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Abstract 

Motivation: k-mer counting is a common task in bioinformatic pipelines, with many dedicated tools available. Many 
of these tools produce in output k-mer count tables containing both k-mers and counts, easily reaching tens of GB. 
Furthermore, such tables do not support efficient random-access queries in general.

Results: In this work, we design an efficient representation of k-mer count tables supporting fast random-access 
queries. We propose to apply Compressed Static Functions (CSFs), with space proportional to the empirical zero-order 
entropy of the counts. For very skewed distributions, like those of k-mer counts in whole genomes, the only currently 
available implementation of CSFs does not provide a compact enough representation. By adding a Bloom filter to 
a CSF we obtain a Bloom-enhanced CSF (BCSF) effectively overcoming this limitation. Furthermore, by combining 
BCSFs with minimizer-based bucketing of k-mers, we build even smaller representations breaking the empirical 
entropy lower bound, for large enough k. We also extend these representations to the approximate case, gaining 
additional space. We experimentally validate these techniques on k-mer count tables of whole genomes (E. Coli and C. 
Elegans) and unassembled reads, as well as on k-mer document frequency tables for 29 E. Coli genomes. In the case of 
exact counts, our representation takes about a half of the space of the empirical entropy, for large enough k’s.
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Background
Nowadays, many bioinformatics pipelines rely on k-mers 
to perform a multitude of different tasks. Representing 
sequences as sets of words of length k generally leads to 
more time-efficient algorithms than relying on traditional 
alignments. For these reasons, alignment-free algorithms 
have started to replace their alignment-based coun-
terparts in a wide range of practical applications, from 
sequence comparison and phylogenetic reconstruction 
[1–4] to finding SNPs [5, 6] and other tasks. These algo-
rithms often require to associate some kind of informa-
tion to k-mers involved in the analysis, that is, to build 
maps where keys are k-mers. Typical values to associate 
to k-mers are their frequencies in a particular dataset. 

Actual counting can be performed by one of several 
available k-mer counting tools developed in recent years 
[7–10]. Count tables generally include both k-mers and 
counts requiring considerable amounts of disk space to 
be stored. For example, the output generated by KMC [7] 
for a human genome, with k = 32 weights in at around 
28GB.

In many applications, space can be significantly reduced 
by representing the mapping without actually storing 
k-mers. Having two independent data structures allows 
for more aggressive space optimizations. For example, 
the original sequence dataset can be used as the primary 
source of k-mers while a random-access data structure 
will then allow retrieving their counts efficiently. One 
application of such a data structure is the efficient repre-
sentation of k-mer counts for read correction [11]. More 
generally, information about k-mer counts is increasingly 
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used in other applications too [1, 5, 6, 12–15], which can 
benefit from space-efficient solutions.

Minimal Perfect Hash Functions (MPHFs for short) 
implement such an approach [16–18] and have been 
exstensivly used in bioinformatics in recent years [19, 
20]. A MPHF bijectively maps each item from a set S to 
an index in the range [0, |S| − 1] . Any additional infor-
mation can then be stored in an array indexed by the 
values returned by the MPHF. However, using an exter-
nal array to store counts can be suboptimal when count 
values are non-uniformly distributed, i.e. the empirical 
entropy of their distribution is low. It is in fact known 
that k-mer counts for fully assembled genomes follow 
a skewed heavy-tail distribution [21, 22]. For k large 
enough, counts tend to be power-law distributed, with 
the majority of k-mers occurring only few times, mostly 
once. Because of this, the multiset of k-mer counts will 
typically have a fairly low empirical zero-order entropy 
and it could be effectively compressed to save further 
space. However, simply compressing the count array 
does not maintain queryability, which requires special-
ized algorithms for this task. The same considerations 
apply to unassembled datasets as long as the empirical 
entropy of the multiset of counters is low. Note also that 
MPHFs themselves encompass a non-negligible space 
overhead even without the space for storing the values, 
with BBHash [19] requiring around 3 bits/key whereas 
the theoretical minimum is 1.44.

