
Guerrini et al.
Algorithms for Molecular Biology (2023) 18:11
https://doi.org/10.1186/s13015-023-00232-4

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

phyBWT2: phylogeny reconstruction
via eBWT positional clustering
Veronica Guerrini1*, Alessio Conte1*, Roberto Grossi1*, Gianni Liti2, Giovanna Rosone1* and Lorenzo Tattini2

Abstract

Background Molecular phylogenetics studies the evolutionary relationships among the individuals of a popula-
tion through their biological sequences. It may provide insights about the origin and the evolution of viral diseases,
or highlight complex evolutionary trajectories. A key task is inferring phylogenetic trees from any type of sequencing
data, including raw short reads. Yet, several tools require pre-processed input data e.g. from complex computational
pipelines based on de novo assembly or from mappings against a reference genome. As sequencing technologies
keep becoming cheaper, this puts increasing pressure on designing methods that perform analysis directly on their
outputs. From this viewpoint, there is a growing interest in alignment-, assembly-, and reference-free methods
that could work on several data including raw reads data.

Results We present phyBWT2, a newly improved version of phyBWT (Guerrini et al. in 22nd International Workshop
on Algorithms in Bioinformatics (WABI) 242:23–12319, 2022). Both of them directly reconstruct phylogenetic trees
bypassing both the alignment against a reference genome and de novo assembly. They exploit the combinatorial
properties of the extended Burrows-Wheeler Transform (eBWT) and the corresponding eBWT positional cluster-
ing framework to detect relevant blocks of the longest shared substrings of varying length (unlike the k-mer-based
approaches that need to fix the length k a priori). As a result, they provide novel alignment-, assembly-, and reference-
free methods that build partition trees without relying on the pairwise comparison of sequences, thus avoiding to use
a distance matrix to infer phylogeny. In addition, phyBWT2 outperforms phyBWT in terms of running time, as the for-
mer reconstructs phylogenetic trees step-by-step by considering multiple partitions, instead of just one partition
at a time, as previously done by the latter.

Conclusions Based on the results of the experiments on sequencing data, we conclude that our method can pro-
duce trees of quality comparable to the benchmark phylogeny by handling datasets of different types (short reads,
contigs, or entire genomes). Overall, the experiments confirm the effectiveness of phyBWT2 that improves the perfor-
mance of its previous version phyBWT, while preserving the accuracy of the results.

Keywords Phylogeny, Partition tree, BWT, Positional cluster, Alignment-free, Reference-free, Assembly-free

*Correspondence:
Veronica Guerrini
veronica.guerrini@unipi.it
Alessio Conte
alessio.conte@unipi.it
Roberto Grossi
roberto.grossi@unipi.it
Giovanna Rosone
giovanna.rosone@unipi.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00232-4&domain=pdf

Page 2 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

Background
Phylogenetics concerns the study of the evolution-
ary history and the relationships among individuals or
groups of individuals, e.g., species or several popula-
tions of one species. These relationships are inferred
from heritable traits or, for instance, DNA sequences.
Phylogenies, in the form of rooted or unrooted trees,
can be used for several purposes: to reconstruct the
ancestry of the species (or other taxa) on the tree of life,
to understand the epidemiological dynamics of patho-
gens, and to identify and study complex evolutionary
events such as hybridisation [1, 2], introgression [3],
and horizontal gene transfer [4]. Thus, they are suc-
cessfully employed in almost every branch of biology,
including e.g. population genomics and metagenom-
ics, ecology, and biogeography [5]. Phylogeny has also
important applications in the medical field, includ-
ing for instance epidemiology, drug discovery and
drug design. Concerning public health, pathogen out-
breaks can be studied by molecular phylogenetic anal-
ysis. Indeed, the analysis of the epidemiological link
between genetic sequences of a pathogen can be useful
for understanding the possible sources of transmission.

A vast array of techniques for inferring phylogeny
has been developed over the years [6]. Sequence-based
methods analyze the DNA or RNA sequences of the
taxa, and are based on their similarity or dissimilar-
ity detection. Most of them rely on a distance matrix
by computing the pairwise evolutionary distances
between every pair of input sequences. Standard algo-
rithms, such as the neighbour-joining algorithm [7], are
then applied to the distance matrix to perform the tree
reconstruction.

A key aspect is how to compute these evolutionary
distances. Sequence alignment is often employed in dis-
tance computation, performed on either entire sequences
or parts of them, with the optional usage of a reference
genome. However, with the advent of high-throughput
sequencing technologies and the completion of various
genome projects, the amount of whole-genome sequenc-
ing data available has increased and a new era for phy-
logeny started. Owing to the rising cost of the alignment
task, alignment-free approaches for quantifying the simi-
larity/dissimilarity between sequences have been intro-
duced. An advantage of these approaches is that they are
robust for recombination and shuffling events [8–10]. As
the majority of alignment-free approaches for phyloge-
netic reconstruction performs a preliminary extraction
of the k-mers (i.e. substrings of length k) from the input
sequences, they can analyze directly the reads obtained
from the sequencing platforms, thus avoiding the assem-
bly of these reads and the extraction of the k-mers from
the assembly.

Our contribution In this paper we present phyBWT2,
a new version of our tool called phyBWT and previously
introduced in [11] to reconstruct a phylogenetic tree for
a set of taxa. The worst-case running time of phyBWT2
is O(Nℓ) for ℓ taxa of total length N, using O(N + ℓ2)
space. Like its predecessor, phyBWT2 combines many
features in a single new method to reconstruct a phylo-
genetic tree starting from any type of data, e.g. assem-
bled sequences as well as raw reads. Firstly, phyBWT2
is alignment-, assembly-, and reference-free, and thus it
can work directly on raw sequencing reads. Secondly, it
does not need a distance matrix as it does not rely on the
pairwise comparison of sequences. Moreover, it exploits
the combinatorial properties of the positional clustering
framework recently introduced in [12], overcoming the
limitations of employing k-mers with fixed size k a priori.

The contribution of our approach is twofold, theo-
retical as well as practical. To the best of our knowledge,
both phyBWT and phyBWT2 are the first to apply the
properties of the Extended Burrows-Wheeler Transform
(eBWT), employed in the positional clustering, to the
idea of decomposition for phylogenetic inference. Not
only they are oblivious to extra information, such as ref-
erence sequences or read mappings, but they also avoid
the workload of assembling or aligning input sequences.
Finally, they infer the tree structure by comparing all the
sequences simultaneously and efficiently, instead of per-
forming their pairwise comparisons: they do not recon-
struct the tree in top-down or bottom-up directions,
rather they refine the current structure simultaneously in
both directions (so bottom up and top down are special
cases of this more general reconstruction).

Despite these common ideas behind them, phyBWT2
improves over phyBWT in several aspects. To see why, let
us briefly recall how phyBWT works. It builds the phylo-
genetic tree through a series of partitions performed on
groups of nodes. Each partition isolates groups of taxa
from the others, and phyBWT always proceeds in two
opposite directions while reconstructing the tree: it goes
towards the leaves by dividing each part, and towards the
root by grouping the parts. Each part actually generates a
node of the phylogeny tree.

In phyBWT2, the tree reconstruction strategy is differ-
ent, as phyBWT2 does not consider a single partition at
time, but it simultaneously handles several compatible
cuts that correspond to an unrefined tree. The general
idea is that an unrefined partition tree can be refined by
taking one of its nodes and restricting phyBWT2 ’s atten-
tion to just the groups of taxa corresponding to its chil-
dren. This restriction allows phyBWT2 to look into them
to estimate phylogenetic signals.

In Sect. "Experimental evaluation", we show that
phyBWT2 produces phylogenic trees of quality comparable

Page 3 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

to the standard benchmarks by handling datasets of differ-
ent types (short reads, contigs, or entire genomes). Further-
more, we experimentally provide evidence that phyBWT2
is more efficient than phyBWT in terms of the number of
iterations performed to reconstruct a phylogenetic tree.
Remarkably, phyBWT2 can keep the required data struc-
tures in external memory, thus alleviating the main mem-
ory usage. For these reasons, phyBWT2 can be considered
as a replacement of our original tool phyBWT.

State of the art The Burrows-Wheeler Transform
(BWT) [13] of a string (and the eBWT of a set of
strings [14, 15]) is a suitable permutation of the symbols
of the string(s), whose output shows a local similarity, i.e.
symbols preceding similar contexts tend to occur in clus-
ters. Both transformations have been intensively studied
with important and successful applications in several
areas. For instance, the eBWT has been used for defin-
ing alignment-free methods based on a pairwise distance
matrix [14, 16–18] in order to build up a phylogenetic
tree for mitochondrial DNA genomes. The positional
clustering detects “interesting” blocks in the output of
the eBWT [14, 15], so that the requirement on the fixed
size k in k-mers is relaxed and becomes of variable-order,
not fixed a priori, in an adaptive way according to the
contexts. This framework has already been used in other
bioinformatics tasks, such as for detecting SNPs and
INDELs in short-read datasets [19] and for lossy com-
pression of FASTQ datasets [20].

Both phyBWT2 and phyBWT exploit the underlying
properties of the eBWT: (i) the clustering effect, i.e. the
fact that the eBWT tends to group together equal sym-
bols in the transformed string that occur in similar con-
texts in the input string collection; (ii) the fact that if a
substring x occurs in one or more strings, then the suf-
fixes of the input dataset starting with x-occurrence are
close in the sorted list of suffixes. In other words, the
greater the number of these substrings shared by two
taxa is, the more they are similar.

Although phyBWT2 and phyBWT do not use a dis-
tance matrix, they have some resemblance with split
decomposition methods when reconstructing the tree
from the information gathered through the eBWT. We
recall that split decomposition relies on a solid mathe-
matical ground [21, 22], and has been successfully applied
to phylogeny [23]. The idea is to score the possible splits
(i.e. bipartitions) of the taxa, and assign an isolation index
to each split based on the distances in the given matrix.
Compatible splits are those with an empty intersection
on one of the parts in the splits, and the isolation index
is treated as a priority weight in making a (greedy) choice
among the splits. Compatible splits induce a tree and
vice versa. However, a residual error is generated on real-
world data, and a notion of weak split compatibility is

preferred to create a weighted phylogeny network instead
of a phylogeny tree: the shortest weighted part between
any two nodes in this network gives the isolation index in
the corresponding split. For ℓ taxa, only O(ℓ2) splits are
needed for split decomposition instead of 2ℓ ones [21].

