
Lipták et al. Algorithms for Molecular Biology (2024) 19:11
https://doi.org/10.1186/s13015-023-00245-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Suffix sorting via matching statistics
Zsuzsanna Lipták1 , Francesco Masillo1 and Simon J. Puglisi2,3*

Abstract

We introduce a new algorithm for constructing the generalized suffix array of a collection of highly similar strings. As
a first step, we construct a compressed representation of the matching statistics of the collection with respect to a ref-
erence string. We then use this data structure to distribute suffixes into a partial order, and subsequently to speed
up suffix comparisons to complete the generalized suffix array. Our experimental evidence with a prototype imple-
mentation (a tool we call sacamats) shows that on string collections with highly similar strings we can construct
the suffix array in time competitive with or faster than the fastest available methods. Along the way, we describe
a heuristic for fast computation of the matching statistics of two strings, which may be of independent interest.

Keywords Generalized suffix array, Matching statistics, String collections, Compressed representation, Data
structures, Efficient algorithms

Introduction
Suffix sorting—the process of ordering all the suffixes
of a string into lexicographical order—is the key step in
construction of suffix arrays and the Burrows–Wheeler
Transform, two of the most important structures in text
indexing and biological sequence analysis [1–3]. As such,
algorithms for efficient suffix sorting have been the focus
of intense research since the early 1990s [4, 5].

With the rise of pangenomics [6, 7], there is an
increased demand for indexes that support fast pattern
matching over collections of genomes of individuals of
the same species (see, e.g., [8–12]). With pangenomic
collections constantly growing and changing, construc-
tion of these indexes—and in particular suffix sorting—
is a computational bottleneck in many bioinformatics
pipelines. While traditional and well-established suffix
sorting tools such as divsufsort [13, 14] and sais
[15, 16] can be applied to these collections, specialised

algorithms for collections of similar sequences, perhaps
most notably the so-called BigBWT program [17], are
beginning to emerge.

In this paper we describe a suffix sorting algorithm spe-
cifically targeted to collections of highly similar genomes
that makes use of the matching statistics, a data structure
due to Chang and Lawler, originally used in the context
of approximate pattern matching [18]. The core device in
our suffix sorting algorithm is a novel compressed rep-
resentation of the matching statistics of every genome
in the collection with respect to a designated reference
genome, that allows determining the relative order of two
arbitrary suffixes, from any of the genomes, efficiently.
We use this data structure to drive a suffix sorting algo-
rithm that has a small working set relative to the size of
the whole collection, with the aim of increasing locality of
memory reference. Experimental results with a prototype
implementation show the new approach to be faster or
competitive with state-of-the-art methods for suffix array
construction, including those targeted at highly repeti-
tive data. We also provide a fast, practical algorithm for
matching statistics computation, which is of independent
interest.

The remainder of this paper is structured as follows.
The next section sets notation and defines basic con-
cepts. In the “Compressed matching statistics” section

*Correspondence:
Simon J. Puglisi
simon.puglisi@helsinki.fi
1 Department of Computer Science, University of Verona, Verona, Italy
2 Helsinki Institute for Information Technology (HIIT), Helsinki, Finland
3 Department of Computer Science, University of Helsinki, Helsinki,
Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-023-00245-z&domain=pdf
http://orcid.org/0000-0002-3233-0691
http://orcid.org/0000-0002-2078-6835
http://orcid.org/0000-0001-7668-7636

Page 2 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

we describe a compressed representation of the match-
ing statistics and a fast algorithm for constructing it.
The “Comparing two suffixes via the enhanced CMS” sec-
tion then describes how to use the compressed matching
statistics to determine the relative lexicographic order of
two arbitrary suffixes of the collection. The “Putting it
all together” section describes a complete suffix sorting
algorithm. We touch on several implementation details
in the “Implementation details” section, before describ-
ing experimental results in the “Experiments” section.
Reflections and avenues for future work are then offered.

A preliminary version of this work appeared in [19].

Basics
A string T over an ordered alphabet � , of size |�| = σ ,
is a finite sequence T = T [1..n] of characters from � .
We use the notation T[i] for the ith character of T, |T|
for its length n, and T[i..j] for the substring T [i] · · ·T [j] ;
if i > j then T [i..j] = ε , where ε is the empty string. The
substring (or factor) T [i..] = T [i..n] is called the ith suf-
fix, and T [..i] = T [1..i] the ith prefix of T. We assume
throughout that the last character of each string is a spe-
cial character $, not occurring elsewhere in T, which is
set to be smaller than every character in �.

Given a string T, the suffix array SA is a permutation
of the index set {1, . . . , n} defined by: SA[i] = j if the jth
suffix of T is the ith in lexicographic order among all suf-
fixes of T. The inverse suffix array ISA is the inverse per-
mutation of SA . The LCP-array is given by: LCP[1] = 0 ,
and for i ≥ 2 , LCP[i] is the length of the longest com-
mon prefix (lcp) of the two suffixes T [SA[i − 1]..] and
T [SA[i]..] (which are consecutive in lexicographic order).
A variant of the LCP array is the permuted LCP-array,
PLCP , defined as PLCP[i] = LCP[ISA[i]] , i.e. the lcp
values are stored in text order, rather than in SA order.
We further define LCPsum(T) =

∑|T |
i=1 LCP[i] . LCPsum

can be used as a measure of repetitiveness of strings,
since the number of distinct substrings of T equals
(|T |2 + |T |)/2− LCPsum(T) . All these arrays can be
computed in linear time in |T|, see e.g. [16, 20].

Given the suffix array SA of T and a substring U
of T, the indices of all suffixes which have U as pre-
fix appear consecutively in SA . We refer to this inter-
val as U-interval: the U-interval is SA[s..e] , where
{SA[s], SA[s + 1], . . . , SA[e − 1], SA[e]} are the starting
positions of the occurrences of U in T.

Let C = {S1, . . . , Sm} be a collection of strings (a set or
multiset). The generalized suffix array GSA of C is defined
as GSA[i] = (d, j) if Sd[j..] is the ith suffix in lexicographic
order among all suffixes of the strings from C , where ties
are broken by the document index d. The GSA can be
computed in time O(N) , where N is the total length of
strings in C [1].

Let R and S be two strings. The matching statistics of S
with respect to R is an array MS of length |S|, defined as
follows. Let U be the longest prefix of suffix S[i..] which
occurs in R as a substring, where the end-of-string char-
acter # of R is assumed to be different from, and smaller
than that of S. Then MS[i] = (pi, ℓi) , where pi = −1 if
U = ε , and pi is an occurrence of U in R otherwise, and
ℓi = |U | . (Note that pi is not unique in general.) We refer
to U as the matching factor, and to the character c imme-
diately following U in S as the mismatch character, of
position i. For a collection C = {S1, . . . , Sm} and a string
R, the matching statistics of C w.r.t. R is simply the con-
catenation of MSi’s, where MSi is the matching statistics
of Si w.r.t. R. We will discuss matching statistics in more
detail in “Compressed matching statistics” section.