Maps on static sets of keys can also be encoded using 
so-called Static Functions [23, 24]. Unlike MPHFs, the 
actual hash function and the values are encoded into the 
same structure. In particular, Compressed Static Func-
tions (CSFs) try to benefit from the compressibility of the 
value array and approach the number of bits defined by 
the empirical entropy. This feature makes them particu-
larly useful for representing different k-mer annotations, 
such as counts or presence information across sequences 
of a given sample [12–15]. CSFs can be used as readily 
available drop-in replacements of MPHFs since both 
methods assume that only k-mers present in the datasets 
can be queried for their frequency. In many cases, this is 
not restrictive as the “universe” of query k-mers can be 
effectively specified: for example, it can be restricted to 
k-mers from a given genome or a pan-genome. It is also 
conceivable to add an appropriate structure providing 
presence-absence information, in order to benefit from 
the reduction of space provided by a compact count 
representation.

The goal of this paper is to study data structures for 
storing genomic k-mer count tables using the smallest 
possible space. Our first contribution is the enhancement 
of CSFs with a Bloom filter to deal with datasets of very 

small entropy and to achieve better space usage. We call 
it Bloom-enhanced CSF or BCSF for short. Our second 
improvement takes advantage of the fact that similar 
k-mers tend to have identical (or similar) counts (see also 
[12]). Following this insight, we introduce a minimizer-
based bucketing scheme to cluster together count values 
of k-mers with the same minimizer. A similar idea is used 
by some k-mer counting algorithms [7, 8, 25] with the 
difference that in our case buckets contain counts rather 
than the k-mers themselves. By choosing a representative 
value for each bucket, we obtain a “bucket table” that we 
encode using Bloom-enhanced CSF.

We study different implementation schemes based 
on these ideas and compare their space performance, 
as well as associated query time. Our results show that 
our algorithms are useful for both low and high entropy 
datasets. For large enough k (and large enough minimiz-
ers lengths), we are able to compress count values in less 
space than their empirical entropy while retaining fast 
query times. To the best of our knowledge, this is the first 
implementation proposing such a compact representa-
tion. We also study an extension of our algorithm to the 
approximate case for which we save additional space by 
allowing a pre-defined absolute error over queries.

Technical preliminaries
Throughout the paper we consider a k-mer count table to 
be an associative array f mapping a set of k-mers K, con-
sidered static, to their counts, i.e. number of occurrences 
in a given dataset. ||f ||1 stands for the L1-norm of f, that 
is 
∑

q∈K f (q).

Minimizers
Minimizers are a popular technique used in different 
applications involving k-mer analysis. Given a k-mer 
q of length k, its minimizer of length m, with m ≤ k , is 
the smallest substring of q of length m w.r.t. some order 
defined on m-mers. The use of minimizers for biose-
quence analysis goes back to [26], whereas a similar con-
cept, named winnowing, was earlier applied in [27] to 
document search. The guiding idea is that a minimizer 
can be considered as a “footprint” (hash value) of a cor-
responding k-mer so that similar (e.g. neighboring in the 
genome) k-mers are likely to have the same minimizer. 
The order of m-mers is usually defined via a standard 
non-cryptographic hash function. In this case, minimiz-
ers can be seen as a specific instance of locality-sensitive 
hashing, in particular of MinHash sketching [28]. The 
choice of hash function is not important as long as it has 
good statistical guarantees (randomness and uniformity). 
Note that the lexicographic ordering has been shown to 
have poor statistical properties [26].



Page 3 of 15Shibuya et al. Algorithms for Molecular Biology            (2022) 17:5  

Minimizers have been successfully applied to vari-
ous data-intensive sequence analysis problems in bio-
informatics, such as metagenomics (Kraken [29]) or 
minimizing cache misses in k-mer counting (KMC [7]), 
or mapping and assembling long single-molecule reads 
[30, 31]. Recently, there has been a series of works on 
both theoretical and practical aspects of designing effi-
cient minimizers, see e.g. [32, 33] and references therein.

Bloom filters
A Bloom filter is a very common probabilistic data struc-
ture that supports membership queries for a given set S 
drawn from a large universe U, admitting a controlled 
fraction of false positives. To insure a false positive rate 
ε , that is the probability ε for an item from U \ S to be 
erroneously classified as belonging to S, a Bloom filter B 
requires |S| log e log 1

ε
 bits, i.e. ≈ 1.44 log 1

ε
 bits per ele-

ment of S. For a set T ⊆ U \ S , we denote FPB(T ) the set 
of false positives of T, of expected size ε|T |.