As the original algorithm in the seminal papers on
split decomposition [21, 23] requires O(ℓ6) comparisons,
further papers have addressed efficiency and extended
these ideas. The recent alignment-free method SANS [24,
25] uses the notions of the split decomposition theory
to greedily build a list of weakly compatible splits from
which to infer phylogenies. In the list, each split has its
own weight computed by counting k-mers that are stored
in a colored de Bruijn graph [24] (this has been improved
later by hashing [25], leaving the colored de Bruijn graph
as input option). The calculated list of splits ordered by
weight is then filtered according to two strategies that
are described and implemented in the software tool
SplitsTree [26]. In our experimental study, we compare
the trees obtained by SANS and phyBWT2. It should be
noted that SANS is also able to reconstruct phylogenetic
networks whereas phyBWT2 reconstructs phylogenetic
trees only.

As previously mentioned, a plethora of methods have
been designed for phylogeny reconstruction (e.g. DBLP
reports over 500 papers having “phylogeny” in the title).
We refer the reader to [6, 27, 28] for a complete and
detailed review of various methods for phylogeny estima-
tion. We briefly mention here that among the alignment-
based approaches are character-based methods [5], that
generally produce alignments of the input sequences and
compare all sequences simultaneously considering one
character per time (e.g. using maximum parsimony or
maximum likelihood).

A preliminary version of this paper appeared in [11]
with limited experiments performed using our prototype
tool phyBWT .1 The new version phyBWT2 replaces
phyBWT.

Preliminaries
In this section, we define the general terminology we will
use throughout this paper.

Let s be a string (also called sequence) of length n on
the alphabet � . We denote the i-th symbol of s by s[i]. A
substring of any s is denoted as s[i, j] = s[i] · · · s[j] , with
s[1, j] being called a prefix and s[i, n+ 1] a suffix of s. A
k-mer is a string of length k.

Let S = {s1, s2, . . . , sℓ} be a collection of ℓ strings. We
assume that each string si ∈ S has length ni and is fol-
lowed by a special end-marker symbol Si[ni + 1] = $i ,

1 https:// github. com/ veron icagu errini/ phyBWT.

https://github.com/veronicaguerrini/phyBWT

Page 4 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

which is lexicographically smaller than any other symbol
in S , and does not appear in S elsewhere.2

Basic data structures
The Burrows-Wheeler Transform (BWT) [13] is a well-
known widely used reversible string transformation that
can be extended to a collection of strings. Such an exten-
sion, introduced in [14], is a reversible transformation
whose output string (denoted by ebwt(S)) is a permuta-
tion of the symbols of all strings in S . In [15], the authors
introduced a variant of this transformation for string
collection in which a distinct end-marker is appended to
each string, making the collection ordered. Such trans-
formations are known as eBWT or multi-string BWT.

The length of ebwt(S) is denoted by N =
∑ℓ

i=1(ni + 1) ,
and ebwt(S)[i] = x , with 1≤ i≤N , if x circularly pre-
cedes the i-th suffix Sj[k , nj + 1] (for some 1 ≤ j ≤ ℓ and
1 ≤ k ≤ nj+1), according to the lexicographic sorting of
the suffixes of all strings in S.

Usually the output string ebwt(S) is enhanced with the
document array (DA) and longest common prefix (LCP)
array of S.

The document array of S (denoted by da(S)) is the
array of length N such that da(S)[i] = j , with 1 ≤ j ≤ ℓ
and 1 ≤ i ≤ N , where ebwt(S)[i] is a symbol of the string
sj.

The longest common prefix (LCP) array [29] of S is the
array lcp(S) of length N + 1 , such that lcp(S)[i] , with
2 ≤ i ≤ N , is the length of the longest common prefix
between the suffixes associated with the positions i and
i − 1 in ebwt(S) , and lcp(S)[1] = lcp(S)[N + 1] = 0 by
default. The set S can be omitted when it is clear from
the context.

The following is an important property of the eBWT,
and thus of the related data structures DA and LCP, that
will be used in our method:

Remark 1 The eBWT, DA and LCP data structures for
a subset of S can be obtained by linearly scanning those
built for S.
In [15], the authors prove that given a collection
S = {S1, S2, . . . , Sℓ} of strings and ebwt(S) , one can
obtain the eBWT of a subset R of S by removing all the
characters not in R , without constructing the eBWT
from scratch, as the relative order of suffixes holds. One
can obtain the DA for R analogously by scanning da(S)
and removing entries not in R.

Similarly, one can obtain the LCP of a subset of S by
using the properties of the LCP array: for any pair of indi-
ces i < j , the longest common prefix between the suffix
associated with position i and the suffix associated with
position j is given by min{lcp[i + 1], . . . , lcp[j]}.

Let R ⊂ S . We denote by ebwt(S)|R (resp. da(S)|R ,
lcp(S)|R) the restriction of the data structure ebwt(S)
(resp. da(S) , lcp(S)) to the set of strings R.

LCP‑interval and k‑mer vs positional cluster
We denote by LCP-intervals of LCP-value k maxi-
mal intervals [i, j] that satisfy lcp(S)[r] ≥ k for
i < r ≤ j (slightly different definition from [30]). The suf-
fixes associated with LCP-intervals of LCP-value k have a
common k-mer as prefix.

In any string collection, thus, LCP-intervals of LCP-
value k are in a one-to-one correspondence with the set
of all k-mers.

Note that the common prefix w in a LCP-interval is of
length at least k, but it could be longer. So, to overcome the
limitation of strategies based on LCP-intervals that require
to fix the length k, the authors of [12, 19] introduced a new
framework called “positional clustering”. In this framework
the intervals do not depend on a value k fixed a-priori, but
they are enclosed between two “local minima” in the LCP-
array (thus, their boundaries are data-driven).

Crucially, the length k of the common prefix w of the
suffixes inside such intervals is not the same, but it differs
interval by interval. Hence, there is no one-to-one corre-
spondence between such intervals and the set of k-mers.

However, as to exclude intervals corresponding to
some short random contexts w, one needs to set a mini-
mum length for w, which we denote by km.

According to [19], an eBWT positional cluster
eBWTclust[i, j] is a maximal substring ebwt[i, j] where
lcp[r] ≥ km , for all i < r ≤ j , and none of the indices r,
i < r ≤ j , is a local minimum of the LCP array.

By definition, we have that:

Remark 2 Any two different eBWT positional clusters,
eBWTclust[i, j] and eBWTclust [i′, j′] , such that i = i′ are
disjoint, i.e. it holds that either j < i′ or j′ < i.

Here, we define a local minimum of the LCP
array (of length N) any index i, 1 < i < N such that
lcp[i − 1] > lcp[i] and lcp[i] < lcp[i + j] , where j > 1 is
the number of adjacent occurrences of the value lcp[i] from
position i. For instance, let lcp = [2, 1, 3, 3, 5, 4, 2, 2, 7] . The
local minima are indices 2 and 7, corresponding to LCP
values of 1 and 2, respectively.

Note that the above definition differs from that
in [19], where local minima in the LCP array (of length
N) are detected searching for indices r such that

2 Note that, in the implementations, one can use a single symbol as end-
marker for all strings, but end-markers from different strings are then
sorted on the basis of their index and the relative order of the strings in the
collection they belong to.

Page 5 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

lcp[r − 1] > lcp[r] ≤ lcp[r + 1] , for all 1 < r ≤ N .
According to such definition, local minima can be
detected in any non-increasing sequence where some
values are repeated. For instance, for the first occurrence
of 4 in the sequence 5, 4, 4, 2 yields the definition of local
minimum. Therefore, the slightly different notion of local
minima we use is to maximize the length of the non-
increasing sequence described in the following Remark 3.

Remark 3 ([12, Thm 3.3]) In any eBWT positional
cluster, the LCP-value form a sequence of non-
decreasing values followed by a (possibly empty)
sequence of non-increasing values.

From the above remark follows that the length l of the
longest common prefix shared by the suffixes associ-
ated with a eBWT positional cluster ebwt[i, j] is given by
the minimum value in lcp[i + 1, j] , which could be sim-
ply obtained by taking the minimum between the values
lcp[i + 1] and lcp[j].

In general, if we set the minimum length km equal to k,
the set of eBWT positional clusters forms a refinement of
the set of ebwt[i, j] with [i, j] LCP-interval of LCP-value k.

In fact, any ebwt[i, j] , where [i, j] is a LCP-interval, can be
subdivided in correspondence of the local minima of lcp[i, j] ,
thus giving rise to a sequence of consecutive eBWT posi-
tional clusters (see Fig. 1). Clearly, such subdivision depends
only on the trend of the LCP values inside the LCP-interval
[i, j]. Hence, more than one positional cluster can be related
to the same LCP-interval, and equivalently, to the same
k-mer.

Example 4 (running example) In Fig. 1, we represent
the data structures used in our tool (cda, ebwt, lcp),
the auxiliary array da and the sorted list of suffixes, for
the sake of clarity. The LCP-intervals of LCP-value k = 1
correspond to the following intervals: [4, 10, 11, 17,
18, 28, 29, 34]. Whereas the horizontal lines delimit
eBWTclust for km = 1 . Note that when km = k , the
eBWTclust can refine the LCP-intervals. For example
the LCP-interval [18, 28] includes five positional
clusters: eBWTclust[18, 19] , eBWTclust[20, 21] ,
eBWTclust[22, 23] , eBWTclust[24, 25] , eBWTclust[26, 28].

Methods
In this section, we describe the proposed method for
building a phylogenetic tree where each leaf is a set of
strings (sequencing reads, contigs, genome).

The idea behind our method is to reconstruct the tree
through a series of refinement steps performed on groups
of taxa.

The inner refinement algorithm groups together
nodes whose associated strings share long common sub-
strings of varying length which are not present in other
nodes, and we interpret the presence of such substrings
as a common feature of the group that differentiates it
from the others. As mentioned in the introduction, the
method is not restricted to work in a top-down or bot-
tom-up fashion, but can act on several levels at once,
according to which ones appear to be most prominent.

The final algorithm, described in Sect. "Tree recon-
struction", suitably applies refinement to portions of
the data, and iteratively converges to the reconstructed

Fig. 1 Extended Burrows-Wheeler Transform (EBWT), LCP array, and the auxiliary data structures DA and CDA for the set S = {GGC GTA CCA, ACG
AGT ACG ACT , GGG GCG TATT}

Page 6 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

tree. Here refinement is a black box to group taxa, and
is described in Sect. "The refinement procedure".

Given ℓ taxa, our method produces an unrooted
tree without fixing an outgroup.

For ease of explanation, we describe the method con-
sidering the tree as rooted. Indeed, we start from a tree
that has ℓ+ 1 nodes: one root node, with ℓ children (one
per taxon). Alternatively, we can imagine it as a star tree.

Before describing the reconstruction procedure, we
introduce some notation and definitions.

Formally, we denote the set of leaves as
S = {S1, S2, . . . , Sℓ} where each Si corresponds to a taxon.