For an integer array A of length n and an index i, the
previous and next smaller values, PSV resp. NSV ,
are defined as PSV(A, i) = max{i′ < i : A[i′] < A[i]}
resp. NSV(A, i) = min{i′ > i : A[i′] < A[i]} . Note that
PSV resp. NSV is not defined for i = 1 resp. i = n .
In O(n) preprocessing of A, a data structure of size
n log2(3+ 2

√
2)+ o(n) bits can be built that supports

answering arbitrary PSV and NSV queries in constant
time per query [21].

Let X be a finite set of integers. Given an integer x, the
predecessor of x, pred(x) is defined as the largest ele-
ment smaller than x, i.e. predX (x) = max{y ∈ X | y ≤ x} .
Using the y-fast trie data structure of Willard [22] allows
answering predecessor queries in O(log log |X |) time
using O(|X|) space.

We are now ready to state our problem:

Problem statement: Given a string collection
C = {S1, . . . , Sm} and a reference string R, compute
the generalized suffix array GSA of C.

We will denote the length of R by n and the total length of
strings in the collection by N =

∑m
d=1 |Sd | . As before, we

assume that the end-of-string character # of R is strictly
smaller than those of the strings in the collection C . We
are interested in those cases where LCPsumR is small and
the strings in C are very similar to R. If no reference string
is given in input, we will take S1 to be the reference string
by default.

Efficient suffix array construction
Currently, the best known and conceptually simplest lin-
ear-time suffix array construction algorithm is the SAIS
algorithm by Nong et al. [16]. It cleverly combines, and
further develops, several ideas used by previous suffix
array construction algorithms, among these induced sort-
ing, and use of a so-called type array, already used in [23,
24] (see also [5]).

Page 3 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

Nong et al.’s approach can be summarized as follows:
assign a type to each suffix, sort a specific subset of suf-
fixes, and compute the complete suffix array by inducing
the order of the remaining suffixes from the sorted sub-
set. There are three types of suffixes, one of which consti-
tutes the subset to be sorted first.

The definition of types is as follows (originally from
[24], extended in [16]): Suffix i is S-type (smaller) if
T [i..] < T [i + 1..] , and L-type (larger) if T [i..] > T [i + 1..] .
An S-type suffix is S∗-type if T[i..] is S-type and T [i − 1..]
is L-type. It is well known that assigning a type to each
suffix can be done with a back-to-front scan of the text in
linear time.

Now, if the relative order of the S∗-suffixes is known,
then that of the remaining suffixes can be induced with
two linear scans over the partially filled-in suffix array:
the first scan to induce L-type suffixes, and the second to
induce S-type suffixes. For details, see [16] or [1].

Another ingredient of SAIS, and of several other suf-
fix array construction algorithms, is what we term the
metacharacter method. Subdivide the string T into over-
lapping substrings, show that if two suffixes start with the
same substring, then their relative order depends only on
the remaining part; assign metacharacters to these sub-
strings according to their rank (w.r.t. the lexicographic
order, or some other order, depending on the algorithm),
and define a new string on these metacharacters. Then
the relative order of the suffixes of the new string and
the corresponding suffixes starting with these specific
substrings will coincide. In SAIS [16], so-called LMS-
substrings are used, while a similar method is applied
in prefix-free-parsing (PFP) [17]. Here we will apply this
method using substrings starting in special positions
which we term insert-heads, see “Comparing two suffixes
via the enhanced CMS” and “Putting it all together” sec-
tions for details.

Compressed matching statistics
Let R, S be two strings over � and MS be the matching
statistics of S w.r.t. R. Let MS[i] = (pi, ℓi) . It is a well
known fact that if ℓi > 0 , then ℓi+1 ≥ ℓi − 1 . This can be
seen as follows. Let U be the matching factor of position
i, and pi an occurrence of U in R. Then U ′ = U [2..ℓi] is a
prefix of S[i + 1..] of length ℓi − 1 , which occurs in posi-
tion pi + 1 of R.

Let us call a position j a head if ℓj > ℓj−1 − 1 , and
a sequence of the form (x, x − 1, x − 2, . . .) , of length
at most x − 1 , a decrement run, i.e. each element is
one less than the previous one. Using this terminol-
ogy, we thus have that the sequence L = (ℓ1, ℓ2, . . . , ℓn)
is a concatenation of decrement runs, i.e. L has the

form (x1, x1 − 1, x1 − 2, . . . , x2, x2 − 1, x2 − 2, . . . , . . . ,

xk , xk − 1, xk − 2, . . .) , with each xj = ℓj for some head
j. We can therefore store the matching statistics in com-
pressed form as follows:

Definition 1 (Compressed matching statistics) Let R, S
be two strings over � , and MS be the matching statistics
of S w.r.t. R. The compressed matching statistics (CMS)
of S w.r.t. R is a data structure storing (j,MS[j]) for each
head j, and a predecessor data structure on the set of
heads H.

We can use CMS to recover all values of MS:

Lemma 1 Let 1 ≤ i ≤ |S|. Then MS[i] = (pj + k , ℓj − k),
where j = predH (i) and k = i − j.

Proof Let ℓi be the length of the matching factor of i.
Since there is a matching factor of length ℓj starting in
position j in S, this implies that ℓi ≥ max(0, ℓj − k) . If
ℓi was strictly greater than ℓj − k , this would imply the
presence of another head between j and i, in contradic-
tion to j = predH (i) . Since an occurrence of the match-
ing factor Uj of j starts in position pj of R, therefore the
matching factor U ′ = U [k + 1..ℓj] of i has an occurrence
at position pj + k . �

Example 1 Consider the reference R = TGATGGCACAGATA

CT# and S = GATGGCACATTGATGG$. The CMS of S w.r.t.
R is: (1, 2, 9), (9, 12, 2), (11, 1, 6), see Table 1.

From Lemma 1 and the properties of the predecessor
data structure on the set of heads we get:

Proposition 1 Let R, S be two strings over �. We can
store the matching statistics of S w.r.t. R in O(χ) space
such that any entry MS[i], for 1 ≤ i ≤ |S|, can be accessed
in O(log log χ) time, where χ = |H | is the number of
heads.

For some statistics on the number χ of heads, see the end
of “Enhancing the CMS” section.

Enhancing the CMS
Let R, S be two strings over � , and MS the matching sta-
tistics of S w.r.t. R. We now assume that all characters that
occur in S also occur in R (see “Implementation details”
section). Let SAR be the suffix array of R. For position i of S,
let U = ε be the matching factor and c the mismatch char-
acter of i. We want to compute the position that the suffix

Page 4 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

S[i..] would have in SAR if it was present. To this end, we
define the insert point of i, ip(i), as follows:

In other words, the insert point is the lexicographic rank,
among all suffixes of R, of the next smaller occurrence of
U in R if such an occurrence exists, and of the smallest
occurrence of U in R otherwise. Note that case 1 (where
U = ε) only happens for end-of-string characters. The
insert point is well-defined for every i because # is smaller
than all other characters, including other end-of-string
characters. Observe that the insert point of i always lies
within the U-interval of SAR . For an example, see Table 2.

