi. org/ 10. 1038/ nmeth. 4035.

 12. Broder AZ. On the resemblance and containment of documents. In:
Carpentieri B, De Santis A, Vaccaro U, Storer JA, editors. Compression and
Complexity of Sequences. Los Alamitos, CA: IEEE Computer Society; 1997.
p. 21–9. https:// doi. org/ 10. 1109/ SEQUEN. 1997. 666900.

 13. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat
Methods. 2020;17:155–8. https:// doi. org/ 10. 1038/ s41592- 019- 0669-3.

 14. Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C,
Armstrong J, Tigyi K, Maurer N, Koren S, Sedlazeck FJ, Marschall T, Mayes S,
Costa V, Zook JM, Liu KJ, Kilburn D, Sorensen M, Munson KM, Vollger MR,
Eichler EE, Salama S, Haussler D, Green RE, Akeson M, Phillippy A, Miga KH,
Carnevali P, Jain M, Paten B. Efficient de novo assembly of eleven human
genomes using PromethION sequencing and a novel nanopore toolkit.
Technical Report 715722, BioRxiv (2019). https:// doi. org/ 10. 1101/ 715722.

 15. Nurk S, Walenz BP, Rhie A, Vollger MR, Logsdon GA, Grothe R, Miga KH,
Eichler EE, Phillippy AM, Koren S. HiCanu: accurate assembly of segmental
duplications, satellites, and allelic variants from high-fidelity long reads.
Genome Res. 2020;30:1291–305. https:// doi. org/ 10. 1101/ gr. 263566. 120.

 16. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: an
algorithm for hybrid assembly of short and long reads. Bioinformatics.
2016;32:1009–15. https:// doi. org/ 10. 1093/ bioin forma tics/ btv688.

 17. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial
genome assemblies from short and long sequencing reads. PLOS Com-
put Biol. 2017;13:1005595. https:// doi. org/ 10. 1371/ journ al. pcbi. 10055 95.

 18. Zimin AV, Marçais G, Puiu D, Roberts M, Salzberg SL, Yorke JA. The MaS-
uRCA genome assembler. Bioinformatics. 2013;29:2669–77. https:// doi.
org/ 10. 1093/ bioin forma tics/ btt476.

 19. Di Genova A, Buena-Atienza E, Ossowski S, Sagot M-F. Efficient hybrid
de novo assembly of human genomes with wengan. Nat Biotech. 2020.
https:// doi. org/ 10. 1038/ s41587- 020- 00747-w.

 20. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone
reads using repeat graphs. Nature Biotech. 2019;37:540–6. https:// doi.
org/ 10. 1038/ s41587- 019- 0072-8.

 21. Haghshenas E, Asghari H, Stoye J, Chauve C, Hach F. HASLR: Fast hybrid
assembly of long reads. Technical Report 921817, bioRxiv (2020). https://
doi. org/ 10. 1101/ 2020. 01. 27. 921817.

 22. Jansen HJ, Liem M, Jong-Raadsen SA, Dufour S, Weltzien F-A, Swinkels W,
Koelewijn A, Palstra AP, Pelster B, Spaink HP, et al. Rapid de novo assembly
of the European eel genome from nanopore sequencing reads. Scientific
reports. 2017;7:7213. https:// doi. org/ 10. 1038/ s41598- 017- 07650-6.

 23. Ye C, Hill CM, Wu S, Ruan J, Ma ZS. DBG2OLC: efficient assembly of large
genomes using long erroneous reads of the third generation sequencing
technologies. Sci Rep. 2016;6:31900. https:// doi. org/ 10. 1038/ srep3 1900.

 24. Gatter T, von Loehneysen S, Drozdova P, Hartmann T, Stadler PF. Economic
genome assembly from low coverage Illumina and Nanopore data. In:
Kingsford C, Pisanti NP, editors. 20th International Workshop on Algo-
rithms in Bioinformatics (WABI 2020) Leibniz International Proceedings in
Informatics. German, Schloss Dagstuhl: Dagstuhl Publishing; 2020. p. 10.
https:// doi. org/ 10. 4230/ LIPIcs. WABI. 2020. 10. bioRxiv: 939454.

 25. Martin S, Leggett RM. Alvis: a tool for contig and read ALignment VISuali-
sation and chimera detection. Technical Report 663401, BioRxiv (2019).
https:// doi. org/ 10. 1101/ 663401.

 26. Wick RR, Judd LM, Holt KE. Deepbinner: Demultiplexing barcoded Oxford
Nanopore reads with deep convolutional neural networks. PLOS Compu
Biol. 2018;14:1006583. https:// doi. org/ 10. 1371/ journ al. pcbi. 10065 83.