The tree T is defined as a partition tree of the set S:

• Each node of T corresponds to a nonempty set of
taxa S′ ⊆ S

• The root of T corresponds to S
• Each leaf of T corresponds to a distinct taxon Si ∈ S

• For each node corresponding to S′ , its children form
a partition of S′

It is convenient to define the operation of adding a node
to T by a set: a set S′ ⊆ S can be added to T only if is
compatible, i.e., if every other node of T corresponds to
a set S′′ that satisfies one of these conditions: S′′ ⊂ S′ ,
S′′ ⊃ S′ , or S′′ ∩ S′ = ∅ (i.e. no partial overlap between S′′
and S′). If this is the case, there is only one way to add S′
to T, namely, S′ becomes a child of the smallest set P ⊃ S′
of T (by cardinality), and all the other children of P that
are contained in S′ become the children of S′ . It is easy to
see that the resulting T is still a partition tree.

In our framework, each Si is a collection of strings, as
for each taxon we can have multiple strings (like reads,
contigs, a genome, and so on) possibly augmented by
their reverse-complement, however in the structure of T
it is just represented as an identifier.

Let S = {S1, S2, . . . , Sℓ} and each set Si ∈ S contain mi
strings, i.e. Si = {si,1, . . . , si,mi} . Note that the definitions
of eBWT, LCP and DA given in Sect. "Preliminaries"
apply also to this case:

• ebwt(S) = ebwt({S1, S2, . . . , Sℓ})

= ebwt({s1,1, . . . , s1,m1
, . . . , sℓ,1, . . . , sℓ,mℓ

}),
• lcp(S) = lcp({S1, S2, . . . , Sℓ}) = lcp({s1,1, . . . , sℓ,mℓ

}),
• da(S) = da({S1, S2, . . . , Sℓ}) = da({s1,1, . . . , sℓ,mℓ

}).

For our purposes, we extend the notion of DA to Color Doc-
ument Array (CDA), where cda(S)[j] = r if da(S)[j] = u
and su belongs to the set Sr . In other words, we assign the
same color to the strings belonging to the same set Sr , so we
have a distinct color r for each set Sr ∈ S.

Example 5 (running example) In Fig. 1, cda coincides
with da assuming that each taxon is a single string.

Tree reconstruction
In this subsection we show how our method reconstructs
a phylogenetic tree for S by suitably applying refine-
ment. We consider refinement as a blackbox with the
following properties: given a list of sets C = C1, . . . ,Ch ,
such that any Ck is a subset of S and disjoint from all
other Ck ′ , for 1 ≤ k < k ′ ≤ h , refinement returns a list
of sets L = L1, . . . , L|L| of compatible subsets of

⋃

k Ck : i.e.,
each Li is the union of some Ck’s, and each Li is either a
subset of, a superset of, or disjoint from any other Lj , for
1 ≤ i < j ≤ |L|.

The key idea is that once an intermediate partition tree
is obtained, we may take one of its nodes and restrict
our attention to just the groups of taxa corresponding
to its children (C1, . . . ,Ch) and repeat refinement: this
allows us to look at the subtree with a greater detail, by
restricting the input data structures and changing the
ebwt, thus bringing new tree refinements to light. This is
repeated until all internal nodes in the partition tree have
only two children, or no more refinements can be identi-
fied by refinement.

Our algorithm is described in Algorithm 1, and one
possible iteration is depicted in Fig. 2.

At the beginning we initialize the unrefined partition
tree T (Line 1) as a rooted star with root S (non-final),
and leaves labelled by S1, . . . , Sℓ marked as final. As the
names suggests, final indicates that no more refinement
is needed at that node.

The algorithm iteratively processes a non-final node
X of T (Line 3), meaning that its children C1, . . . ,Ch
(which correspond to disjoint sets) are fed to refine-
ment to create new nodes that further partition the
children. All nodes produced with two children are
marked final; also, if refinement fails to create new
nodes, then X is marked final.

Line 6 calls the refinement function to create a list
L of compatible subsets of X =

⋃

k Ck , and then the
draw_and_mark function is called to add the corre-
sponding new nodes to T (Line 7).

By the aforementioned assumptions on the sets in L,
they are always compatible with T: each Li is a subset of
X (and all its ancestors in T), it is a superset of some Ci
(and all their descendants in T), and it is disjoint from
all other nodes in T. Thus, draw_and_mark only
needs to consider two cases:

• Case (i) T is not changed (i.e. the list L is empty):
node X is marked as final (Line 10).

• Case (ii) L is not empty: a new internal node is cre-
ated for each Li ∈ L , by adding the set Li to the par-

Page 7 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

Fig. 2 A possible iteration of Algorithm 1 where final nodes are in bold

Page 8 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

tition tree T as described before. A node is marked
final if it has only two children; otherwise, it needs
to be further refined and is added to the queue (this
also applies to the node X).

Figure 2 depicts the procedure of adding nodes to T,
while a possible execution of the algorithm is shown in
Fig. 3.

Fig. 3 A possible execution of Algorithm 1 on a set of taxa S = {1, 2, 3, 4, 5, 6} . Each panel in the top shows an execution of the refinement
procedure, with input on top and the list of subsets generated in the bottom. Below, the corresponding refinement of the partition tree,
where dashed nodes are non-final. Note how nodes are marked final when they are leaves, or they have 2 children, or refinement fails to further
cluster their children (see 4, 5, 6 in execution III)

The refinement procedure
In this subsection, we describe the approach we use as
inner refinement function that starting from a set of
sibling nodes C1, . . . ,Ch returns a list L of compatible
subsets. This is a direct evolution of the partition proce-
dure of phyBWT, that allows to process multiple levels at
once.

According to Subsect. "Tree reconstruction", the sibling
nodes C1, . . . ,Ch of T to be refined correspond to some
(not necessarily all) taxa: each Ck can be either a leaf of
T (thus corresponding to only one taxon) or an internal
node of T corresponding to a subset S′ ⊂ S.

Page 9 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

appearing in cda[i, j] is “large enough”. Formally, we
define a support threshold τ (0 < τ ≤ 1) that determines
the minimum required portion for each Ck ∈ γQ to be in
cda[i, j] . Intuitively, the support threshold guarantees that
all the elements of Q appearing in any eBWTclust[i, j] are
sufficiently represented. In fact, when τ approaches the
value of 1, all the elements of the subset Ck are required
to be in the cluster. In other words, we aim at measur-
ing how similar the shared history of the phylogeny is in
terms of common substrings. On the other hand, when
τ approaches the value of 0, at least one of the elements
of the subset Ck is required to be in the cluster consid-
ered. Thus, we are observing how similar all the evolu-
tion events are. That provides two different viewpoints of
their phylogenetic relationships.

Example 10 (Continued from Example 8) Let
Q = {{1, 3, 4}, {2}, {5}, {6}} and τ = 0.5 . The eBWTclust
[i, j] = ACAAGT with cda[i, j] = [1 2 1 1 3 3] is a
relevant cluster, since for any element of γQ , its portion
in cda[i, j] is above τ.

Example 11 (running example) We highlight in
bold, in Fig. 1, the relevant eBWTclust, that are
eBWTclust[11, 14] and eBWTclust[22, 23]. Every
other eBWTclust is either a run of a same symbol or
the associated cda contains only one color or all of them.

Now, we use the notion of relevant eBWTclust to
obtain a list of compatible subsets of Q = {C1, . . . ,Ch} ,
having size at most h− 1.

The whole strategy is summarized in the following
three steps:

1 Scan input data structures computed on S , and
detect only the relevant eBWTclust of the restricted
eBWT(S)|Q (denoted by eBWTclust Q[i, j] , for
some i < j).

2 For each eBWTclust Q[i, j] , incrementally assign a
score to the subset of Q corresponding to γQ . Intui-
tively, we use the score to determine the order in
which the subsets of Q must be processed to output
the list L.

3 Output L by selecting compatible subsets of Q that
record the highest scores.

By Remark 1, any relevant eBWTclust Q detected at the
first step can be inferred by a linear scan of the input data
structures ebwt(S), lcp(S), cda(S).

In general, any γQ-colored eBWTclust Q[i, j] may not be
relevant, and thus, it does not provide a score to its cor-
responding subset γQ . In our framework, each relevant

We can consider each Ck as the set of colors (i.e. the set
of taxa) to which it corresponds. Let Q = {C1, . . . ,Ch} .
We define a function χQ that associates a color r (i.e. any
taxon in S) to the element of Q to which it belongs (if one
exists).

Definition 6 Given Q = {C1, . . . ,Ch} , we define χQ
from {1, . . . , ℓ} to {C1, . . . ,Ch} ∪ {∅} , such that

Let [i, j] be a positional cluster. Recall that we denote by
eBWTclust[i, j] the concatenation of the symbols in the
eBWT associated with the range [i, j] (i.e. ebwt(S)[i, j]).
Then, for each eBWTclust[i, j], the corresponding interval
in the CDA, cda(S)[i, j] , stores the colors (i.e. indices of the
taxa) to which the symbols in eBWTclust[i, j] belong.

Definition 7 An eBWTclust[i, j] is γQ-colored if γQ
is the set of elements of Q appearing in cda(S)[i, j] , i.e.
γQ = {χQ(r): r ∈ cda(S)[i, j]}.

Note that if eBWTclust and CDA are restricted to the
strings in Q (see Remark 1), then γQ contains only non-
empty sets.

Example 8 Let Q = {{1, 3, 4}, {2}, {5}, {6}} and eBWT-
clust [i, j] = ACAAGT with cda[i, j] = [1 2 1 1 3 3] .
Then, eBWTclust[i, j] is γQ-colored and
γQ = {{1, 3, 4}, {2}}.

The main idea is to detect and analyze only eBWT
positional clusters associated with left-maximal contexts
shared by a sufficiently large number of taxa (but not by
all of them).

Definition 9 A γQ-colored eBWTclust[i, j] is relevant, if
the following properties hold:

i) ebwt[i, j] is not a concatenation of a same symbol (i.e.
it is not a run),

ii) 1 < card(γQ) < h,
iii) card(cda[i, j] ∩ Ck) ≥ τ · card(Ck) , for all Ck ∈ γQ

and some 0 < τ ≤ 1.

In ii), we cut off the eBWT positional clusters asso-
ciated with left-maximal contexts shared by only one
element of Q or by all of them. Indeed, such contexts
provide no significant information about how to group
together elements of Q.

In iii), we require that any element Ck in γQ is suf-
ficiently supported, i.e. the number of colors of Ck

χQ(r) =

{

Ck if there exists k s.t. r belongs toCk

∅ otherwise.

Page 10 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

eBWTclust Q[i, j] contributes to the score of the subset γQ
by one.

Steps 1 and 2 are in fact performed simultaneously,
and only subsets of Q that provide at least one score are
accounted for (without considering all the 2h possibilities).

