
Bernardini et al. 
Algorithms for Molecular Biology           (2023) 18:13  
https://doi.org/10.1186/s13015-023-00233-3

RESEARCH

Constructing phylogenetic networks 
via cherry picking and machine learning
Giulia Bernardini1, Leo van Iersel2, Esther Julien2 and Leen Stougie3,4,5* 

Abstract 

Background Combining a set of phylogenetic trees into a single phylogenetic network that explains all of them 
is a fundamental challenge in evolutionary studies. Existing methods are computationally expensive and can 
either handle only small numbers of phylogenetic trees or are limited to severely restricted classes of networks.

Results In this paper, we apply the recently-introduced theoretical framework of cherry picking to design a class 
of efficient heuristics that are guaranteed to produce a network containing each of the input trees, for practical-size 
datasets consisting of binary trees. Some of the heuristics in this framework are based on the design and train-
ing of a machine learning model that captures essential information on the structure of the input trees and guides 
the algorithms towards better solutions. We also propose simple and fast randomised heuristics that prove to be very 
effective when run multiple times.

Conclusions Unlike the existing exact methods, our heuristics are applicable to datasets of practical size, 
and the experimental study we conducted on both simulated and real data shows that these solutions are qualita-
tively good, always within some small constant factor from the optimum. Moreover, our machine-learned heuristics 
are one of the first applications of machine learning to phylogenetics and show its promise.
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Background
Phylogenetic networks describe the evolutionary rela-
tionships between different objects: for example, genes, 
genomes, or species. One of the first and most natural 
approaches to constructing phylogenetic networks is to 
build a network from a set of gene trees. In the absence 
of incomplete lineage sorting, the constructed network is 
naturally required to “display”, or embed, each of the gene 
trees. In addition, following the parsimony principle, 

a network assuming a minimum number of reticulate 
evolutionary events (like hybridization or lateral gene 
transfer) is often sought. Unfortunately, the associated 
computational problem, called hybridization, is NP-
hard even for two binary input trees [1], and indeed exist-
ing solution methods do not scale well with problem size.

For a long time, research on this topic was mostly 
restricted to inputs consisting of two trees. Proposed 
algorithms for multiple trees were either completely 
impractical or ran in reasonable time only for very small 
numbers of input trees. This situation changed drasti-
cally with the introduction of so-called cherry-picking 
sequences [2]. This theoretical setup opened the door to 
solving instances consisting of many input trees like most 
practical datasets have. Indeed, a recent paper showed 
that this technique can be used to solve instances with 
up to  100 input trees to optimality [3], although it was 
restricted to binary trees all having the same leaf set and 
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to so-called “tree-child” networks. Moreover, its running 
time has a (strong) exponential dependence on the num-
ber of reticulate events.

In this paper, we show significant progress towards a 
fully practical method by developing a heuristic frame-
work based on cherry picking comprising very fast ran-
domised heuristics and other slower but more accurate 
heuristics guided by machine learning. Admittedly, our 
methods are not yet widely applicable since they are still 
restricted to binary trees. However, our set-up is made in 
such a way that it may be extendable to general trees.

Despite their limitations, we see our current methods 
already as a breakthrough as they are not restricted to 
tree-child networks and scale well with the number of 
trees, the number of taxa and the number of reticula-
tions. In fact, we experimentally show that our heuristics 
can easily handle sets of 100 trees in a reasonable time: 
the slowest machine-learned method takes 4 min on 
average for sets consisting of 100 trees with 100 leaves 
each, while the faster, randomised heuristics already 
find feasible solutions in 2 s for the same instances. As 
the running time of the fastest heuristic depends at most 
quadratically on the number of input trees, linearly on 
the number of taxa, and linearly on the output number of 
reticulations, we expect it to be able to solve much larger 
instances still in a reasonable amount of time.

In addition, in contrast with the existing algorithms, 
our methods can be applied to trees with different leaf 
sets, although they have not been specifically optimized 
for this kind of input. Indeed, we experimentally assessed 
that our methods give qualitatively good results only 
when the leaf sets of the input trees have small differ-
ences in percentage (up to 5–15%); when the differences 
are larger, they return feasible solutions that are far from 
the optimum.

Some of the heuristics we present are among the first 
applications of machine learning in phylogenetics and 
show its promise. In particular, we show that crucial fea-
tures of the networks generated in our simulation study 
can be identified with very high test accuracy ( 99.8% ) 
purely based on the trees displayed by the networks.

It is important to note at this point that no method is 
able to reconstruct any specific network from displayed 
trees as networks are, in general, not uniquely deter-
mined by the trees they display [4]. In addition, in some 
applications, a phenomenon called “incomplete line-
age sorting” can cause gene trees that are not displayed 
by the species network [5], and hence our methods, and 
other methods based on the hybridization problem, 
are not (directly) applicable to such data.

We focus on orchard networks (also called cherry pick-
ing networks), which are precisely those networks that 

can be drawn as a tree with additional horizontal arcs [6]. 
Such horizontal arcs can for example correspond to lat-
eral gene transfer (LGT), hybridization and recombina-
tion events. Orchard networks are broadly applicable: in 
particular, the orchard network class is much bigger than 
the class of tree-child networks, to which the most effi-
cient existing methods are limited [7].

Related work. Previous practical algorithms for 
hybridization include PIRN [8], PIRNs [9] and 
Hybroscale [7], exact methods that are only applicable 
to (very) small numbers of trees and/or to trees that can 
be combined into a network with a (very) small reticu-
lation number. Other methods such as phylonet [10] 
and phylonetworks [11] also construct networks from 
trees but have different premises and use completely dif-
ferent models.

The theoretical framework of cherry picking was 
introduced in [12] (for the restricted class of temporal 
networks) and [2] (for the class of tree-child networks) 
and was later turned into algorithms for reconstructing 
tree-child [3] and temporal [13] networks. These meth-
ods can handle instances containing many trees but do 
not scale well with the number of reticulations, due to an 
exponential dependence. The class of orchard networks, 
which is based on cherry picking, was introduced in [14] 
and independently (as cherry-picking networks) in [15], 
although their practical relevance as trees with added 
horizontal edges was only discovered later [6].

The applicability of machine-learning techniques to 
phylogenetic problems has not yet been fully explored, 
and to the best of our knowledge existing work is mainly 
limited to phylogenetic tree inference [16, 17] and to test-
ing evolutionary hypotheses [18].

Our contributions. We introduce cherry picking 
heuristics (cph), a class of heuristics to combine a set 
of binary phylogenetic trees into a single binary phylo-
genetic network based on cherry picking. We define and 
analyse several heuristics in the CPH class, all of which 
are guaranteed to produce feasible solutions to hybridi-
zation and all of which can handle instances of practical 
size (we run experiments on tree sets of up to 100 trees 
with up to 100 leaves which were processed in on average 
4 minutes by our slowest heuristic).

Two of the methods we propose are simple but effec-
tive randomised heuristics that proved to be extremely 
fast and to produce good solutions when run multiple 
times. The main contribution of this paper consists in a 
machine-learning model that potentially captures essen-
tial information about the structure of the input set of 
trees. We trained the model on different extensive sets of 
synthetically generated data and applied it to guide our 
algorithms towards better solutions. Experimentally, we 
show that the two machine-learned heuristics we design 
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yield good results when applied to both synthetically gen-
erated and real data.

We also analyse our machine-learning model to iden-
tify the most relevant features and design a non-learned 
heuristic that is guided by those features only. Our exper-
iments show that this heuristic leads to reasonably good 
results without the need to train a model. This result is 
interesting per se as it is an example of how machine 
learning can be used to guide the design of classical algo-
rithms, which are not biased towards certain training 
data.

A preliminary version of this work appeared in [19]. 
Compared to the preliminary version, we have added 
the following material: (i), we defined a new non-learned 
heuristic based on important features and experimen-
tally tested it (Sect.  "A non-learned heuristic based on 
important features"); (ii), we extended the experimen-
tal study to data generated from non-orchard networks 
(Sect.  "Experiments on ZODS data"), data generated 
from a class of networks for which the optimum num-
ber of reticulations is known (Sect.  "Experiments on 
normal data") and to input trees with different leaf sets 
(Sect.  "Experiments on non-exhaustive input trees"); 
and (iii), we provided a formal analysis of the time com-
plexity of all our methods (Sect. "Time complexity") and 
conducted experiments on their scalability (Sect. "Exper-
iments on scalability").

Preliminaries
A phylogenetic network N = (V ,E,X) on a set of taxa X 
is a directed acyclic graph (V, E) with a single root with 
in-degree 0 and out-degree 1, and the other nodes with 
either (i) in-degree 1 and out-degree k > 1 (tree nodes); 
(ii) in-degree k > 1 and out-degree 1 (reticulations); or 
(iii) in-degree 1 and out-degree 0 (leaves). The leaves 
of N are biunivocally labelled by X. A surjective map 
ℓ : E → R

≥0 may assign a nonnegative branch length to 
each edge of N. We will denote by [1, n] the set of inte-
gers {1, 2, ..., n} . Throughout this paper, we will only 

consider binary networks (with k = 2 ), and we will iden-
tify the leaves with their labels. We will also often drop 
the term “phylogenetic”, as all the networks considered 
in this paper are phylogenetic networks. The reticulation 
number r(N) of a network N is 

∑

v∈V max
(

0, d−(v)− 1
)

, 
where d−(v) is the in-degree of v. A network T with 
r(T ) = 0 is a phylogenetic tree. It is easy to verify 
that binary networks with r(N) reticulations have 
|X | + r(N )− 1 tree nodes.

Cherry-picking. We denote by N  a set of networks and 
by T  a set of trees. An ordered pair of leaves (x, y), x  = y , 
is a cherry in a network if x and y have the same parent; 
(x,  y) is a reticulated cherry if the parent p(x) of x is a 
reticulation, and p(y) is a tree node and a parent of p(x) 
(see Fig. 1). A pair is reducible if it is either a cherry or a 
reticulated cherry. Notice that trees have cherries but no 
reticulated cherries.