Compressed static functions
A static function (SF) is a representation of a function 
defined on a given subset S of a universe U such that an 
invocation of the function on any element from S yields 
the function value, while an invocation on an element 
from U \ S produces an arbitrary output. The problem 
has been studied in several works (see references in [23, 
24]) resulting in several solutions that allow function val-
ues to be retrieved without storing elements of S them-
selves. One natural solution comes through MPHFs: one 
can build a MPHF for S and then store function values in 
order in a separate array. This solution, however, incurs 
an overhead associated with the MPHF, known to be the-
oretically lower-bounded by about 1.44 bits per element 
of S.

This overhead is especially unfortunate when the distri-
bution of values is very skewed, in which case the value 
array may be compressed into a much smaller space. 
Compressed Static Functions try to solve this problem by 
proposing a static function representation whose size 
depends on the compressed value array. The latter is usu-
ally estimated through the zero-order empirical entropy, 
defined by H0(f ) =

∑

ℓ∈L
|f −1(ℓ)|
|K |

log( |K |

|f −1(ℓ)|
) , where L is 

the set of all values (i.e. L = {f (t) | t ∈ K }} ) and 
f −1(ℓ) = {t | f (t) = ℓ} is the set of k-mers with count ℓ . 
|K | ·H0(f ) can be viewed as a lower bound on the size of 
compressed value array, in absence of additional assump-
tions. Thus, the goal of CSFs is to approach the bound of 

H0(f ) bits per element as closely as possible, in represent-
ing a static function f.

An overview of different algorithmic solutions for 
SFs and CSFs is out of scope of this paper, we refer the 
reader to [23, 24] and references therein. [23] pro-
posed a solution for CSF taking an asymptotically opti-
mal nH0(f )+ o(nH0(f )) space (n size of the underlying 
value set), however the solution is rather complex and 
probably not suitable for practical implementation. As 
of today, to our knowledge, the only practical imple-
mentation of a CSF is GV3CompressedFunction [24], 
found in the Java package Sux4J (https:// sux. di. unimi. 
it/). Although entropy-sensitive, the method of [24], 
has an intrinsic limitation of using at least 1 bit per ele-
ment, due to involved coding schemes. This is a serious 
limitation when dealing with very skewed distributions 
of values, where one value occurs predominantly often 
and the empirical entropy can be much smaller than 1. 
This is precisely the case for count distributions in whole 
genomes, one of the applications studied in this paper.

Methods
Representation of low‑entropy data
As mentioned earlier, Compressed Static Functions 
(CSF) of [24] do not properly deal with datasets gener-
ated by low-entropy distributions, in particular with 
entropy smaller than 1. This case occurs when data-
sets have a dominant value representing a large fraction 
(say, more than a half ) of all values. This is typically the 
case with genomic k-mer count data, especially whole-
genome data, where a very large fraction of k-mers occur 
just once. For example, in E.Coli genome ( ≈5.5Mbp), 
about 97% of all distinct 15-mers occur once, with only 
the remaining 3% occurring more than once. For such 
datasets, the method of [24] does not approximate well 
the empirical entropy, as it cannot achieve less than 1 bit 
per key.

Here we propose a technique to circumvent this defi-
ciency in order to achieve, in combination with CSFs of 
[24], a compression close to the empirical entropy. We 
start by building a Bloom filter for all k-mers whose value 
is not the dominant one, and then we construct a CSF 
on all positives (i.e. true and false positives) of this filter. 
At query time, we first check the query k-mer against 
the Bloom filter and, if the answer is positive, recover its 
value from the CSF.

Formally, let K0 be the k-mers with the most common 
frequency. Let |K0| = α|K | . Assume that our Bloom filter 

https://sux.di.unimi.it/
https://sux.di.unimi.it/
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implementation takes CBF log
1
ε
 bits per key and our CSF 

implementation takes CCSF bits per key. For the purpose 
of explanation, we will specify both CBF and CCSF at the 
end of this section.