To build up the list L we greedily select the subsets of
Q having a high score and that are compatible with each
other. In particular, we first order the subsets obtained
by the positional clustering by their score, and then, by
scanning the sorted scores we consider subsets one-by-
one. For each γQ we compute the subset U =

⋃

γQ , and
add it to L if it is compatible with what added so far (i.e.,
a subset of, superset of or disjoint from all elements in L).

Example 12 (Continued from Example 10) Suppose
γQ = {{1, 3, 4}, {2}} is found to be compatible with
what we have added to L so far. Then we add the set
U = {1, 3, 4} ∪ {2} = {1, 2, 3, 4} to L.

We stop adding subsets to L in some cases:
i) the maximum possible number of elements is

reached (that is h− 2),
ii) the score decreases too much with respect to the

highest score (e.g. two order of magnitude lower than the
highest score) meaning that the subset associated is not
trustworthy,

iii) the number of consecutive unsuccessful attempts
to add elements to L exceeds a threshold value f (we set
this as min{2h, 100} , so that it scales with the size of the
instance, with the limit of 100 to prevent excessive degen-
eration of quality).

Complexity
We observe here how the pre-processing step of our
method, which consists in building the eBWT, LCP and
DA data structures, can be computed in time and space
linear in the number N of all symbols of the strings in S.

The refinement procedure described in Subsect.
"The refinement procedure" can be computed in O(N)
time and space: Indeed, given Q = {C1, ...,Ch} and
X =

⋃

{C1, ...,Ch} , the eBWT (resp. LCP and CDA) for
X ⊆ S can be deduced in linear time in the length N of
ebwt(S) (resp. lcp(S) and cda(S)), including at the same
time the detection of all positional clusters [12]. Given an
element of a eBWTclust[i, j] and τ , we can determine in
O(1) time its color using the CDA; as we can pre-com-
pute the size of all Ci , this lets us easily determine the γQ
-coloring of the cluster and whether it is relevant or not
(Definitions 7 and 9) in time proportional to the cluster’s
length. Overall, detecting positional clusters and assign-
ing scores to subsets of Q has a total cost of O(N) time.

While potentially there could be up to 2h ≤ 2ℓ possible
subsets of Q , we observe that each positional cluster can
in fact define at most one of them, of size not greater than

the length of the cluster. It follows that the list of subsets
of Q , from which we select the elements of L, has < N
elements, and the sum of their sizes is too at most N.

Next, the algorithm sorts by score the subsets of Q
found by the positional clustering, which using a bucket
sort takes O(N) time. Finally, we need to scan the sorted
subsets as to obtain the output list L of compatible sub-
sets, and insert new nodes in the partition tree T (draw_
and_mark procedure).

To check whether a subset Q′ ⊆ Q is compatible with
the ones inserted in T so far, we proceed as follows: taken
any element y ∈ Q′ , take the leaf-to-root path from y to
the root,3 and consider for each node the cardinality of its
set. If Q′ is compatible, it must be inserted at one specific
point in this path, i.e., where the cardinality of the lower
node is < |Q′| and that of the upper node is > |Q′| (the
path has length ≤ ℓ and we only need to scan it once to
find the spot, so this can be obtained in O(ℓ) time). At this
point, we identified the potential parent P of Q′ , and we
only need to verify that indeed Q′ ⊂ P (O(|P|) time), and
that, for each child Pi of P, either Pi ⊂ Q′ or |P ∩ Q′| = 0 ;
this latter step also takes O(

∑

|Q′|) = O(|P|) time, with
|P| ≤ ℓ since P ⊆ S . This means we can identify whether
Q′ is compatible, and in case already identify the nodes
that should become children of Q′ , in O(ℓ) time.

Since the maximum number of subsets we analyze
from the sorted list is limited by f · s , where s ≤ h is the
number of successful insertions in L, and f the limit of
consecutive failures allowed, the total cost of this step is
O(fsℓ) , meaning that the total cost of each execution of
refinement is O(N + fsℓ).

The number of executions of refinement is bounded
by the final number of nodes in T, that is O(ℓ) . Further-
more, the total cost of the O(fsℓ) factors can be amortized
to O(f ℓ2) in that only up to ℓ successful insertions can be
performed in total on T. It follows that the total cost is
bounded by O(Nℓ+ f ℓ2) . Finally, as f is a constant (no
greater than 100) and ℓ ≤ N since each taxon has a posi-
tive length, we have O(Nℓ+ f ℓ2) = O(Nℓ).

As for the space requirement, it is that of refinement
plus the maximum size of the Queue and the tree T: refine-
ment requires O(N) space for the ebwt structures; the
Queue only holds up to ℓ pointers to the tree T, and the latter
tree has O(ℓ) nodes each of size O(ℓ) . The following holds:

Lemma 13 Given a set S of ℓ taxa, whose total length
is N, phyBWT2 reconstructs a phylogenetic tree for S in
O(Nℓ) time and O(N + ℓ2) space.

3 In practice, we can stop at X instead of the root to consider fewer nodes,
but the worst-case complexity is the same.

Page 11 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

We observe that N is the dominant factor in this com-
plexity, as the length of the strings representing a taxon
is -in known applications- many orders of magnitude
greater than the number ℓ of taxa.

Furthermore, O(Nℓ) time corresponds to the worst
case in which the refinement procedure only gener-
ates one new node each time. As refinement is able
to create nodes on various levels at once, this is not the
expected behaviour: as showcased in Sect. "Experimental
evaluation" the number of calls of the refinement pro-
cedure is far less than ℓ in practice.

Experimental evaluation
In this section we test the performance of phyBWT2 for
reconstructing phylogenetic trees from short-reads and
de novo assembled sequences. Indeed, as for the previous
version phyBWT, its usage is not limited to a particular
type of input since both types of data are accepted as input.
However, the diversity between the two type of input data
requires a tuning of the parameters (kmin and τ).

For comparison, we selected the recently introduced
tool SANS [24, 25] since it shares several features
with phyBWT2: both are whole-genome based, align-
ment- and reference-free approaches for phylogenetic
reconstruction that do not use or produce pairwise com-
parisons of the sequences or their characteristics. We
used the latest version4 of SANS [25], a stand-alone re-
implementation of the theoretical approach presented
in [24] that improves both running time and memory
usage.

Differently from phyBWT2, SANS is based on the con-
struction of a list of splits obtained by computing all the
k-mers of the dataset, which are either directly extracted
or stored in a colored de Bruijn graph. Thus, it requires
to fix a-priori the value k. Then, the list of splits is post-
processed according to filtering strategies (options pro-
posed in SplitsTree [26]) that allow to limit the output
splits in order to show phylogenetic networks or to cal-
culate a subset of them representing a tree. For the sake

of comparison, we applied to SANS the last filtering
approach for drawing trees.

In our experiments, in order to improve the sensitivity
of our tool (note that SANS performs implicitly this step
by adding the reverse-complement of the k-mers), we
added the reverse-complement of the strings to each set
of taxa.

Implementation Our tool has been implemented in
C++. All tests were done on a DELL PowerEdge R750
machine, used in non exclusive mode. Our platform is
a 24-core machine with 2 Intel(R) Xeon(R) Gold 5318Y
24C/48T CPUs at 2.10 GHz, with 629 GB. The system is
Ubuntu 22.04.1 LTS.

Input and Output phyBWT2 takes as input ebwt (S),
lcp (S) and cda (S), the parameter km that is used to
remove the noise during the construction of the posi-
tional clusters and the support threshold value τ in (0, 1]
used for each positional cluster coloring. Such data struc-
tures can be computed via the bash script that we provide
in the phyBWT2 repository. In the current implementa-
tion, the data structures are given in uncompressed form,
but phyBWT2 can be adapted to directly take as input
compressed data structures [31].

Our tool outputs an unrooted tree in newick format.
The trees5 reported in this paper are drawn by using the
Interactive Tree Of Life (iTOL) tool [32].

Datasets To show the effectiveness of our method,
we have chosen six datasets with a diverse number of
taxa, composition and different length of the strings
(Table 1). More in details, we used six different types of
datasets: i) Illumina sequencing data (short reads) for
seven S. cerevisiae and five S. paradoxus strains from
the study in [33]; ii) assemblies from 12 species of the
genus Drosophila from the FlyBase database (largely
accepted phylogeny shown in [34]) (also analyzed
in [24]); iii) Illumina sequencing data (short reads) for
42 S. cerevisiae strains selected from the studies in [35,
36] and from the public repository under accession
code PRJEB50706. iv) 43 HIV-1 complete genomes used

Table 1 Datasets

Datasets Composition Number
of taxa

Number
of sequences

Number
of bp

12 yeasts Illumina paired-end reads 12 60,000,000 9,060,000,000

Drosophila assemblies 12 121,491 4,323,268,803

42 yeasts Illumina paired-end reads 42 119,641,704 15,664,843,102

HIV-1 genomes 43 43 388,535

Ebolavirus genomes 20 20 378,002

E. coli—Shigella genomes 27 27 132,466,506

4 https:// gitlab. ub. uni- biele feld. de/ gi/ sans, downloaded in January 2023. 5 Except the trees in Figs. 4, 5, and 6 already in the conference paper [11].

https://gitlab.ub.uni-bielefeld.de/gi/sans

Page 12 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

in the literature [37]; v) 20 sequences from Ebolavirus
genus selected in [38, 39]. vi) 27 genomes from E. coli
and Shigella from the studies in [40, 41].

Resource usage The new version phyBWT2 improves
the performance of the former version phyBWT by
reducing the internal memory usage and the running
time on large datasets. Indeed, phyBWT2 does not load
in main memory the data structures: it performs the
clustering detection by reading portions of the input
data structures computed for the whole dataset and by
(possibly) reducing them to a subset of strings at the
same time.

In Table 2 we report the running times of both
phyBWT2 and SANS on the tested datasets. We separate
the running time required to build the data structures
from the running time of phyBWT2 for several reasons.

First, the input data structures eBWT, LCP and CDA
are well-known structures in string algorithms and
in bioinformatics, and efficiently building these data
structures is a well-studied problem ([15, 42–49]).
Thus, analyzing the best way to compute them effi-
ciently does not fall within the goal of this paper.

Second, the data structures do not depend on the km
-value used to remove the noise during the construc-
tion of the positional clusters. Therefore, they need to
be built only once for each input dataset. One can try
different parameters or techniques for inferring con-
fidence values on phylogenetic trees (based on recon-
structing many trees) without having to rebuild the data
structures.

The last feature does not hold for k-mers-based meth-
ods, such as SANS, whose data structures must be rec-
omputed when varying the input parameter k.

Nevertheless, we experimentally observed that the pre-
processing step (see Table 2) is computationally more
expensive than the phylogeny construction.

