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Abstract 

Background: Advances in genome sequencing over the last years have lead to a fundamental paradigm shift in the 
field. With steadily decreasing sequencing costs, genome projects are no longer limited by the cost of raw sequenc-
ing data, but rather by computational problems associated with genome assembly. There is an urgent demand for 
more efficient and and more accurate methods is particular with regard to the highly complex and often very large 
genomes of animals and plants. Most recently, “hybrid” methods that integrate short and long read data have been 
devised to address this need.

Results: LazyB is such a hybrid genome assembler. It has been designed specificially with an emphasis on utilizing 
low-coverage short and long reads. LazyB starts from a bipartite overlap graph between long reads and restrictively 
filtered short-read unitigs. This graph is translated into a long-read overlap graph G. Instead of the more conventional 
approach of removing tips, bubbles, and other local features, LazyB stepwisely extracts subgraphs whose global 
properties approach a disjoint union of paths. First, a consistently oriented subgraph is extracted, which in a second 
step is reduced to a directed acyclic graph. In the next step, properties of proper interval graphs are used to extract 
contigs as maximum weight paths. These path are translated into genomic sequences only in the final step. A pro-
totype implementation of LazyB, entirely written in python, not only yields significantly more accurate assemblies 
of the yeast and fruit fly genomes compared to state-of-the-art pipelines but also requires much less computational 
effort.

Conclusions: LazyB is new low-cost genome assembler that copes well with large genomes and low coverage. It 
is based on a novel approach for reducing the overlap graph to a collection of paths, thus opening new avenues for 
future improvements.

Availability: The LazyB prototype is available at https:// github. com/ TGatt er/ LazyB.
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Background
The assembly of genomic sequences from high through-
put sequencing data has turned out to be a difficult 
computational problem in practice. Recent approaches 
combine cheap short-read data (typically using Illumina 
technology [1]) with long reads produced by PacBio or 

Nanopore technologies [2]. Although the short-read data 
are highly accurate and comparably cheap to produce, 
they are insufficient even at (very) high coverage due to 
repetitive elements. Long-read data, on the other hand, 
are comparably expensive and have much higher error 
rates. HiFi PacBio reads [3] derived from repeat sequenc-
ing of circularized elements rival short read accuracy but 
at vastly increased costs.

Several assembly techniques have been developed 
recently for de novo assembly of large genomes from 
high-coverage (50× or greater) PacBio or Nanop-
ore reads. Recent state-of-the-art methods employ a 
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hybrid assembly strategy using Illumina reads to correct 
errors in the longer PacBio reads prior to assembly. For 
instance, the 32 Gb axolotl genome was produced in this 
manner [4].

Traditional assembly strategies can be classified into 
two general categories [5, 6]. The Overlap-layout-consen-
sus (OLC) assembly model attempts to find all pairwise 
matches between reads, using sequence similarity as a 
metric for overlaps. A general layout is constructed and 
post-processed in various ways. Most notably, overlaps 
can be transformed into assembly graphs such as string 
graphs [7]. This method is flexible to read length and 
can be adapted to the diverse error models of different 
sequencing technologies. However, finding all overlaps is 
very expensive, in particular as read-sizes become large.

In de Bruijn graph strategies [8, 9], reads are decon-
structed to fixed length k-mers, representing nodes. 
Edges are inserted between nodes that overlap on (k − 1)

-mers. Ideally, a de Bruijn graph thus represents exactly 
one Eulerian path per chromosome, although this prop-
erty is generally violated in practice due to sequencing 
errors even in the absence of repetitive elements. With 
the help of specialized hashing strategies, k-mers can be 
efficiently stored and constructed. Thus, de Bruijn graphs 
require much less memory than OLC strategies. An 
overall speed up can be attributed to the absence of an 
all-vs-all comparison step. However, as k has to be cho-
sen smaller than read size, contiguity information is lost. 
With increasing error rates in reads, de Bruijn graphs 
tend to become less useful, as k-mers become also less 
accurate.

Long read only and hybrid assembly strategies also 
largely align to these two categories, although some 
more unique methods have emerged over the years. 
Canu [10] and Falcon [11] implement the classic OLC 
approach, albeit both error-correct long reads before cre-
ating a string graph. MinHash filters [12] can significantly 
reduce the costs of comparisons, but overall complexity 
remains high. Wtdbg2 [13] also follows OLC, but utilizes 
de Bruijn like graphs based on sparse k-mer mapping 
for comparison. It avoids all-vs-all mapping by matching 
reads that share k-mers under the assumption that even 
under high error rates correct pairs share more k-mer 
than those with spurious matches. Shasta [14] imple-
ments a full de Bruijn graph strategy by transforming 
k-mers into a run-length encoding that is more robust to 
sequencing errors in long reads. Newer versions of Canu 
also implement a similar encoding [15].

Classic de Bruijn methods have been adapted to com-
bine both long and short reads into a hybrid assembly. 
Long reads can serve as “bridging elements” in the same 
way as mate pairs to resolve paths in (short read) assem-
bly graphs [16, 17].

Under the assumption that short-read assemblies are 
cheap and reliable, various workflows have been pro-
posed to integrate both kinds of data also for OLC-like 
approaches. As a general goal, these programs avoid 
the costly all-vs-all comparison to create the assembly 
graph with the help of various heuristics. MaSuRCA  [18] 
attempts to join both long and short reads into longer 
super-reads by chaining unique k-mers, thereby reducing 
the number of reads that need to be tested for overlap. 
WENGAN [19] first creates full short-read contigs that are 
then scaffolded by synthetic mate pairs generated out of 
the long reads. Flye [20], even more uniquely, assembles 
intentionally erroneous contigs that are concatenated to 
a common sequence. Self-mapping then reveals repeats 
that can be resolved much like in a traditional assembly 
graph.
HASLR [21] defines an assembly-graph-like structure, 

that includes both short and long reads. Short reads 
are assembled into contigs that, after k-mer filtering to 
remove repeats, are aligned to long reads. In the result-
ing backbone graph, short-read contigs serve as nodes 
that are connected by an edge if they map onto the same 
long read. While different to e.g. string graphs, standard 
tip and bubble removal algorithms are applied to remove 
noise. Contigs are extracted as paths. TULIP [22] imple-
ments a very similar strategy, however, does not assemble 
short reads into full contigs. Instead, the gaps between 
mate-pairs are closed if possible with sufficiently rare 
k-mers, resulting in relative short but unique seeds that 
serve in the same capacity. In both cases, consensus con-
struction of the resulting sequence is trivial. Edges define 
fixed regions on groups of long reads that can be locally 
aligned for each edge along a path.
DBG2OLC [23] is methodologically most closely related 

to LazyB. The two approaches, however, differ in several 
key features. DBG2OLC assembles short reads to full con-
tigs, thereby avoiding repeat resolving techniques such 
as gap closing or scaffolding because these introduce too 
many errors. The short-read Contigs are then aligned 
against the long reads. Each long read implies a neighbor-
hood of contigs. Mappings are corrected prior to graph 
construction via consistency checks over all neighbor-
hoods for each contig, i.e., contigs are required to map 
in the same order on all long reads. This technique can 
help to remove both spuriously matched contigs and chi-
meric long reads, but requires sufficient coverage to allow 
for effective voting. Similar to LazyB, long reads serve 
as nodes in the DBG2OLC graph, with edges represent-
ing contigs mapping to two long reads. Nodes that map 
a subset of contigs of another node are removed as they 
are redundant. The resulting graph is error corrected 
by classic tip and bubble removal, after which paths are 
extracted as contigs, following the edge with the best 
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overlap at each step. LazyB instead uses a step-wise pro-
cedure to extract paths that employs a series of heuristics 
to edit the initial overlap graph to a collection of paths.
LazyB implements an alternative approach to assem-

bling genomes from a combination of long-read and 
short-read data. It not only avoids the expensive, direct 
all-vs-all comparison of the error-prone long-read data, 
but also the difficult mapping of individual short reads 
against the long reads, and the conventional techniques 
to error-correct de Bruijn or string graphs. As we shall 
see, its step-wise approach of processing the long-read 
overlap graph adds the benefit of producing quite good 
assemblies with surprisingly low requirements on the 
coverage of both short and long reads. Even at just 2× 
coverage of long reads the contiguity of assemblies of 
complex genomes can be significantly improved using 
our method. It lends itself in particular to the explora-
tory assembly of a large numbers of species, where cheap 
identification of functional islands is required rather then 
expensive finishing.

This contribution, which is a revised, updated, and 
extended version of a paper presented at WABI 2020 
[24], is organized as follows. We first outline the overall 
strategy of LazyB and then describe the pre-processing 
of the short-read data and the mapping short-reads-
derived unitigs to long reads. Similar to DBG2OLC and 
HASLR, LazyB operates on a long-read overlap graph 
whose edges are derived from partially assembled short-
read sequences that map to multiple long-reads. The 
main innovation in LazyB is the Processing of the overlap 
graph, which proceeds by a series of heuristics inspired 
by properties of overlap graphs derived from ideal data, 
and avoids the commonly used techniques to correct 
assembly graphs. We then briefly describe the construc-
tion of the sequence assembly from the path decompo-
sition of the overlap graph. Benchmarking results are 
reported for the assembly of yeast, fruitfly, and human 
genomes. We close with a discussion and an outlook to 
open problems and future improvements.