We store keys K \ K0 in a Bloom filter B and build a 
CSF for (K \ K0) ∪ FPB(K0) . The total space is

The Bloom filter enables space saving only if α is suffi-
ciently large. To decide if we need a Bloom filter, we have 
to verify if the inequality

holds for some ε < 1 . Note again that CCSF on the left 
and right sides are not exactly the same in reality, how-
ever assuming them the same is not reductive because of 
specificities of the CSF implementation we use. We will 
elaborate further on this later on. Then (2) rewrites to

Using simple calculus, we obtain that if CBF
CCSF

1−α
α

> ln 2 
(that is, CBF

CCSF

1−α
α

log e > 1 ), then (3) never holds for 
0 < ε < 1 . The left-hand side of (3) reaches its minimum 
for

and this minimum is smaller than 1 if ε0 < 1 . We con-
clude that in order to decide if a Bloom filter enables 
space saving, we have to check the value ε0 . If ε0 ≥ 1 , we 
do not need a Bloom filter, otherwise we need one with 
ε = ε0 . This shows that a Bloom filter is needed whenever

For CBF = CCSF , this gives α > 0.59.
In order to apply equation (4), we need estimates of 

CBF and CCSF , that is, estimates of the number of bits per 
element taken by our implementations of Bloom filter 
and CSF. For CBF , we have CBF = 1.44 corresponding to 
the theoretical coefficient of Bloom filters. On the other 
hand, we experimentally estimated CCSF associated with 
the implementation we use as a function of the empirical 
entropy H0 , giving:

(1)CBF (1− α)|K | log
1

ε
+ CCSF |K |((1− α)+ εα).

(2)
CBF (1− α)|K | log

1

ε
+ CCSF |K |((1− α)+ εα) < CCSF |K |.

(3)
CBF

CCSF

1− α

α
log

1

ε
+ ε < 1.

(4)ε0 =
CBF

CCSF

1− α

α
log e,

(5)α >
CBF log e

CCSF + CBF log e

In the rest of the paper we use the term Bloom-enhanced 
Compressed Static Function, BCSF for short, to speak 
about CSF possibly augmented by a prior Bloom filter, 
as described in this section. Algorithm 1 summarizes the 
computation of the BCSF data structure.

Minimizer bucketing
A key idea to reduce the computational burden of 
counting k-mers, is to use minimizers to bucket 
k-mers and split the counting process across multi-
ple tables (cf e.g. [7]). Here we use the same principle 
to bucket count values instead of k-mers themselves. 
Let Mm(K ) = {µm(q) | q ∈ K } be the set of minimiz-
ers of all k-mers of K of a given length m < k . We 
map the input set K onto the (smaller) set Mm(K ) . To 
each minimizer s ∈ Mm(K ) , corresponds the bucket 
{f (q) | q ∈ K ,µm(q) = s} . We call a minimizer and the 
corresponding bucket ambiguous if this set contains 
more than one value. The guiding idea is to replace f by 
a mapping g of Mm(K ) to N . Querying value f(q) for a 
k-mer q ∈ K  will reduce to first querying g(µm(q)) and 
then possibly “correcting” the retrieved value. In other 
words, for each bucket, we replace its set of counts with 
one representative value and we split the query into two 
operations: retrieving the representative from the buck-
ets and correcting to reconstruct the original value. The 
rationale is that k-mers having the same minimizer tend 
to have the same count allowing multiple values to be 
dealt with by a single bucket. We consider two imple-
mentations which differ on how the representatives are 
chosen and how corrections are applied.

(6)CCSF =

{

0.22H2
0 + 0.18H0 + 1.16, if H0 < 2

1.1H0 + 0.2, otherwise.
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Our first implementation is named AMB (from AMBi-
guity). An extended version of AMB (explained below) 
is presented in Algorithm  3. For non-ambiguous mini-
mizers u, AMB defines g(u) to be the unique value of the 
bucket. For ambiguous minimizers v, we set g(v) = 0 , 
where 0 is viewed as a special value marking ambigu-
ous buckets (k-mers with count 0 are not present in the 
input). This has the disadvantage of providing no infor-
mation about the values of ambiguous buckets, and also 
of making g less compressible (because of an additional 
value). On the other hand, this has the advantage of dis-
tinguishing between ambiguous and non-ambiguous 
buckets and allows the query to immediately return the 
answer for k-mers hashing to non-ambiguous buckets. 
As a consequence, unambiguous k-mers are not propa-
gated to the second layer, and if g(µm(q))  = 0 it can be 
immediately returned as f(q). We then have to store map-
ping f restricted only to k-mers from ambiguous buckets, 
which we denote f̃  . Both mappings g and f̃  are stored 
using BCSFs.