Experiments on 12 yeasts
This dataset comprises 12 Illumina 151-bp paired-end
sequencing experiments obtained from the study in [33],
and deposited in the public repository SRA (Short
Reads Archive) under accession code PRJNA340312. We
selected seven sequencing data from the S. cerevisiae
strains and five from the S. paradoxus strains. We per-
formed adaptor-removing and quality-based trimming
using trimmomatic [50], as described in [33]. Then, for
each sequencing experiment, we extracted 5 million of
151-bp paired-end reads as to form a dataset with 60×
coverage on average per strain and a total FASTA file size
of 26 GB.

Table 2 Running times and RAM both phyBWT2 and SANS

We also show the the resources needed to build the data structures during the preprocessing using the tool BCR [15] and bwt2lcp [46] for short reads and
gsufsort [45] for long sequences. All tools were run using one core only. The wall clock time and RAM usage are taken from the output of the /usr/bin/time
command.

Datasets PhyBWT2 SANS

Preprocessing Phylogeny RAM Wall clock

RAM (Kb) Wall clock (hh:mm:ss) RAM (Kb) Wall clock
(hh:mm:ss)

(Kb) (hh:mm:ss)

12 yeasts 27,559,652 3:19:03 6752 3:12 2,779,692 35:58

Drosophila 92,536,548 26:11 9516 8:50 30,107,232 21:04

42 yeasts 47,696,220 (BCR+bwt2lcp) 08:06:08 1,874,388 01:26:17 14,128,724 32:48:43 (k=32)

4,461,196 (only BCR) 16:27:45 12,368,416 45:52:01 (k=25)

HIV-1 18,996 < 1s 8452 < 1s 9,020 < 1s

Ebolavirus 18,256 < 1s 8460 < 1s 9,112 < 1s

E. coli—Shigella 5,484,644 1:21 12,648 1:38 303,868 3:06

Fig. 4 Benchmark phylogeny for the yeasts dataset. Figure redrawn
from [33]

Page 13 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

Validation and results As benchmark tree we used
the one reported in Fig. 4 obtained from the original
study [33]. Remarkably, the benchmark was built using
nuclear one-to-one orthologs, i.e. the sequences of

nuclear genes which are shared among (i) the seven S.
cerevisiae, (ii) the five S. paradoxus strains sequenced in
the study, and (iii) six outgroups from the Saccharomyces
genus.

Fig. 5 Yeasts phylogeny by phyBWT and phyBWT2 (a) and by SANS (b)

Fig. 6 Drosophila phylogeny: a by our method; b benchmark redrawn from [34]

Page 14 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

The tree depicted in Fig. 5a has been obtained by the
first version phyBWT, for any km ≥ 14 , and τ = 0.6 and
t being the number of taxa. By running phyBWT2 on
the same input we obtain the same reconstructed phy-
logeny with similar parameters, i.e. for any km > 15
and τ = 0.6 (parameter t being removed in phyBWT2).
For running SANS, analogously to [11], we use default
parameters that corresponds to setting the k-mer
length to 32 (-DmaxN=32), and in addition, we set the
option -f strict in order to output a tree in the
Newick format (see Fig. 5b).

Both phyBWT2 and SANS separate the S. cerevisiae
and the S. paradoxus strains, which show an aver-
age whole-genome sequence divergence of ∼ 10%. As
expected, by taking into account the relatively high
divergence among S. paradoxus strains (0.5% - 4.5%),
also the same S. paradoxus partition is obtained. On
the other hand, a few differences are shown in the
S. cerevisiae partition which groups strains with a
sequence divergence ∼ 0.5%. Compared to SANS,
phyBWT2 produces a tree which is closer to the
benchmark although the differences with the bench-
mark shown by both SANS and our method can be
explained considering the relatively low divergence
among S. cereviasiae strains as well as the partially
admixed genomes of some of the trains (e.g. S288C and
DBVPG6044) [51].

For a fair comparison, we also run SANS with differ-
ent values of the input parameter k (i.e. by varying k
in the range [15, 50]). The unrooted phylogenetic tree
obtained for k in [15, 27] is topologically equivalent to
the one obtained from our approach depicted in Fig. 5a,
but the UWOPS034614 strain is clustered with the S.
paradoxus clade rather than S. cerevisiae clade. Instead,
for k > 40 , either the strain UWOPS919171 is mis-
placed or the stains Y12 and YPS128 are not grouped
together, differently from the benchmark tree.

Time and memory Given the necessary data structures
for this dataset, the former version phyBWT runs in
approximately 12 min with a memory peak of 81 GB by
loading the whole data structures in the main memory.
The new version phyBWT2 uses only 6.5 MB of internal
memory and fulfills the task in 3:12 min reducing the
number of performed iterations from 6 to 1 (using the
same parameter setting km = 22 and τ = 0.6 for both
versions). On the same datasets, using default param-
eters, SANS runs in 30:29 min by using 3.7 GB of internal
memory. However, a direct time and memory compari-
son between phyBWT2 and SANS is not completely fair,
as they take different inputs: if we do not assume avail-
ability of the data structures, computing them for this
dataset takes over 3 hours, so SANS would be faster (see
Table 2 for details).

Experiments on Drosophila
Drosophila data are downloaded from the FlyBase data-
base.6 This dataset includes assemblies from 12 species of
the genus Drosophila: D. melanogaster (mel), D. ananas-
sae (ana), D. erecta (ere), D. grimshawi (gri), D. mojaven-
sis (moj), D. persimilis (per), D. pseudoobscura (pse), D.
sechellia (sec), D. simulans (sim), D. virilis (vir), D. willis-
toni (wil), and D. yakuba (yak). Nine of these species fall
within the Sophophora subgenus, which includes mem-
bers of the melanogaster, obscura and willistoni groups.

The number of strings for each species varies: it ranges
from 1, 870 for D. melanogaster to 17, 440 for D. grim-
shawi. The obtained dataset is a medium-sized input
with a total number of symbols of more than 2, 161 Mbp.
More details are reported in Additional file 1.

Validation and results As benchmark tree we used the
accepted phylogeny [34] which we report in Fig. 6b. For
this dataset, phyBWT2 produces the same tree as the one
obtained in [11] by using phyBWT for any km in [23, 45]
and τ = 0.5 (Fig. 6a). The same parameter settings used
for phyBWT also hold for phyBWT2. The Sophophora
subgenus as well as the Drosophila subgenus are cor-
rectly detected, and inside the Sophophora subgenus, the
melanogaster subgroup is correctly isolated. The only dif-
ference with respect to the benchmark tree by [34] is the
taxon D. ananassae that represents the ananassae sub-
group. Such subgroup is part of the melanogaster group
together with D. melanogaster, D. sechellia, D. simulans,
D. erecta and D. yakuba. However, our method places
D. ananassae closer to the obscura group rather than
the melanogaster subgroup. SANS was run with default
values as described in [24], and the reconstructed tree
obtained by option -f strict is topologically equiva-
lent to the benchmark reference tree.

Time and memory phyBWT2 improves upon phyBWT
by reducing the memory usage from 24 GB to 9 MB,
and by reducing the number of iterations from 4 to 2 for
km = 23 and τ = 0.5 . Nevertheless, the running time of
phyBWT2 is around 9 min, more than phyBWT which
ends in less than 2 min; this is mainly due to the fact
that input data structures are kept on the disk. By using
default parameters, SANS uses an amount of inter-
nal memory similar to phyBWT (28.7 GB) and ends in
around 21 min.

Experiments on 42 yeasts
In order to test the accuracy of phyBWT2 in discerning
closely related populations (with sequence divergence
varying between 0.5% and 1%), we selected 42 repre-
sentative S. cerevisiae strains and produced their phylo-
genetic tree.

6 http:// flyba se. org/

http://flybase.org/

Page 15 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

This dataset comprises 42 Illumina paired-end
sequencing experiments obtained from the study in [52].
More details about the public repositories to download
them are provided in Additional file 1. For each sequenc-
ing experiment, we extracted paired-end reads yielding
an average coverage of 30× per strain and a total FASTA
file size of 38 GB.

Validation and results As a benchmark we used IQ-
TREE [53] with model selection [54] and ultrafast boot-
strapping [55] (Fig. 7) and compared its results with
those obtained from phyBWT2 and SANS. As shown in

Fig. 8, phyBWT2 captured several features of the phylog-
eny produced with IQ-TREE.

Overall, the structure of the tree generated by
phyBWT2 for sufficiently large km and τ (km = 25 and
τ = 0.6) is very similar to the structure of the bench-
mark tree. All the main non-admixed clades [51], namely
the “Wine/European” strains (AIF, BPK, ALS_1a, ADI,
CKB, AFI, CAS_1a) and the Asian ones (BAQ_1a, BAH,
BAL_1a, AMH_1a, BAP_1a), are correctly identified by
phyBWT2. Remarkably, also the other two main classes
of strains, namely the “ale beer” strains (AAC, ATV) and
the “African palm wine” clade (BAD, BAF), are correctly

Fig. 7 Bootstrapping phylogenetic tree on the 42 yeasts sequences

Page 16 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

clustered close to the Wine/European and the Asian
clades respectively.

Finally, all the other strains related to the Wine/Euro-
pean clade are correctly clustered. Moreover, compar-
ing the results of phyBWT2 with the literature [52] we
observe that only phyBWT2 is able to correctly detect
the outgroup strain (AMH_1a).

On the contrary, the tree generated by SANS with
default parameters (Fig. 9) fails to grasp both the general
structure of the benchmark tree and the fine structure
of the different clades. Remarkably, we observe strains

related to the Wine/European group, such as the cider
strain AMP_1a, clustered very close to Asian strains and
also the other way round, e.g. the Asian strain CDG_1a
that is clustered close to Wine/European strains.

We also ran SANS using a smaller value for the k-mer
length (option -k 25). As reported in Fig. 10 the general
structure of the tree improved with respect to the default
parameter, since the clustering of the non-admixed
strains (both the Wine/European and the Asian) is cor-
rectly determined. Also the fine structure improved with
the African palm wine strains (BAD and BAF) correctly

Fig. 8 The phylogenetic tree on the 42 yeasts sequences by phyBWT

Page 17 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

clustered with the Asian clade. On the other hand, the ale
beer strains (AAC and ATV) are still incorrectly placed.
The same holds for the outgroup (AMH_1a) that is not
identified.

Time and memory Given the necessary data struc-
tures for this dataset, phyBWT2 reconstructs the pro-
posed phylogeny in approximately 1 h and half with a
memory peak of 1.8 GB by using km = 25 and τ = 0.6 .
phyBWT2 largely improves upon phyBWT not only but
showing a better phylogeny reconstruction (by using

similar parameter settings), but also in its performance.
The former version runs in 5 h by using a large amount of
memory (more than 175 GB) and performs 33 iterations
against the only 5 carried out by phyBWT2. On the same
dataset, SANS needs 13.5 GB of internal memory and
more than 32 h to reconstruct the phylogenetic tree for
k = 32 , and even more time (around more than 45 h) for
k = 25 . Although a direct time and memory comparison
between phyBWT2 and SANS is not fair, since phyBWT2
requires data structures whose computation does not

Fig. 9 The phylogenetic tree on the 42 yeasts sequences by SANS with default parameters

Page 18 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

depends on the choice of k, in this case even including
the computation of the data structures phyBWT2 is more
efficient than SANS: for this dataset, we can compute the
eBWT and CDA array using the semi-external memory
approach proposed by BCR [15] taking about 7 h and 4.3
GB of internal memory, and deduce the LCP array from
the eBWT using the tool bwt2lcp [46] taking around
1 h and 20 min and 45 GB of memory (see Table 2).