Reducing (or picking) a cherry (x,  y) in a net-
work N (or in a tree) is the action of deleting x and 
replacing the two edges (p(p(x)),  p(x)) and (p(x),  y) 
with a single edge (p(p(x)),  y) (see Figure  1a). If N 
has branch lengths, the length of the new edge is 
ℓ(p(p(x)), y) = ℓ(p(p(x)), p(x))+ ℓ(p(x), y) . A reticu-
lated cherry (x,  y) is reduced (picked) by deleting the 
edge (p(y),  p(x)) and replacing the other edge (z,  p(x)) 
incoming to p(x), and the consecutive edge (p(x),  x), 
with a single edge (z,  x). The length of the new edge is 
ℓ(z, x) = ℓ(z, p(x))+ ℓ(p(x), x) (if N has branch lengths). 
Reducing a non-reducible pair has no effect on N. In all 
cases, the resulting network is denoted by N(x,y) : we say 
that (x, y) affects N if N  = N(x,y).

Any sequence S = (x1, y1), . . . , (xn, yn) of ordered leaf 
pairs, with xi  = yi for all i, is a partial cherry-picking 
sequence; S is a cherry-picking sequence (CPS) if, for 
each i < n , yi ∈ {xi+1, . . . , xn, yn} . Given a network N and 
a (partial) CPS S, we denote by NS the network obtained 
by reducing in N each element of S, in order. We denote 
S ◦ (x, y) the sequence obtained by appending pair 
(x, y) at the end of S. We say that S fully reduces N if NS 

(a) (b)
Fig. 1 (x, y) is picked in two different networks. In (a) (x, y) is a cherry, and in (b) (x, y) is a reticulated cherry. After picking, degree-two nodes are 
replaced by a single edge
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consists of the root with a single leaf. N is an orchard 
network (ON) if there exists a CPS that fully reduces it, 
and it is tree-child if every non-leaf node has at least one 
child that is a tree node or a leaf. A normal network is a 
tree-child network such that, in addition, the two parents 
of a reticulation are always incomparable, i.e., one is not a 
descendant of the other. If S fully reduces all N ∈ N  , we 
say that S fully reduces N  . In particular, in this paper we 
will be interested in CPS which fully reduce a set of trees 
T  consisting of |T | trees of total size ||T ||.

Hybridization. The Hybridization problem can be 
thought of as the computational problem of combining a 
set of phylogenetic trees into a network with the small-
est possible reticulation number, that is, to find a network 
that displays each of the input trees in the sense specified 
by Definition 1, below. See Fig. 2 for an example. The def-
inition describes not only what it means to display a tree 
but also to display another network, which will be useful 
later.

Definition 1 Let N = (V ,E,X) and N ′ = (V ′,E′,X ′) be 
networks on the sets of taxa X and  X ′ ⊆ X , respectively. 
The network N ′ is displayed in N if there is an embed-
ding of N ′ in N: an injective map of the nodes of N ′ to 
the nodes of  N, and of the edges of N ′ to edge-disjoint 
paths of N, such that the mapping of the edges respects 
the mapping of the nodes, and the mapping of the nodes 
respects the labelling of the leaves.

We call exhaustive a tree displayed in N = (V ,E,X) 
with the whole X as a leaf set. Note that Definition 1 only 
involves the topologies of the networks, disregarding 
possible branch lengths. In the following problem defini-
tion, the input trees may or may not have branch lengths, 
and the output is a network without branch lengths. We 
allow branch lengths for the input because they will be 

useful for the machine-learned heuristics of Sect.  "Pre-
dicting good cherries via machine learning".

Solving the hybridization problem 
via cherry‑picking sequences
We will develop heuristics for the Hybridization prob-
lem using cherry-picking sequences that fully reduce the 
input trees, leveraging the following result by Janssen and 
Murakami.

Theorem 1 ([15]), Theorem 3 Let N be a binary orchard 
network, and N ′ a (not necessarily binary) orchard net-
work on sets of taxa X and X ′ ⊆ X , respectively. If a min-
imum-length CPS S that fully reduces N also fully reduces 
N ′ , then N ′ is displayed in N.

Notice that hybridization remains NP-hard for 
binary orchard networks. For binary networks we have 
the following lemma, a special case of [15, Lemma 1].

Lemma 1 Let N be a binary network, and let (x, y) be a 
reducible pair of N. Then reducing (x, y) and then adding 
it back to N(x,y) results in N.

Note that Lemma 1 only holds for binary networks: in 
fact, there are different ways to add a pair to a non-binary 
network, thus the lemma does not hold unless a specific 
rule for adding pairs is specified (inspect [15] for details). 
Theorem 1 and Lemma 1 provide the following approach 
for finding a feasible solution to hybridization: find 

(a) (b)
Fig. 2 The two trees in (b) are displayed in the network (a)
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a CPS S that fully reduces all the input trees, and then 
uniquely reconstruct the binary orchard network N for 
which S is a minimum-length CPS, by processing S in the 
reverse order. N can be reconstructed from S using one 
of the methods underlying Lemma 1 proposed in the lit-
erature, e.g., in [15] (illustrated in Fig.  3) or in [3]. The 
following lemma relates the length of a CPS S and the 
number of reticulations of the network constructed from 
S.

Lemma 2 ([20]) Let S be a CPS on a set of taxa X. The 
number of reticulations of the network N reconstructed 
from S is r(N ) = |S| − |X | + 1.

In the next section we focus on the first part of the heu-
ristic: producing a CPS that fully reduces a given set of 
phylogenetic trees.

Randomised heuristics
We define a class of randomised heuristics that con-
struct a CPS by picking one reducible pair of the input 
set T  at a time and by appending this pair to a growing 
partial sequence, as described in Algorithm  1 (the two 
subroutines PickNext and CompleteSeq will be later 
described in details). We call this class CPH (for Cherry-
Picking Heuristics). Recall that TS denotes the set of trees 
T  after reducing all trees with a (partial) CPS S. The 
while loop at lines 2–5 produces, in general, a partial CPS 
S, as shown in Example 1. To make it into a CPS, the sub-
routine CompleteSeq at line 6 appends at the end of S 

a sequence S′ of pairs such that each second element in 
a pair of S ◦ S′ is a first element in a later pair (except for 
the last one), as required by the definition of CPS. These 
additional pairs do not affect the trees in T  , which are 
already fully reduced by S. Algorithm 2 describes a pro-
cedure CompleteSeq that runs in time linear in the 
length of S.

Example 1 Let T  consist of the 2-leaf trees (x, y) and 
(w, z). A partial CPS at the end of the while loop in Algo-
rithm  1 could be, e.g., S = (x, y), (w, z) . The trees are 
both reduced to one leaf, so there are no more reduc-
ible pairs, but S is not a CPS. To make it into a CPS 
either pair (y,  z) or pair (z,  y) can be appended: e.g., 
S ◦ (y, z) = (x, y), (w, z), (y, z) is a CPS, and it still fully 
reduces the two input trees.

Fig. 3 The ON reconstructed from the sequence S = (x , y), (x ,w), (w , y) . The pairs are added to the network in reverse order: if the first element 
of a pair is not yet in the network, it is added as a cherry with the second element (see the pair (x, w)). Otherwise, a reticulation is added 
above the first element with an incoming edge from a new parent of the second element (see the pair (x, y))
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 The class of heuristics given by Algorithm  1 is con-
cretised in different heuristics depending on the func-
tion PickNext at line  3 used to choose a reducible 
pair at each iteration. To formulate them we need to 
introduce the following notions of height pair and triv-
ial pair. Let N be a network with branch lengths and let 
(x,  y) be a reducible pair in N. The height pair of (x,  y) 
in N is a pair (hNx , hNy ) ∈ R

2
≥0

 , where hNx = ℓ(p(x), x) 
and hNy = ℓ(p(y), y) if (x,  y) is a cherry (indeed, in this 
case, p(x) = p(y) ); hNx = ℓ(p(y), p(x))+ ℓ(p(x), x) and 
hNy = ℓ(p(y), y) if (x, y) is a reticulated cherry. The height 
hN(x,y) of (x,  y) is the average (hNx + hNy )/2 of hNx  and hNy  . 
Let T  be a set of trees whose leaf sets are subsets of a set 
of taxa X. An ordered leaf pair (x,  y) is a trivial pair of 
T  if it is reducible in all T ∈ T  that contain both x and 
y, and there is at least one tree in which it is reducible. 
We define the following three heuristics in the cph class, 
resulting from as many possible implementations of 
PickNext. 

Rand  Function PickNext picks uniformly 
at random a reducible pair of TS

LowPair  Function PickNext picks a reduc-
ible pair (x, y) with the lowest average 
of values hT(x,y) over all T ∈ TS in which 
(x,  y) is reducible (ties are broken 
randomly)

TrivialRand  Function PickNext picks a trivial 
pair if there exists one and otherwise 
picks a reducible pair of TS uniformly 
at random

Theorem  2 Algorithm  1 computes a CPS that fully 
reduces T  , for any function PickNext that picks, in each 
iteration, a reducible pair of TS.

Proof The sequence S is initiated as an empty sequence. 
Then, each iteration of the while loop (lines 2–5) of Algo-
rithm 1 appends one pair to S that is reducible in at least 
one of the trees in T  , and reduces it in all trees. Hence, 
in each iteration, the total size of TS is reduced, so the 
algorithm finishes in finite time. Moreover, at the end of 
the while loop, each tree in TS is reduced, thus the partial 
CPS S reduces TS . As CompleteSeq only appends pairs 
at the end of S, the result of this subroutine still reduces 
all trees in TS . �

In Sect.  "Experiments" we experimentally show that 
TrivialRand produces the best results among the 
proposed randomised heuristics. In the next section, we 
introduce a further heuristic step for TrivialRand 
which improves the output quality.

Improving heuristic TrivialRand via tree expansion
Let T  be a set of trees whose leaf sets are subsets of a set 
of taxa X, let S be a partial CPS for T  and let TS be the 
tree set obtained by reducing in order the pairs of S in T  . 
With respect to a trivial pair (x, y), each tree T ∈ TS is of 
one of the following types: (i) (x, y) is reducible in T; or 
(ii) neither x nor y are leaves of T; or (iii) y is a leaf of T 
but x is not; or (iv) x is a leaf of T but y is not.