Our second implementation, named FIL (from FILtra-
tion), is shown in Algorithm  2. Here, g(s) is defined to 
be the majority value among all values of its bucket, ties 

resolved arbitrarily. In particular, if s is a non-ambigu-
ous minimizer then g(s) is set to the unique value of the 
bucket. In practice, computing the majority value may 
incur a computational overhead as this requires stor-
ing bucket values until all values are known. An option 
to cope with this, not explored further in this work, 
is to use the “approximate majority” computed by the 
online Boyer-Moore majority algorithm [34]. We then 
store a “correcting mapping” h : K → N defined by 
h(q) = f (q)− g(µm(q)) . That is, we construct another 
counting table h where each k-mer is associated to the 
correction factor h(q), which, added to the representative 
g(s) results in the original count c. Both mappings g and 
h are stored using BCSFs. The rationale for this scheme 
is that, due to the properties of minimizers, h(q) is sup-
posed to be often 0, which makes h well compressible 
using BCSF. Note that because of the majority rule, 0 will 
always be the majority value of h. Therefore, the Bloom 
filter of the BCSF storing h (if any) will hold k-mers q 
with f (q)  = g(µm(q)) (i.e. h(q)  = 0 ). Then the BCSF will 
store h restricted to k-mers with h(q)  = 0 together with 
a subset of k-mers (false positives of the Bloom filter) for 
which h(q) = 0.
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The specific definition of fi and Ki depends on the 
implementation.

The multi-layer scheme is particularly intuitive for 
the AMB implementation, where each layer stores a 
unique value for non-ambiguous minimizers and a spe-
cial value 0 otherwise. In this case, Ki consists of those 
k-mers of Ki−1 hashed to ambiguous buckets, and fi is 
simply a restriction of f to those k-mers. Algorithm  3 
shows a pseudo-code of multi-level AMB extended to 
the approximate case (see Sect.  3.4 below). The multi-
layer version of the FIL scheme is shown in Appendix 
(Algorithm 4).

Cascading
An intermediate layer corresponding to a minimizer 
length m < k , introduced in Sect. 3.2, can be viewed as a 
“filter” providing values for some k-mers and “propagat-
ing” the other k-mers to the next layer. Therefore, both 
implementations can be cascaded into more than one 
layer. This construction is reminiscent of the BBHash 
algorithm [19] or to cascading Bloom filters from [35].

For m1 < m2 < ...mℓ ≤ k , each layer i is then input 
some map fi−1 defined on a subset of k-mers Ki−1 ⊆ K  
( f0 = f  , K0 = K  ) and outputs another map fi defined on 
a smaller subset Ki ⊆ Ki−1 . Each layer stores a bucket 
table for minimizers Mmi(K ) = {µmi(q) | q ∈ Ki−1} . 
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Extension to approximate counts
In addition to cascading, AMB can also be easily extended 
to work as an approximation algorithm. Consider, to this 
end, the layered bucketing procedure desribed in  3.3. 
In the exact case, a bucket is marked as colliding when-
ever it contains two or more distinct count values. In the 
approximate case, a collision is defined if a bucket con-
tains a pair of counts, ci , cj such that |ci − cj| > δ with δ a 
pre-defined maximum absolute error. With this modifi-
cation, the algorithm guarantees to output a value within 
the absolute error δ from the true count.

We chose g(s) to be the minimum value in a bucket if 
the bucket is unambiguous. The rationale of using mini-
mum is the decreasing behavior of k-mer spectra which 
implies that smaller counts are more frequent and there-
fore more likely to constitute the majority. In order to 
detect collisions, it is then sufficient to only remember 
the maximum max(s) and minimum min(s) values seen 
by each bucket and check if max(s)−min(s) > δ . If that 
is the case, then the bucket is marked as colliding, other-
wise min(s) is chosen as representative (see Algorithm 3).