Strategy
LazyB does not pursue a “total data” approach. Instead, 
it identifies “anchors” that are nearly guaranteed to be 
correct and implements an, overall, greedy-like work-
flow to obtain very large long-read contigs. To this end, 
the initial overlap graph is first oriented and then edited 
in several consecutive steps to graph classes that more 
closely approach the desired final results, i.e., a union of 
paths. Conceptually, therefore, LazyB does not attempt 
solve a single global optimization problem but instead 
approximates as sequence of graph editing problems. 
This strategy of LazyB is outlined in Fig. 1.

a

b

c

d

e
Fig. 1 Overview of the LazyB assembly pipeline. (a) Short 
Illumina reads are filtered to represent only near unique k-mers and 
subsequently assembled into unambiguous unitigs. Long Nanopore 
reads (ONT) can be optionally scrubbed to include only regions 
consistent to at least one other read. For larger data sets scrubbing can 
be handled on subsets efficiently. Mapping unitigs against Nanopore 
reads yields unique “anchors” between them (b). An undirected graph 
(c) is created by adding Nanopore reads as nodes and edges between 
all pairs of reads sharing an “anchor”. Each edge is assigned a relative 
orientation, depending on whether the “anchor” maps in the same 
direction on both Nanopore reads. Cycles with a contradiction in 
orientation have to be removed before choosing a node at random 
and directing the graph based on its orientation. As Nanopore reads 
that are fully contained within another do not yield additional data, 
they can be collapsed. Contigs are extracted as maximally supported 
paths for each connected component (d). Support in this context is 
defined by the number of consistent overlaps transitive to each edge. 
Final contigs (e) can be optionally polished using established tools
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The key idea to obtain the overlap graph is to start 
from a collection S := {si} of pre-assembled, high-qual-
ity sequences that are unique in the genome. These are 
obtained from accurate short-read sequencing data and 
serve as “anchors” to determine overlaps among the 
long reads R := {rj} . In practice, S can be obtained by 
assembling Illumina data with low or moderate cover-
age to the level of unitigs only. The total genomic cover-
age of S only needs to be large enough to provide anchors 
between overlapping long reads. This data is therefore 
rigorously filtered to be devoid of repetitive and highly 
similar sequences. Mapping a sequence s ∈ S against the 
set R of long reads implies (candidate) overlaps r1 − r2 
between two long reads (as well as their relative orien-
tation) whenever s ∈ S maps to both r1 and r2 . Thus we 
obtain a directed overlap graph G of the long reads with-
out an all-vs-all comparison of the long reads.

A series of linear-time filtering and reduction algo-
rithms then prunes first the underlying undirected over-
lap graph and then the directed version of the reduced 
graph. Its connected components are reduced to near-
optimal directed acyclic graphs (DAGs) from which 
contigs are extracted as best-supported paths. In the fol-
lowing sections the individual steps will be described in 
detail. In comparison to DBG2OLC we avoid global cor-
rections of short-read mappings, but instead rely on the 
accuracy of assembled unitigs and a series of local cor-
rections. For this, we utilize previously unreported prop-
erties of the class of alignment graphs used by both tools. 
This allows LazyB to operate reliably even on very low 
coverage. Variations of the dataset dependent assembly 
options have little impact on the outcome. In contrast to 
the complicated setup of options required for tools such 
as DBG2OLC, LazyB comes with robust defaults.

Data preprocessing
A known complication of both PacBio and Nanopore 
technologies are chimeric reads formed by the artificial 
joining of disconnected parts of the genome [25] that may 
cause mis-assemblies [26]. Current methods dealing with 
this issue heavily rely on raw coverage [27] and hence are 
of little use for our goal of a low-coverage assembler. In 
addition, start- and end-regions of reads are known to be 
particularly error-prone [28]. We pre-filter low quality 
regions, but only consider otherwise problematic reads 
later at the level of the overlap graph.

Short‑read unitig‑level assembly
Short-read (Illumina) data is preprocessed by adapter 
clipping and trimming. The set S of high quality frag-
ments is obtained from a restricted assembly of the 
short-read data. The conventional use case of assembly 
pipelines aims to find a minimal set of contigs in trade-off 

to both correctness and completeness. For our purposes, 
however, completeness is of less importance and frag-
mented contigs are not detrimental to our workflow, as 
long as their lengths stay above a statistical threshold. 
Instead, correctness and uniqueness are crucial. We 
therefore employ two initial filtering steps:

(1) Using a k-mer profile, we remove all k-mers that are 
much more abundant than the expected coverage since 
these are likely part of repetitive sequences. This process 
can be fully automated.

(2) In order to avoid ambiguities, only branch-free 
paths are extracted from the short-read assembly graph. 
This feature is implemented e.g. in the de Bruijn graph 
assembler ABySS [29], which allows to assemble up to 
unitig stage. Moreover, a minimal path length is required 
for a unitig to serve as a secure anchor.

Since repeats in general lead to branch-points in the de 
Bruijn graph, repetitive sequences are strongly depleted 
in unitigs. While in theory, every such assembly requires 
a fine-tuned k-mer size, a well known factor to be influ-
ential on assembly quality, we found overall results to be 
mostly invariant of this parameter. To test this, we sys-
tematically varied the k-mer-size for ABySS. Neverthe-
less, we found little to no effect on the results of LazyB 
(Fig.  2). As assembly stops at unitigs, error rates and 
genome coverage stay within a narrow range as long as 
the unitigs are long enough.

The strategies for filtering short-read data have a 
larger impact than the choice of the k-mer size for unitig 
assembly (Fig.  3). This is not surprising given that both 
chimeric unitigs and unitigs that harbor repetitive DNA 
elements introduce spurious edges into the long-read 
overlap graph G and thus negatively influence the assem-
bly. In order to exclude short reads that contain highly 
frequent k-mers, the maximal tolerated occurrence has 
to be set manually and is dependent on the k-mer size. 
Setting the cut-off right next to the main peak in the pro-
files has turned out to be a good estimate. After assem-
bling short reads, unitigs are mapped to long reads and a 
coverage profile over the length of every unitig is calcu-
lated. Unitigs with maximal coverage above interquartile 
range IQR× 1.5+ Q3 are considered outliers. However, 
regions below coverage threshold (Q3) spanning more 
than 500 bp can be “rescued”. This filter step effectively 
reduces ambiguous regions, in particular when no previ-
ous filtering has been applied (Fig.  4). Combining both 
short-read filters improves the assembly quality; see 
Table 1.

Anchor alignments
The set R of long reads is mapped against the unitig 
set. At present we use minimap2 [30] for this purpose. 
Regions or whole unitigs significantly exceeding the 
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expected coverage are removed from S , as described in 
the last section, because they most likely are repetitive or 
at least belong to families of very similar sequences such 
as coding sequences of multi-gene families. Note that all 
repetitive elements connected to a unique region within a 
single long read may still be correctly assembled.

Classic alignment tools perform poorly in the pres-
ence of high rates of insertions and deletions (InDels) 
[31]. Even methods specifically advertised for this pur-
pose rely on scoring schemes that cannot accurately 
represent the extreme abundance of InDels in long-
read data. Instead, they rely on seeds of high quality 
matches that are then chained with high error toler-
ance. Currently, minimap2 [30, 32] is one of the most 
commonly used tools for this purpose. Since we do not 
have a gold standard set of perfect data, we can only 
roughly estimate the influence of this heuristic on the 
LazyB alignment quality in a related experiment. Spe-
cifically, we tested consistency of anchor alignments on 
pairs of long reads to direct alignments of both reads 
for fruit fly. Consistency is validated at the level of rela-
tive orientation, the offset indicated by both alignment 
methods, the portion of overlap that can be directly 
aligned and whether direct alignment of the long reads 
is possible at all. Different relative orientations were 

observed only in very small numbers. Changes in the 
offset by more then 5% of the longer read length are 
equally rare (Fig. 5).

However, requiring a direct alignment of at least 75% 
of the overlap region marks 4.6% of the anchor links as 
incorrect. Removing these “incorrect” anchors, surpris-
ingly, has a negative effect on the final LazyB assembly 
and in particular tends to break correct contigs apart; see 
Table 2. In our test set 7.7% of direct alignments of two 
anchor-linked long reads gave no result. In these cases, 
expected overlaps are rather short (Fig.  5). We there-
fore tested whether the assembly could be improved by 
excluding those connections between long reads for 
which no alignment could be calculated despite the pres-
ence of an overlap of at least 1 kbp (3.7%). We found, 
however, that this procedure also causes the loss of cor-
rect edges in G.

Summarizing, we observe three facts: (1) The over-
whelming number of pairs is consistent and therefore 
true. (2) Removing inconsistent edges from the assem-
bly not only does not improve the results but results 
are worse on average. (3) While we can manually iden-
tify some incorrect unitig matches, the mappings pro-
duced by minimap2 are too inconsistent for proper 
testing. Since we have no proper methods to identify 
such false positives we also cannot properly estimate 

Fig. 2 Assembly statistics as a function of the k-mer size used to construct unitigs from the short-read data for yeast. Top: Illumina unitigs (left: 
number of unitigs; middle: fraction of the reference genome covered; right: N50 values); bottom: final LazyB assembly at ∼11× long reads (left: 
number of unitigs; middle: fraction of the reference genome covered; right: number of mis-assemblies)
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the number of false negatives, i.e., missing matches in 
the graphG, e.g. by computing a transitive completion.

Overall, out tests indicate that a high level trust in 
the anchors mapping in warranted. We also conclude 
that minimap2 is sufficient for our purposes. How-
ever, the data also suggest that the assembly would 
profit substantially from a more accurate handling of 
the overlap alignments. This remains a problem for 
future research at this point.

Long read overlap graph
As a result of mapping the short-read unitig to the 
long reads, we obtain a set of significant matches 
V := {(s, r) ∈ S ×R | δ(s, r) ≥ δ∗} with matching scores 
δ(s, r) that exceed a user-defined threshold δ∗ . The long-
read overlap graph G has the vertex set R . Conceptually, 
two long reads overlap, i.e., there should be an undirected 
edge r1r2 ∈ E(G) if and only if there is an s ∈ S such that 
(s, r1) ∈ V and (s, r2) ∈ V . The choice of δ∗ therefore has 
an immediate effect on the resulting graph. Setting δ∗ 

a

b

c

Fig. 3 Assembly statistics of yeast as a function of the k-mer size and maximal occurrence cut-off used to remove very frequent k-mers from short 
reads prior to unitig assembly. (a) k-mer profiles for k = 50 bp and k = 75 bp. Cut-offs restrict short reads to different degrees. Note logarithmic 
axes. (b) Illumina unitigs (left: percentage of remaining short-read data; middle: fraction of the reference genome covered; right: number of unitigs 
mapping multiple times to reference). (c) Final LazyB assembly left: number of unitigs; middle: fraction of the reference genome covered; right: 
number of mis-assemblies). x: not enough data to assemble
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low will allow more false-postive edges to be introduced 
into the graph, as spurious matches become more likely. 
Higher values of δ∗ improve the confidence of matches 
but may remove true edges. In the current prototype, we 
set the matching score as the number of exactly aligned 
basepairs in the match and require at least 500 such exact 
basepairs. With increasing accuracy of long read base-
callers, long read mappers, unitig assembly, and possibly 

also dependent on the organism, this value is subject to 
change. In practice, we employ an overall more restric-
tive but robust procedure to introduce edges in order to 
reduce the danger of introducing false-positive edges into 
G, mitigating also effects of slightly sub-optimal choices 
of δ∗.