Suppose that at some iteration of TrivialRand, 
the subroutine PickNext returns the trivial pair (x, y). 
Then, before reducing (x, y) in all trees, we do the follow-
ing extra step: for each tree of type (iv), replace leaf x with 
cherry (x,  y). We call this operation the tree expansion: 
see Fig. 4c. The effect of this step is that, after reducing 
(x, y), leaf x disappears from the set of trees, which would 
have not necessarily been the case before, because of 
trees of type (iv). Tree expansion followed by the reduc-
tion of (x, y) can, alternatively, be seen as relabelling leaf 
x in any tree of type (iv) by y. The choice of describing 
this relabelling as tree expansion is just for the purpose of 
proving Lemma 3.

To guarantee that a CPS S produced with tree expan-
sion implies a feasible solution for hybridization, we 
must show that the network N reconstructed from S 
displays all the trees in the input set T  . We prove that 
indeed this is the case with the following steps: (1), we 
consider the networks NT obtained by “reverting” a 
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partial CPS S obtained right after applying tree expan-
sion to a tree TS : in other words, to obtain NT we add 
to the partially reduced tree TS the trivial pair (x, y) and 
then all the pairs previously reduced by S in the sense of 
Lemma 1. We show that NT always displays T, the origi-
nal tree; (2), we prove that this holds for an arbitrary 
sequence of tree expansion operations; and (3), since the 
CPS obtained using tree expansions fully reduces the net-
works of point (2), and since these networks display the 
trees in the original set T  , we have the desired property 
by Theorem 1. We prove this more formally with the fol-
lowing lemma.

Lemma 3 Let S be the CPS produced by TrivialRand 
using tree expansion with input T  . Then the network 
reconstructed from S displays all the trees in T .

Proof Let us start with the case where only 1 tree 
expansion occurs. Let S(i−1) be the partial CPS con-
structed in the first i − 1 steps of TrivialRand, and let 
i be the step in which we pick a trivial pair (x, y). For each 
T ∈ TS(i−1) that is reduced by S(i−1) to a tree T (i−1) of type 
(iv) for (x, y), let S(i−1)

T  be the subsequence of S(i−1) con-
sisting only of the pairs that subsequently affect T. We 
use the partial CPS SiT = S

(i−1)
T ◦ (x, y) to reconstruct a 

network NT with a method underlying Lemma 1, starting 
from T (i−1) : see Fig. 4d.

For trees of type (i)–(iii), NT = T  . We call the set 
NT  , consisting of the networks NT for all T ∈ T  , the 
expanded reconstruction of T  . Note that, by construc-
tion and Lemma 1, all the elements of NT  after reducing, 
in order, the pairs of S(i−1) ◦ (x, y) , are trees: in particular, 
they are equal to the trees of TS(i−1)◦(x,y) in which all the 
labels y have been replaced by x. We denote this set of 
trees (NT )S(i−1)◦(x,y).

We can generalise this notion to multiple trivial pairs: 
we denote by N (j)

T
 the expanded reconstruction of T  

with the first j trivial pairs, and suppose we added the j-
th pair (w, z) to the partial CPS S at the k-th step. Con-
sider a tree T ′ ∈ (N

(j−1)
T

)S(k−1) of type (iv) for (w, z), and 
let N (j−1)

T ∈ N
(j−1)
T

 be the network it originated from. Let 
S
(k−1)
T  be the subsequence of S(k−1) consisting only of the 

pairs that subsequently affected N (j−1)

T  . Then N (j)
T  is the 

network reconstructed from S(k−1)
T ◦ (w, z) , starting from 

T ′ . For trees of (N (j−1)
T

)S(k−1) that are of type (i)–(iii) for 
(w,  z), we have N (j)

T = N
(j−1)

T  . The elements of N (j)
T

 are 
all networks N (j)

T  . For completeness, we define N (0)
T

= T  
and N (1)

T
= NT .

By construction, S fully reduces all the networks in N (j)
T

 , 
thus the network N reconstructed from S displays all of 
them by Theorem 1. We prove that N (j)

T  displays T for all 
T ∈ T  , and thus N displays the original tree set T  too, by 
induction on j.

In the base case, we pick j = 0 trivial pairs, so the state-
ment is true by Theorem 1. Now let j > 0 . The induction 
hypothesis is that each network N (j−1)

T ∈ N
(j−1)
T

 dis-
plays the tree T ∈ T  it originated from. Let (w, z) be the 
j-th trivial pair, added to the sequence at position k. Let 
T ′ ∈ (N

(j−1)
T

)S(k−1) be a tree of type (iv) for (w, z), and let 
N

(j−1)

T  be the network it originates from. Then there are 
two possibilities: either z is a leaf of N (j−1)

T  or it is not. In 
case it is not, then adding (w, z) to N (j−1)

T  does not cre-
ate any new reticulation, and clearly N (j)

T  keeps display-
ing T. If z does appear in N (j−1)

T  , then it must have been 
reduced by a pair (z, v) of S(k−1) (otherwise T ′ would not 

(a) (b) (c) (d)
Fig. 4 Tree expansion of T (a) with the trivial cherry (x, y) of T(y ,z) . (b) After picking cherry (y, z), leaf y is missing in T (1) . (c) Leaf x is replaced 
by the cherry (x, y). After completion of the heuristic, we have ST = (y , z), (x , y), (y ,w), (w , z) . (d) The network NT  reconstructed from S(1) ◦ (x , y) . 
Note that the input tree T is displayed in NT  (solid edges)
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be of type (iv)). Then the network N (j)
T  has an extra retic-

ulation, created with the insertion of (z, v) at some point 
after (w, z) during the backwards reconstruction. In both 
cases, by [15, Lemma 10] N (j−1)

T  is displayed in N (j)
T  , and 

thus by the induction hypothesis T is displayed too. �

Good cherries in theory
By Lemma 1 the binary network N reconstructed from a 
CPS S is such that S is of minimum length for N, that is, 
there exists no shorter CPS that fully reduces N. By Theo-
rem 1 if S, in turn, fully reduces T  , then N displays all the 
trees in T  . Depending on S, though, N is not necessar-
ily an optimal network (i.e., with minimum reticulation 
number) among the ones displaying T  : see Example 2.

Let OPT(T ) denote the set of networks that display 
T  with the minimum possible number of reticulations 
(in general, this set contains more than one network). 
Ideally, we would like to produce a CPS fully reduc-
ing T  that is also a minimum-length CPS fully reduc-
ing some network of OPT(T ) . In other words, we aim 
to find a CPS S̃ = (x1, y1), . . . , (xn, yn) such that, for 
any i ∈ [1, n] , (xi, yi) is a reducible pair of ÑS̃(i−1) , where 
S̃(0) = ∅ , S̃(k) = (x1, y1), . . . , (xk , yk) for all k ∈ [1, n] , and 
Ñ ∈ OPT(T ) . Let S = (x1, y1), . . . , (xn, yn) be a CPS fully 
reducing T  and let OPT(k)(T ) consist of all networks 
N ∈ OPT(T ) such that each pair (xi, yi) , i ∈ [1, k] , is 
reducible in NS(i−1).

Lemma 4 A CPS S reducing T  reconstructs an optimal 
network Ñ  if and only if each pair (xi, yi) of S is reducible 
in ÑSi−1 , for all i ∈ [1, n].

Proof (⇒ ) By Lemma  1, S is a minimum-length CPS 
for the network Ñ  that is reconstructed from it; and a 
CPS C = (w1, z1), . . . , (wn, zn) reducing a network N is of 
minimum length precisely if, for all j ∈ [1, n] , (wj , zj) is a 
reducible pair of NC(j−1) (otherwise the pair (wj , zj) could 
be removed from C and the new sequence would still 
reduce N).

(⇐ ) If all pairs of S affect some optimal network Ñ  , then 
S is a minimum-length CPS for Ñ  , thus Ñ  is recon-
structed from S (and it displays T  by Theorem 1). �

Lemma 4 implies that if some pair (xi, yi) of S does not 
reduce any network in OPT(i−1)(T ) , then the network 
reconstructed from S is not optimal: see Example 2.

Example 2 Consider the set T  of Fig.  2b: 
S = (y, x), (y, z), (w, x), (x, z) is a CPS that fully reduces 

T  and consists only of pairs successively reducible 
in the network N of Fig.  2a, thus it reconstructs it by 
Lemma  1. Now consider (w,  x), which is reducible in 
T  but not in N, and pick it as first pair, to obtain e.g. 
S′ = (w, x), (y, z), (y, x), (w, x), (x, z) . The network N ′ 
reconstructed from S′ , depicted in Fig. 5, has r(N ′) = 2 , 
whereas r(N ) = 1.

Suppose we are incrementally constructing a CPS 
S = (x1, y1), . . . , (xn, yn) for T  with some heuristic in the 
CPH class. If we had an oracle that at each iteration i told 
us if a reducible pair (x, y) of T (i−1) were a reducible pair 
in some N ∈ OPT(i−1)(T ) , then, by Lemma 4, we could 
solve hybridization optimally. Unfortunately no such 
exact oracle can exist (unless P = NP ). However, in the 
next section we exploit this idea to design machine-
learned heuristics in the cph framework.

Predicting good cherries via machine learning
In this section, we present a supervised machine-learn-
ing classifier that (imperfectly) simulates the ideal oracle 
described at the end of Sect.  "Good cherries in theory". 
The goal is to predict, based on T  , whether a given cherry 
of T  is a cherry or a reticulated cherry in a network  N 
displaying T  with a close-to-optimal number of reticula-
tions, without knowing  N. Based on Lemma  4, we then 
exploit the output of the classifier to define new functions 
PickNext, that in turn define new machine-learned 
heuristics in the class of cph (Algorithm 1).

Specifically, we train a random forest classifier on data 
that encapsulates information on the cherries in the tree 
set. Given a partial CPS, each reducible pair in TS is rep-
resented by one data point. Each data point is a pair (F, c) , 
where F is an array containing the features of a cherry 
(x, y) and c is an array containing the probability that the 
cherry belongs to each of the possible classes described 
below. Recall that cherries are ordered pairs, so (x, y) and 
(y, x) give rise to two distinct data points. The classifica-
tion model learns the association between F and c.