We will later use the insert points to bucket suf-
fixes. First we need to slightly change the definition of
our compressed matching statistics. We will add more
information to the heads: we add the mismatch char-
acter and replace the position entry pi , which gives just
some occurrence of the matching factor, by the specific
occurrence qi given by the insert point. This will imply
adding more heads, so our data structure may increase
in size.

To this end, we define j to be an insert-head if
SAR[ip(j)] �= SAR[ip(j − 1)] + 1 . Note that, in particu-
lar, all heads are also insert-heads, but it is possible to
have insert-heads j which are not heads, namely where
ℓj = ℓj−1 − 1.

Definition 2 (Enhanced compressed matching statis-
tics) Let R, S be two strings over � . Define the enhanced
matching statistics as follows: for each 1 ≤ i ≤ |S| , let
ems(i) = (qi, ℓi, xi, ci) , where qi = SAR[ip(i)] , ℓi is the
length of the matching factor U of i, ci is the mismatch
character, and xi ∈ {S, L} indicates whether Uci is smaller
(S) or greater (L) than R[qi..] . The enhanced compressed

ip(i) =

1 if U = ε,
max{j | U is a prefix of R[SAR[j]..]

and R[SAR[j]..] < Uc} if this set is non-empty,
min{j | U is a prefix of R[SAR[j]..]} otherwise.

matching statistics (eCMS) of S w.r.t. R is a data structure
storing (j, ems(j)) for each insert-head j, and a predeces-

sor data structure on the set of insert-heads H ′.

Example 2 Continuing with Example 1, the enhanced
CMS of S w.r.t. R is: (1, 2, 9, L,T) , (9, 3, 2, L,T) ,
(11, 1, 6, S, $), (16, 11, 1, S, $) , (17, 17, 0, L, $) , see Table 1.

Table 1 Example for the matching statistics and the data for the CMS and the eCMS

In the first two rows, we give MS of S w.r.t. R, where MS[i] = (pi , ℓi) . In row 3, we mark the heads (for the CMS). In rows 4, we give the position qi , defined by ip(i), i.e.
qi = SAR[ip(i)] , where ip(i) is the insert-point of suffix S[i..] in the suffix array of R. In row 5, we mark the insert-heads (for the eCMS)

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

R T G A T G G C A C A G A T A C T #

S G A T G G C A C A T T G A T G G $

pi 2 3 4 5 6 7 8 9 12 13 1 2 3 4 5 6 -1

ℓi 9 8 7 6 5 4 3 2 2 1 6 5 4 3 2 1 0

Head � � �

qi 2 3 4 5 6 7 8 9 3 4 1 2 3 4 5 11 17

i-head � � � � �

Table 2 Details of computation of the matching statistics from
Table 1.

We underline the matching factors for the indices i = 9 (matching factor AT ,
mismatch character T) and 11 (matching factor TGATGG , mismatch character $).
The arrows represent the insert-points

i SAR R[SAR[i]..]

1 17 #

2 8 ACA GAT ACT#

3 14 ACT#

4 10 AGA TAC T#

5 12 ATACT#

→ 6 3 ATGGC ACA GAT ACT #

7 7 CAC AGA TACT#

8 9 CAG ATA CT#

9 15 CT#

10 11 GAT ACT #

11 2 GAT GGC ACA GAT ACT#

12 6 GCA CAG ATACT#

13 5 GGC ACA GAT ACT #

14 16 T#

15 13 TACT#

→ 16 1 TGA TGG CAC AGA TACT#

17 4 TGG CAC AGA TAC T#

Page 5 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

We will need some properties of the insert point in the
following:

Observation 1 Let ip(i) be the insert point of i, and
ems(i) = (qi, ℓi, xi, ci) .

1. ip(i) = ip(i′) if and only if qi = qi′,
2. if xi = S then R[SAR[ip(i)− 1]..] < S[i..] < R[SAR[ip(i)]..]

= R[qi..],
3. if xi = L then R[qi..] = R[SAR[ip(i)]..] < S[i..]

< R[SAR[ip(i)+ 1]..].

The enhanced CMS can be used in a similar way as
the CMS to recover the enhanced matching statistics
(including the matching statistics) of each i. Denote
by i-head(i) the next insert-head to the left of i, i.e.
i-head(i) = max{j ≤ i | j is an insert-head} . Note that
i-head(i) = predH ′(i).

Lemma 2 Let 1 ≤ i ≤ |S|, let eCMS be the enhanced
CMS of S w.r.t. R. Let j = i-head(i) , k = i − j , and
ems(j) = (qj , ℓj , xj , cj) . Then ems(i) = (qj + k , ℓj − k , xj , cj)

, and ip(i) = ISAR[qj + k]. In particular, qj + k is an
occurrence and ℓj − k is the length of the matching factor
of i (in other words, the matching statistics entry MS[i]).

Proof Analogous to Lemma 1, resp. straightforward
from the definitions. �

Similarly to the CMS (cp. Prop 1), the enhanced
CMS allows access to all values for every index i, using
space O(χ ′) and time O(log log χ ′) , where χ ′ = |H ′| is
the number of insert-heads. Again, this is due to the
fact that the predecessor data structure on the set H ′
of insert-heads allows retrieving predH ′(i) = i-head(i)
in O(log log |H ′|) time, and the values of ems(i) can
then be computed in O(1) time (Lemma 2).

We close this subsection by remarking that for a col-
lection of similar genomes, one can expect the number
of heads to be small. Indeed, on a 500MB viral genome
data set (see “Datasets” section) containing approxi-
mately 10,000 SARS-cov2 genomes, we observed
the number of heads to be 5,326,226 (100x less than
the input size) and the number of insert heads to be
6,537,294.

Computing the CMS
It is well known that the matching statistics of S w.r.t.
R can be computed in time O(|R| + |S| log σ) and
O(|R|) space by using, for example, the suffix tree of
R, as described in Chang and Lawler’s original paper
[18]. Since then, several authors have described

similar algorithms for computing matching statistics, all
focussed on reducing space requirements via the use of
compressed indexes instead of the suffix tree [3, 25, 26].
These algorithms all incur the slowdowns typical of com-
pressed data structures.

In our setting, where end-to-end runtime is the prior-
ity, it is the speed at which the matching statistics can be
computed (rather than working space) that is paramount.
Moreover, because the size of the reference is generally
small relative to the total length of all the strings Si ∈ C ,
we have some freedom to use large index data structures
on R to compute the matching statistics, without overall
memory usage getting out of hand. With these factors
in mind, we take the following approach to comput-
ing CMS. The algorithm is similar to that of Chang and
Lawler, but makes use of array-based data structures
rather than the suffix tree.

Recall that, given the suffix array SAR of string R and
a substring Y of R, the Y -interval is the interval SAR[s..e]
that contains all suffixes having Y as a prefix.