For two distinct long reads r1, r2 ∈ R with a common 
s ∈ S , i.e., (s, r1), (s, r2) ∈ V , we denote by [i, j] and [k, l], 
respectively, the sequence intervals on s that match inter-
vals on r1 and r2 . The intersection [i, j] ∩ [k , l] is the inter-
val [max{i, k}, min{j, l}] if k ≤ j and the empty interval 
otherwise. A non-empty intersection [i, j] ∩ [k , l] corre-
sponds to a direct match of r1 and r2 . The expected bit 
score for the overlap is estimated as

(1)
ω(s, r1, r2) :=

1

2
(min{j, l} −max{i, k} + 1)

×

(

δ(s, r1)

(j − i + 1)
+

δ(s, r2)

(l − k + 1)

)

Fig. 4 Exclusion of unitigs based on very high mapping coverage. Thresholds are IQR × 1.5+Q3. Shown are maximal values of coverage profiles 
for unitigs assembled with (left) and without (middle) previous k-mer filtering. Note the logarithmic axes. right: exemplary profile; only the 
high-coverage peak is excluded. Threshold is Q3

Table 1 Impact of short-read filtering strategies on LazyB 
assembly quality in fruit fly

Column descriptions: completeness of the assembly, #ctg: number of contigs, 
#MA: number of mis-assemblies (breakpoints relative to the reference assembly)

Filter strategy Compl. [%] #ctg #MA

no filter 82.81 457 302

k-mer filter 80.66 567 104

unitig filter 80.71 563 108

k-mer and unitig filter 80.11 596 99

a b c

Fig. 5 Consistency test of anchor-linked long-read overlaps to direct alignments of both reads on fruit fly. (a) Frequencies of shifted offsets (% of 
the longer read); changes up to 5% are tolerated; note logarithmic axis. (b) Frequencies of the percentage at which the direct alignment covers the 
overlap. A minimum of 75% is set for consistency. (c) Long read pairs where no direct alignment is possible tend to have shorter anchor-indicated 
overlaps. Connections that cannot be confirmed via direct alignments despite an expected overlap of at least 1 kbp are excluded



Page 8 of 23Gatter et al. Algorithms Mol Biol            (2021) 16:8 

if [i, j] ∩ [k , l] �= ∅ . For [i, j] ∩ [k , l] = ∅ we set 
ω(s, r1, r2) := 0 . For a given edge r1r2 ∈ E(G) there may 
be multiple significant matches, mediated by a set of 
unitigs Sr1r2 := {s ∈ S | (s, r1), (s, r2) ∈ V } . In ideal 
data all these matches are co-linear and consistent with 
respect their orientation. In real data, however, this 
may not be the case. It is necessary, therefore, to handle 
inconsistencies.

For each significant match (s, r) ∈ V we define the rela-
tive orientation θ(s, r) ∈ {+1,−1} of the reading direc-
tions of the short-read scaffold s relative to the long read 
r. The relative reading direction of the two long reads (as 
suggested by s) is thus θs(r1, r2) = θ(s, r1) · θ(s, r2).

The position of a significant match (s, r) defined on the 
unitig s on interval [i, j] corresponds to an interval [i′, j′] 
on the long read r that is determined by the alignment of 
s to r. Due to the large number of randomly distributed 
InDels in the Nanopore data, the usual dynamic pro-
gramming alignment strategies fail to produce accurate 
alignments. This is also the case for minimap2 [30], our 
preliminary choice, as it only chains short, high quality 
matches into larger intervals. Although more accurate 
alignments would of course improve the local error rate 
of the final assembled sequence, we expect very little 
impact on the overall assembly structure of the assem-
bly from local details of the sequence alignments at (s, r) 
matches. We therefore record only the matching inter-
vals and use a coordinate transformation τr that estimates 
the position τr(h) ∈ [i′, j′] for some h ∈ [i, j] by linear 
interpolation:

The values of τr(h) are rounded to integers and used 
to determine intersections of matches. We write 

(2)τr(h) :=

{

j′ − (j − h)
j′−i′+1
j−i+1 if j − h ≤ h− i;

i′ + (h− i)
j′−i′+1
j−i+1 if j − h > h− i.

[i, j]r := [τr(i), τr(j)] for the interval on r corresponding 
to an interval [i, j] of s.

Definition 1 Two unitigs s, s′ in Sr1r2 are consistent if 
(i) θs(r1, r2) = θs′(r1, r2) , (ii)  the relative order of [is, js]r1 , 
[ks

′
, ls

′
]r1 on r1 and [is, js]r2 , [ks

′
, ls

′
]r2 on r2 is the same.

For distinct long reads r1, r2 ∈ R , Definition 1 enables 
us to determine m ≥ 1 subsets S 1

r1r2
, ...,S m

r1r2
 of Sr1r2 

such that each is maximal with respect to inclusion and 
contains only unitigs that are pairwise consistent with 
respect to  r1 and  r2 . In addition, we may require that 
the difference between the distances of consecutive cor-
responding intervals on r1 and r2 , respectively, is suffi-
ciently similar. Computing the set S ∈ {S 1

r1r2
, ...,S m

r1r2
} 

that maximizes the total bit score 
∑

s∈S ω(s, r1, r2) 
amounts to a classical chaining problem. It can can be 
solved by dynamic programming [33] in quadratic time 
w.r.t. the number |Sr1r2 | of unitig-mediated matches. An 
edge r1r2 is inserted into G if the optimal total bit score 
�(r1, r2) :=

∑

s∈S ω(s, r1, r2) exceeds a user-defined 
threshold. The signature θ(r1, r2) of the edge r1r2 ∈ E(G) 
is the common value θs(r1, r2) for all s ∈ S.

For each edge r1r2 ∈ E(G) we furthermore determine 
s, s′ ∈ S such that τr1(is) is the minimal and τr1(js

′
) is 

the maximal coordinate of the matching intervals on r1 . 
Hence, the interval [is, js′ ]r1 spans all matching intervals 
on r1 . The corresponding pair of coordinates, τr2(ks) and 
τr2(l

s′) , spans the matching intervals on r2 . In particular, 
the interval [ks, ls′ ]r2 (resp. [ls′ , ks]r2 ) spans both match-
ing intervals on r2 if θ(r1, r2) = 1 (resp. θ(r1, r2) = −1 ). 
For the sake of a clear notation, let [ir1 , jr1 ] := [is, js

′
]r1 

and [kr2 , lr2 ] be the “spanning” interval on r2 , i.e., either 
[kr2 , lr2 ] := [ks, ls

′
]r2 or [kr2 , lr2 ] := [ls

′
, ks]r2 . Inter-

vals [ir1 , jr1 ] and [kr2 , lr2 ] specify the known overlap-
ping regions between r1 and r2 , see also Fig.  6 for an 
illustration. If θ(r1, r2) = +1 then r1 extends r2 to the 
left if ir1 > kr2 and to the right if |r1| − jr1 > |r2| − lr2 . 
For θ(r1, r2) = −1 the corresponding conditions are 
ir1 > |r2| − kr2 and |r1| − jr1 > lr2 , respectively. If r1 does 
not extend r2 to either side then r1 is completely con-
tained in r2 and does not contribute to the assembly. Sim-
ilarly, if r1 extends r2 on both sides, r2 is fully contained in 
r1 . In both cases we contract the edge between r1 and r2 
in G. Otherwise, if r1 extends r2 to the left and r2 extends 
r1 to the right we record r1 → r2 and analogously, we set 
r1 ← r2 if r2 extends r1 to the left and r1 extends r2 to the 
right.

The result of this construction is a long-read-overlap 
graph G whose vertices are the non-redundant long reads 
and whose edges r1r2 record (1) the relative orientation 
θ(r1, r2) , (2) the bit score �(r1, r2) , (3) the local direction 
of extension, and (4) the overlapping interval.

Table 2 Assessment of different parameters to verify long-read 
overlaps and their impact on LazyB assembly quality on fruit fly

Overlaps are indicated by anchors and evaluated by pairwise long-read 
alignments. They are considered valid if: the relative direction suggested by 
the anchor matches that of the pairwise alignment (direction); the offset is 
sufficiently similar for both methods (offset); at least 75% of the overlap is found 
as direct alignment (incomplete mapping); the overlap indicated by the anchor 
is less than or equal to 1 kbp or a pairwise alignment is possible (no mapping). 
Column descriptions: completeness of the assembly, #ctg: number of contigs, 
#MA: number of mis-assemblies (breakpoints relative to the reference assembly)

Varification parameters Compl.[%] #ctg #MA

Direction 80.13 608 111

Direction + offset 80.08 622 103

Direction + offset + incom-
plete mapping

80.04 1263 121

No mapping 80.15 801 113
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Processing of the overlap graph
Consistent orientation of long reads
For perfect data it is possible to consistently deter-
mine the reading direction of each read relative to the 
genome from which it derives. This is not necessarily 
the case in real-life data. The relative orientation of two 
reads is implicitly determined by the relative orienta-
tion of overlapping reads, i.e., by the signature θ(r1, r2) of 
the edge r1r2 ∈ E(G) . To formalize this idea we consider 
a subset D ⊆ E(G) and define the orientation of D as 
θ(D) :=

∏

r1r2∈D
θ(r1, r2) . For a disjoint union of two edge 

sets D and D′ we therefore have  
and, more generally, their symmetric different D⊕ D′ 
satisfies θ(D⊕ D′) = θ(D)θ(D′) since the edges in D ∩ D′ 
appear twice in θ(D)θ(D′) and thus each of these edges 
contributes a factor (±1)2 = 1.

Definition 2 Two vertices r1, r2 ∈ V (G) are orientable 
if θ(P) = θ(P′) holds for any two paths P and P′ connect-
ing r1 and r2 in G. We say that G is orientable if all pairs of 
vertices in G are orientable.

Lemma 3 G is orientable if and only if every cycle C in 
G satisfies θ(C) = 1.