Experiments on HIV
Clade classification is an important task also in the field
of virology, as each clade (also termed subtype) corre-
sponds to a cluster of genetic similarity. Thus, we stud-
ied the phylogeny of the Human immunodeficiency virus
(HIV).

There are two main types of HIV, and among them,
HIV-1 is the most virulent and predominant. This dataset

Fig. 10 The phylogenetic tree on the 42 yeasts sequences by SANS with option -k=25

Page 19 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

is obtained by selecting 43 HIV-1 complete genomes used
in the literature [37]. In particular, it comprises thirty-five
sequences from the major group (Group M) divide into
subtypes A, B, C, D, F, G, H, J, K, seven sequences from
the minor Groups N and O, and one CPZ sequence as an
outgroup. Accession number, subtype, length (bp), and
area of the HIV-1 sequences are reported in Table S1.
These reference sequences have been carefully selected
in [56] according to several criteria, and can be down-
loaded from the Los Alamos National Laboratory HIV
Sequence Database.7

Validation and results For this experiment, we use as
benchmark the phylogeny depicted in [37, Fig. 2], which
is the Neighbor-Joining phylogenetic tree on the 43 ref-
erence sequences where the CPZ sequence (CIV strain
AF447763) is used as an outgroup. We run phyBWT2 and
SANS on this dataset by using different parameter set-
tings. We compared the reconstructed phylogenetic trees
by using the functions ClusteringInfoDistance()
and SharedPhylogeneticInfo() provided in the
R package TreeDist [57], which implements a suite
of metrics to quantify the topological distance between
pairs of unweighted phylogenetic trees.

Figures 11 and 12 depict the trees that obtained the
best scores according to the above measures based
on the amount of phylogenetic or clustering informa-
tion that two trees hold incommon. More in details,
we set km = 16 and τ = 0.6 in phyBWT2 and k = 16 in
SANS. For both tools, subtypes are distinctly grouped
together in different branches. The phylogeny produced
by phyBWT2 is consistent with the one in [37]. The rela-
tionships among the subtypes are well demonstrated, for
instance subtypes B and D (resp. C and H) are closer to
each other than to the others, and subtype F (resp. A)
contains two distinguishable sub-subtypes F1 and F2
(resp. A1 and A2) that are close related to subtypes K and
J (resp. G).

Time and memory Given the necessary data structures
for this dataset, both phyBWT and phyBWT2 recon-
struct the proposed phylogeny very quickly (less than 1
second). However, phyBWT2 improves on phyBWT by
showing a phylogeny reconstruction closer to the bench-
mark philogeny (by using similar parameter settings),
and by reducing the number of iterations from 8 to 3.

Experiments on Ebolavirus
For this experiment, we used the 20 published sequences
from [38] selected in [39].

The Ebolavirus genus includes five viral species: Ebola
virus (Zaire ebolavirus, EBOV), Sudan virus (SUDV),

Tai Forest virus (TAFV), Bundibugyo virus (BDBV), and
Reston virus (RESTV). Ebola viruses are single-stranded
RNA whose genomes consist of about 19 kilobases.
Details for each sequence in Additional file 1.

Validation and results For this experiment, we use as
benchmark the phylogeny trees depicted in [39, Fig. 4].

Figures 13 and 14 depict the trees that obtained the
best scores according to the measures based on the
shared amount of phylogenetic or clustering information
provided in the R package TreeDist [57] and described
for the HIV-1 dataset. More in details, we setkm = 16 and
τ = 0.6 in phyBWT2 and k = 21 in SANS.

Both phyBWT2 and SANS exactly separated the five
species. According to the four trees in [39, Fig. 4], the
EBOV sequences are clustered into a monophyletic clade,
and BDBV and TAFV viruses are positioned close and
then clustered with the EBOV branch. These trees also
show the phylogenetic uncertainty in the placement of
the SUDV clade (red).

Our method (Fig. 13) places the SUDV clade as sis-
ter to the EBOV, TAFV and BDBV clade, in accord-
ing with [39, Fig. 4E], whereas SANS (Fig. 14) places it
as sister to RESTV clade in according with [39, Fig. 4A].
Differently from the study in [39, Fig. 4], the phylogeny
reconstructed by SANS keeps the EBOV branch and the
TAFV-BDBV clade separated (Fig. 14).

Time and memory Also in this second dataset of viral
genomes, both phyBWT and phyBWT2 reconstruct the
proposed phylogeny very quickly (less than 1 second).
The phylogeny reconstructed by phyBWT is similar to
the one produced by phyBWT2, but the number of itera-
tions performed by phyBWT2 is much smaller (from 13
to 2).

Experiments on E. coli—Shigella
For this experiment, we used a real-world dataset col-
lected in the study [41] to assess the accuracy of the align-
ment-free methods in phylogenetic reconstruction of
sequences that underwent horizontal gene trasfer events
and genome rearrangements. It comprises 27 genomes of
E. coli and Shigella whose reference supertree [40] was
generated based on thousands of single-copy protein
trees. Details for each sequence in Additional file 1.

Validation and results As benchmark we use the phy-
logeny tree depicted in [41, Additional file 2: Figure S8]
where E. coli reference groups and Shigella (S) are indi-
cated. Indeed, the 27 taxa are attributed to six distinct
groups (the E. coli reference, or ECOR, strains) [40].

Figures 15a and b depict the trees we selected among
them obtaining the higher scores according to the clus-
tering information measure described above and com-
puted by using the R package TreeDist [57]. More in
details, we choose k = 16 for SANS, and km = 16 and 7 http:// www. hiv. lanl. gov/

http://www.hiv.lanl.gov/

Page 20 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

τ = 0.5 for phyBWT2 (parameter setting similar to other
datasets).

We observe that phyBWT2 clusters in clades each
ECOR group (i.e. groups A, B1, B2, D, E and S), apart
from S. dysenteriae that is placed externally to Group S,
more precisely as sister to Group E.

However, we note that also in the reference tree S. dys-
enteriae is placed externally, as sister to the pathogenic

E. coli O157:H7 isolates (Group E). Also the tree recon-
structed by SANS shows such a relationship between S.
dysenteriae and Group E.

Differently from the reference tree, both phyBWT2 and
SANS placed groups A and B1 as sister groups.

Time and memory The time usage of phyBWT 2 and
SANS for this dataset is comparable (including the time
for the preprocessing step completed by the internal

Fig. 11 The phylogenetic tree on the 42 HiV-1 sequences by phyBWT2. Re-root the tree in CIV strain AF447763, as it is set outgroup in the reference
tree in [37]

Page 21 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

memory approach gsufsort [45]), which is also com-
parable to the time spent by the older version phyBWT.
By keeping the data structures on disk, phyBWT2
improves the memory usage of phyBWT. Finally, also
for this datasets the number of iterations performed by
phyBWT2 improves on those performed by the previ-
ous version.

Conclusions and further work
In this paper, we proposed phyBWT2 an alignment-,
assembly- and reference-free method to build the phy-
logeny inference of a set of taxa. The phyBWT2 method
is a new version of phyBWT [11] that includes improve-
ments on the phylogenetic reconstruction strategy, as
well as on the performance in both running time and
memory usage. In fact, phyBWT2 is shown to reduce

Fig. 12 The phylogenetic tree on the 42 HIV-1 sequences by SANS. Re-root the tree in CIV strain AF447763, as it is set outgroup in the reference
tree in [37]

Page 22 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

the number of iterations performed, and by keeping the
data structures on disk it extremely reduces the main
memory usage. To this extent, the implementation of
phyBWT2 reads portions of lcp(S) , as well as of ebwt(S)
and cda(S) , and without the need of loading them in
main memory, it performs the cluster detection by reduc-
ing on-the-fly the input data structures to any R ⊂ S (i.e.
by deducing lcp(R) , ebwt(R) and cda(R)) from lcp(S) ,
ebwt(S) and cda(S).

To the best of our knowledge, phyBWT and phyBWT2
are the first methods that apply the properties of the
Extended Burrows-Wheeler Transform (eBWT) to the
idea of phylogenetic reconstruction. Both approaches
are based on the eBWT positional cluster framework
introduced in [19], which allowed us to consider longest
shared substrings of varying length, unlike k-mer-based
approaches such as SANS.

Fig. 13 The phylogenetic tree on Ebolavirus dataset by phyBWT2

Fig. 14 The phylogenetic tree on Ebolavirus dataset by SANS

Page 23 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

Fig. 15 The phylogenetic tree on the 27 E. coli—Shigella genomes by phyBWT (a) and by SANS (b)

Page 24 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

Differently from phyBWT, phyBWT2 combines the
inner algorithm based on the eBWT positional clustering
to a refinement procedure that reconstructs a phylogeny
step-by-step by considering multiple partitions at each
step, instead of just one partition as done by phyBWT.

We tested our method on several sequencing datasets,
with short reads and de novo assembled sequences. The
experimental results show that our algorithm produces
trees comparable to the benchmark phylogeny and to the
recently introduced tool SANS.

Our current implementation requires a preprocess-
ing phase in order to compute the input data structures
(ebwt , lcp and cda), which are at the heart of several
other text and string algorithms. Thus, evaluating the
best tool or the combination of tools for the pre-process-
ing phase is out of the scope of this work. More efficient
tools for computing them can appear in the literature
improving both the time and the memory requirements.

Moreover, the input data structures we used are
independent of the parameter settings, so they can be
computed only once and re-used for different runs of
phyBWT2. Indeed, by using different types of data (e.g.
genomes rather than short reads) phyBWT2 parame-
ters may need to be fine-tuned, and there is no need of
rebuilding from scratch the input data structures when
changing phyBWT2 parameters. The same remarkable
feature does not hold for k-mer-based approach, such as
for instance SANS.

Phylogenetic analysis is a common practice in HIV
studies [56, 58]. Experimentally we show phyBWT2 is
able to distinctly group together the HIV-1 subtypes and
to grasp the relationships among the subtypes. Virus sub-
types can be clinically significant owing to their associa-
tions with variation in pathogenesis.

While the worst-case complexity of the method is
competitive with existing methods, there are interesting
directions for further optimization, such as using Colored
Range Queries [59] to speed up identification of colors in
the various clusters, or exploiting the bounded length of
the reads to overcome the computational bottleneck of
computing the eBWT and related data structures. A fur-
ther improvement could include internally to phyBWT2
the bootstrapping of the reconstructed tree, for instance
by ranging the value km to vary eBWT positional clusters.