 27. Marijon P, Chikhi R, Varré J-S. yacrd and fpa: upstream tools for long-read
genome assembly. Technical Report 674036, bioRxiv (2019). https:// doi.
org/ 10. 1101/ 674036.

 28. Dohm JC, Peters P, Stralis-Pavese N, Himmelbauer H. Benchmarking
of long-read correction methods. Nucleic Acids Res Genomics Bioinf.
2020;2:037. https:// doi. org/ 10. 1093/ nargab/ lqaa0 37.

 29. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ, Birol I. ABySS: a
parallel assembler for short read sequence data. Genome Research.
2009;19:1117–23. https:// doi. org/ 10. 1101/ gr. 089532. 108.

 30. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinfor-
matics. 2018;34:3094–100. https:// doi. org/ 10. 1093/ bioin forma tics/ bty191.

 31. Pervez MT, Babar ME, Nadeem A, Aslam M, Awan AR, Aslam N, Hassain
T, Naveed N, Qadri S, Waheed U, Shoaib M. Evaluating the accuracy
and efficiency of multiple sequence alignment methods. Evol Bioinf.
2014;10:205–17. https:// doi. org/ 10. 4137/ EBo. s19199.

 32. Gamaarachchi H, Parameswaran S, Smith MA. Featherweight long read
alignment using partitioned reference indexes. Sci Rep. 2019;9:4318.
https:// doi. org/ 10. 1038/ s41598- 019- 40739-8.

 33. Morgenstern B. A simple and space-efficient fragment-chaining algo-
rithm for alignment of DNA and protein sequences. Appl Math Lett.
2002;15:11–6. https:// doi. org/ 10. 1016/ S0893- 9659(01) 00085-4.

 34. Liebchen C, Rizzi R. Classes of cycle bases. Discr Appl Math.
2007;155:337–55. https:// doi. org/ 10. 1016/j. dam. 2006. 06. 007.

 35. Kavitha T, Liebchen C, Mehlhorn K, Michail D, Rizzi R, Ueckerdt T, Zweig
KA. Cycle bases in graphs: characterization, algorithms, complexity,
and applications. Comput Sci Rev. 2009;3:199–243. https:// doi. org/ 10.
1016/j. cosrev. 2009. 08. 001.

 36. Kirchhoff G. Über die Auflösung der Gleichungen, auf welche man
bei der Untersuchung der linearen Vertheilung galvanischer ströme
geführt wird. Ann Phys Chem. 1847;72:497–508. https:// doi. org/ 10.
1002/ andp. 18471 481202.

 37. Kruskal JB. On the shortest spanning subtree of a graph and the trave-
ling salesman problem. Proc Am Math Soc. 1956;7:48–50. https:// doi.
org/ 10. 1090/ S0002- 9939- 1956- 00786 86-7.

 38. Roberts FS. Indifference graphs. In: Harary F, editor. Proof Techniques
in Graph Theory. Roceedings of the Second Ann Arbor Graph Theory
Conference. New York: Academic Press; 1969. p. 139–46.

 39. Heggernes P, Meister D, Papadopoulos C. A new representation of
proper interval graphs with an application to clique-width. Electr
Notes Discrete Math. 2009;32:27–34. https:// doi. org/ 10. 1016/j. endm.
2009. 02. 005.

 40. Gardi F. The Roberts characterization of proper and unit interval
graphs. Discrete Math. 2007;307:2906–8. https:// doi. org/ 10. 1016/j. disc.
2006. 04. 043.

 41. Mertzios GB. A matrix characterization of interval and proper interval
graphs. Appl Math Lett. 2008;21:332–7. https:// doi. org/ 10. 1016/j. aml.
2007. 04. 001.

 42. Baharev A, Schichl H, Neumaier A. An exact method for the minimum
feedback arc set problem. Technical report, University of Vienna.

 43. Kahn AB. Topological sorting of large networks. Commun ACM.
1962;5:558–62. https:// doi. org/ 10. 1145/ 368996. 369025.

 44. Brodal GS. Worst-case efficient priority queues. 1996;52–58. https:// doi.
org/ 10. 5555/ 313852. 313883.

 45. Brodal GS, Lagogiannis G, Tarjan RE. Strict Fibonacci heaps. In: STOC ’12:
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing. New York: Association for Computing Machinery; 2012. p.
1177–84. https:// doi. org/ 10. 1145/ 22139 77. 22140 82.

 46. Henzinger MR, King V. Maintaining minimum spanning trees in
dynamic graphs. In: Degano P, Gorrieri R, Marchetti-Spaccamela A, edi-
tors. ICALP ’97 Automata, Languages and Programming. Lecture Notes
Comp. Sci., vol. 1256. Berlin, Heidelberg: Springer. p. 594–604. https://
doi. org/ 10. 1007/3- 540- 63165-8_ 214.