Proof Let r, r′ be two vertices of G and write C (r, r′) 
for the set of all cycles that contain r and r′ . If r = r′ 
or C (r, r′) = ∅ , then r and r′ are orientable by defini-
tion. Now assume r  = r′ , C (r, r′) �= ∅ , and consider 
a cycle C ∈ C (r, r′) . Clearly, C can be split into two 

edge-disjoint path C1 and C2 both of which connect r 
and r′ . If r and r′ are orientable, then θ(C1) = θ(C2) and 
thus θ(C) = θ(C1)θ(C2) = 1 . If r and r′ are not orient-
able, then there is a pair of paths P1 and P2 connecting r 
and r′ such that θ(P1) = −θ(P2) . Since  
is an edge-disjoint union of cycles Ci we have 
−1 = θ(P1)θ(P2) =

∏k
i=1 θ(Ci) and thus there is least 

one cycle Ci with θ(Ci) = −1 in G. �

The practical importance of Lemma 3 is the implica-
tion that only a small set of cycles needs to be consid-
ered, because every cycle in G can be obtained as an ⊕
-sum of cycles in a cycle basis [34, 35]. Every graph G 
with c connected components has a cycle basis com-
prising |E| − |V | − c cycles. Particular cycles bases, 
known as Kirchhoff bases, are obtained from a span-
ning tree T of G as the set B of cycles Ce consisting of 
the edge e ∈ E \ T  and the unique path in T connecting 
the endpoints of e [36]. Every cycle C of G can then be 
written as C =

⊕

e∈C\T Ce , see e.g. [35].

Theorem  4 Let G be a graph with signature 
θ : E(G) → {−1, 1} on its edges, and let B be a cycle basis 
of G. Then G is orientable if and only if θ(C) = 1 for all 
C ∈ B.

Proof The theorem follows from Lemma 3 and the fact 
that every cycle C in G can be written as an ⊕-sum of 
basis cycles, i.e., θ(C) = 1 for every cycle in C if and only 
if θ(C ′) = 1 for every basis cycle C ′ ∈ B . �

Thm. 4 suggests the following, conservative heuristic 
to extract an orientable subgraph from G: 

(1)  Construct a maximum weight spanning tree TG of 
G by using the �-scores as edge weights. Tree TG 
can easily be obtained using, e.g., Kruskal’s algo-
rithm [37].

(2)  Construct a Kirchhoff cycle basis B from TG.
(3)  For every cycle C ∈ B , check whether θ(C) = −1 . 

If so, find the �-minimum weighted edge ê ∈ C 
and remove it from E(G) and (possibly) from TG if 
ê ∈ E(TG).

 We delete the offending edge because it is very unlikely 
that the preprocessing correctly identified that two 
long reads overlap but failed to determine the correct 
relative orientation. The edge deletion is simplified by 
the following observation:

Lemma 5 If T is maximal �-weight spanning tree of T 
and end e is a non-tree edge, then �(e) = mine′∈Ce

�(e′).

Fig. 6 Construction of the overlap of two long reads r1 and r2 (long 
black arrows) from all unitigs Sr1r2 := {s1, ..., s5} (short black bars) 
that match to both r1 and r2 . A significant match (s, r) of s ∈ Sr1r2 
on r ∈ {r1, r2} is illustrated by blue and green thick arrows on r. 
The relative orientation of (s, r) is indicated by the direction of its 
arrow, that is, θ(s, r) = +1 (resp. θ(s, r) = −1 ) if its arrow points to 
the right (resp. left). The subsets S 1

r1r2
:= {s1, s3, s5} (unitigs with 

blue significant matches) and S 2
r1r2

:= {s2, s4} (unitigs with green 
significant matches) of Sr1r2 are both inclusion-maximal and consists 
of pairwise consistent unitigs. The set S 1

r1r2
 maximizes �(r1, r2) and 

thus determines the overlap. It implies θ(r1, r2) = +1 . Moreover, 
ir1 (resp. jr1 ) is the minimal (resp. maximal) coordinate of significant 
matches of unitigs from S 1

r1r2
 on r1 . The corresponding coordinates 

on r2 are kr2 and lr2 , respectively. The spanning intervals [ir1 , jr1 ] and 
[kr2 , lr2 ] define the overlap of r1 and r2 . In this example we have ir1 > kr2 
and |r1| − jr1 > |r2| − lr2 , implying that r2 extends r1 neither to the left 
or right and thus, edge r1r2 is contracted in G 



Page 10 of 23Gatter et al. Algorithms Mol Biol            (2021) 16:8 

Proof Let e′ ∈ Ce \ {e} by a tree edge in the cycle 
Ce . Then T ′ = T \ {e′} ∪ {e} is again a spanning tree 
of G since the vertex set V (Ce) is still connected 
and T ′ contains not cycle. Its weight it weight is 
�(T ′) = �(T )−�(e′)+�(e) ≤ �(T ) , since T is a 
maximum weight spanning tree by assumption. Thus 
�(e) ≤ �(e′) , i.e., e has minimum �-weight. �

As a consequence, the minimum weight edge of an 
offending cycle is always the non-tree edge. Step (3) 
above therefore reduces to finding the basis edges ê with 
negative signature cycles Cê and to remove these edges. 
The removal of ê leaves TG unchanged and thus does not 
affect the contiguity of the assembly. The end result of the 
procedure outlined above is therefore a connected sub-
graph G′ and a spanning forest TG′ = TG for G′.

Lemma 6 Let G be an undirected connected graph with 
signature θ and let G′ be the residual graph produced by the 
heuristic steps (1)-(3). Then (i) G′ is connected, (ii) G′ is ori-
entable, and (iii) TG is an �-maximal spanning tree of G′.

Proof (i) By Lemma 5, TG ⊆ E(G′) , hence TG is a span-
ning tree of G′ and thus G′ is connected. (ii) Since the 
heuristic removes all non-tree edges e with θ(Ce) = −1 , 
Thm.  4 implies that G′ is orientable. (iii) Since 
TG ⊆ E(G′) , Kruskal’s maximum weight spanning tree 
algorithm will pick the same spanning tree edges again 
from E(G′) , and TG is an �-maximal spanning tree. �

In order to expedite the identification of edges that 
violate orientability in G, we define an orientation ϕ for 
the vertices of G, i.e., the long reads. To this end, we pick 
an arbitrary r∗ ∈ V (G) as reference and set ϕ(r∗) := +1 . 
Denote by PT (r) the unique path from r∗ to r and define 
ϕ(r) := θ(PT (r)).

Lemma 7 If G is a connected orientable graph with 
signature θ , then the vertex orientation ϕ with reference 
ϕ(r∗) := +1 is independent of the choice of the spanning 
tree T.

Proof Let P be an arbitrary path connecting r and r∗ . By 
connectedness, such a path exists and since G is orient-
able w.r.t. θ we have θ(P) = θ(PT ) . Furthermore r and r∗ 
are connected by the backbone of any spanning tree of T, 
ϕ is independent of the choice of T. �

As an immediate consequence we observe:

Corollary 8 If G is an orientable graph with signature θ 
and vertex orientation ϕ , then every pair of adjacent verti-
ces satisfies ϕ(r′)ϕ(r′′) = θ(r′r′′).

It follows that the heuristic to extract an orientable sub-
graph can be implemented in linear time: 

(1)  An �-maximal spanning tree TG is obtained in 
O(|V | + |E|) time using Kruskal’s algorithm.

(2)  The vertex orientation ϕ is computed by traversal 
of the spanning tree TG in O(|V |) time.

(3)  For each e ∈ E \ TG , one checks in constant time 
whether ϕ(r′)ϕ(r′′) �= θ(r′r′′) and if so deletes the 
edge r′r′′ . The total effort is therefore O(|E|).

We remark that one could now define a graph G̃ , 
obtained from G by inverting all long-reads r with a 
negative orientation ϕ(r) = −1 . This amounts to replac-
ing each long read r by its reverse complement. Since 
processing of the overlap graph does not explicitly con-
sider the sequence information, it would be sufficient 
to replace the coordinates [p,  q] of a match interval 
by [ℓ− q + 1, ℓ− p+ 1] and to invert the directional-
ity of extension by another long read. The bit scores of 
matches, of course, remain unchanged. In G̃ all edge sig-
natures are θ̃ (e) = +1 . It is not necessary, however, to 
construct G̃ explicitly. Instead, we simply keep track of 
the vertex orientations ϕ(r).

From here on, we again write G for the orientable graph 
G′.

Reduction to a directed acyclic graph
We next make use of the direction of extension of long 
read r1 and r2 defined by the mutual overhangs in the case 
that r1r2 is an edge in G. We write  for the directed ver-
sion of a connected component G of the residual graph G′ 
constructed above. For each edge r1r2 ∈ E(G) we create 
the corresponding edge e ∈ E( ) as

Suppose the data used to construct  are free of repetitive 
sequences and contain no false-positive overlaps. In such 
perfect data,  is a directed interval graph. Since we have 
contracted edges corresponding to nested reads (i.e., 
intervals),  is in fact a proper interval graph or indif-
ference graph [38]. In addition  is directed in a manner 
consistent with the ordering of the intervals. More pre-
cisely, there is an ordering ≺ of the vertices (long reads) 
that satisfies the umbrella property [39]: r1 ≺ r2 ≺ r3 and 
r1r3 ∈ E ( ) implies r1r2, r2r3 ∈ E( ). We can interpret 
r1 ≺ r2 to mean that r1 extends r2 to the left, i.e., towards 
smaller coordinate values in the final assembly. A “nor-
mal interval representation” and a linear order ≺ of the 

(3)e :=











r1r2 if ϕ(r1) = +1 and r1 → r2 or
ϕ(r1) = −1 and r1 ← r2;

r2r1 if ϕ(r1) = +1 and r1 ← r2 or
ϕ(r1) = −1 and r1 → r2.
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reads can be computed in O(|R|) time [40, 41] for proper 
interval graphs.

Due to the noise in the data, however, we have to 
expect that the original overlap graph only approxi-
mates a proper interval graph. On the other hand, we 
have already obtained an orientation of the edges that – 
in ideal data – would be consistent with interval order. 
We therefore consider necessary conditions for directed 
indifference graphs and set out to enforce them.