Definition 3 (Right extension and left contraction) For
a character c and a string Y , the computation of the Yc
-interval from the Y -interval is called a right extension
and the computation of the Y -interval from cY -interval is
called a left contraction.

We remark that a left contraction is equivalent to fol-
lowing a (possibly implicit) suffix link in the suffix tree of
R and a right extension is a downward movement (either
to a child or along an edge) in the suffix tree of R.

Given a Y-interval, because of the lexicographical order-
ing on the SAR , we can implement a right extension to
a Yc-interval in O(log |R|) time by using a pair of binary
searches (with c as the search key), one to find the lefthand
end of the Yc-interval and another to find the righthand
end. If a right extension is empty then there are no occur-
rences of Yc in R, but we can have the binary search return
to us the insert point where it would have been in SAR.

On the other hand, given a cY-interval, SAR[s..e] ,
we can compute the Y-interval (i.e. perform a left
contraction) in the following way. Let the target
Y-interval be SAR[x..y] . Observe that both SAR[s] + 1
and SAR[e] + 1 must be inside the Y-interval,
SAR[x..y]—that is, s′ = ISAR[SAR[s] + 1] ∈ [x..y] and
e′ = ISAR[SAR[e] + 1] ∈ [x..y] . To finish computing
SAR[x..y] , note that [s′..e′] is contained in [x..y] , but
there may be occurences of Y which come before s′ or
after e′ in SAR . For this, we use a variant of PSV/NSV
-queries: PSV(A, i, ℓ) = max{i′ ≤ i : A[i′] < ℓ} and
NSV(A, i, ℓ) = min{i′ ≥ i : A[i′] < ℓ} . Then SAR[x..y]

= SAR[PSV(LCPR, s′, |Y |)..NSV(LCPR, e′ + 1, |Y |)− 1].

Page 6 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

With these ideas in place, we are ready to describe the
matching statistics algorithm. We first compute SAR ,
ISAR , and LCPR for R and preprocess LCPR for NSV/PSV
queries. The elements of the MS will be computed in left-
to-right order, MS[1],MS[2], . . . ,MS[|S|] . Note that this
makes it trivial to save only the heads (or iheads) and
so compute the CMS (or eCMS) instead. To find MS[1]
use successive right extensions starting with the interval
SAR[1..|R|] , searching with successive characters of S[1..]
until the right extension is empty, at which point we know
ℓ1 and p1 . At a generic step in the algorithm, immediately
after computing MS[i] , we know the interval SAR[si..ei]
containing all the occurrences of R[pi..pi + ℓi − 1] . To
compute MS[i + 1] we first compute the left contraction
of SAR[si..ei] , followed by as many right contractions as
possible until ℓi+1 and pi+1 are known.

When profiling an implementation of the above algo-
rithm, we noticed that very often the sequence of right
extensions ended with a singleton interval (i.e., an inter-
val of size one) and so was the interval reached by the left
contraction that followed. In terms of the suffix tree, this
corresponds to the match between R and the current suf-
fix of Si being inside a leaf branch. This frequently hap-
pens on genome collections because each sequence is
likely to have much longer matches with other sequences
(in this case with R) than it does with itself (a single
genome tends to look fairly random, at least by string
complexity measures).

A simple heuristic to exploit this phenomenon is to
compare ℓi to the maximum value in the entire LCPR
array of R immediately after MS[i] has been computed.
If ℓi − 1 > max(LCPR) then ISAR[pi + 1] will also be
inside a leaf branch (i.e., the left contraction will also be
a singleton interval), and so the left contraction can be
computed trivially as ISAR[pi + 1]—with no subsequent
NSV/PSV queries or access to LCPR required to expand
the interval. Although this gives no asymptotic improve-
ment, there is potential gain from the probable cache
miss(es) avoided by not making random accesses to those
large data structures.

On a viral genome data set (see “Experiments” section),
max(LCPR) was 14, compared to an average ℓi value of
over 1, 100, and this heuristic saved lots of computation.
On a human chromosome data set, however, max(LCPR)
was in the hundreds of thousands, and so we generalized
the trick in the following way. We divide the LCP array
up into blocks of size b and compute the maximum of
each block. These maxima are stored in an array M of
size |R|/b, and b is chosen so that M is small enough to
comfortably fit in cache. Now, when transitioning from
MS[i] to MS[i + 1] , if ℓi > M[ISAR[pi + 1]/b] then there

is a single match corresponding to MS[i + 1] , which we
compute with right extensions. This generalized form
of the heuristic has a consistent and noticeable effect
in practice. For a 500MB viral genome data set its use
reduced CMS computation from 12.23 s to 2.34 s. On the
human chromosome data set the effect is even more dra-
matic: from 76.50 s down to 7.14 s.

Comparing two suffixes via the enhanced CMS
We will now show how to use the enhanced CMS of the
collection C w.r.t. R to define a partial order on the set of
suffixes of strings in C (Prop. 2), and how to break ties
when the entries are identical (Lemma 5). These results
can then be used either directly to determine the relative
order of any two of the suffixes (Prop. 3), or as a way of
inducing the complete order once that of the subset of
the insert-heads has been determined (Prop. 4).

We will prove Prop. 2 via two lemmas. Recall that in
the eCMS we only have the entries referring to the insert-
heads; however, Lemma 2 tells us how to compute them
for any position.

Lemma 3 Let 1 ≤ d, d′ ≤ m and 1 ≤ i ≤ |Sd | ,
1 ≤ i′ ≤ |Sd′ |. If ip(d, i) < ip(d′, i′) , then Sd[i..] < Sd′ [i′..].

Proof If ip(d′, i′)− ip(d, i) > 1 , then there exists an
index j s.t. ip(d, i) < j < ip(d′, i′) , and therefore Sd[i..] <
R[SAR[ip(d, i)+ 1]..] ≤ R[SAR[j]..] ≤ R[SAR[ip(d′, i′)− 1]..]
< Sd′ [i′..] . Now let ip(d′, i′) = ip(d, i)+ 1 . If xd,i = S ,
then Sd [i..] < R[SAR[ip(d, i)]..] = R[SAR[ip(d′, i′)− 1]..] < Sd′ [i′..] ,
by Obs. 1. Similarly, if xd′,i′ = L , then
Sd[i..] < R[SAR[ip(d, i)+ 1]..] = R[SAR[ip(d′, i′)]..] < Sd′ [i′..] .
Finally, let xd,i = L and xd′,i′ = S . Then
R[SAR[ip(d, i)]..] < Sd[i..], Sd′ [i′..] < R[SAR[ip(d, i)+ 1]..]
= R[SAR[ip(d′, i′)]..] . Let U be the matching factor of
(d, i), U ′ that of (d′, i′) , and V = lcp(U ,U ′) , the long-
est common prefix of the two. V cannot be equal to U ′
because then U ′ would be a proper prefix of U, but
ip(d′, i′) is the smallest occurrence in R of U ′ . If V = U ,
then U is a proper prefix of U ′ , and by definition of
ip(d′, i′) , the character following U in U ′ is strictly greater
than the mismatch character ci of (d, i). Finally, if V is a
proper prefix both of U and of U ′ , then the character fol-
lowing V in U is smaller than the one following V in U ′ ,
therefore U < U ′ . Since U is a prefix of Sd[i..] and U ′ is
a prefix of Sd′ [i′..] , and neither is prefix of the other, this
implies Sd[i..] < Sd′ [i′..] . �

Lemma 4 Let 1 ≤ d, d′ ≤ m and 1 ≤ i ≤ |Sd | ,
1 ≤ i′ ≤ |Sd′ | , and ip(d, i) = ip(d′, i′) .