Fig. 5 Network N′ of Example 2
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The true class of a cherry (x,  y) of T  depends on 
whether, for the (unknown) network N that we aim to 
reconstruct: (class 1) (x, y) is a cherry of N; (class 2) (x, y) 
is a reticulated cherry of N; (class 3) (x, y) is not reducible 
in N, but (y, x) is a reticulated cherry; or (class 4) neither 
(x, y) nor (y, x) are reducible in N. Thus, for the data point 
of a cherry (x, y), c[i] contains the probability that (x, y) is 
in class i, and c[1] + c[2] gives the predicted probability 
that (x, y) is reducible in N. We define the following two 
heuristics in the cph framework. 

ML  Given a threshold τ ∈ [0, 1) , function 
PickNext picks the cherry with the 
highest predicted probability of being 
reducible in N if this probability is at 
least τ ; or a random cherry if none has a 
probability of being reducible above τ

TrivialML  Function PickNext picks a random 
trivial pair, if there exists one; otherwise 
it uses the same rules as ML

In both cases, whenever a trivial pair is picked, we do 
tree expansion, as described in Sect. "Improving heuristic 
TrivialRand via tree expansion". Note that if τ = 0 , since 
the predicted probabilities are never exactly 0, ML is fully 
deterministic. In Sect.  "Effect of the threshold on ML" 
we show how the performance of ML is impacted by the 
choice of different thresholds.

To assign a class to each cherry, we define 19 features, 
summarised in Table 1, that may capture essential infor-
mation about the structure of the set of trees, and that 
can be efficiently computed and updated at every itera-
tion of the heuristics.

The depth (resp. topological depth) of a node u in a tree 
T is the total branch length (resp. the total number of 
edges) on the root-to-u path; the depth of a cherry (x, y) 
is the depth of the common parent of x and y; the depth 
of T is the maximum depth of any cherry of T. The (topo-
logical) leaf distance between x and y is the total branch 
length of the path from the parent of x to the lowest com-
mon ancestor of x and y, denoted by LCA(x, y), plus the 
total length of the path from the parent of y to LCA(x, y) 
(resp. the total number of edges on both paths). In par-
ticular, the leaf distance between the leaves of a cherry is 
zero.

Time complexity
Designing algorithms with the best possible time com-
plexity was not the main objective of this work. However, 
for completeness, we provide worst-case upper bounds 
on the running time of our heuristics. The omitted proofs 
can be found in Appendix A. We start by stating a gen-
eral upper bound for the whole CPH framework in the 
function of the time required by the PickNext routine.

Lemma 5 The running time of the heuristics in the 
CPH framework is O(|T |2|X | + cost(PickNext)) , where 
cost(PickNext) is the total time required to choose reduc-
ible pairs over all iterations. In particular, Rand takes 
O(|T |2|X |) time.

Proof An upper bound for the sequence length is 
(|X | − 1)|T | as each tree can individually be fully reduced 
using at most |X | − 1 pairs. Hence, the while loop of 
Algorithm  1 is executed at most (|X | − 1)|T | times. 
Moreover, reducing the pair and updating the set of 
reducible pairs after one iteration takes O(1) time per 

Table 1 Features of a cherry (x, y)

Features 6–12 can be computed for both branch lengths and unweighted branches. We refer to these two options as distance and topological distance, respectively

Num Feature name Description

1 Cherry in tree Ratio of trees that contain cherry (x, y)

2 New cherries Number of new cherries of T  after picking cherry (x, y)

3 Before/after Ratio of the number of cherries of T  before/after picking cherry (x, y)

4 Trivial Ratio of trees with both leaves x and y that contain cherry (x, y)

5 Leaves in tree Ratio of trees that contain both leaves x and y

Features measured by distance (d) and topology (t)

6d,t Tree depth Avg over trees with (x, y) of ratios “depth of the tree/max depth over all trees”

7d,t Cherry depth Avg over trees with (x, y) of ratios “depth of (x, y) in the tree/depth of the tree”

8d,t Leaf distance Avg over trees with x and y of ratios “x-y leaf distance/depth of the tree”

9d,t Leaf depth x Avg over trees with x and y of ratios “root-x distance/depth of the tree”

10d,t Leaf depth y Avg over trees with x and y of ratios “root-y distance/depth of the tree”

11d,t LCA distance Avg over trees with x and y of ratios “x-LCA(x, y) distance/y-LCA(x, y) distance”

12d,t Depth x/y Avg over trees with x and y of ratios “root-x distance/root-y distance”
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tree. Combining this with the fact that CompleteSeq 
takes O(|S|) = O(|X ||T |) time, we obtain the stated 
time complexity. Since choosing a random reducible pair 
takes O(1) time at each iteration, Rand takes trivially 
O(|T |2|X |) time. �

Note that by Lemma  2 the number of reticulations 
r(N) of the network reconstructed from the output CPS 
is bounded by (|X | − 1)|T | − |X | + 1 = O(|T | · |X |) , and 
thus the time complexity of Rand is also O(r(N )|T |).

Let us now focus on the time complexity of the 
machine-learned heuristics ML and TrivialML. At 
any moment during the execution of the heuristics, we 
maintain a data structure that stores all the current cher-
ries in T  and allows constant-time insertions, deletions, 
and access to the cherries and their features. A possi-
ble implementation of this data structure consists of a 
hashtable cherryfeatures paired with a list cher-
rylist of the pairs currently stored in cherryfea-
tures. We will use cherrylist to iterate over the 
current cherries of T  , and cherryfeatures to check 
whether a certain pair is currently a cherry of T  and to 
access its features.

Note that the total number of cherries inserted in 
cherryfeatures over all the iterations is bounded by 
the total size of the trees ||T || because up to two cherries 
can be created for each internal node over the whole exe-
cution. We will assume that we have constant-time access 
to the leaves of each tree: specifically, given T ∈ T  and 
x ∈ X , we can check in constant time whether x is cur-
rently a leaf of T1.

Initialisation The cherries of T  can be identified and 
features 1–3 can be initially computed in O(||T ||) time by 
traversing all trees bottom-up. Features 4–5 can be com-
puted in O(min{|T | · ||T ||, |T | · |X |2}) time by checking, 
for each T ∈ T  and each cherry (x, y) of T  , whether both 
x and y appear in T. Features 6d,t to 12d,t can also be ini-
tially computed with a traversal of T  made efficient by 
preprocessing each tree in linear time to allow constant-
time LCA queries [21] and by storing the depth (both 
topological and with the branch lengths) of each node. 
We also store the topological and branch length depth of 
each tree and their maximum value over T  . Altogether 
this gives the following lemma.

Lemma 6 Initialising all features for a tree set 
T  of total size ||T || over a set of taxa X requires 
O(min{|T | · ||T ||, |T | · |X |2}) time and O(||T ||) space.

The next lemma provides an upper bound on the 
time complexity of updating the distance-independent 
features.

Lemma 7 Updating features 1–5 for a set T  of |T | 
trees of total size ||T || over a set of taxa X requires 
O(|T |(||T || + |X |2)) total time and O(||T ||) space.

Since searching for trivial cherries at each iteration of 
the randomised heuristic TrivialRand can be done 
with the same procedure we use for updating feature 4 
in the machine-learned heuristics, which in particu-
lar requires O(|T | · ||T ||) time, we have the following 
corollary.

Corollary 1 The time complexity of TrivialRand is 
O(|T | · ||T ||) = O(|T |2 · |X |).

The total time required for updating the distance-
dependent features raises the time complexity of ML and 
TrivialML to quadratic in the input size. However, the 
extensive analysis reported in Appendix A shows that this 
is only due to the single feature 6d , and without such a 
feature, the machine-learned heuristics would be asymp-
totically as fast as the randomised ones. Since Table 4 in 
Appendix  B shows that this feature is not particularly 
important, in future work it could be worth investigating 
whether disregarding it leads to equally good results in 
shorter time.

Lemma 8 The time complexity of ML and TrivialML 
is O(||T ||2).

Obtaining training data
The high-level idea to obtain training data is to first gen-
erate a phylogenetic network N; then to extract the set T  
of all the exhaustive trees displayed in N; and finally, to 
iteratively choose a random reducible pair (x, y) of N, to 
reduce it in T  as well as in  N, and to label the remain-
ing cherries of T  with one of the four classes defined in 
Sect.  "Predicting good cherries via machine learning" 
until the network is fully reduced.

We generate two different kinds of binary orchard net-
works, normal and not normal, with branch lengths and 
up to 9 reticulations using the LGT (lateral gene trans-
fer) network generator of [22], imposing normality con-
straints when generating the normal networks. For each 
such network N, we then generate the set T  consisting of 
all the exhaustive trees displayed in N.

If N is normal, N is an optimal network for T  [23, The-
orem 3.1]. This is not necessarily true for any LGT-gen-
erated network, but even in this case, we expect N to be 

1 This can be obtained maintaining a list of leaves of each tree and a hashta-
ble with the leaves as keys: the value of a key x is a pointer to the position of 
x in the list.
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reasonably close to optimal, because we remove redun-
dant reticulations when we generate it and because the 
trees in T  cover all the edges of N. In particular, for LGT 
networks r(N) provides an upper bound estimate on the 
minimum possible number of reticulations of any net-
work displaying T  , and we will use it as a reference value 
for assessing the quality of our results on synthetic LGT-
generated data.

Experiments
The code of all our heuristics and for generating data 
is written in Python and is available at https://
github.com/estherjulien/learn2cherryp-
ick. All experiments ran on an Intel Xeon Gold 6130 
CPU @ 2.1 GHz with 96 GB RAM. We conducted experi-
ments on both synthetic and real data, comparing the 
performance of Rand, TrivialRand, ML and Triv-
ialML, using threshold τ = 0 . Similar to the training 
data, we generated two synthetic datasets by first grow-
ing a binary orchard network N using [22], and then 
extracting T  as a subset of the exhaustive trees displayed 
in N. We provide details on each dataset in Sect. "Experi-
mental results".