First, we observe that  should be acyclic. Orientability 
w.r.t. a signature θ , does not guarantee acyclicity since  
still may contain some spurious “back-linking” edges 
due to unrecognized repetitive elements. The obvious 
remedy is to remove a �-minimal set of directed edges. 
This amounts to solving an feedback arc set problem, 
which is known to be NP-complete in both weighted 
and unweighted versions, see [42] for a recent overview. 
We therefore resort to a heuristic that makes use of our 
expectations on the structure of : In general we expect 
multiple overlaps of correctly placed reads, i.e., r is 
expected to have several incoming edges from its prede-
cessors and several outgoing edges exclusively to a small 
set of succeeding reads. In contrast, we expect incorrect 
edges to appear largely in isolation. This suggests to adapt 
Khan’s topological sorting algorithm [43]. In its origi-
nal version, it identifies a source u, i.e., a vertex with in-
degree 0, appends it to the list W of ordered vertices, and 
then deletes all its out-edges. It stops with “fail” when no 
source can be found before the sorting is complete, i.e., 
W does not contain all vertices of the given graph, indi-
cating that a cycle has been encountered. We modify this 
procedure in two ways:

First, if multiple sources are available in a given step, 
we always pick the one with largest total �-weight of 
edges incoming from the sorted set W. As a consequence, 
incomparable paths in  are sorted contiguously, i.e., a 
new path is initiated only after the previous one cannot 
be continued any further. Note that keeping track of the 
total input weight from W does not alter the O(|V | + |E|) 
running time of the Kahn’s algorithm.

Second, we replace the “fail” state by a heuristic to 
find an “almost source” to continue the sorting. Denote 
by N+(W ) the out-neighborhood of the set W that has 
been sorted so far and consider the set K := N+(W ) \W  
the not-yet-sorted out-neighbors of W. These are the 
natural candidates for the next source. For each u ∈ K  we 
distinguish incoming edges xu from x ∈ W  , x ∈ K  , and 
x ∈ V \ (W ∪ K ) and consider two cases: 

(1)  There is a u ∈ K  without an in-edge xu from some 
other x ∈ K  . Then we choose among all vertices 
of this type the vertex û with the largest total �
-weight incoming from W because û then overlaps 

with most of the previously sorted reads.
(2)  If for each u ∈ K  there is an in-edge xu from 

some other x ∈ K  , then the candidate set K forms 
a strongly connected digraph. In this case we 
choose the candidate û ∈ K  with the largest dif-
ference of �-weights incoming from W and K, i.e., 
û := argmaxu∈K

∑

w∈W �(w,u)−
∑

k∈K\{u}�(k ,u)

.

 In either case, we add the edges incoming from V \W  
into û to the set F of edges that violate the topological 
order. It is clear from the construction that (i) F remains 
empty if  is a DAG since in this case a source is available 
in each step, and (ii) the graphG obtained by from  by 
deleting the edges in F is acylic since all in-edges to u inG 
emanate from W, the set of vertices sorted before u, and 
all out-edges from u point to the as yet unsorted set. Thus 
F is a feedback arc set for .

Lemma 9 The modified Kahn algorithm can be imple-
mented to run in O(|E| + |V | log |V |) time.

Proof Our modified Kahn algorithm keeps the not-
yet-sorted vertices in a priority queue instead of a 
simple queue. The priority of a vertex u ∈ V \W  
depends on the number of total �-scores of the in-
edges wu with w ∈ W ∩ N−(u)| , w ∈ K ∩ N−(u) , and 
w ∈ N−(u) ∩ V \ (W ∪ K ) respectively. Every time a 
vertex v is added to W, these values have to be updated 
for the out-neighbors u ∈ N+(v) . Each update only com-
prises of the addition or subtraction of �(v,u) and the 
decision whether the second and/or third values are zero, 
and thus require total time O(E(G)) . Highest priority is 
given to vertices u with N−(u) ⊆ W  , i.e., true sources, 
next vertices u ∈ K  with N−(u) ∩ K = ∅ , and the last tier 
is formed by the remaining vertices. Assuming an effi-
cient implementation of the priority queue as a heap, the 
total effort for its maintenance is O(E) plus O(|V | log |V |) 
for the dequeuing operations, see e.g. [44, 45]. �

It is possible thatG is not connected. In this case, each 
connected component can be processed independently in 
subsequent processing steps. If the feedback set F is dis-
joint from TG , then TG is still a �-maximal spanning tree 
ofG. Otherwise, edges in F ∩ TG need to be replaced. 
Lemma  5 that the replacement edges have to be drawn 
from non-tree edges between the vertex sets spanned by 
the connected components of TG \ F  . In principle, this 
can be done efficiently with specialized data structures 
for dynamic connectivity queries, in particular if F ∩ TG 
is small [46]. However, the effort to run Kruskal’s 
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algorithm again onG is by no means prohibitive, since 
the update has to be done only once.

Golden paths
For perfect data, the directed proper interval graph  
has a single source and a single sink vertex, correspond-
ing to the left-most and right-most long reads r′ and r′′ , 
respectively. Furthermore, every directed path connect-
ing r′ and r′′ is a golden path, that is, a sequence of over-
lapping intervals that covers the entire chromosome. 
Even more stringently, every read r  = r′, r′′ has at least 
one predecessor and at least one successor inG. An undi-
rected graph is a proper interval graph if there is a set of 
intervals, corresponding to the vertices, such that (i) no 
interval is properly contained within another, and (ii) two 
vertices are adjacent iff their intervals intersect. For per-
fect data, therefore, the overlap graph is a proper interval 
graph.

Lemma 10 [47] A connected proper interval graph 
has a unique vertex order (other than the reversal of the 
order).

The vertex order of a connected proper interval graph 
is therefore completely determined by fixing the orienta-
tion of single edge. In our case, the orientation is fixed 
by r∗ . We choose the ascending vertex order, i.e., r1 ≺ r2 
for every directed edge r1r2 . A proper interval graph with 
such an orientation of edges is a directed proper interval 
graph.

For perfect data, therefore,  is directed proper interval 
graph and thus it would suffice to compute the unique 
topological sorting of . For real-life data, however, we 
cannot expect that even the acyclic graphG is a directed 
proper interval graph. Ploidy in eukaryotes may consti-
tute a valid exception to this assumption, as differences in 
chromosomes ideally also cause diverging structures. 
However, given the high error rate of long reads, low 
sequence variation can only be differentiated in very high 
coverage scenarios or with the help of known ancestral 
relationships [48]; both are explicitly not targeted by 
LazyB. In practice, ploidy is commonly reduced even 
when sufficient coverage is available but can be recovered 
via variant calling [49]. High accuracy short read assem-
blies originating from different alleles can be expected to 
match equally well to the same long reads given their low 
quality. Therefore, also ploidy variation will normally be 
merged to a single consensus. Accordingly, we did not 
detect any mayor duplication issues in the human, fly, or 
yeast.

Our aim now is to approximate the DAGG by a disjoint 
union of connected directed proper intervals graphs. To 

gain some intuition for this task, we first consider reduc-
tions of directed graphs that expose longest paths.

A transitive reduction  of some directed graph  is a 
subgraph of  with as few edges as possible such that two 
vertices x and y are connected by a directed path in  if 
and only if they are connected by a directed path in H [50, 
51]. It is well-known that every directed acyclic graph has 
a unique transitive reduction [51, Thm. 1]. This property 
allows us to call an edge e of an acyclic digraph redun-
dant if e /∈ E( ). Unfortunately, computation of the 
transitive reduction requires O(|V | |E|) time in sparse 
graphs and O(|V |ω) , where ω ≈ 2.3729 is the matrix mul-
tiplication constant. This is impractical for our purposes.

As a simpler analog of transitive reduction, we define 
the triangle reduction  of H as the digraph obtained 
from  by removing all edges uw ∈ E ( ) for which there 
is a vertex v with uv, vw ∈ E( ).

Lemma 11 If is a connected directed proper interval 
graph then (i) is a path, and (ii)  = .

Proof By Lemma  10,  has a unique topological sort-
ing, i.e., ≺ is a unique total order. Property (ii) now is an 
immediate consequence of the umbrella property, and 
(iii) follows from the fact the transitive reduction is a sub-
graph of the triangle reduction and preserves connected-
ness. �

As an immediate consequence of Lemma 11 we observe 
that if  is a connected induced subgraph of a directed 
proper interval graph , then  is an induced path in the 
triangle reduction  of . Of course, Lemma  11 does 
not imply that the triangle reduction  is a path. It 
serves as motivation, however, to identify long-read con-
tigs as maximal paths in the triangle reduction  of the 
directed acycling graphG. Since the topological sorting 
along any such path is unique, it automatically identifies 
all redundant non-triangle edges along a path.

We note that it is not necessary to first compute the 
transitive or triangle reduction if one is only interested in 
the maximal paths.

Lemma 12 Let be a directed acyclic graph with trian-
gle reduction and transitive reduction . Then P is a 
maximal path in if and only if it is a also maximal path 
in or .

Proof Every maximal path in  connects a source with a 
sink, since otherwise it could be extended at one the the 
ends. Now suppose that a longest path P contains an edge 
e = r′r′′ that this not contained in the transitive reduc-
tion. By definition, then there is a path Pr′r′′ of length at 
least 2 from r′ and r′′ , and since H is acyclic, no vertex 
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in Pr′r′′ lies along the path P. Thus P′ obtained from P 
by replacing e with Pr′r′′ is again a path, which is strictly 
longer then P, contradicting the assumption that P was 
maximal. Thus P is contained  and . Since  and  
is a subgraph of  and P is maximal in , it is also maxi-
mal in  and . �

We note, furthermore, that the modified Kahn algo-
rithm described above has the useful side effect of pro-
ducing long runs of consecutive vertices 
ri, ri+1, . . . rj−1, rj . These can be used to effectively reduce 
the graphG by removing all arcs connecting non-consec-
utive vertices with any such run.

The longest path terminating in a given vertex x can 
be computed with O(|E|) effort [52], suggesting that 
the explicit computation of reductions will not be help-
ful in practice. It also does not address the issue that the 
triangle-reduction  differs from a unique golden path 
by bubbles, tips, and crosslinks, see Fig. 7. Tips and bub-
bles predominantly are caused by edges that are missing 
e.g. due to mapping noise between reads that belong to a 
shared contig region. Remember that ploidy is collapsed 
to one haplotype due to the high error rates of long reads. 
Hence, any path through a bubble or superbubble yields 
essentially the same assembly of the affected region and 
thus can be chosen arbitrarily whereas tips may pre-
maturely end a contig. Node-disjoint alternative paths 
within a (super-)bubble [53] start and end in the neigh-
borhood of the original path. Tips either originate or end 
in neighborhood of the chosen path. As tips themselves 
may also be subject to mild noise, and crosslinks may 
occur near the start- or end-sites of the true paths, both 

are not always easily distinguished. Crosslinks represent 
connections between two proper contigs by spurious 
overlaps, caused, e.g., by repetitive elements that have 
escaped filtering. As crosslinks can occur at any position, 
a maximal path may not necessarily follow the correct 
connection and thus may introduce chimeras into the 
assembly.