Page 7 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

1. If ℓd,i < ℓd′,i′ and xd,i = S , then Sd[i..] < Sd′ [i′..].
2. If ℓd,i < ℓd′,i′ and xd,i = L , then Sd′ [i′..] < Sd[i..].
3. If ℓd,i = ℓd′,i′ and xd,i = S and xd′,i′ = L , then

Sd[i..] < Sd′ [i′..].
4. If ℓd,i = ℓd′,i′ and xd,i = xd′,i′ and cd,i < cd′,i′ , then

Sd[i..] < Sd′ [i′..].

Proof 1.,2.: Let U be the matching factor of i, and U ′ that
of i′ . Since ℓd,i < ℓd′,i′ , this implies that U is a proper pre-
fix of U ′ . If xd,i = S , then the mismatch character cd,i is
smaller than the character following U in U ′ , therefore
Sd[i..] < Sd′ [i′..] . If xd,i = L , then it is greater, and thus
Sd′ [i′..] < Sd[i..] . 3. follows directly from Observation 1,
since now S[i..] < R[SAR[ip(i)]..] < S[i′..] . 4.: Now both
suffixes start with the same matching factor U, followed by
different mismatch characters, which define their relative
order. �

These two lemmas in fact imply the following:

Proposition 2 The relation defined in Lemmas 3 and 4
is a partial order of the suffixes of strings in C, of which the
lexicographic order is a refinement.

Proof It follows from Lemmas 3 and 4 that the lexico-
graphic order is a refinement of the relation defined. This,
on the other hand, implies that it is a partial order. �

What happens if two suffixes Sd[i..] and Sd′ [i′..] have
the same values of the enhanced matching statistics, i.e.
ems(d, i) = ems(d′, i′) ? The next lemma says that in this
case, the relative order of the two suffixes is decided by the
relative order of the heads preceding their respective mis-
match characters.

Lemma 5 Let 1 ≤ d, d′ ≤ m and 1 ≤ i ≤ |Sd | ,
1 ≤ i′ ≤ |Sd′ | . If ip(d, i) = ip(d′, i′) , ℓd,i = ℓd′,i′ ,
xd,i = xd′,i′ , and cd,i = cd′,i′ , then Sd[i..] < Sd′ [i′..] if and
only if Sd[j..] < Sd′ [j′..] , where (d, j) = i-head(d, i + ℓi)
and (d′, j′) = i-head(d′, i′ + ℓi′).

Proof We will prove that the relative position of the
insert-head of i’s and i′ ’s mismatch character is the same,
i.e. that j − i = j′ − i′ . The claim then follows.

First note that j > i . This is because the matching factor of
position i ends in position i + ℓd,i − 1 , so there must be a
new insert-head after i and at most at i + ℓd,i , the position
of the mismatch character. Similarly, j′ > i′ . The fact that
j = i-head(i + ℓd,i) implies that there is a matching factor

starting in position j which spans the mismatch charac-
ter c = cd,i = cd′,i′ . Let’s write Vc for the prefix of length
i + ℓd,i − j of this matching factor. V is a suffix of the
matching factor U of position i, but Vc is not. However, Vc
is also a prefix of Sd′ [i′..] . Therefore, j′ = i′ + (j − i) is also
an insert-head in Sd′ . An analogous argument shows that
any insert-head between i′ and i′ + ℓd′,i′ in Sd′ is also an
insert-head in Sd , in the same relative position. �

Proposition 3 Let R, S1, . . . , Sm be strings over �

. Using the enhanced CMS of C = {S1, . . . , Sm} w.r.t. R,
we can decide, for any 1 ≤ d, d′ ≤ m and 1 ≤ i ≤ |Sd | ,
1 ≤ i′ ≤ |Sd′ |, the relative order of Sd[i..] and Sd′ [i′..] in
O(log log χ ′ ·maxd{no. of insert-heads of Sd}) time.

Proof Let (d, j) = i-head(d, i + ℓi) and
(d′, j′) = i-head(d′, i′ + ℓi′) . From Lemma 2 we get the
four eCMS-entries of (d, i) and (d′, i′) , namely the insert
positions qi resp. qi′ , the length of the matching factor,
whether the mismatch characters is smaller or larger, and
the mismatch character itself. If any of these differ for the
two suffixes, then Lemmas 3 and 4 tell us their relative
order. This check takes O(1) time. Otherwise, Lemma 5
shows that the relative order is determined by the next
relevant heads. Iteratively applying the three lemmas, in
the worst case, takes us through all heads for the strings
Sd and Sd′ . �

Instead of using Prop. 3, we will use these lemmas in
the following way. We will first sort only the insert-heads.
The following proposition states that this suffices to
determine the order of any two suffixes in constant time.

Proposition 4 Given the insert-heads in sorted order,
the relative order of any two suffixes can be determined in
O(log log χ ′) time, where χ ′ is the number of insert-heads.

Proof Follows from Lemmas 3, 4, and 5, since all checks
take constant time, and each of the two predecessor que-
ries take O(log log χ ′) time. �

Putting it all together
A high-level view of our algorithm is as follows. We first
partially sort the insert-heads, then use this partial sort
to generate a new string, whose suffixes we sort with an
existing suffix sorting algorithm. This gives us a full sort
of the insert heads. We then use this to sort the S∗-suf-
fixes of the collection. Finally, we induce the remaining

Page 8 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

suffixes of the collection using the S∗-suffixes. We next
give a schematic description of the algorithm.

Algorithm 1 .

We next give a worst-case asymptotic analysis of the
algorithm.

Proposition 5 Algorithm 1 computes the GSA of a
string collection C of total length N in worst-case time
O(N logN).

Proof Let |R| = n . Phase 1 takes O(n+ N) time, since
constructing all data structures on R can be done in linear

time in n and scanning the collection C takes time O(N) .
Phase 2 takes time O(N log n) using the algorithm from
“Computing the CMS” section. In Phase 3, identifying the
S∗ suffixes, takes time O(N) . Since at this point, the eCMS

is in text-order, identifying i-head(i) takes constant time,
also computing the insert-point takes constant time, so
altogether O(N) time. In Phase 4, all steps are linear in
χ ′ , the number of insert-heads, including the partial sort
of the buckets, since this can be done with radix-sort
(three passes over each bucket), so this phase takes time
O(χ ′) . Phase 5 takes time O(|B| log |B|) for each bucket B,
thus O(N log |Bmax|) for the entire collection, where Bmax
is a largest bucket. Since all strings in the collection are

Page 9 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

assumed to be highly similar to the reference, the size of
the buckets can be expected to vary around the number
of strings in the collection m; however, in the worst case
the largest bucket can be �(N) . Finally, Phase 6 takes
linear time O(N) . Altogether, the running time is domi-
nated by Phase 5, O(N logN) . �

Implementation details
In Phase 1, the augmentation step involves, for every
character c not occurring in R but occurring in C ,
appending cnc to R, where nc is the length of the longest
run of c in C . This avoids having 0-length entries in the
matching statistics and is necessary in order to have a
well defined insert point ip.