We start by analysing the usefulness of tree expan-
sion, the heuristic rule described in Sect.  "Improving 
heuristic TrivialRand via tree expansion". We syn-
thetically generated 112 instances for each tree set size 
|T | ∈ {5, 10, 20, 50, 100} (560 in total), all consisting of 
trees with 20 leaves each, and grouped them by |T | ; we 
then ran TrivialRand 200 times (both with and with-
out tree expansion) on each instance, selected the best 
output for each of them, and finally took the average of 
these results over each group of instances. The results are 
in Fig. 6, showing that the use of tree expansion brought 
the output reticulation number down by at least 16% (for 
small instances) and up to 40% for the larger instances. 
We consistently chose to use this rule in all the heuris-
tics that detect trivial cherries, namely, TrivialRand, 
TrivialML, ML (although ML does not explicitly favour 
trivial cherries, it does check whether a selected cherry 
is trivial using feature number 2), and the non-learned 
heuristic that will be introduced in Sect. "A non-learned 
heuristic based on important features".

Prediction model
The random forest is implemented with Python’s 
scikit-learn [24] package using default settings. We 
evaluated the performance of our trained random for-
est models on different datasets in a holdout procedure: 
namely, we removed 10% of the data from each train-
ing dataset, trained the models on the remaining 90% 
and used the holdout 10% for testing. The accuracy was 
assessed by assigning to each test data point the class 

with the highest predicted probability and comparing it 
with the true class. Before training the models, we bal-
anced each dataset so that each class had the same num-
ber of representatives.

Each training dataset differed in terms of the number 
M of networks used for generating it and the number of 
leaves of the networks. For each dataset, the number L 
of leaves of each generated network was uniformly sam-
pled from [2,max L] , where max L is the maximum num-
ber of leaves per network. We constructed LGT networks 
using the LGT generator of [22]. This generator has three 
parameters: n for the number of steps, α for the proba-
bility of lateral gene transfer events, and β for regulating 
the size of the biconnected components of the network 
(called blobs). The combination of these parameters 
determines the level (maximum number of reticulations 
per blob), the number of reticulations, and the number of 
leaves of the output network. In our experiments, α was 
uniformly sampled from [0.1, 0.5] and β = 1 (see [22] for 
more details).

To generate normal networks we used the same genera-
tor with the same parameters, but before adding a retic-
ulation we check if it respects the normality constraints 
and only add it if it does. Each generated network gave 
rise to a number of data points: the total number of data 
points per dataset is shown in Table  3 in Appendix  B. 
Each row of Table  3 corresponds to a dataset on which 
the random forest can be trained, obtaining as many ML 
models. We tested all the models on all the synthetically 
generated instances: we show these results in Figs. 18, 19 
and 20 in Appendix C. In Sect. "Experimental results" we 
will report the results obtained for the best-performing 
model for each type of instance.

Fig. 6 Number of reticulations output by TrivialRand 
with and without using tree expansion. The height of the bars 
is the average reticulation number over each group, obtained 
by selecting the best of 200 runs for each instance
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Among the advantages of using a random forest as a 
prediction model, there is the ability of computing fea-
ture importance, shown in Table 4 in Appendix B. Some 
of the most useful features for a cherry (x,  y) appear to 
be ‘Trivial’ (the ratio of the trees containing both leaves 
x and y in which (x,  y) is a cherry) and ‘Cherry in tree’ 
(the ratio of trees that contain (x, y)). This was not unex-
pected, as these features are well-suited to identify trivial 
cherries.

‘Leaf distance’ (t,d), ‘LCA distance’ (t) and ‘Depth x/y’ 
(t) are also important features. The rationale behind these 
features was to try to identify reticulated cherries. This 
was also the idea for the feature ‘Before/after’, but this 
has, surprisingly, a very low importance score. In future 
work, we plan to conduct a thorough analysis of whether 
some of the seemingly least important features can be 
removed without affecting the quality of the results.

Experimental results
We assessed the performance of our heuristics on 
instances of four types: normal, LGT, ZODS (binary 
non-orchard networks), and real data. Normal, LGT and 
ZODS data are synthetically generated. We generated the 
normal instances much as we did for the training data: we 
first grew a normal network using the LGT generator and 
then extracted all the exhaustive trees displayed in the 
network. We generated normal data for different com-
binations of the following parameters: L ∈ {20, 50, 100} 
(number of leaves per tree) and R ∈ {5, 6, 7} (reticulation 
number of the original network). Note that, for normal 
instances, |T | = 2R . For every combination of the param-
eters L and R we generated 48 instances: by instance 
group we indicate the set of instances generated for one 
specific parameter pair.

For the LGT instances, we grew the networks using the 
LGT generator, but unlike for the normal instances we 
then extracted only a subset of the exhaustive trees from 
each of them, up to a certain amount |T | ∈ {20, 50, 100} . 
The other parameters for LGT instances are the number 
of leaves L ∈ {20, 50, 100} and the number of reticulations 
R ∈ {10, 20, 30} . For a fixed pair (L, |T |) , we generated 16 
instances for each possible value of R, and analogously, 
for a fixed pair (L, R) we generated 16 instances for each 
value of |T | . The 48 instances generated for a fixed pair of 
values constitute a LGT instance group.

We generated non-orchard binary networks using the 
ZODS generator [25]. This generator has two user-defined 
parameters: � , which regulates the speciation rate, and ν , 
which regulates the hybridization rate. Following [26] we set 
� = 1 and we sampled ν ∈ [0.0001, 0.4] uniformly at ran-
dom. Like for the LGT instances, we generated an instance 
group of size 48 for each pair of values (L, |T |) and (L, R), 
with L ∈ {20, 50, 100} , |T | ∈ {20, 50, 100} , R ∈ {10, 20, 30}.

Finally, the real-world dataset consists of gene trees on 
homologous gene sets found in bacterial and archaeal 
genomes, was originally constructed in [27] and made 
binary in [3]. We extracted a subset of instances (Table 2) 
from the binary dataset, for every combination of param-
eters L ∈ {20, 50, 100} and |T | ∈ {10, 20, 50, 100}.

For the synthetically generated datasets, we evaluated 
the performance of each heuristic in terms of the output 
number of reticulations, comparing it with the number of 
reticulations of the network N from which we extracted 
T  . For the normal instances, N is the optimal network 
[23, Theorem 3.1]; this is not true, in general, for the LGT 
and ZODS datasets, but even in these cases, r(N) clearly 
provides an estimate (from above) of the optimal value, 
and thus we used it as a reference value for our experi-
mental evaluation.

For real data, in the absence of the natural estimate 
on the optimal number of reticulations provided by the 
starting network, we evaluated the performance of the 
heuristics comparing our results with the ones given by 
the exact algorithms from [3] (TreeChild) and from [7] 
(Hybroscale), using the same datasets that were used 
to test the two methods in [3]. These datasets consist of 
rather small instances ( |T | ≤ 8 ); for larger instances, we 
run TrivialRand 1000 times for each instance group, 
selected the best result for each group, and used it as a 
reference value (Fig. 10).

We now describe in detail the results we obtained for 
each type of data and each of the algorithms we tested.

Experiments on normal data
For the experiments in this section we used he ML model 
trained on 1000 normal networks with at most 100 leaves 
per network (see Fig.  18 in Appendix  C). We ran the 
machine-learned heuristics once for each instance and 
then averaged the results within each instance group 
(recall that one instance group consists of the sets of 
all the exhaustive trees of 48 normal networks having 
the same fixed number of leaves and reticulations). The 
randomised heuristics Rand and TrivialRand were 
run min{x(I), 1000} times for each instance I, where x(I) 
is the number of runs that can be executed in the same 

Table 2 Number of real data instances for each group 
(combination of parameters L and |T |)

L |T | Tot. Trees

10 20 50 100

20 50 50 50 50 1684

50 20 20 20 20 290

100 5 5 1 0 53
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time as one run of ML on the same instance. We omitted 
the results for LowPair because they were at least 44% 
worse on average than the worst-performing heuristic we 
report.

In Fig. 7 we summarise the results. Solid bars represent 
the ratio between the average reported reticulation num-
ber and the optimal value, for each instance group and 
for each of the four heuristics. Dashed bars represent the 
ratio between the average (over the instances within each 
group) of the best result among the min{x(I), 1000} runs 
for each instance I and the optimum.

The machine-learned heuristics ML and TrivialML 
seem to perform very similarly, both leading to solutions 
close to optimum. The average performance of Trivi-
alRand is around 4 times worse than the machine-
learned heuristics; in contrast, if we only consider the 
best solution among the multiple runs for each instance, 
they are quite good, having only up to 49% more reticula-
tions than the optimal solution, but they are still at least 
4% worse (29% worse on average) than the machine-
learned heuristics’ solutions: see the right graph of Fig. 7.

The left graph of Fig.  7 shows that the performance 
of the randomised heuristics seems to be negatively 
impacted by the number of reticulations of the optimal 
solution, while we do not observe a clear trend for the 
machine-learned heuristics, whose performance is very 
close to optimum for all the considered instance groups. 
Indeed, the number of existing phylogenetic networks 
with a certain number of leaves grows exponentially in 
the number of reticulations, thus making it less probable 
to reconstruct a “good” network with random choices. 
This is consistent with the existing exact methods being 
FPT in the number of reticulations [3, 28].

The fully randomised heuristic Rand always per-
formed much worse than all the others, indicating that 
identifying the trivial cherries has a great impact on the 

effectiveness of the algorithms (recall that ML implicitly 
identifies trivial cherries).

Experiments on LGT data
For the experiments on LGT data we used the ML model 
trained on 1000 LGT networks with at most 100 leaves 
per network (see Fig. 19 in Appendix C). The setting of 
the experiments is the same as for the normal data (we 
run the randomised heuristics multiple times and the 
machine-learned heuristics only once for each instance), 
with two important differences.

First, for LGT data we only take proper subsets of the 
exhaustive trees displayed by the generating networks, 
and thus we have two kinds of instance groups: one 
where in each group the number of trees extracted from 
a network and the number of leaves of the networks are 
fixed, but the trees come from networks with different 
numbers of reticulations; and one where the number of 
reticulations of the generating networks and their num-
ber of leaves are fixed, but the number of trees extracted 
from a network varies.