We therefore have to expect that solving the longest 
path problem onG will sometimes follow spurious edges 
rather than locally more plausible choices since these 
may lead to overall shorter paths. As a remedy, we there-
fore aim to resolve the path choices based on local infor-
mation. More precisely, we measure how well an edge e 
fits into a local region that forms an induced proper 
interval graph. Recall that a tournament is an orientation 
of a complete graph, and is called transitive if and only if 
it is acyclic [54].

Lemma 13 If is a directed proper interval graph, then 
the subgraph induced by the closed outneighbor-
hood N+(r) := N+(r) ∪ {r} is a transitive tournament.

Proof By definition there is an arc from r to every 
u ∈ N+(r) . Furthermore, we already know that has 
a unique topological ordering. The umbrella property 
therefore implies that there is an arc from u to v when-
ever u preceeds v in the unique topological ordering. 
Thus is a transitive tournament. �

For ideal data, the out-neighborhoods  form 
transitive tournaments, and their triangle reductions 

Fig. 7 Examples of assembly graph defects in . Given two nodes , an s− t path is a path starting in s and ending in t. A simple bubble 
consists of two vertex disjoint s− t paths. This construct can be extended to super-bubbles, defined as a set of s− t paths, exactly including all 
nodes reachable from s without passing t and vice versa. Bubbles and superbubbles are primarily the result of unrecognized overlaps. Tips are “side 
branches” that do not reconnect with the dominating paths and thus have distinct end-points. Crosslinks, finally, are connecting edges between 
two golden paths
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form induced subpath of . In fact, collecting results 
from the literature, it can be shown that is also necessary:

Theorem 14 A connected directed graph H is a directed 
proper interval graph if and only if the out-neighorhood 
N+(r) is complete (and hence a transitive tournament) for 
every r ∈ V  and forms an interval in the (unique) vertex 
order.

Proof The equivalence of proper interval graphs and so-
called closed graphs is shown in [55]. By definition, H is 
closed if it has so-called closed vertex ordering equiva-
lent to the umbrella property [55]. Prop.2.2 in [56] states 
that a vertex ordering ≺ is closed if and only if the out-
neighborhood is complete and forms an interval w.r.t. ≺ . 
Together with the forward-orientation of the edges of H 
w.r.t. ≺ , this in particular implies that N+(r) is transitive 
tournament. �

An analogous result holds for the in-neighbors. Equiv-
alently, proper interval graphs are also characterized by 
the fact that they admit a straight vertex order in which 
the in-neighbors of r, r itself, and then the out-neighbors 
of r appear consecutively [47].

For real data the subgraph  induced by the 
out-neighbors of r will in general violate the transitive 
tournament property. The problem of finding the maxi-
mum transitive tournament in an acyclic graph is NP-
hard [57]. An approximation can be obtained, however, 
using the fact that a transitive tournament has a unique 
directed Hamiltonian path. Thus candidates for transitive 
tournaments in  can be retrieved efficiently as 
the maximal path Prq in  that connects r with an 
endpoint  q, i.e., a vertex without an outgoing edge 
within . Using the topological order ofG, the 
maximal paths Prq can be traced back in O(|N+(r)|) time 
for each endpoint Prq.

For Prq we compute the number . 
The subgraph  with the largest value of hrq serves 
as approximation for the maximal transitive tournament 
with r as its top element. Its edge set  is 
used to define the interval support of an edge  as

Here, d(r,  e) is the minimal number of edges in the 
unique path from r to e in the path formed by the edges 
in  Hr . The interval support can be interpreted as the 
number of triangles that support e as lying within an 
induced proper interval graph. Importantly, it suffices to 
compute ν(e) for . The idea is now to choose, 
at every vertex r with more than one successor or 

(4)

precedssor in  the edges in N+(r) and N+(r) that have 
the maximal interval support. We observed empirically 
that determining the best path by greedily optimizing 
ν(e) at branch points results in contigs with a better solu-
tion quality compared to optimizing the weight �(e) of 
the spanning tree edges of TG . Taken together, we arrive 
at the following heuristic to iteratively extract meaningful 
paths: 

(i)  Find a maximal path p = r1, . . . , rn in  such that 
at every junction, we choose the incoming and 
outgoing edges e with maximal interval support 
ν(e).

(ii)  Add the path p to the contig set if it is at least two 
nodes long and neither the in-neighborhood 
N−(r1) nor the out-neighborhood N+(rn) is 
already marked as “visited” inG. Otherwise, we 
have found a tip if one of N−(r1) or N+(rn) was 
visited before and a bubble if both were visited. 
Such paths are assumed to have arisen from more 
complex crosslinks and can be added to the contig 
set if they exceed a user-defined minimum length.

(iii)  The path p is marked “visited” inG and all corre-
sponding nodes and edges are deleted from .

(iv)  The procedure terminates when  is empty.

 As the result, we obtain a set of paths, each defining a 
contig.

Post processing of the path decomposition
Consensus sequence
The final step is the retrieval of a consensus sequence 
for each path p . This step is more complicated than 
usual due to the nature of our initial mappings. While 
we enforce compatible sets of unitigs for each pair of 
long reads, a shared unitig between edges does not nec-
essarily imply the same genomic coordinate. We have to 
consider four distinct situations: (i) Unitigs can be long 
enough that we gain triples ri, ri+1, ri+2 ∈ V (p) such that 
an s ∈ Sriri+1 ∩Sri+1ri+2 exists but ri and ri+2 share no 
interval on s. Such triples can occur chained. (ii) Unitigs 
of genomic repeats may remain in the data. Such unit-
igs may introduce pairwise distinct edges ei, ej , ek that 
appear in this order, denoted by ei ≺ ej ≺ ek , along the 
path p such that s ∈ Sei and s ∈ Sek but s /∈ Sej , there-
fore creating disconnected occurrences of s. (iii) Simi-
larly, proximal repeats may cause inversions in the order 
of two unitigs s, s′ ∈ Sei ∩Sek , w.l.o.g ei ≺ ek . This sce-
nario cannot appear on neighboring edges, as the shared 
node has a unique order of s and s′ . Hence, either s or s′ 
must be missing in an intermediary edge el due to the 
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consistency constraints in the original graph, resulting in 
a situation as described in (ii). (iv) Finally, true matches of 
unitigs may be missing for some long reads due to align-
ment noise, which may also yield a situation as in (ii).

To address (i), we collect all instances of a unitig 
in the path independent of its context. We cre-
ate an undirected auxiliary graph Us with a vertex set 
V (Us) := {e ∈ E(p) | s ∈ Se} . We add edges for all edge-
pairs that share an overlap in s. Any clique in this graph 
then represents a set of edges that share a common inter-
val in  s. We assign each edge a unique cluster index ces , 
according to a minimal size clique decomposition. As 
finding a set of maximal cliques is NP-hard, we instead 
resort to a O(|V |/(log |V |)2) heuristic [58]. We address 
(ii-iv) with the help of a second index ges  , where geis  = g

ek
s  

for two edges ei, ek if and only if an edge ej exists such that 
ei ≺ ej ≺ ej and s /∈ Sej.

Finally, we can now create a multigraph M consisting of 
vertex triples {(s, ces , ges ) | s ∈ Se with e ∈ E(p)} . We add 
edges (s, ces , ges ) → (s′, c′es , g

′e
s ) if and only if s ≺ s′ on an 

edge e and no element s′′ exists such that s ≺ s′′ ≺ s′ . The 
resulting graph M is cycle free and thus uniquely defines 
the positions of all unitigs. Nodes represent the sequence 
of the common interval on the unitig s as attributed to 
the clique ces . Edges represent the respective sequence of 
long reads between s and s′ , or a negative offset value if 
unitigs overlap. We take an arbitrary node in M and set 
its interval as the reference point. Positions of all other 
nodes are progressively built up following a topological 
order in this graph. If multiple edges exist between two 
nodes in this process an arbitrary but fixed edge is cho-
sen to estimate the distance between nodes.

At this point, all sequence features are embedded in 
the same coordinate system. The reference contig is 
obtained as an in principle arbitrary projection of the 
read sequences. In practice, the short-read unitigs are 
used wherever available because of their much higher 
sequence quality. At the same time, we can map the fea-
tures of each long read to their respective position in this 
newly constructed reference. This information can be 
directly fed into consensus based error correction sys-
tems such as racon [59].

Benchmarking
To demonstrate the feasibility of our assembly strategy 
we applied LazyB to data sets from previously published 
benchmarks of Nanopore assemblies. For yeast (S. cerevi-
siae) we used Nanopore sets ERR1883389 for lower cov-
erage, ERR1883399 for higher coverage, and short-reads 
set ERR1938683, all from bioproject PRJEB19900 [60]. 
For comparison we used the reference genome R64.2.1 
of strain S288C from the SGD. For fruit fly (D. mela-
nogaster) we used the Oxford Nanopore and Illumina 

raw data of bioproject PRJNA433573 [61], and the Fly-
Base reference genome 6.30 (http:// www. flyba se. org). For 
Human we uses accession SRX6356866-8 of bioproject 
PRJNA549351 [62] for long reads and SRA292482 [63] 
for short reads. Assemblies are compared against the 
NCBI reference genome GRCh38.p13.

Sequencing data were downsampled to approxi-
mately 5 × and 10× nanopore coverage for long reads, 
respectively, and Illumina coverage sufficient for short-
read anchors. We compare results to the most wide-
spread competing assembler Canu [10] and the faster 
Wtdbg2 [13], both demonstrating the disadvantages 
of long-read-only strategies especially in low coverage 
scenarios, although Wtdbg2 requires considerately less 
coverage in comparison. Additionally, we benchmarked 
two tools implementing the most closely related concept: 
DBG2OLC [23] and most recent competitor HASLR [21]. 
Finally, we added Wengan [19] as a leading but concep-
tually very unique alternative. Wengan uses long reads 
to scaffold a short read assembly and therefore exhibits 
very high levels of completeness even when presented 
with very few reads. It defaults to the pre-existing con-
tigs or statistically insignificant scaffolds when nothing 
else can be done. This behavior can be mimicked par-
tially with LazyB by merging our assembly to the same 
short-read-only assembly as used by Wengan. However, 
we strictly limit merging to regions with strong support 
from long read contigs to avoid spurious scaffolds. While 
not ideal, we used the pre-existing tool Quickmerge 
[64] to investigate such effects. At very low long read 
coverage, integration with a short read assembly is gen-
erally advisable to close gaps in long reads unavoidably 
arising on complex genomes. For reference, we also pro-
vide the statistics for short-read only assemblies created 
with ABySS [29] on the same sets of reads used to create 
the “anchors” to show the advantage of hybrid assembly 
even at a low coverage of long reads. The same short read 
assembly was used also for Wengan and Quickmerge 
on LazyB. Quality was assessed via alignment to a refer-
ence genome by the QUAST tool [65].