To compute SAR in Phase 1, we use libsais [27] as
implemented by Ilya Grebnov, a well-engineered version
of SAIS [16]. We chose this implementation due to its
consistent speed on many different inputs. For the com-
putation of PLCPR and LCPR , the same tool offers func-
tions based on the � method [20]. We constructed the
data structure of Cánovas and Navarro [28] for NSV/PSV
queries on the LCP array, as it has low space overheads
and was fast to query and initialize.

For the predecessor data structure, we use the follow-
ing two-layered approach in practice (rather than [22]).
We sample every bth head starting position and store
these in an array. In a separate array we store a differen-
tial encoding of all head positions. The array of differen-
tially encoded starting positions takes 32 bits per entry.
Predecessor search for a position x proceeds by first
binary searching in the sampled array to find the pre-
decessor sample at index i of that array. We then access
the differentially encoded array starting at index ib and
scan, summing values until the cumulative sum is greater
than x, at which point we know the predecessor. This
takes O(log(χ ′/b)+ b) time, where χ ′ is the number of
insert-heads.

For Phase 4, when we have to sort C (the concatenation
of metacharacters representing partially sorted heads),
we use another function from libsais that handles
integer alphabets.

Parallel implementation
In Phase 1, for building the data structures of R, we use
again functions from libsais, but this time with multi-
threading enabled.

We parallelized Phase 2, which consists in comput-
ing the enhanced matching statistics. We start by stor-
ing after the first scan each sequence boundaries. With
this additional information, we can distribute evenly
the sequences to the threads. Because we know that at
the end of each sequence we have a separator, there is
no extra boundary checking for the computation of the
matching statistics.

In Phase 3, where we pre-bucket S*-suffixes based on
their insert point, we allocate a thread-local buffer to

Table 3 Datasets used in the experiments

In column 3, we specify the alphabet size σ , in column 4 the number of sequences in the dataset, in column 5 the reference sequence length, and in column 6 the
number of runs r in the BWT. The total dataset has size 6 GB

Name Description σ No. of sequences Ref. sequence length r

chr19 Human Chromosome 19 5 103 59,126,939 33,799,549

sars-cov2 SARS-CoV2 genome 14 205,813 29,783 6,207,939

Table 4 Different parameters computed on a 500 MB subset of
data, respectively on the whole dataset

Dataset r No. of S∗-suffixes No. of i-heads

chr19 500 MB 32,018,267 129,130,084 4,220,033

sars-cov2 500 MB 377,437 143,672,321 6,537,294

chr19 6 GB 33,799,549 1,553,011,435 50,088,865

sars-cov2 6 GB 6,207,939 1,696,153,792 89,449,086

Fig. 1 Comparison of running times of different tools (see “Tools
compared” section) on subsets of varying length of the Chromosome
19 dataset (serial implementations)

Page 10 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

count the frequencies for each bucket. Then, we perform
a global prefix sum to get the correct positions for each
thread. Ultimately, the writes can be made concurrently
without having to lock the bucket counter.

In Phase 4, both the partial sort and computing C and
its SA are easily parallelized by assigning different buck-
ets to multiple threads.

Similarly, when we sort S*-suffixes in Phase 5 we assign
each bucket to one of the different threads in parallel.

Finally, Phase 6—inducing the final suffix array—is
the most difficult part of the algorithm to parallelize. As
already detailed in the literature [29–31], in this phase
only a partial parallelization can be achieved, due to the
intrinsic sequential nature of induced sorting. More spe-
cifically, we use some helper threads to fetch in batch
the characters preceding the suffixes in a specific range.
Then, having stored this information in a buffer, we
induce sequentially the correct position of suffixes.

Experiments
We implemented our algorithm for computing the gen-
eralized suffix array in C++. Our prototype implemen-
tation, sacamats, is available at https:// github. com/
fmasi llo/ sacam ats. The experiments were conducted on a
desktop equipped with 64GB of RAM DDR4-3200MHz
and an Intel(R) Core(R) i9-11900 @ 2.50GHz (with turbo
speed @ 5GHz) with 16MB of cache. The operating sys-
tem was Ubuntu 22.04 LTS, the compiler used was g++
version 11.3.0 with options -std=c++20 -O3 -fun-
roll-loops -march=native enabled.

Tools compared
In the experiments reported on below, we compared
sacamats to the following seven well-known suffix array
construction tools, which represent the state of the art.

Fig. 2 Comparison of running times of different tools (see “Tools
compared” section) on subsets of varying length of the SARS-CoV2
dataset (serial implementations)

Table 5 Running times (seconds) for different subset sizes of copies of Chromosome 19 (serial implementations)

Size (MB) saca-
matsmats

lib
sais

big
-bwt

divsuf
sort

gsacak DS1 DS2 DS3 DSH sais
-lite

lfg
saca

250 17.58 9.28 44.70 18.24 31.15 17.94 17.62 19.52 15.11 19.47 15.86

500 31.96 19.16 59.22 39.22 64.53 34.90 33.99 37.60 29.41 39.83 34.09

750 47.38 29.52 70.76 62.14 98.24 52.27 50.76 56.50 44.51 61.85 56.83

1000 62.66 39.49 81.98 85.84 132.11 71.44 69.83 77.28 60.61 82.58 82.75

2000 126.09 81.49 123.63 189.46 278.09 174.05 163.70 182.50 149.36 188.26 200.59

4000 275.53 226.02 205.35 521.91 728.58 474.50 – – – – –

6000 451.36 404.05 290.41 885.60 – – – – – – –

Table 6 Running times (seconds) for different subset sizes of SARS-CoV2 (serial implementations)

Size (MB) saca-
mats

lib
sais

big
-bwt

divsuf
sort

gsacak DS1 DS2 DS3 DSH sais
-lite

lfg
saca

250 14.47 9.09 10.21 21.86 27.79 15.31 15.00 17.37 13.34 17.30 13.85

500 31.48 18.73 21.56 49.18 57.48 31.48 31.00 36.34 27.74 36.02 29.73

750 50.84 28.16 36.28 77.29 85.75 50.12 49.07 55.44 42.80 54.11 51.73

1000 68.62 37.96 48.80 108.29 117.25 67.82 67.17 76.22 59.26 72.76 78.91

2000 141.74 77.06 98.39 250.28 242.97 177.93 167.18 185.61 154.67 161.02 192.63

4000 330.67 216.79 201.92 781.36 660.67 – – – – – –

6000 558.13 443.90 304.51 1396.85 – – – – – – –

https://github.com/fmasillo/sacamats
https://github.com/fmasillo/sacamats

Page 11 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

Fig. 3 Phases breakdown of sacamats on different subsets
of copies of Chromosome 19 (serial implementation)