 47. Deng X, Hell P, Huang J. Linear-time representation algorithms for
proper circular arc graphs and proper interval graphs. SIAM J Comput.
1996;25:390–403. https:// doi. org/ 10. 1137/ S0097 53979 22690 95.

 48. Koren S, Rhie A, Walenz BP, Dilthey AT, Bickhart DM, Kingan SB,
Hiendleder S, Williams JL, Smith TPL, Phillippy AM. De novo assembly
of haplotype-resolved genomes with trio binning. Nature Biotech.
2018;36:1174–82. https:// doi. org/ 10. 1038/ nbt. 4277.

 49. Voshall A, Moriyama EN. Next-generation transcriptome assembly and
analysis: Impact of ploidy. Methods. 2020;176:14–24. https:// doi. org/ 10.
1016/j. ymeth. 2019. 06. 001.

 50. Moyles DM, Thompson GL. An algorithm for finding a minimum
equivalent graph of a digraph. J ACM. 1969;6:455–60. https:// doi. org/
10. 1145/ 321526. 321534.

 51. Aho AV, Garey MR, Ullman JD. The transitive reduction of a directed
graph. SIAM J Comput. 1972;1:131–7. https:// doi. org/ 10. 1137/ 02010 08.

 52. Mati Y, Dauzère-Pérès S, Lahlou C. A general approach for optimizing
regular criteria in the job-shop scheduling problem. Eur J Oper Res.
2011;212:33–42. https:// doi. org/ 10. 1016/j. ejor. 2011. 01. 046.

https://doi.org/10.1038/nmeth.4035
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1038/s41592-019-0669-3
https://doi.org/10.1101/715722
https://doi.org/10.1101/gr.263566.120
https://doi.org/10.1093/bioinformatics/btv688
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1093/bioinformatics/btt476
https://doi.org/10.1038/s41587-020-00747-w
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1101/2020.01.27.921817
https://doi.org/10.1101/2020.01.27.921817
https://doi.org/10.1038/s41598-017-07650-6
https://doi.org/10.1038/srep31900
https://doi.org/10.4230/LIPIcs.WABI.2020.10
https://doi.org/10.1101/663401
https://doi.org/10.1371/journal.pcbi.1006583
https://doi.org/10.1101/674036
https://doi.org/10.1101/674036
https://doi.org/10.1093/nargab/lqaa037
https://doi.org/10.1101/gr.089532.108
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.4137/EBo.s19199
https://doi.org/10.1038/s41598-019-40739-8
https://doi.org/10.1016/S0893-9659(01)00085-4
https://doi.org/10.1016/j.dam.2006.06.007
https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1016/j.cosrev.2009.08.001
https://doi.org/10.1002/andp.18471481202
https://doi.org/10.1002/andp.18471481202
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1090/S0002-9939-1956-0078686-7
https://doi.org/10.1016/j.endm.2009.02.005
https://doi.org/10.1016/j.endm.2009.02.005
https://doi.org/10.1016/j.disc.2006.04.043
https://doi.org/10.1016/j.disc.2006.04.043
https://doi.org/10.1016/j.aml.2007.04.001
https://doi.org/10.1016/j.aml.2007.04.001
https://doi.org/10.1145/368996.369025
https://doi.org/10.5555/313852.313883
https://doi.org/10.5555/313852.313883
https://doi.org/10.1145/2213977.2214082
https://doi.org/10.1007/3-540-63165-8_214
https://doi.org/10.1007/3-540-63165-8_214
https://doi.org/10.1137/S0097539792269095
https://doi.org/10.1038/nbt.4277
https://doi.org/10.1016/j.ymeth.2019.06.001
https://doi.org/10.1016/j.ymeth.2019.06.001
https://doi.org/10.1145/321526.321534
https://doi.org/10.1145/321526.321534
https://doi.org/10.1137/0201008
https://doi.org/10.1016/j.ejor.2011.01.046

Page 23 of 23Gatter et al. Algorithms Mol Biol (2021) 16:8

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 53. Paten B, Eizenga JM, Rosen YM, Novak AM, Garrison E, Hickey G. Super-
bubbles, ultrabubbles, and cacti. J Comp Biol. 2018;25:649–63. https://
doi. org/ 10. 1089/ cmb. 2017. 0251.

 54. Moon J. Topics on Tournaments. New York: Holt, Rinehart and Winston;
1968. www. guten berg. org/ ebooks/ 42833.

 55. Crupi M, Rinaldo G. Closed graphs are proper interval graphs. An
Şt Univ Ovidius Constanţa. 2014;22:37–44. https:// doi. org/ 10. 2478/
auom- 2014- 0048.