Table 3 summarizes the benchmarking results. Unsur-
prisingly, LazyB produced consistently better results 
than Canu and Wtdbg2, increasing genomic coverage 
at a lower contig count. Due to our inclusion of accu-
rate short-read unitigs, overall error counts are also sig-
nificantly lower than on Canu. Most notably, Canu was 
unable to properly operate at the 5 × mark for both data 
sets. Only insignificant portions of the yeast genome 
could be assembled, accounting for less than 15% of the 
genome. Canu completely failed for fruit fly, even after 
adapting settings to low coverage. Wtdbg2 performed 
only marginally better, although it managed to assemble 
6% of fruit fly at low coverage. Even at 5 × , LazyB already 

http://www.flybase.org
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significantly reduces the number of contigs compared to 
the respective short-read assemblies, while retaining a 
reasonably close percentage of genome coverage. At only 
10× coverage for fruit fly, we were able to reduce the con-
tig count 10-fold at better error rates. For human, LazyB 
manages at 39-fold decrease of the number contigs, albeit 
at a loss of greater 10% coverage. This difference appears 

to be a consequence of the high fragmentation of unitigs 
in the abundant repeat regions of the genome, rendering 
them too unreliable as anchors. Results are indeed in line 
with unitig coverage. While HASLR produced the fewest 
mis-assemblies, it creates significantly more and shorter 
contigs that cover a much smaller fraction of the genome. 
As a consequence it has the least favorable NA50 values 

Table 3 Assessment of assembly qualities for LazyB, Canu Wtdbg2, HASLR, Wengan and short-read only assemblies for two 
model organisms

LazyB outperforms Canu and Wtdbg2 in all categories, while significantly reducing contig counts compared to short-read only assemblies. While HASLR is more 
accurate, it covers significantly lower fractions of genomes at a higher contig count and drastically lower NA50. DBG2OL produces few contigs at a high NA50 for 
higher coverage cases, but calls significantly more mis-assemblies. Wengan performs well for yeast, but produces more misassemblies at a higher contig count on 
fruit fly. Merging LazyB assemblies to the set of short read contigs (+QM) has a positive effect at 5 × long-read coverage but negligible influence at higher coverage. 
Mismatches and InDels are given per 100 kb. Accordingly, errors in LazyB ’s unpolished output constitute < 1 % except for human. Wtdbg2 assemblies were not 
polished. Column descriptions: X coverage of sequencing data, completeness of the assembly. #ctg: number of contigs, #MA: number of mis-assemblies (breakpoints 
relative to the reference assembly) M is Matches and InDels relative to the reference genomes. NA50 of correctly assembled contigs. We follow the definition of 
QUAST: Given a set of fragments as the sub-regions of the original contigs that were correctly aligned to the reference, the NA50 (also named NGA50) is defined as the 
minimal length of a fragment needed to cover 50% of the genome. This value is omitted when < 50% is correctly recalled

Org. X Tool Compl. [%] #ctg #MA MM InDels NA50

Yeast ∼5× LazyB 90.466 127 9 192.56 274.62 118843

LazyB+QM 94.378 64 12 174.77 245.05 311094

Canu 14.245 115 5 361.47 2039.15 –

Wtdbg2 22.237 177 0 849.07 805.31 –

HASLR 64.158 111 1 14.87 34.86 60316

DBG2OLC 45.645 53 20 2066.64 1655.92 –

Wengan 95.718 41 11 49.14 68.47 438928

∼11× LazyB 97.632 33 15 193.73 300.20 505126

LazyB+QM 94.211 34 14 234.59 329.4 453273

Canu 92.615 66 15 107.00 1343.37 247477

Wtdbg2 94.444 42 8 420.96 1895.28 389196

HASLR 92.480 57 1 7.89 33.91 251119

DBG2OLC 97.689 38 25 55.06 1020.48 506907

Wengan 96.036 37 4 32.35 53.04 496058

∼80× Abyss 95.247 283 0 9.13 1.90 90927

Fruit fly ∼5× LazyB 71.624 1879 68 446.19 492.43 64415

LazyB+QM 75.768 1164 79 322.49 349.29 167975

Canu – – – – – –

Wtdbg2 6.351 2293 2 916.77 588.19 –

HASLR 24.484 1407 10 31.07 58.96 –

DBG2OLC 25.262 974 141 1862.85 969.26 –

Wengan 81.02 2129 192 105.35 123.33 77215

∼10× LazyB 80.111 596 99 433.37 486.28 454664

LazyB+QM 80.036 547 100 416.34 467.14 485509

Canu 49.262 1411 275 494.66 1691.11 –

Wtdbg2 41.82 1277 155 2225.12 1874.01 –

HASLR 67.059 2463 45 43.83 84.89 36979

DBG2OLC 82.52 487 468 739.47 1536.32 498732

Wengan 84.129 926 237 114.96 154.03 221730

∼45× Abyss 83.628 5811 123 6.20 8.31 67970

Human ∼10× LazyB 67.108 13210 2915 1177.59 1112.84 168170

∼43× Unitig 69.422 4146090 252 93.07 13.65 338

∼43× Abyss 84.180 510315 2669 98.53 25.03 7963
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of all tools. For fruit fly at 10× , it results in four times as 
many contigs and covers 10% less of the genome, with a 
12 times lower NA50. While an improvement to Canu, 
it also struggles on datasets with low Nanopore cover-
age. DBG2OLC shows great promise compared to our 
own method, but similarly fails to operate well on very 
low coverage datasets. For yeast at 5 × , less then 50% 
the genome can be reconstructed. In fruit fly even less 
then 25% can be assembled at about 2 times the error 
rate of LazyB. At 10× , DBG2OLC reconstruct a simi-
lar proportion of the genome, albeit at high error rates. 
While it produces about 100 fewer contigs for fruit fly, 
this achievement is offset by over 350 (4.7 times more) 
mis-assemblies.

A Comparison with Wengan is more complex due 
to its unique method. Integration of the AByss short-
read assembly has little effect on LazyB at 10× , as the 
genomes of both yeast and fruit fly are already well cov-
ered. At 5 × , contigs are around halved with negligible 
adverse consequence to misassemblies, furthering our 
advantage. Since the merging step cannot significantly 
increase genome coverage, we did not consider it for 
other tools. On yeast, Wengan improves LazyB results 
marginally both at 5 × and 10× . On fruit fly, in turn, 
LazyB produced substantially better assemblies. At 5 × , 
250 fewer contigs (11%) were created at nearly 3 times 
fewer misassemblies, although 10% less of the genome is 
covered. Integration of the short read assembly widens 

the gap to 965 (45%) fewer contigs and increases the frac-
tion of covered reference by an additional 5%. At 10× 
LazyB calls over 1.5-times fewer contigs with less than 
half the number of misassemblies out of the box.

In order to establish the limits of suitable coverage for 
our method, we set up two simple range tests: coverage of 
either long reads and short reads is systematically varied 
while the other remains fixed; see Figs. 8 and 9. Unsur-
prisingly, the quality of LazyB assemblies increases with 
coverage, for both short and long reads. Short read cov-
erage is positively correlated to assembly quality with 
only some notable saturation in fruit fly. Conversely, long 
read coverage reaches its optimum at 10× in both organ-
ism. While no notable improvements can be achieved 
after this point, also no negative trend can be seen in the 
tested range up to 30× . At 5 × long reads the number of 
contigs increases, but genome coverage remains nearly 
stable. Only at 2.5x also a notable drop in coverage. The 
quality of the assembly remains respectable even then, 
however.

We chose human for further testing of this thresh-
old since it is the largest and most complex genome 
with a high quality reference for which suitable Oxford 
Nanopore data were available to us. In line with our 
previous tests, we consider even lower long read cov-
erage than before (1–2.5× ; see Table  4). Wtdbg2 and 
DBG2OLC failed to assemble significant regions of the 
genome. Canu had to be excluded as the pipeline failed 

Fig. 8 Variation of short (Top) and long read (Bottom) coverage for yeast. Long read coverage is set fixed at 10× or short read coverage at maximum 
( ∼ 82× ) respectively. Result are given as the statistics of LazyB assembly : (Left) number of contigs, (Middle) fraction of the reference genome 
covered, and (Right) the number of misassemblies



Page 18 of 23Gatter et al. Algorithms Mol Biol            (2021) 16:8 

completely. Wengan’s results appear impressive at first 
glance, calling up to nearly 75% of the genome cor-
rectly, at over 6 times fewer contigs than the short-read 
assembly.

However, the mystery behind this result is hidden in 
the vastly increased number of misassemblies, close 
to doubling the already high misassembly rate of the 
underlying short-read assembly. While LazyB produces 
shorter contigs and covers much less of the genome (up 

Fig. 9 Variation of short-(Top) and long-read (Bottom) coverage for fruit fly. Long read coverage is set fixed at 10× or short read coverage at 
maximum ( ∼ 43× ) respectively. Result are given as the statistics of LazyB assembly: (Left) number of contigs, (Middle) fraction of the reference 
genome covered, and (Right) the number of misassemblies

Table 4 Assessment of assembly qualities for very low coverage of long reads at maximum short read coverage ( ∼ 43× ) on human

Column descriptions: X: coverage of sequencing data, complcompleteness of the assembly. #ctg: number of contigs, #MA: number of mis-assemblies (breakpoints 
relative to the reference assembly) M isMatches and InDels: relative to the reference genomes

X Tool Compl.[%] #ctg #MA MM InDels

1× LazyB 10.329 38342 109 831.14 773.86

LazyB+QM 19.023 39588 280 418.26 332.60

Wtdbg2 0.285 6724 21 1477.08 313.01

DBG2OLC 0.771 9475 10 1050.82 202.51

Wengan 67.220 116201 4057 208.38 142.51

2× LazyB 25.865 69043 432 938.26 814.44

LazyB+QM 35.151 68180 693 648.35 521.57

Wtdbg2 2.069 24346 126 1334.25 384.36

DBG2OLC 3.904 34069 58 959.98 492.63

Wengan 72.915 90784 4954 259.42 195.63

2.5× LazyB 32.126 70690 692 978.28 825.80

LazyB+QM 39.796 69053 917 753.19 606.78

Wtdbg2 3.702 32031 163 1202.70 412.21

DBG2OLC 7.104 42864 170 1044.31 679.40

Wengan 74.835 80605 5115 271.25 211.36

∼43× ABySS 84.180 510315 2669 98.53 25.03
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to 32%) in comparison, it does so at an error rate propor-
tional to or better than the short read assembly. At this 
level of coverage, it seems unlikely to recover the genome 
both completely and correctly, but rather, a trade-off 
between both occurs. Unfortunately, we were not able to 
adjust settings on either tool to match the behavior of the 
other for a direct comparison. Yet, we can conclude that 
LazyB is well suited to improve the contiguity of short 
reads assemblies ad hoc. LazyB produces significantly 
larger contigs at 2 × and 2.5× . Total counts of large contigs 
increase despite covering significantly less of the genome 
(84% vs 25-32%); see Fig.  10. Merging short and long 
read assembly with Quickmerge improves recall and 
reduces the number of contigs (except for 1 × ) at the cost 
of a commensurate increase of misassemblies.