Results and discussion
Three datasets were used in this study: 

1 The collection of fully assembled Escherichia Coli 
genomes from [2], from now on referred to as “df”.

2 Escherichia Coli Sakai strain (NCBI accession num-
ber B000007) from the previous collection [2] but 

from now on referred to as “Sakai” to highlight its 
stand-alone usage.

3 Full reference genome of Caenorhabditis Elegans, 
strain Bristol N2 downloaded from RefSeq (acces-
sion number GCF_000002985.6). We will refer to this 
dataset as “Elegans”.

4 “SRR10211353” run of Illumina reads (10x cover-
age, Escherichia Coli) downloaded from NCBI SRA 
(accession number SAMN12880992).

Unless stated otherwise, FIL and AMB were run on 
all possible combinations of two and three minimizer 
lengths for k ∈ [13, 15, 18, 21] with only the best combi-
nations reported using the following naming convention:

• CSF: baseline CSF implementation from Sux4J [24].
• BCSF: extended CSF with Bloom filter from Sect. 3.1. 

It may get reduced to a simple CSF if the Bloom filter 
is not useful.

• AMB m1 k: our first implementation, selecting each 
representative by minimum and marking colliding 
buckets with a special value.

• AMB m1 m2 k: same as before but with an additional 
layer.

• FIL m1 k: our second implementation, saving into 
each bucket a majority-selected representative and 
saving corrections into its second layer.

• FIL m1 m2 k: same as before but with an additional 
layer.

Fig. 1 Results for the Sakai dataset for big values of k. For presentation purposes, H0 is represented as an additional red column in each subgroup
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Compression of skewed data
Figure  1 reports memory usage when compressing the 
Sakai dataset. Simple CSF use more than 1 bit/k-mer, 
while Bloom-enhanced CSF (BCSF) is considerably more 
efficient, reaching space closer to the entropy. For rela-
tively small k’s ( k = 13 ) AMB and FIL give almost the 
same results as BCSF, that is, minimizer-based bucketing 
is not helpful. For larger k’s, however, both AMB and FIL 

lead to significant space reductions, eventually break-
ing the entropy barrier for larger values of k ( k = 18, 21 ). 
This demonstrates that for larger k’s, minimizers provide 
an effective way of factoring the space of k-mers in such a 
way that k-mers with equal counts tend to have the same 
minimizer.

More in detail, for larger k, the overwhelming major-
ity of buckets are unambiguous (e.g. more than 99% of 

Fig. 2 Results when compressing the Elegans dataset

Fig. 3 Compressed space usage for the high entropy SRR10211353 dataset
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them, for k = 18,m = 13 ). As a consequence, AMB is 
able to “filter out” a very large number of k-mers with 
few buckets. Only a small set of k-mers, corresponding 
to ambiguous buckets, are propagated to the next layer. 
This, combined with the prevalence of one value due to 
the skewedness of the count distribution, and the fact of 
using minimizers with increasing lengths, leads to highly 

compressible bucket tables. Altogether, this enables 
breaking the empirical entropy lower bound.

The situation is similar for FIL: its first layer is even 
better compressible than the one of AMB, due to the 
absence of the additional special value which makes the 
table of AMB slightly less compressible. On the other 
hand, the BCSF of the second layer table of FIL turns out 

Fig. 4 Compressed space usage for the high entropy df dataset

Fig. 5 Compressed space usage for the high entropy df dataset when using small values of k 
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to take more space than that of AMB. This is because its 
Bloom filter operates on the large set of all k-mers, which 
implies a very small value of ε to keep the set of false pos-
itives under control, and as a consequence, a relatively 
large Bloom filter. Overall, FIL turns out to yield a slightly 
larger space than AMB.

For small k’s, none of our methods beats the empiri-
cal entropy, with minimizers unable to provide an efficient 
mean to factor the space of k-mers according to count val-
ues. On the contrary, we observe that in this case applying a 
BCSF to the input table provides the most efficient solution.