Abbreviations
BWT Burrows-Wheeler transform
eBWT Extended Burrows-Wheeler transform
DA Document array
LCP Longest common prefix
SA Suffix array
CDA Color document array
SRA Short reads archive
HIV Human immunodeficiency virus
iTOL Interactive tree of life

Supplementary Information
The online version contains supplementary material available at https:// doi.
org/ 10. 1186/ s13015- 023- 00232-4.

Additional file 1: Dataset information. Descriptions and information to
download the datasets used and analysed in the current study.

Acknowledgements
We thank Matteo De Chiara for discussions.

Author contributions
VG, AC, RG and GR designed the method. VG implemented the tool. VG, AC,
RG and GR contributed to interpreting the results. LT and GL provided the
yeast datasets and contributed to interpreting the related results. All authors
read and approved the final manuscript.

Funding
VG is totally, RG and GR are partially, funded by PNRR—M4C2—Investimento
1.5, Ecosistema dell’Innovazione ECS00000017—“THE—Tuscany Health
Ecosystem”—Spoke 6 “Precision medicine & personalized healthcare”, CUP
I53C22000780001, funded by the European Commission under the NextGen-
eration EU programme.

Availability of data and materials
The tool phyBWT2 is freely available for academic use at https:// github. com/
veron icagu errini/ phyBW T2. Information to download the datasets used and
analysed in the current study is available as Additional file 1.

Code availability
The source code is freely available for academic use at: https:// github. com/
veron icagu errini/ phyBW T2.

Declarations

 Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable

Competing interests
The authors declare that they have no competing interests.

Author details
1 Dipartimento di Informatica, University of Pisa, Pisa, Italy. 2 CNRS UMR 7284,
INSERM U1081 Université Côte d’Azu, Nice, France.

Received: 31 March 2023 Accepted: 10 June 2023

References
 1. Gallone B, Steensels J, Mertens S, Dzialo MC, Gordon JL, Wauters R,

Theßeling FA, Bellinazzo F, Saels V, Herrera-Malaver B, Prahl T, White C, Hut-
zler M, Meußdoerffer F, Malcorps P, Souffriau B, Daenen L, Baele G, Maere
S, Verstrepen KJ. Interspecific hybridization facilitates niche adaptation in
beer yeast. Nat Ecol Evol. 2019;3(11):1562–75.

 2. Tattini L, Tellini N, Mozzachiodi S, D’Angiolo M, Loeillet S, Nicolas A, Liti
G. Accurate tracking of the mutational landscape of diploid hybrid
genomes. Mol Biol Evol. 2019. https:// doi. org/ 10. 1093/ molbev/ msz177.

 3. D’Angiolo M, De Chiara M, Yue J-X, Irizar A, Stenberg S, Persson K, Llored
A, Barré B, Schacherer J, Marangoni R, Gilson E, Warringer J, Liti G. A yeast
living ancestor reveals the origin of genomic introgressions. Nature.
2020;587(7834):420–5.

 4. Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: building the
web of life. Nat Rev Genet. 2015;16(8):472–82.

https://doi.org/10.1186/s13015-023-00232-4
https://doi.org/10.1186/s13015-023-00232-4
https://github.com/veronicaguerrini/phyBWT2
https://github.com/veronicaguerrini/phyBWT2
https://github.com/veronicaguerrini/phyBWT2
https://github.com/veronicaguerrini/phyBWT2
https://doi.org/10.1093/molbev/msz177

Page 25 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

 5. Yang Z, Rannala B. Molecular phylogenetics: principles and practice. Nat
Rev Genet. 2012;13:303–14. https:// doi. org/ 10. 1038/ nrg31 86.

 6. Warnow T. Computational phylogenetics: an introduction to designing
methods for phylogeny estimation. Cambridge: Cambridge University
Press; 2017.

 7. Saitou N, Nei M. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular biology and evolution.
1987;4(4):406–25.

 8. Vinga S, Almeida J. Alignment-free sequence comparison—a review.
Bioinformatics. 2003;19(4):513–23. https:// doi. org/ 10. 1093/ bioin forma
tics/ btg005.

 9. Vinga S. Alignment-free methods in computational biology. Oxford:
Oxford University Press; 2014.

 10. Zielezinski A, Vinga S, Almeida J, Karlowski W. Alignment-free sequence
comparison: benefits, applications, and tools. Genome Biol. 2017;18:186.
https:// doi. org/ 10. 1186/ s13059- 017- 1319-7.

 11. Guerrini V, Conte A, Grossi R, Liti G, Rosone G, Tattini L. phyBWT:
Alignment-Free Phylogeny via eBWT Positional Clustering. In: Boucher
C, Rahmann S, editors. 22nd International Workshop on Algorithms in
Bioinformatics (WABI 2022). LIPIcs, vol. 242. Dagstuhl: Schloss Dagstuhl—
Leibniz-Zentrum für Informatik; 2022. p. 23–12319. https:// doi. org/ 10.
4230/ LIPIcs. WABI. 2022. 23.

 12. Prezza N, Pisanti N, Sciortino M, Rosone G. SNPs detection by eBWT
positional clustering. Algorithm Mol Biol. 2019;14(1):3. https:// doi. org/ 10.
1186/ s13015- 019- 0137-8.

 13. Burrows M, Wheeler DJ. A block sorting data compression algorithm.
DIGITAL System Research Center: Technical report; 1994.

 14. Mantaci S, Restivo A, Rosone G, Sciortino M. An extension of the Burrows-
Wheeler transform. Theor Comput Sci. 2007;387(3):298–312.

 15. Bauer MJ, Cox AJ, Rosone G. Lightweight algorithms for constructing and
inverting the BWT of string collections. Theor Comput Sci. 2013;483:134–
48. https:// doi. org/ 10. 1016/j. tcs. 2012. 02. 002.

 16. Mantaci S, Restivo A, Rosone G, Sciortino M. A new combinatorial
approach to sequence comparison. Theor Comput Syst. 2008;42(3):411–
29. https:// doi. org/ 10. 1007/ s00224- 007- 9078-6.

 17. Yang L, Zhang X, Wang T. The Burrows-Wheeler similarity distribution
between biological sequences based on Burrows-Wheeler transform. J
Theor Biol. 2010;262(4):742–9. https:// doi. org/ 10. 1016/j. jtbi. 2009. 10. 033.

 18. Guerrini V, Louza FA, Rosone G. Metagenomic analysis through the
extended Burrows-Wheeler transform. BMC Bioinform. 2020. https:// doi.
org/ 10. 1186/ s12859- 020- 03628-w.

 19. Prezza N, Pisanti N, Sciortino M, Rosone G. Variable-order reference-free
variant discovery with the Burrows-Wheeler transform. BMC Bioinform.
2020. https:// doi. org/ 10. 1186/ s12859- 020- 03586-3.

 20. Guerrini V, Louza F, Rosone G. Lossy compressor preserving variant calling
through extended BWT. In: BIOSTEC/BIOINFORMATICS, INSTICC, SciTe-
Press, 2022. p. 38–48. https:// doi. org/ 10. 5220/ 00108 34100 003123.

 21. Bandelt H-J, Dress AWM. A canonical decomposition theory for metrics
on a finite set. Adv Math. 1992;92(1):47–105.

 22. Bandelt H-J, Huber KT, Koolen JH, Moulton V, Spillner A. Basic Phylo-
genetic Combinatorics. Cambridge: Cambridge University Press, 2012.
https:// doi. org/ 10. 1017/ CBO97 81139 019767.

 23. Bandelt H-J, Dress AWM. Split decomposition: a new and useful
approach to phylogenetic analysis of distance data. Mol Phylogenet Evol.
1992;1(3):242–52. https:// doi. org/ 10. 1016/ 1055- 7903(92) 90021-8.

 24. Wittler R. Alignment- and reference-free phylogenomics with colored
de bruijn graphs. In: 19th International Workshop on Algorithms in
Bioinformatics (WABI 2019), vol. 143, Dagstuhl: Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik; 2019. p. 2–1214. https:// doi. org/ 10. 4230/ LIPIcs.
WABI. 2019.2.

 25. Rempel A, Wittler R. SANS serif: alignment-free, whole-genome-based
phylogenetic reconstruction. Bioinformatics. 2021;37(24):4868–70.
https:// doi. org/ 10. 1093/ bioin forma tics/ btab4 44.

 26. Huson DH, Bryant D. Application of phylogenetic networks in evolution-
ary studies. Mol Biol Evol. 2005;23(2):254–67.

 27. Jansson J, Sung W-K. Algorithms for combining rooted triplets into a
galled phylogenetic network. In: Kao, MY. (eds) Encyclopedia of Algo-
rithms. New York: Springer; 2016: 48–52.

 28. Jansson J, Sung W-K. Maximum agreement supertree. In: Kao, MY. (eds)
Encyclopedia of Algorithms. New York: Springer; 2016:1224–7.

 29. Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. In: ACM-SIAM SODA, 1990:319–27.

 30. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Dis Algorithm. 2004;2(1):53–86. https:// doi.
org/ 10. 1016/ S1570- 8667(03) 00065-0.

 31. Navarro G. Indexing highly repetitive string collections, part II: com-
pressed indexes. ACM Comput Surv. 2022;54(2):26–12632. https:// doi.
org/ 10. 1145/ 34329 99.

 32. Letunic I, Bork P. Interactive Tree Of Life (iTOL) v5: an online tool
for phylogenetic tree display and annotation. Nucleic Acids Res.
2021;49(W1):293–6. https:// doi. org/ 10. 1093/ nar/ gkab3 01.

 33. Yue J-X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A,
Coupland P, Warringer J, Lagomarsino MC, Fischer G, Durbin R, Liti G.
Contrasting evolutionary genome dynamics between domesticated
and wild yeasts. Nat Genet. 2017;49(6):913–24. https:// doi. org/ 10. 1038/
ng. 3847.

 34. Crosby MA, Goodman JL, Strelets VB, Zhang P, Gelbart WM, Con-
sortium TF. FlyBase: genomes by the dozen. Nucleic Acids Res.
2006;35(suppl.1):486–91.

 35. Istace B, Friedrich A, d’Agata L, Faye S, Payen E, Beluche O, Caradec C,
Davidas S, Cruaud C, Liti G, Lemainque A, Engelen S, Wincker P, Schach-
erer J, Aury J-M. De novo assembly and population genomic survey of
natural yeast isolates with the Oxford Nanopore MinION sequencer.
GigaScience. 2017. https:// doi. org/ 10. 1093/ gigas cience/ giw018.