The second important difference is that the reference 
value we use for LGT networks is not necessarily the 
optimum, but it is just an upper bound given by the num-
ber of reticulations of the generating networks which 
we expect to be reasonably close to the optimum (see 
Sect. "Obtaining training data").

The results for the LGT datasets are shown in Fig.  8. 
Comparing these results with those of Fig. 7, it is evident 
that the LGT instances were more difficult than the nor-
mal ones for all the tested heuristics: this could be due 
to the fact that the normal instances consisted of all the 
exhaustive trees of the generating networks, while the 
LGT instances only have a subset of them and thus carry 
less information.

Fig. 7 Experimental results for normal data. Each point on the horizontal axis corresponds to one instance group. In the left graph, the height 
of each bar gives the average of the results over all instances of the group, scaled by the optimum value for the group. The right graph compares 
the average output of ML within each instance group and the average of the best output given by TrivialRand for each instance of a group. 
The shaded areas represent 95% confidence intervals
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The machine-learned heuristics performed substan-
tially better (up to 80% on average) than the best ran-
domised heuristic TrivialRand in all instance groups 
but the ones with the smallest values for parameters 
R, |T | and L, for which the performances are essentially 
overlapping. On the contrary, the advantage of the 
machine-learned methods is more pronounced when the 
parameters are set to the highest values. This is because 
the larger the parameters, the more the possible different 
networks that embed T  , thus the less likely for the ran-
domised methods to find a good solution.

From the graphs on the right of Fig.  8, it seems that 
the number of reticulations has a negative impact on 
both machine-learned and randomised heuristics, the 
effect being more pronounced for the randomised ones. 
The effect of the number of trees |T | on the quality of the 
solutions is not as clear (Fig. 8, left). However, we can still 
see that the trend of ML and TrivialRand is the same: 
the “difficult” instance groups are so for both heuristics, 
even if the degradation in the quality of the solutions 
for such instance groups is less marked for ML than for 
TrivialRand.

Experiments on ZODS data
For the experiments on ZODS data we used the ML 
model trained on 1000 LGT networks with at most 100 
leaves per network (see Fig. 20 in Appendix C). The set-
ting of the experiments is the same as for the LGT data, 
and the results are shown in Fig. 9.

At first glance, the performance of the randomised 
heuristics seems to be better for ZODS data than for 
LGT data (compare Figs.  8 and  9), which sounds coun-
terintuitive. Recall, however, that all the graphs show the 
ratio between the number of reticulations returned by 
our methods and a reference value, i.e., the number of 
reticulations of the generating network: while we expect 
this reference to be reasonably close to the optimum for 
LGT networks, this is not the case for ZODS networks. 
In fact, a closer look to ZODS networks shows that they 
have a large number of redundant reticulations which 
could be removed without changing the set of trees they 
display, and thus their reticulation number is in general 
quite larger than the optimum. This is an inherent effect 
of the ZODS generator not having any constraints on 
the reticulations that can be introduced, and it is more 
marked on networks with a small number of leaves.

Fig. 8 Experimental results for LGT data. Each point on the horizontal axis corresponds to one instance group. For the graphs on the left, there 
is one group for each fixed pair (L, |T |) consisting of 16 instances coming from LGT networks for each value of R ∈ {10, 20, 30} . For the graphs 
on the right, there is one group for each fixed pair (L, R) consisting of 16 instances coming from LGT networks for each value of |T | ∈ {20, 50, 100} . 
In the top graphs, the height of each bar gives the average of the results over all instances of the group, each scaled by the number of reticulations 
of the generating network. The bottom graphs compare the average output of ML within each instance group and the average of the best output 
given by TrivialRand for each instance group. The shaded areas represent 95% confidence intervals
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Having a reference value significantly larger than the 
optimum makes the ratios shown in Fig. 9 small (close to 
1, especially for TrivialRand on small instances) with-
out implying that the results for the ZODS data are bet-
ter than the ones for the LGT data. The graphs of Figs. 8 
and 9 are thus not directly comparable.

The reference value for the experiments on ZODS data 
not being realistically close to the optimum, however, 
does not invalidate their significance. Indeed, the scope 
of such experiments was just to compare the perfor-
mance of the machine-learned heuristics on data entirely 
different from those they were trained on with the per-
formance of the randomised heuristics, which should not 
depend on the type of network that was used to generate 
the input.

As expected and in contrast with normal and LGT 
data, the results show that the machine-learned heuris-
tics perform worse than the randomised ones on ZODS 
data, consistent with the ML methods being trained on a 
completely different class of networks.

Experiments on real data
We conducted two sets of experiments on real data, using 
the ML model trained on the dataset trained on 1000 LGT 
networks with at most 100 leaves each. For sufficiently 

small instances, we compared the results of our heu-
ristics with the results of two existing tools for recon-
structing networks from binary trees: TreeChild[3] 
and Hybroscale[7]. Hybroscale is an exact method 
performing an exhaustive search on the networks dis-
playing the input trees, therefore it can only handle rea-
sonably small instances in terms of the number of input 
trees. TreeChild is a fixed-parameter (in the number 
of reticulations of the output) exact algorithm that recon-
structs the best tree-child network, a restricted class of 
phylogenetic networks, and due to its fast-growing com-
putation time cannot handle large instances either.

We tested ML and TrivialRand against Hybro-
scale and TreeChild using the same dataset used in 
[3], in turn taken from [27]. The dataset consists of ten 
instances for each possible combination of the parameters 
|T | ∈ [2, 8] and L ∈ {10, 20, 30, 40, 50, 60, 80, 100, 150} . 
In Fig.  10 we show results only for the instance groups 
for which Hybroscale or TreeChild could output a 
solution within 1 h, consistent with the experiments in 
[3]. As a consequence of Hybroscale and TreeChild 
being exact methods (TreeChild only for a restricted 
class of networks), they performed better than both ML 
and TrivialRand on all instances they could solve, 
although the best results of TrivialRand are often 

Fig. 9 Experimental results for ZODS data. Each point on the horizontal axis corresponds to one instance group. For the graphs on the left, there 
is one group for each fixed pair (L, |T |) consisting of 16 instances coming from ZODS networks for each value of R ∈ {10, 20, 30} . For the graphs 
on the right, there is one group for each fixed pair (L, R) consisting of 16 instances coming from ZODS networks for each value of |T | ∈ {20, 50, 100} . 
In the top graphs, the height of each bar gives the average of the results it represents over all instances of the group, each scaled by the number 
of reticulations of the network the instance originated from. The bottom graphs compare the average output of ML within each instance group 
and the average of the best output given by TrivialRand for each group instance. The shaded areas represent 95% confidence intervals
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close (no worse than 15%) and sometimes match the 
optimal value.

The main advantage of our heuristics is that they can 
handle much larger instances than the exact methods. In 
the conference version of this paper [19] we showed the 
results of our heuristics on large real instances, using a 
ML model trained on 10 networks with at most 100 leaves 
each. These results demonstrated that consistently with 
the simulated data, the machine-learned heuristics gave 
significantly better results than the randomised ones for 
the largest instances. When we first repeated the experi-
ments with the new models trained on 1000 networks 
with maxL = 100 , however, we did not obtain similar 
results: instead, the results of the randomised heuristics 
were better or only marginally worse than the machine-
learned ones on almost all the instance groups, including 
the largest.

Puzzled by these results, we conducted an experiment 
on the impact of the training set on real data. The results 
are reported in Fig. 11, and show that the choice of the 
networks on which we train our model has a big impact 
on the quality of the results for the real datasets. This is 
in contrast with what we observed for the synthetic data-
sets, for which only the class of the training networks 
was important, not the specific instances of the networks 
themselves. According to what was noted in [3], this is 

most likely due to the fact that the real phylogenetic data 
have substantially more structure than random synthetic 
datasets, and the randomly generated training networks 
do not always reflect this structure. By chance, the net-
works we used for training the model we used in [19] 
were similar to real phylogenetic networks, unlike the 
1000 networks in the training set of this paper.

Experiments on scalability
We conducted experiments to study how the running 
time of our heuristics scales with increasing instance 
size for all datasets. In Fig.  12 we report the average of 
the running times of ML for the instances within each 
instance group with a 95% confidence interval, for an 
increasing number of reticulations (synthetic datasets) 
or number of trees (real dataset). The datasets and the 
instance groups are those described in the previous sec-
tions. Note that we did not report the running times of 
the randomised heuristics because they are meant to be 
executed multiple times on each instance, and in all the 
experiments we bounded the number of executions pre-
cisely using the time required for one run of ML.

We also compared the running time of our heuristics 
with the running times of the exact methods Tree-
Child and Hybroscale. The results are shown in 
Fig. 13 and are consistent with the execution times of the 

Fig. 10 Comparison of ML, TrivialRand, Hybroscale, and TreeChild on real data. Each point on the horizontal axis corresponds to one 
instance group, consisting of 10 instances for a fixed pair (L, |T |) . In the top graph, the height of each bar gives the average, over all instances 
of the group, of the number of reticulations returned by the method. The bottom graphs compare the average output of ML within each instance 
group and the average of the best output given by TrivialRand within the group. The shaded areas represent 95% confidence intervals
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exact methods growing exponentially, while the running 
time of our heuristics grows polynomially. Note that net-
works with more reticulations are reduced by longer CPS 
and thus the running time increases with the number of 
reticulations.

Experiments on non‑exhaustive input trees
The instances on which we tested our methods so far all 
consisted of a set of exhaustive trees, that is, each input 

tree had the same set of leaves which coincided with 
the set of leaves of the network. However, this is not a 
requirement of our heuristics, which are able to produce 
feasible solutions also when the leaf sets of the input trees 
are different, that is when their leaves are proper subsets 
of the leaves of the optimal networks that display them.