Fig. 4 Phases breakdown of sacamats on different subsets
of SARS-CoV2 genomes (serial implementation)

Fig. 5 Comparison of running times of different tools (see “Tools
compared” section) on subsets of varying length of the Chromosome
19 dataset (parallel implementations)

Fig. 6 Comparison of running times of different tools (see “Tools
compared” section) on subsets of varying length of the SARS-CoV2
dataset (parallel implementations)

Fig. 7 Phases breakdown of sacamats on different subsets
of copies of Chromosome 19 (parallel implementation)

Fig. 8 Phases breakdown of sacamats on different subsets
of SARS-CoV2 genomes (parallel implementation)

Page 12 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

1. divsufsort [14], a tool implemented by Mori [13]
that was considered, until recently, one of the fast-
est general-purpose SACAs. It is perhaps the most
widely used tool in bioinformatics-related libraries.

2. sais-lite [15], also implemented by Yuta Mori,
this tool implements the well-known SAIS algo-
rithm by Nong et al. [16].

3. gsacak [32], an extension of the SACA-K algorithm
[33] to a collection of strings.

4. big-bwt [17], a tool computing the BWT and the
suffix array, designed specifically for highly repetitive
data. We used the default parameters (-w = 10,
-p = 100) and the -f flag to parse fasta files as
input. The standard implementation streams to disk
the BWT and the SA . We made slight changes to
the big-bwt code to enable storing the SA in main
memory and also to skip the BWT being written to
disk (both for serial and parallel implementations) for
a fair comparison with the other tools.

5. gsaca-ds [34], an implementation of the GSACA
algorithm by Baier [35]. This is the first non-recursive
linear algorithm for suffix array construction. It is
divided into two phases, first grouping suffixes into
specific groups, and then using this information to
complete sorting. This implementation uses integer
sorting for both phases (hence the name double-
sort). This tool offers four serial variants and three

parallel variants. It was chosen as a competitor due to
its good performance on repetitive data.

6. lfgsaca [36], another implementation of the
GSACA algorithm. Again, it has been proven to be
very fast on repetitive data.

7. libsais [27], the current fastest tool based on
SAIS, implemented by Ilya Grebnov. It has not yet
appeared in a peer-reviewed paper, but is available
for download.

Datasets
For our tests, we used two publicly available datasets,
one consisting of copies of human chromosome 19 from
the 1000 Genomes Project [37], and the other consist-
ing of copies of SARS-CoV2 genomes taken from NCBI
Datasets.1 The first dataset contains only characters A, C,
G, T and N (thus, σ = 5), while the second dataset con-
tains also IUPAC codes (σ = 14). For further details, see
Table 3.

For both datasets, we selected subsets of different sizes
in order to study the scalability of our algorithm, and
for comparison with other tools. The sizes are 250 MB,
500 MB, 750 MB, 1 GB, 2 GB, 4 GB, and 6 GB.

Table 7 Running times (seconds) for different subset sizes of copies of Chromosome 19 (parallel implementations)

Size (MB) Sacamats-par Libsais-par Big-bwt-par DS1-par DS2-par DS3-par

250 10.01 4.80 34.70 19.59 20.54 21.41

500 15.03 9.33 45.14 29.67 31.15 32.78

750 19.72 13.83 53.42 39.20 41.26 43.68

1000 26.32 18.29 63.04 50.38 52.68 56.01

2000 47.85 37.62 88.54 107.34 111.20 115.86

4000 97.22 96.37 142.29 256.72 – –

6000 156.50 156.80 195.62 – – –

Table 8 Running times (seconds) for different subset sizes of SARS-CoV2 (parallel implementations)

Size (MB) Sacamats-par Libsais-par Big-bwt-par DS1-par DS2-par DS3-par

250 4.98 4.30 4.66 8.12 8.46 9.25

500 10.72 8.81 9.66 15.42 16.29 17.42

750 17.23 13.19 19.25 23.61 24.85 26.76

1000 24.67 17.77 25.96 33.31 34.03 36.08

2000 47.20 35.52 47.87 69.34 73.92 78.69

4000 110.64 98.22 94.50 205.25 – –

6000 184.36 166.47 140.14 – – –

1 https:// www. ncbi. nlm. nih. gov/ datas ets/ coron avirus/ genom es/.

https://www.ncbi.nlm.nih.gov/datasets/coronavirus/genomes/

Page 13 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

We further computed several parameters which impact
on the efficiency of the different algorithms, on the full
datasets (size 6 GB), as well as on a subset of size 500 MB:
the number r of runs of the BWT, the number of S∗-suf-
fixes, and the number of i-heads. For details, see Table 4.
We observe that, on all datasets, the number of i-heads is
around 100 times less than the input size.

Even though the two real-life datasets have different
characteristics (e.g., the average length of the sequences
is around 59 million vs. 30 thousand), the parameters
that influence our algorithm’s performance, namely, the
number of S∗-suffixes and the number of i-heads, are
similar. This is different from the number r of the BWT-
runs, which, in collections of highly similar sequences,

tends to be lower on collections of many short strings,
such as sars-cov2.

For our final experiment, we used simulated data to
study the effect on our algorithm of decreasing similarity
within the sequence collection (see “Effect of repetitive-
ness on running time” section).

Results
In Figs. 1 and 2, we display the running time comparison,
on both datasets, of our tool and the other seven com-
petitor tools, with full details given in Tables 5 and 6.
The grouped bar plot represents a direct comparison of
different algorithms on different sizes of input. In the
grouped bar plots, whenever there are bars missing, this
is because the corresponding tools exceeded the memory

Fig. 9 Scaling of our parallel version of sacamats w.r.t. the number
of threads used. Here we used different subsets of the Chromosome
19 dataset

Fig. 10 Scaling of our parallel version of sacamats w.r.t.
the number of threads used. Here we used different subsets
of the SARS-CoV2 dataset

Fig. 11 Peak memory measured as maximum resident set size
in GB for tools with serial implementation on different subsets
of the Chromosome 19 dataset

Fig. 12 Peak memory measured as maximum resident set size
in GB for tools with serial implementation on different subsets
of the SARS-CoV2 dataset

Page 14 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

limit of 62GB, or, in the case of sais-lite the tool does
not support strings longer than 231.

In Figs. 3 and 4, the stacked bar plots show how much
each phase of sacamats takes w.r.t. the total running
time (cp. “Putting it all together” section). We further
show, in Figs. 5 and 6, running time comparisons of
parallel implementations, and in Figs. 7 and 8 we have

the running time for each phase of sacamats parallel
version.