 36. Yue J-X, Li J, Aigrain L, Hallin J, Persson K, Oliver K, Bergström A,
Coupland P, Warringer J, Lagomarsino MC, Fischer G, Durbin R, Liti G.
Contrasting evolutionary genome dynamics between domesticated
and wild yeasts. Nat Genet. 2017;49(6):913–24. https:// doi. org/ 10. 1038/
ng. 3847.

 37. Wu X, Cai Z, Wan X-F, Hoang T, Goebel R, Lin G. Nucleotide composition
string selection in HIV-1 subtyping using whole genomes. Bioinformatics.
2007;23(14):1744–52. https:// doi. org/ 10. 1093/ bioin forma tics/ btm248.

 38. ...Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, Jalloh S,
Momoh M, Fullah M, Dudas G, Wohl S, Moses LM, Yozwiak NL, Winnicki S,
Matranga CB, Malboeuf CM, Qu J, Gladden AD, Schaffner SF, Yang X, Jiang
P-P, Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie
M, Kamara FK, Tucker V, Konuwa E, Saffa S, Sellu J, Jalloh AA, Kovoma A,
Koninga J, Mustapha I, Kargbo K, Foday M, Yillah M, Kanneh F, Robert W,
Massally JLB, Chapman SB, Bochicchio J, Murphy C, Nusbaum C, Young
S, Birren BW, Grant DS, Scheiffelin JS, Lander ES, Happi C, Gevao SM,
Gnirke A, Rambaut A, Garry RF, Khan SH, Sabeti PC. Genomic surveillance
elucidates Ebola virus origin and transmission during the 2014 outbreak.
Science. 2014;345(6202):1369–72. https:// doi. org/ 10. 1126/ scien ce. 12596
57.

 39. Kendall M, Colijn C. Mapping phylogenetic trees to reveal distinct pat-
terns of evolution. Mol Biol Evol. 2016;33(10):2735–43. https:// doi. org/ 10.
1093/ molbev/ msw124.

 40. Skippington E, Ragan MA. Within-species lateral genetic transfer and the
evolution of transcriptional regulation in Escherichia coli and shigella.
BMC Genomics. 2011;12:532–532.

 41. Zielezinski A, Girgis HZ, Bernard G, Leimeister C-A, Tang K, Dencker T, Lau
AK, Röhling S, Choi JJ, Waterman MS, Comin M, Kim S-H, Vinga S, Almeida
JS, Chan CX, James BT, Sun F, Morgenstern B, Karlowski WM. Benchmark-
ing of alignment-free sequence comparison methods. Genome Biol.
2019;20:144. https:// doi. org/ 10. 1186/ s13059- 019- 1755-7.

 42. Cox AJ, Garofalo F, Rosone G, Sciortino M. Lightweight LCP construc-
tion for very large collections of strings. J Dis Algorithm. 2016;37:17–33.
https:// doi. org/ 10. 1016/j. jda. 2016. 03. 003.

 43. Egidi L, Louza FA, Manzini G, Telles GP. External memory BWT and LCP
computation for sequence collections with applications. Algorithm Mol
Biol. 2019;14(1):6–1615. https:// doi. org/ 10. 1186/ s13015- 019- 0140-0.

 44. Bonizzoni P, Della Vedova G, Pirola Y, Previtali M, Rizzi R. Multithread mul-
tistring Burrows-Wheeler transform and longest common prefix array. J
Comput Biol. 2019;26(9):948–61. https:// doi. org/ 10. 1089/ cmb. 2018. 0230.

 45. Louza FA, Telles GP, Gog S, Prezza N, Rosone G. gsufsort: constructing suf-
fix arrays, LCP arrays and BWTS for string collections. Algorithm Mol Biol.
2020. https:// doi. org/ 10. 1186/ s13015- 020- 00177-y.

 46. Prezza N, Rosone G. Space-efficient construction of compressed suffix
trees. Theor Comput Sci. 2021;852:138–56. https:// doi. org/ 10. 1016/j. tcs.
2020. 11. 024.

https://doi.org/10.1038/nrg3186
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1093/bioinformatics/btg005
https://doi.org/10.1186/s13059-017-1319-7
https://doi.org/10.4230/LIPIcs.WABI.2022.23
https://doi.org/10.4230/LIPIcs.WABI.2022.23
https://doi.org/10.1186/s13015-019-0137-8
https://doi.org/10.1186/s13015-019-0137-8
https://doi.org/10.1016/j.tcs.2012.02.002
https://doi.org/10.1007/s00224-007-9078-6
https://doi.org/10.1016/j.jtbi.2009.10.033
https://doi.org/10.1186/s12859-020-03628-w
https://doi.org/10.1186/s12859-020-03628-w
https://doi.org/10.1186/s12859-020-03586-3
https://doi.org/10.5220/0010834100003123
https://doi.org/10.1017/CBO9781139019767
https://doi.org/10.1016/1055-7903(92)90021-8
https://doi.org/10.4230/LIPIcs.WABI.2019.2
https://doi.org/10.4230/LIPIcs.WABI.2019.2
https://doi.org/10.1093/bioinformatics/btab444
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1016/S1570-8667(03)00065-0
https://doi.org/10.1145/3432999
https://doi.org/10.1145/3432999
https://doi.org/10.1093/nar/gkab301
https://doi.org/10.1038/ng.3847
https://doi.org/10.1038/ng.3847
https://doi.org/10.1093/gigascience/giw018
https://doi.org/10.1038/ng.3847
https://doi.org/10.1038/ng.3847
https://doi.org/10.1093/bioinformatics/btm248
https://doi.org/10.1126/science.1259657
https://doi.org/10.1126/science.1259657
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1093/molbev/msw124
https://doi.org/10.1186/s13059-019-1755-7
https://doi.org/10.1016/j.jda.2016.03.003
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1089/cmb.2018.0230
https://doi.org/10.1186/s13015-020-00177-y
https://doi.org/10.1016/j.tcs.2020.11.024
https://doi.org/10.1016/j.tcs.2020.11.024

Page 26 of 26Guerrini et al. Algorithms for Molecular Biology (2023) 18:11

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 47. Boucher C, Cenzato D, Lipták Z, Rossi M, Sciortino M. Computing the
original EBWT faster, simpler, and with less memory. In: Lecroq T, Touzet
H, editors. SPIRE. Berlin: Springer; 2021. p. 129–42.

 48. Díaz-Domínguez D, Navarro G. Efficient construction of the BWT for
repetitive text using string compression. In: CPM 2022. LIPIcs, vol. 223,
2022. p. 29–12918.

 49. Boucher C, Gagie T, Kuhnle A, Langmead B, Manzini G, Mun T. Prefix-free
parsing for building big BWTS. Algorithm Mol Biol. 2019;14(1):13–11315.
https:// doi. org/ 10. 1186/ s13015- 019- 0148-5.

 50. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for
illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https:// doi.
org/ 10. 1093/ bioin forma tics/ btu170.

 51. Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, Sigwalt
A, Barre B, Freel K, Llored A, Cruaud C, Labadie K, Aury J-M, Istace B,
Lebrigand K, Barbry P, Engelen S, Lemainque A, Wincker P, Schacherer J.
Genome evolution across 1011 Saccharomyces cerevisiae isolates. Nature.
2018. https:// doi. org/ 10. 1038/ s41586- 018- 0030-5.

 52. O’Donnell S, Yue J-X, Abou Saada O, Agier N, Caradec C, Cokelaer T, De
Chiara M, Delmas S, Dutreux F, Fournier T, Friedrich A, Kornobis E, Li J,
Miao Z, Tattini L, Schacherer J, Liti G, Fisher G. 142 telomere-to-telomere
assemblies reveal the genome structural landscape in Saccharomyces
cerevisiae. bioRxiv. 2022. https:// doi. org/ 10. 1101/ 2022. 10. 04. 510633.

 53. Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD,
von Haeseler A, Lanfear R. IQ-TREE 2: New models and efficient
methods for phylogenetic inference in the genomic era. Mol Biol Evol.
2020;37(5):1530–4. https:// doi. org/ 10. 1093/ molbev/ msaa0 15.

 54. Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot
2: Improving the ultrafast bootstrap approximation. Mol Biol Evol.
2018;35(2):518–22. https:// doi. org/ 10. 1093/ molbev/ msx281.

 55. Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS.
Modelfinder: fast model selection for accurate phylogenetic estimates.
Nat Methods. 2017;14(6):587–9. https:// doi. org/ 10. 1038/ nmeth. 4285.

 56. Leitner T, Korber B, Daniels M, Calef C, Foley B. HIV-1 Subtype and circulat-
ing recombinant form (CRF) reference sequences. Theoretical Biology and
Biophysics Group, Los Alamos National Laboratory 2005. https:// www.
hiv. lanl. gov/ conte nt/ seque nce/ HIV/ REVIE WS/ LEITN ER2005/ leitn er. html.
Accessed 30 Mar 2023.

 57. Smith MR. Information theoretic generalized Robinson-Foulds metrics
for comparing phylogenetic trees. Bioinformatics. 2020;36(20):5007–13.
https:// doi. org/ 10. 1093/ bioin forma tics/ btaa6 14.

 58. Castro-Nallar E, Pérez-Losada M, Burton GF, Crandall KA. The evolu-
tion of HIV: inferences using phylogenetics. Mol Phylogenet Evol.
2012;62(2):777–92. https:// doi. org/ 10. 1016/j. ympev. 2011. 11. 019.

 59. Gagie T, Kärkkäinen J, Navarro G, Puglisi SJ. Colored range queries and
document retrieval. Theor Comput Sci. 2013;483:36–50. https:// doi. org/
10. 1016/j. tcs. 2012. 08. 004.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/s41586-018-0030-5
https://doi.org/10.1101/2022.10.04.510633
https://doi.org/10.1093/molbev/msaa015
https://doi.org/10.1093/molbev/msx281
https://doi.org/10.1038/nmeth.4285
https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/LEITNER2005/leitner.html
https://www.hiv.lanl.gov/content/sequence/HIV/REVIEWS/LEITNER2005/leitner.html
https://doi.org/10.1093/bioinformatics/btaa614
https://doi.org/10.1016/j.ympev.2011.11.019
https://doi.org/10.1016/j.tcs.2012.08.004
https://doi.org/10.1016/j.tcs.2012.08.004

	phyBWT2: phylogeny reconstruction via eBWT positional clustering
	Abstract
	Background
	Results
	Conclusions

	Background
	Preliminaries
	Basic data structures
	LCP-interval and k-mer vs positional cluster

	Methods
	Tree reconstruction
	The refinement procedure
	Complexity

	Experimental evaluation
	Experiments on 12 yeasts
	Experiments on Drosophila
	Experiments on 42 yeasts
	Experiments on HIV
	Experiments on Ebolavirus
	Experiments on E. coli—Shigella

	Conclusions and further work
	Anchor 22
	Acknowledgements
	References