To test their performance on this kind of data, we 
generated 18 LGT instance groups starting from the 
instances we used in Sect. "Experiments on LGT data" 

Fig. 11 Ratio between the performance of ML and the best value output by TrivialRand for different instance groups and different training 
sets. TrivialRand is executed min{x(I), 1000} times for each instance I, x(I) being the number of runs that could be completed in the same 
time as one run of ML on I. The results are then averaged within each group. Each blue line represents the results obtained training the model 
with a different set of 10 randomly generated LGT networks with at most 100 leaves each. The green line corresponds to the training set used 
in [19]; the orange line represents one of the best-performing sets; the red line corresponds to the training set we used for the experiments on LGT 
and ZODS data in this paper, consisting of 1000 randomly generated LGT networks

(a) Normal (b) LGT (c) ZODS (d) Real
Fig. 12 The running time (in seconds) of ML for the instance groups described in Sects. "Experiments on normal data", "Experiments on LGT data", 
"Experiments on ZODS data", "Experiments on real data". The solid lines represent the average of the running times for the instances within each 
instance group. The shaded areas represent 95% confidence intervals
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and removing a certain percentage p of leaves from 
each tree in each instance uniformly at random. Specifi-
cally, we generated an instance group for each value of 
p ∈ {5, 10, 15, 20, 25, 50} starting from the LGT instance 
groups with L = 100 leaves and R ∈ {10, 20, 30} reticu-
lations. Since the performances of the two machine-
learned heuristics were essentially overlapping for all of 
the other experiments, and since TrivialRand per-
formed consistently better than the other randomised 

heuristics, we limited this test to ML and TrivialRand. 
The results are shown in Fig. 14.

In accordance with intuition, the performance of both 
methods decreases with an increasing percentage of 
removed leaves, as the trees become progressively less 
informative. However, the degradation in the quality of 
the solutions is faster for ML than for TrivialRand, 
consistent with the fact that ML was trained on exhaus-
tive trees only: when the difference between the training 
data and the input data becomes too large, the behaviour 

Fig. 13 The running time of ML on the real dataset described in Sect. "Experiments on real data" compared with the running time of the exact 
methods Hybroscale and TreeChild on the same dataset. The solid lines represent the average running times within each instance group. 
The shaded areas represent 95% confidence intervals

Fig. 14 Ratio between the number of reticulations outputted by ML and TrivialRand Best and the reference value for an increasing 
percentage of removed leaves on LGT data. Each point on the horizontal axis corresponds to a certain percentage of leaves removed from each 
tree; each line represents the average, within the instances of a group (L, R) with a certain percentage of removed leaves, of the output reticulation 
number divided by the reference value. The shaded areas represent 95% confidence intervals
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of the machine-learned heuristic becomes unpredictable. 
We demand the design of algorithms better suited for 
trees with missing leaves for future work.

Effect of the threshold on ML
We tested the effectiveness of adding a threshold τ > 0 
to ML on the same datasets of Sects.  "Experiments on 
normal data", "Experiments on LGT data" and  "Experi-
ments on ZODS data" (normal, LGT and ZODS). Recall 
that each instance group consists of 48 instances. We ran 
ML ten times for each threshold τ ∈ {0, 0.1, 0.3, 0.5, 0.7} 
on each instance, took the lowest output reticulation 
number and averaged these results within each instance 
group.

The results are shown in Fig. 15. For all types of data, a 
threshold τ ≤ 0.3 is beneficial, intuitively indicating that 

when the probability of a pair being reducible is small it 
gives no meaningful indication, and thus random choices 
among these pairs are more suited. The seemingly best 
value for the threshold, though, is different for different 
types of instances. The normal instances seem to benefit 
from quite high values of τ , the best among the tested 
values being τ = 0.7 . While the optimal τ value for nor-
mal instances could be even higher, we know from Fig-
ure 7 that it must be τ < 1 , as the random strategies are 
less effective than the one based on machine learning for 
normal data. For the LGT and the ZODS instances, the 
best threshold seems to be around τ = 0.3 , while very 
high values ( τ = 0.7 ) are counterproductive. This is espe-
cially true for the LGT instances, consistent with the ran-
domised heuristics being less effective for them than for 
the other types of data (see Fig. 8).

(a) Normal (b) LGT (c) ZODS
Fig. 15 The reticulation number when running ML with different thresholds on the instance groups of Sects. "Experiments on normal data", 
"Experiments on LGT data" and "Experiments on ZODS data". Each instance was run 10 times, and the lowest reticulation value of these runs 
was selected. The shaded areas represent 95% confidence intervals

(d) Normal (e) LGT (f) ZODS
Fig. 16 Comparison of the results of FeatImp, ML and TrivialRand on the instance groups described in Sects. "Experiments on normal 
data", "Experiments on LGT data" and "Experiments on real data". Each point on the horizontal axis corresponds to an instance group; each line 
represents the average, within the instance group, of the output reticulation number divided by the reference value. The shaded areas represent 
95% confidence intervals
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These experiments should be seen as an indication that 
introducing some randomness may improve the perfor-
mance of the ML heuristics, at the price of running them 
multiple times. We defer a more thorough analysis to 
future work.

A non‑learned heuristic based on important features
In this section we propose FeatImp, yet another heuris-
tic in the CPH framework. Although FeatImp does not 
rely on a machine learning model, we defined the rules 
to choose a cherry on the basis of the features that were 
found to be the most relevant according to the model we 
used for ML and TrivialML.

To identify the most suitable rules, we trained a clas-
sification tree using the same features and training data 
as the ones used for the ML heuristic (see Fig.  17 in 
Appendix  A). We then selected the most relevant fea-
tures used in such tree and used them to define the 
function PickNext listed by Algorithm  3: namely, the 
features 4, 8t , 11d and 12t of Table  1 (the ratio of trees 
having both leaves x and y in which (x, y) is reducible, the 
average of the topological leaf distance between x and y 
scaled by the depth of the trees, the average of the ratios 
d(x,LCA(x, y))/d(y,LCA(x, y)) and the average of the 
topological distance from x to the root over the topologi-
cal distance from y to the root, respectively).

To compute and update these quantities we proceed as 
described in Sect.  "Time complexity" and Appendix  A. 
The general idea of the function PickNext used in 
FeatImp is to mimic the first splits of the classification 
tree by progressively discarding the candidate reducible 
pairs that are not among the top α% scoring for each of 
the considered features, for some input parameter α.

We implemented FeatImp and test it on the same 
instances as Sects.  "Experiments on normal data", 
"Experiments on LGT data" and "Experiments on ZODS 

data" with α = 20 . The results are shown in Figure 16. As 
expected, FeatImp works consistently worse than ML on 
all the tested datasets, and it also performs worse than 
TrivialRand on most instance groups. However, it is 
on average 12% better than TrivialRand on the LGT 
instance group having 50 leaves and 30 reticulations and 
on all the LGT instance groups with 100 leaves, which 
are the most difficult for the randomised heuristics, as 
already noticed in Sect. "Experiments on LGT data". The 
results it provides for such difficult instances are only on 
average 20% worse than those of ML, with the advantage 
of not having to train a model to apply the heuristic.

These experiments are not intended to be exhaustive, 
but should rather be seen as an indication that machine 
learning can be used as a guide to design smarter non-
learned heuristics. Possible improvements of FeatImp 
include using different values of α for different features, 
introducing some randomness in Line 8, that is, instead 
of choosing the single top scoring pair to choose one 
among the top α% at random, or to use fewer/more 
features.

Conclusions
Our contributions are twofold: first, we presented the 
first methods that allow reconstructing a phylogenetic 
network from a large set of large binary phylogenetic 
trees. Second, we show the promise and the limitation of 
the use of machine learning in this context. Our experi-
mental studies indicate that machine-learned strategies, 
consistent with intuition, are very effective when the 
training data have a structure similar enough to the test 
data. In this case, the results we obtained with machine 
learning were the best among all the tested methods, and 
the advantage is particularly evident in the most difficult 
instances. Furthermore, preliminary experiments indi-
cate that the performance of the machine-learned meth-
ods can even be improved by introducing appropriate 
thresholds, in fact mediating between random choices 
and predictions. However, when the training data do not 
sufficiently reflect the structure of the test data, repeated 
runs of the fast randomised heuristics lead to better 
results. The non-learned cherry-picking heuristic we 
designed based on the most relevant features of the input 
(identified using machine learning) shows yet another 
interesting direction.

Our results suggest many interesting directions for 
future work. First of all, we have seen that machine learn-
ing is an extremely promising tool for this problem since 
it can identify cherries and reticulated cherries of a net-
work, from displayed trees, with very high accuracy. It 
would be interesting to prove a relationship between the 
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machine-learned models’ accuracy and the produced net-
works’ quality. In addition, do there exist algorithms that 
exploit the high accuracy of the machine-learned models 
even better? Could other machine learning methods than 
random forests, or more training data, lead to even better 
results? Our methods are applicable to trees with missing 
leaves but perform well only if the percentage of missing 
leaves is small. Can modified sets of features be defined 
that are more suitable for input trees with many missing 
leaves? Moreover, we have seen that combining random-
ness with machine learning can lead to better results than 
either individual approach. However, we considered only 
one strategy to achieve this. What are the best strategies 
for combining randomness with machine learning for 
this, and other, problems? From a practical point of view, 
it is important to investigate whether our methods can 
be extended to deal with nonbinary input trees and to 
develop efficient implementations: in fact, we point out 
that our current implementations are in Python and not 
optimised for speed. Faster implementations could make 
machine-learned heuristics with nonzero thresholds even 
more effective. Finally, can the machine-learning-based 
approach be adapted to other problems in the phyloge-
netic networks research field?

Appendix A: time complexity
Lemma 7 Updating features 1–5 for a set T  of |T | 
trees of total size ||T || over a set of taxa X requires 
O(|T |(||T || + |X |2)) total time and O(||T ||) space.

Proof Let Fi
(x,y) denote the current value of the i-th fea-

ture for a cherry (x, y). When reducing a cherry (x, y) in a 
tree T (thus deleting x and p(x) = p(y) and then adding a 
direct edge from p(p(y)) to y), we check whether the other 
child of p(p(y)) is a leaf z or not. If not, no new cherry is 
created in T, thus the features 1–4 remain unaffected for 
all the cherries of T  . Otherwise, (z, y) and (y, z) are new 
cherries of T and we can distinguish two cases. 