Fig. 6 Space usage when using the approximated version of AMB. Entropy (red columns) and CSF (blue columns) are reported for comparison. 
Unlike Fig. 7, AMB is able to break the empirical entropy lower bound when small errors are acceptable

Fig. 7 Space usage of AMB for the Sakai dataset with small k (FIL is slightly worse and was omitted)
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Since longer k-mers lead to more skewed data, and by 
extension, to smaller entropies, both AMB and FIL better 
compress whole genome count tables for increasing ks. 
To test this assumption we chose to compress the Elegans 
dataset (around 100 Mbp). We randomly chose m1 = 18 
and m2 = 19 for both three-layer AMB and FIL (ignoring 
m2 for the two layered versions). Figure  2 demonstrates 
that our algorithms are not limited to bacterial genomes. 
Instead they are applicable in the general case as long as 
count tables are computed on fully assembled data and 
k is large enough. Note that, under such a regime, larger 
values of k only reduce the entropy of the data, leading to 
more succinct representations whereas simple CSF could 
not go below 1.2 bits/k-mer.

Compression of higher entropy data
With very skewed data, collisions of k-mer counts may 
happen between unrelated k-mers simply because one 
counter value strongly dominates the spectrum. In order 
to demonstrate the utility of minimizers in a more gen-
eral setting other than whole genome count tables, we 
applied our methods to less skewed distributions. To this 
end, we compressed the k-mer count tables when using 
dataset SRR10211353 whose results are presented in 
Fig. 3. As opposed to fully assembled genomes, entropy 

in this case remains well above 1 even for larger values 
of k. Nonetheless, both AMB and FIL are able to pro-
duce representations more compact than both simple 
CSFs and BCSFs for all k > 13 , beating the entropy lower 
bound.

Further proof of the ability of minimizer-based buck-
eting to boost compression of k-mer count tables can 
be found in Fig. 4. Here, we compressed the table pro-
duced by counting the number of occurrences for each 
k-mer among the 29 E. coli genomes of dataset df (note 
that df is a mnemonic for “document frequency”). Note 
that entropy does not decrease as rapidly as before 
with increasing k, despite counts bounded in the range 
[1, 29].

The use of minimizers for larger k’s, proves to be ben-
eficial again, with AMB and FIL requiring much less 
space than the empirical entropy of the data. Again, 
when k = 13 , both AMB and FIL do not have an advan-
tage over a simpler (B)CSF. For even smaller k-mers (B)
CSF remains the best option (see Additional Fig. 5). The 
seemingly erroneous exceptions (BCSF taking more 
space than simple CSF) are explained by the approxima-
tion carried out by formula (2) (assumption of equal val-
ues of CCSF in both sides).

Fig. 8 Average query time for AMB with 2 and 3 layers and FIL with 2 layers
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Approximate counts
In many applications, it is acceptable to tolerate a small 
absolute error in retrieved counts. Figure 6 reports space 
usage when using the approximate version of AMB 
( δ > 0 , see section 3.4) on the Sakai dataset. Results for 
the exact algorithm ( δ = 0 ) are reported in Fig.  7 for 
comparison.

In order to show how the approximate algorithm 
achieves better compression ratios, k was chosen from 
[10,  11,  12,  13], a range of values which is particularly 
difficult for AMB (or FIL) with δ = 0 . Trying all pos-
sible minimizer combinations compatible with such ks, 
the best results are obtained for very short minimizer 
lengths (between 1 and 5). Building minimizer layers for 
such small values of m does not lead to better compres-
sion than simple (B)CSFs, with Fig. 7 showing no tangi-
ble differences between (B)CSFs and AMB (or FIL). For 
these reasons, minimizer lengths in Fig.  6 are equal to 
k − 1 (and k − 2 ) for every choice of k (e.g. if k = 10 , lay-
ers will be 8, 9, 10 for three-layer AMB). Using the same 
small lengths of the exact case would not allow meaning-
ful bucketing of counts values.

An interesting observation about the approximate case 
is that AMB with three layers is substantially better than 
AMB with two layers only for k = 12 and k = 13 . For 
k = 10 and k = 11 both versions give almost the same 
results.

Query speed
Figure  8 shows query time averaged over all distinct 
k-mers, in ns/k-mer. Simple CSFs, not surprisingly, are 
the fastest method, with BCSF having a negligible effect 
on the average query speed. On the other hand, buck-
eting has a tangible effect on performance, with speed 
negatively affected by additional layers. For short k-mers, 
both FIL and AMB are slower than the simple CSF by a 
factor equal to their number of layers.