 56. Cox DA, Erskine A. On closed graphs I. Ars Combinatoria.
2015;120:259–74.

 57. Dutta K, Subramanian CR. Induced acyclic tournaments in random
digraphs: sharp concentration, thresholds and algorithms. Discuss Math
Graph Theory. 2014;34:467–95. https:// doi. org/ 10. 7151/ dmgt. 1758.

 58. Boppana R, Halldórsson MM. Approximating maximum independent sets
by excluding subgraphs. BIT Numer Math. 1992;32:180–96. https:// doi.
org/ 10. 1007/ BF019 94876.

 59. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome
assembly from long uncorrected reads. Genome Res. 2017;27:737–46.
https:// doi. org/ 10. 1101/ gr. 214270. 116.

 60. Giordano F, Aigrain L, Quail MA, Coupland P, Bonfield JK, Davies RM, Tisch-
ler G, Jackson DK, Keane TM, Li J, Yue J-X, Liti G, Durbin R, Ning Z. De novo
yeast genome assemblies from MinION. PacBio and MiSeq platforms Sci
Rep. 2017;7:1–10. https:// doi. org/ 10. 1038/ s41598- 017- 03996-z.

 61. Solares EA, Chakraborty M, Miller DE, Kalsow S, Hall K, Perera AG, Emerson
J, Hawley RS. Rapid low-cost assembly of the Drosophila melanogaster
reference genome using low-coverage, long-read sequencing. G3: Genes
Genomes Genet. 2018;8:3143–54. https:// doi. org/ 10. 1534/ g3. 118. 200162.

 62. Kim H-S, Jeon S, Kim C, Kim YK, Cho YS, Kim J, Blazyte A, Manica A, Lee S,
Bhak J. Chromosome-scale assembly comparison of the korean reference
genome KOREF from PromethION and PacBio with Hi-C mapping infor-
mation. GigaScience. 2019;8:125. https:// doi. org/ 10. 1093/ gigas cience/
giz125.

 63. Cho YS, Kim H, Kim H-M, Jho S, Jun J, Lee YJ, Chae KS, Kim CG, Kim S,
Eriksson A, et al. An ethnically relevant consensus korean reference
genome is a step towards personal reference genomes. Nature Comm.
2016;7:13637. https:// doi. org/ 10. 1038/ ncomm s13637.

 64. Chakraborty M, Baldwin-Brown JG, Long ADL, Emerson JJ. Contiguous
and accurate de novo assembly of metazoan genomes with modest long
read coverage. Nucleic Acids Res. 2016;44:147. https:// doi. org/ 10. 1093/
nar/ gkw654.

 65. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29:1072–5. https:// doi. org/
10. 1093/ bioin forma tics/ btt086.

 66. Rhie A, Walenz BP, Koren S, Phillippy AM. Merqury: reference-free quality,
completeness, and phasing assessment for genome assemblies. Genome
Biol. 2020;21:245. https:// doi. org/ 10. 1186/ s13059- 020- 02134-9.

 67. Joshi D, Mao S, Kannan S, Diggavi S. QAlign: aligning nanopore reads
accurately using current-level modeling. Bioinformatics. 2020. https:// doi.
org/ 10. 1093/ bioin forma tics/ btaa8 75.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1089/cmb.2017.0251
https://doi.org/10.1089/cmb.2017.0251
http://www.gutenberg.org/ebooks/42833
https://doi.org/10.2478/auom-2014-0048
https://doi.org/10.2478/auom-2014-0048
https://doi.org/10.7151/dmgt.1758
https://doi.org/10.1007/BF01994876
https://doi.org/10.1007/BF01994876
https://doi.org/10.1101/gr.214270.116
https://doi.org/10.1038/s41598-017-03996-z
https://doi.org/10.1534/g3.118.200162
https://doi.org/10.1093/gigascience/giz125
https://doi.org/10.1093/gigascience/giz125
https://doi.org/10.1038/ncomms13637
https://doi.org/10.1093/nar/gkw654
https://doi.org/10.1093/nar/gkw654
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1093/bioinformatics/btt086
https://doi.org/10.1186/s13059-020-02134-9
https://doi.org/10.1093/bioinformatics/btaa875
https://doi.org/10.1093/bioinformatics/btaa875

	LazyB: fast and cheap genome assembly
	Abstract
	Background:
	Results:
	Conclusions:
	Availability:

	Background
	Strategy
	Data preprocessing
	Short-read unitig-level assembly
	Anchor alignments
	Long read overlap graph

	Processing of the overlap graph
	Consistent orientation of long reads
	Reduction to a directed acyclic graph
	Golden paths

	Post processing of the path decomposition
	Consensus sequence

	Benchmarking
	Discussion and outlook
	References