1 (z, y) and (y, z) are already cherries of T  . Then, F1
(y,z) 

and F1
(z,y) are increased by 1

|T |
 ; F4

(y,z) and F4
(z,y) are 

increased by 1
|T y,z |

 , where |T y,z| is the number of trees 
that contain both y and z and is equal to |T |F5

(y,z) . To 
update features 2 and 3 we use two auxiliary data 
structures new_cherries(y,z) and new_cherries(z,y) 
to collect the distinct cherries that would originate 
after picking (y,  z) and (z,  y) in each tree, respec-
tively. These structures must allow efficient inser-

tions, membership queries, and iteration over the 
elements2, and can be deleted before picking the next 
cherry in T  . If the other child of p(p(z)) is a leaf w, 
we add (z,  w) and (w,  z) to new_cherries(y,z) and 
(y, w) and (w, y) to new_cherries(z,y) (unless they are 
already present).

2 (z,  y) and (y,  z) are new cherries of T  . Then we 
insert them into cherryfeatures. We initially 
set F1

(y,z) = F1
(z,y) =

1
|T |

 , and for features 2-3 we cre-
ate the same data structures as the previous case. 
To compute F5

(y,z) = F5
(z,y) we first compute |T y,z| by 

checking whether y and z are both leaves of T for 
each T ∈ T  . Then we set F5

(y,z) = F5
(z,y) =

|T y,z |
|T |

 and 
F4
(y,z) = F4

(z,y) =
1

|T y,z |
.

Once we have reduced (x,  y) in all trees, we count 
the elements of each of the auxiliary data structures 
new_cherries and update features 2-3 of the correspond-
ing cherries accordingly. Since picking a cherry can cre-
ate up to two new cherries in each tree, and for each 
new cherry we add up to two elements to an auxiliary 
data structure, this step requires O(|T |) time for each 
iteration.
Feature 5 must be updated for all the cherries corre-
sponding to the unordered pairs {x,w} with w  = y . To do 
so, when we reduce (x, y) in a tree T we go over its leaves: 
for each leaf w  = y we decrease F5

(x,w) and F5
(w,x) by 1

|T |
 (if 

(x, w) and (w, x) are currently cherries of T  ). This requires 
O(|X |2) total time per tree over all the iterations, because 
we scan the leaves of a tree only when we reduce a cherry 
in that tree. Computing feature 5 when new cherries of 
T  are created (case 2) requires constant time per tree per 
cherry. The total number of cherries created in T  over all 
the iterations cannot exceed 2||T || , thus the total time 
required to update feature 5 is O(|T |(||T || + |X |2)) . We 
arrived at the following result. �

Lemma 8 The time complexity of ML and TrivialML 
is O(||T ||2).

Proof Recall that during the initialization phase, we 
store the depth of each node, both topological and with 
respect to the branch lengths, and we preprocess each 
tree to allow constant-time LCA queries. Note that 
reducing cherries in the trees does not affect the height 
of the nodes nor their ancestry relations, thus it suffices 
to preprocess the tree set only once at the beginning of 
the algorithm.

When we reduce a cherry (x,  y) in a tree T, this may 
affect the depth of T as a consequence of the internal 
node p(x) being deleted. We thus visit T to update its 

2 For example, hashtables paired with lists.
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depth (both topological and with the branch lengths), 
and after updating the depth of all trees, we update the 
maximum value over the whole set T  accordingly. In 
order to describe how to update the features 6d,t − 12d,t 
we denote by old_deptht(T ) the topological depth of 
T before reducing (x,  y), new_deptht(T ) its depth after 
reducing (x,  y), and use analogous notation for the dis-
tances old_distt and new_distt between two nodes of a 
tree and for the depth, the max depth, and distances with 
the branch lengths.

Whenever the value of the maximum topological depth 
changes, we update the value of feature 6t for all the cur-

rent cherries (z, w) as F6t
(z,w) =

F
6t
(z,w)·old_max_deptht

new_max_deptht
 . Since 

the maximum topological depth can change O(|X |) times 
over all the iterations, and the total number of cherries at 
any moment is O(|T ||X |) , these updates require 
O(|T ||X |2) total time. We do the same for feature 6d , but 
since the maximum branch-length depth can change 
once per iteration in the worst case, this requires 
O(||T ||2) time overall.

Features 8d,t − 12d,t must be then updated to remove 
the contribution of T for the cherries (x, w) and (w, x) for 
each leaf w  = x  = y of T, because x and w will no longer 
appear together in T. These updates require O(1) time 
per leaf and can be done as follows. We set

and use analogous formulas to update F8d
(x,w) and features 

9d,t − 12d,t for (x, w) and (w, x).

We finally need to further update all the features 
6d,t − 12d,t for all the cherries of a tree T in which (x, y) 
has been reduced and whose depth has changed, includ-
ing the newly created ones. This can be done in O(1) time 
per cherry per tree with opportune formulas of the form 
of Equation 1. We have obtained the stated bound. �

Appendix B: random forest models
See Fig. 17, Tables 3 and 4.

(1)F
8t
(x,w) =

F
8t
(x,w) · |T

x,w| − old_distt (x,w)

old_deptht (T )

|T x,w| − 1

(See figure on next page.)
Fig. 17 Classification tree with depth 4 of (a) the normal data set and (b) the LGT data set. For each node in the trees, except for the terminal 
ones, the first line is the feature condition. If this condition is met by a data point, it traverses to the left child node, otherwise to the right one. In 
the terminal nodes this line is omitted as there is no condition given. In each node, as also indicated with labels in the root node, the second line 
‘samples’ is the proportional number of samples that follow the YES/NO conditions from the root to the parent of that node during the training 
process. The ‘value’ list gives the proportion of data points in each class, compared to the sample of that node. The last line indicates the most 
dominant class of that node. If a data point reaches a terminal node, the observation will be classified as the indicated class
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Table 3 Trained random forest models on different datasets for different combinations of max L (maximum number of leaves per 
network) and M (number of networks)

Each row in the table represents one model. For each model, the testing accuracy is given under “Accuracy”, and the total number of data points retrieved from all M 
networks is given under “Num. data”. Each dataset is split for training and testing ( 90− 10% ). The training duration for the random forest is given in column “Training” 
and the time needed to generate the training data is given in column “Data gen.”, in hours per core (we used 16 cores in total)

max L M Accuracy Num. data Training (min) Data gen. 
(hour/
core)

(a) Normal

20 5 1.0 840 00:00 00:00:12

10 0.994 1804 00:00 00:00:22

100 0.998 17,388 00:03 00:04:19

500 0.994 73,168 00:16 00:15:18

1000 0.993 151,308 00:42 00:29:49

50 5 0.994 3580 00:00 00:01:21

10 0.997 7860 00:01 00:02:22

100 0.996 53,988 00:11 00:18:07

500 0.997 268,552 01:04 01:31:18

1000 0.998 535,624 04:01 02:56:21

100 5 1.0 4944 00:00 00:01:13

10 0.999 12,444 00:01 00:04:05

100 0.999 128,824 00:25 00:41:54

500 0.999 676,768 04:21 04:15:49

1000 0.999 1,362,220 12:10 08:08:58

max L M Accuracy Num. data Training (min) Data gen. 
(hour/
core)

(b) LGT

20 5 0.974 768 00:01 00:00:19

10 0.994 1548 00:02 00:00:41

100 0.976 12,244 00:09 00:04:20

500 0.975 58,900 00:24 00:19:13

1000 0.975 118,104 00:27 00:35:38

50 5 0.997 2952 00:01 00:00:43

10 0.995 3796 00:03 00:01:01

100 0.995 44,116 00:23 00:14:01

500 0.994 219,472 01:39 01:06:45

1000 0.994 421,204 02:45 02:10:45

100 5 0.996 5080 00:06 00:01:23

10 0.996 7540 00:05 00:01:58

100 0.998 114,900 00:31 00:34:25

500 0.998 605,652 04:44 02:54:15

1000 0.998 1,175,628 10:23 05:31:13
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Appendix C: heuristic performance of ML models
See Figs. 18, 19 and 20.

Table 4 Feature importances of random forest trained on the 
biggest dataset ( M = 1000 and max L = 100 ) based on normal 
(a) and LGT (b) network data

Higher importance indicates that a feature has more effect on the trained 
model. The values sum up to one. The descriptions of the features are given in 
Table 1

Features Importance

(a) Normal (b) LGT

Leaf distance  (t) 0.190 0.162

Trivial 0.155 0.184

Cherry in tree 0.143 0.146

Leaf distance (d)     0.122 0.114

LCA distance (t) 0.068 0.056

Depth x/y (t) 0.050 0.058

Cherry depth (t) 0.047 0.045

Depth x/y (d) 0.043 0.038

LCA distance (d) 0.028 0.032

Leaf depth x (t) 0.023 0.024

Leaf depth y (t) 0.023 0.023

Cherry depth (d) 0.020 0.023

Leaf depth x (d) 0.020 0.022

Leaf depth y (d) 0.020 0.022

Before/after 0.015 0.016

Tree depth (d) 0.012 0.013

Tree depth (t) 0.011 0.011

New cherries 0.006 0.006

Leaves in tree 0.004 0.003

(a) Normal ML

(b) LGT ML
Fig. 18 Results for ML on normal instances with the random forest 
model trained on each of the datasets given in Table 3, where a gives 
the results when the ML model is trained on normal data, and b 
gives the results when the model is trained on LGT data. For each 
training dataset, identified by the parameter pair (max L,M) , the value 
shown in the heatmap is the average, within each instance group, 
of the reticulation number found by ML divided by the reference 
value. We used a group of 16 instances for each combination 
of parameters L ∈ {20, 50, 100} and R ∈ {5, 6, 7}
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(a) Normal ML

(b) LGT ML
Fig. 19 Results for ML on LGT instances for different training datasets, similar to Fig. 18, with L ∈ {20, 50, 100} , R ∈ {10, 20, 30} and |T | ∈ {20, 50, 100}
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(a) Normal ML

(b) LGT ML
Fig. 20 Results for ML on ZODS instances for different training datasets, similar to Fig. 18, with L ∈ {20, 50, 100} , R ∈ {10, 20, 30} 
and |T | ∈ {20, 50, 100}
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