The situation is different for larger k’s where AMB is 
only marginally slower than a bare-bones CSF. This is 
because most queries are solved without accessing all lay-
ers every time, thanks to unambiguous buckets. Two-lay-
ered FIL, on the other hand, gives almost constant average 
query times across all test, since all queries have to access 
both of its layers to reconstruct the exact count value. We 
did not perform tests for FIL with 3 layers because it will 
always be slower than the two layered version.

Choosing minimizer lengths
In all reported cases, good minimizer lengths for the first 
layer ( m0 ) follow the rule: m0 > ms = (log4 |G| + 2) with 
|G| , the size in base pairs of the genome. Smaller m0 , are 
no longer capable of partitioning k-mers in a meaningful 

way. Furthermore, space tends to first monotonically 
decrease to a minimum for increasing minimizer lengths, 
to increase again once the optimal value is passed. It is 
therefore possible to find the minimum by sequentially 
trying all possible minimizers greater than ms and stop as 
soon as the compressed size starts to increase again.

If it is not possible to choose m0 > ms = (log4 |G| + 2) 
because, e.g. k is already too small, approximation might 
be a viable option even for relatively small δ . The only 
caveat to pay attention to in this case is to check if a mini-
mizer layer would be useful or not. If yes, δ can be incre-
mented without further adjustments compared to exact 
case. If not, minimizer lengths for the bucketing layers 
should be chosen as big as possible to allow meaningful 
bucketing of count values.

Our results also show how multiple layers have a mar-
ginal effect on final compression sizes. In case of AMB, 
using three layers is always helpful, compared to the two-
layer case. Best results are usually achieved for combina-
tions including the best minimizer length obtained for 
the two-layer case. On the other hand, FIL with three lay-
ers seems to be advantageous only for low entropy data, 
performing worse than its two-layer counterpart when 
compressing document frequency tables and for small k’s.

Conclusions
In this work, we introduced three data structures to repre-
sent compressed k-mer count tables. Our BCSF algorithm 
combines Compressed Static Functions, as implemented 
in Sux4J software [24], with Bloom filters. This allows for 
a much better compression for skewed distributions with 
empirical entropy smaller than 1. Note that, to the best 
of our knowledge, this is the first time CSFs are used in a 
bioinformatics application. We also provide a method to 
dimension the Bloom filter in a BCSF in order to minimise 
the final space. Our two other algorithms, AMB and FIL, 
pair BCSF with a bucketing procedure where count values 
are mapped into buckets according to minimizer values of 
respective k-mers. This locality-sensitive hashing scheme 
allows us to efficiently factor the space of counts, which 
leads to breaking the empirical entropy lower bound for 
large enough k’s. AMB and FIL use slightly different strate-
gies in decomposing the input table across minimizer layers. 
Our last contribution is an extension of AMB to the approx-
imate case, gaining more space at the expense of a small and 
user-definable absolute error on the retrieved counts.

We validated our algorithms on four different types of 
count tables, two fully assembled genomes (E.Coli and 
C.Elegans) of different sizes, one dataset of E.Coli reads at 
10x coverage and one document frequency table of 29 dif-
ferent E.Coli genomes, for different k-mer lengths showing 
how BCSF, AMB and FIL behave in different situations. 
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occurring in data-intensive bioinformatics applications. 
One possible future direction is compression of RNA-
Seq experiments where counts may translate expression 
levels of genes. Another example is metagenomics where 
different species may be present with different abun-
dances which can be captured by k-mer counts. In such 
applications, efficient representation of k-mer counts can 
be particularly beneficial.

Appendix
Multilayer FIL algorithm 

AMB and FIL have a clear advantage when minimizers 
are long enough to bucket k-mers in a meaningful way, for 
both skewed and high entropy data. When it is not pos-
sible to define a long-enough minimizer length, the advan-
tage of using intermediate minimizer layers vanishes, and 
simple CSF and its BCSF provide a better solution.

At query time, CSF and BCSF are the fastest methods 
requiring about 100ns on average for a single query. For a 
fixed number of layers, AMB is faster than FIL in all situ-
ations when minimizers are useful. FIL becomes faster 
than AMB only for those cases when both algorithms 
achieve worse compression ratios than simple (B)CSF.

We consider this study to be the first step towards 
designing efficient representations for k-mer count tables 
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