To address our assertion that ploidy is effectively 
reduced to a mixed haplotype by our method, we can 
follow two general strategies for verification. Given 
a reference, the presence of separated haplotypes will 
appear as duplicate overlapping alignments against the 
reference. None of the QUAST statistics gathered for 
LazyB show duplication beyond 2%. As a secondary, 
reference independent, method, copy number spec-
trum plots can be used. Multiplicty of k-mers of short 
read is gather and colored by the number of times it 
is found in a given assembly. In diploid assemblies, we 
would expect two peaks: at 2 times base coverage for 
shared stretches of the genome and at base coverage for 
unique regions. Analysis with Merqury [66] revealed 

only a single peak (Fig. 11) at twice the coverage for the 
most complex assembly on human, thus indicating a 
mixed haplotype as predicted.

The resource footprint of LazyB is small enough to run 
on an off-the-shelf desktop machine or even a laptop. The 
total effort is, in fact, dominated by the computation of 
the initial unitig set from the short reads. We expect that 
an optimized re-implementation of LazyB will render its 
resource consumption negligible. Compared to the com-
peting Canu assembler, the combination of ABySS and 
the python-prototype of LazyB is already more than 
a factor of 60 faster. In terms of memory, given precom-
puted unitigs LazyB also requires 3− 18 times less RAM 
than Canu, see Table 5. LazyB is also significantly faster 
than the more resource efficient Wtdbg2 and Wen-
gan. Most notably, we were able to assemble the human 
genome within only 3 days, while Canu could not be run 
within our resource constraints. HASLR shows a simi-
lar distribution of running times between tasks, overall 
operating slightly faster. We could not process our human 
test set with HASLR, however. A human DBG2OLC 
assembly can be estimated to take several weeks without 
manual parallelization for a single set of parameters, with 
authors recommending several possible alternatives for 
optimization. We therefore include only the results for 
LazyB here, and leave a more detailed comparison of 

Fig. 10 Length distribution of contigs for the human short read 
assembly of ABySS at 43× contrasted to LazyB assemblies at 1 × , 
2 × and 2.5× coverage. Counts for ABySS at low contig lengths have 
been cut off to allow better visibility of the desired region. LazyB 
surpasses total counts

Fig. 11 Copy number spectrum plot generated by Merqury as 
k-mers ( k = 21 as recommended) plotted as stacked histograms 
colored by the copy numbers found in the 10× long-read coverage 
assembly of LazyB. The typical peak generated at slightly less than 
twice the short-read coverage ( 2 · 43× = 86× ) in concordance with 
the absence of higher copy numbers clearly indicate the presence 
of only a single mixed haplotype. The small elevation of k-mers only 
found in reads at the level short-read coverage can be attributed to 
few haplotype regions not fitting well to the mixture. The slight shift 
in short-read coverage versus k-mers arises out of the uncorrected 
high error rate of long reads
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the performance for very complex genomes for a proper 
follow-up experiment.

Discussion and outlook
We demonstrated here the feasibility of a new strat-
egy for sequence assembly with low coverage long-read 
data. Already the non-optimized prototype LazyB, writ-
ten entirely in python, not only provides a significant 
improvement of the assembly but also requires much 
less time and memory than state-of-the-art tools. This is 
achieved by avoiding both a correction of long reads and 
an all-vs-all comparison of the long reads. Instead, we use 
rigorously filtered short-read unitigs as anchors, spar-
sifying the complexity of full string-graph construction. 
LazyB then uses a series of fast algorithms to consist-
ently orient this sparse overlap graph, reduce it to a DAG, 
and sort it topologically, before extracting contigs as 
maximum weight paths. This workflow relies on enforc-
ing properties of ideal overlap graphs that have not been 
exploited in this manner in competing sequence assem-
bly methods.

The prototype implementation leaves several avenues 
for improvements. We have not attempted here to pol-
ish the sequence but only to provide a common coor-
dinate system defined on the long reads into which the 
short-reads unitigs are unambiguously embedded to yield 
high-quality parts of the LazyB -assembly. The remain-
ing intervals are determined solely by long-read data with 
their high error rate. Multiple edges in the multigraph 
constructed in the assembly step correspond to the same 
genome sequence, hence the corresponding fragments of 
reads can be aligned. This is also true for alternative paths 
between two nodes. This defines a collection of align-
ments distributed over the contig, similar to the situation 
in common polishing strategies based on the mapping 
of (more) short-read data or long reads to a preliminary 
assembly. Preliminary tests with off-the-shelf tools such 
as racon [59], however, indeed improve sequence iden-
tity but also tend to introduce new translocation break-
points. We suspect this is the consequence of InDels 
being much more abundant than mismatches in Nanop-
ore data, which is at odds with the Needleman–Wunsch 
alignments used by polishing tools.

We suspect that further improvements can be 
achieved by improving the quality of the initial over-
lap graph. Conceivably, more stringent filtering of the 
short-read unitigs against multi-copy sequences with 

Table 5 Assessment of running times for all tools. Resource 
consumptions for LazyB are shown for the complete assembly 
process comprising (1) ABySS unitig assembly; (2) Mapping of 
unitigs to long reads and (3) running LazyB itself, denoted by 
A+m+ LazyB, and the the last step only, denoted by LazyB 

Step (1) is often not needed as short-read assemblies are available for many 
organisms

Similarly, Wengan requires a full ABySS assembly as a its basis. Resources are 
only compared for yeast and fruit fly, because Canu cannot be run for human 
in acceptable time and resource-constraints on our equipment. As all tools 
except LazyB and DBG2OL are parallelized, running times are given as the sum 

× Tool Time RAM (MB)

Yeast

ABySS unitig 00:00:11:03 2283

ABySS full 00:00:20:01 2283

∼5× Mapping 00:00:00:05 540

LazyB 00:00:00:30 136

A+m+ LazyB 00:00:11:38 2283

Canu 00:10:23:55 2617

Wtdbg2 00:00:13:08 698

HASLR 00:00:06:44 4922

DBG2OL 00:00:31:46 1141

Wengan 00:00:06:45 4400

A+Wengan 00:00:26:46 4400

∼11× Mapping 00:00:00:15 1544

LazyB 00:00:01:46 362

A+m+ LazyB 00:00:13:04 2283

Canu 00:13:44:16 6779

Wtdbg2 00:00:29:28 1142

HASLR 00:00:08:09 4922

DBG2OL 00:00:51:13 1264

Wengan 00:00:14:29 4421

A+Wengan 00:00:34:30 4421

Fruit fly

ABySS untig 00:02:32:39 25344

ABySS full 00:04:56:03 25346

∼5× Mapping 00:00:02:43 6433

LazyB 00:00:08:33 613

A+m+ LazyB 00:02:43:55 25344

Canu 02:13:51:39 7531

Wtdbg2 00:01:37:41 3395

HASLR 00:01:30:33 5531

DBG2OL 00:07:58:22 6151

Wengan 00:01:41:26 5394

A+Wengan 00:06:10:29 25346

∼10× Mapping 00:00:06:11 9491

LazyB 00:00:11:57 2241

A+m+ LazyB 00:02:50:47 25344

Canu 07:04:08:28 7541

Wtdbg2 00:04:02:43 5024

HASLR 00:01:43:21 5553

DBG2OL 02:07:32:01 17171

Wengan 00:02:28:51 5323

A+Wengan 00:07:24:54 25346

of time spent by all CPUs. Therefore, computational effort is measured rather 
than wallclock time. ABySS greatly dominates the LazyB pipeline and to a 
lesser degree also Wengan. Nevertheless, LazyB is faster by a factor of > 60 
compared to Canu, ≈ 3 compared to DBG2OL, and ≈ 2.5 to Wengan

Table 5 (continued)
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similarities comparable to the expected error levels in 
the long reads can reduce spurious edges. It may also 
be worthwhile to compute pairwise alignments of the 
long-read sequences that form edges in overlap graph 
to confirm overlapping intervals. However, as we have 
seen, classical aligners do not perform satisfactorily, 
presumably due to the InDel-dominated error profile 
of the current long read sequencing methods. Better 
alignment approaches would also be required in the 
finishing steps. It remains to be seen whether dedi-
cated aligners methods, such as the current-level mod-
eling approach of QAlign [67] are able to resolve these 
issues.

A prominent category of mis-assemblies within the 
LazyB contigs are inherited from chimeric reads. This 
therefore suggests an iterative approach: Subsampling 
the long-read set will produce more fragmented con-
tigs, but statistically remove chimeric reads from the 
majority of replicate assemblies. Final contigs are con-
structed in a secondary assembly step by joining inter-
mediary results. It might appear logical to simply run 
LazyB again to obtain a “consensus” assembly, where 
intermediary contigs play the role of longer reads with 
mapped anchors. In preliminary tests, however, we 
observed that this results in defects that depend on the 
sampling rate. The question of how to properly design 
the majority calling to construct a consensus assembly 
remains yet to be answered.

Finally, a proper pipeline needs to be established 
to join short-read assemblies and very low coverage 
LazyB assemblies. While Quickmerge appears to 
produce satisfying results (and short-read contigs in 
regions not covered by the long-read assembly could be 
fished out as the set of uninvolved contigs in this pro-
cess), we presume a dedicated method may yield even 
better results.
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