These tools all produce slightly different outputs:
divsufsort, sais-lite, gsaca-ds, lfgsaca, and
libsais output the SA , gsacak and sacamats the
GSA , and big-bwt both the BWT and the SA . Because of
these differences, if one were to write to disk each result,
the running time would be affected accordingly by the

Table 9 Maximum resident set size (MB) for different subset sizes of copies of Chromosome 19 (serial implementations)

Size (MB) saca-
mats

lib
sais

big
-bwt

divsuf
sort

gsacak DS1 DS2 DS3 DSH sais
-lite

lfg
saca

250 2953 1269 1717 1268 2245 3280 2619 2540 3270 1268 3445

500 4664 2476 2780 2476 4429 6416 5077 4973 6396 2476 6829

750 6878 3684 3775 3683 6613 9558 7546 7379 9528 3683 10214

1000 9062 4891 4782 4891 8797 12,700 10,015 9773 12,661 4891 13,599

2000 17,829 9779 8753 9779 17,591 25,313 19,951 19,456 25,233 9779 27,195

4000 35,400 35,180 32,635 35,180 50,804 62,183 – – – – –

6000 52,990 52,768 48,494 52,767 – – – – – – –

Table 10 Maximum resident set size (MB) for different subset sizes of SARS-CoV2 genomes (serial implementations)

Sze (MB) saca-
mats

lib
sais

big
-bwt

divsuf
sort

gsacak DS1 DS2 DS3 DSH sais
-lite

lfg
saca

250 2258 1224 1007 1224 2200 3455 2622 2334 3455 1224 3444

500 4454 2445 2024 2445 4398 6880 5233 4661 6880 2444 6879

750 6655 3666 3179 3665 6595 10,267 7832 6989 10,267 3665 10,306

1000 8871 4886 4201 4886 8792 13,711 10,449 9319 13,711 4886 13,745

2000 17,739 9769 8252 9769 17,581 27,476 20,909 18,634 27,475 9769 27,499

4000 35,446 35,160 32,335 35,160 50,784 – – – – – –

6000 53,162 52,738 48,328 52,738 – – – – – – –

Fig. 13 Peak memory measured as maximum resident set size
in GB for tools with parallel implementation on different subsets
of the Chromosome 19 dataset

Fig. 14 Peak memory measured as maximum resident set size
in GB for tools with parallel implementation on different subsets
of the SARS-CoV2 dataset

Page 15 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

size of the output. Therefore, we only compare the build-
ing time, i.e. the time spent constructing the SA and stor-
ing it in a single array in memory, without the time spent
writing it to disk.

Running time
By looking at the grouped bar plots (Figs. 1 and 2), one
can see that sacamats is competitive on both datasets,

in particular, it is faster than all tools on sars-cov2,
except big-bwt and libsais. The same is true for
chr19, where it is among the fastest methods, and the
gain is biggest on larger datasets. Again, the main com-
petitors are big-bwt and libsais.

For example, for the dataset chr19 at 4 GB sacamats
takes 276 s. It is faster than gsacak by 164%, divsuf-
sort by 89%, and gsaca-ds (version 1) by 72%. We

Table 11 Maximum resident set size (MB) for different subset sizes of copies of Chromosome 19 (parallel implementations)

Size (MB) sacamats-par libsais-par big-bwt-par DS1-par DS2-par DS3-par

250 2956 1270 1757 3046 2639 2589

500 4669 2478 2758 5945 5034 4961

750 6884 3685 3735 8848 7431 7312

1000 9060 4893 4699 11,751 9827 9653

2000 17,830 9781 8493 23,411 19,465 19,116

4000 35,416 35,185 32,378 57,420 – –

6000 53,000 52,773 48,049 – – –

Table 12 Maximum resident set size (MB) for different subset sizes of SARS-CoV2 genomes (parallel implementations)

Size (MB) Sacamats-par Libsais-par Big-bwt-par DS1-par DS2-par DS3-par

250 2262 1226 1057 3155 2531 2315

500 4625 2447 2019 6274 5040 4611

750 7030 3667 3133 9364 7542 6912

1000 9299 4888 4085 12,496 10,056 9211

2000 18379 9771 7846 25,027 20,106 18,400

4000 36,831 35,165 31,828 61,279 – –

6000 55,950 52,743 47,335 – – –

Fig. 15 Effect of increasing the number of differences
in the sequences of the collection w.r.t. the reference. Here we
used simulated Chromosome 19 data. For details see “Effect
of repetitiveness on running time” section

Fig. 16 Effect of increasing the number of differences
in the sequences of the collection w.r.t. the reference. Here we used
simulated SARS-CoV2 data. For details see “Effect of repetitiveness
on running time” section

Page 16 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

lose to libsais by 22% and to big-bwt by 34%. On
covid dataset at 4GB, sacamats takes 330 s. We are
faster than gsacak by 100%, divsufsort by 136%.
Again, we lose to libsais by 52%, and to big-bwt by
64%. The results are similar on other dataset sizes, with
the gain in time of sacamats over other tools being
more pronounced for larger datasets, with the exception
of the two tools big-bwt and libsais. This holds for
both the covid and chr19 datasets. For full details, see
Tables 5 and 6.

Shifting our attention to the stacked bar plots, Fig. 3
indicates that a lot of time is spent in the first phase, con-
sisting in the augmentation of R and the construction of
various data structures for the augmented version of R. In
the setting of DNA strings it is not too hard to think that
the augmentation process will not elongate R, due to the
very restricted alphabet. If the application lends itself to
it, one could compute beforehand all the data structures
listed in Phase 1, gaining roughly between 6 and 30 s of
run time, depending on the input size. Alternatively, the
common method of replacing N symbols with random
nucleotide symbols would be another way to speed up
this phase.

Parallel implementation comparisons In Figs. 5 and 6,
we have the running times of tools having a parallel imple-
mentation. Every tool was run with a fixed number of
threads set to eight.

As one can see, at higher sizes of the Human Chromo-
some 19 dataset, sacamats is very competitive w.r.t.
big-bwt and libsais outperforming big-bwt at
6GB of data, being 25% faster, and matching libsais.
On the SARS-CoV2 dataset, the winner at higher sizes of
data is big-bwt, followed by libsais. Our tool is in
third place, performing 31% slower than big-bwt and
11% slower than libsais. For full details see Tables 7
and 8.

We also show in Figs. 9 and 10 how the running time
of our algorithm scales with the number of threads used.
It can be seen that using eight threads, our tool takes a
third of the time for running on datasets of size 6GB than
it does when a single thread of execution is used.

Memory consumption
Finally, we comment on memory usage (Figs. 11
and 12). We have to make a distinction between sizes
of data, because most of the tools use four byte-arrays
for sequences up to length 231 , and then they switch
to eight byte-arrays for longer sequences. For the first
five datasets, the memory consumption is highest for
gsaca-ds and lfgsaca, because they have to keep
in memory some extra space for suffix groups. We then

have sacamats and gsacak at roughly eight bytes per
input symbol, and four bytes per input symbol for divs-
ufsort and sais-lite, libsais, and big-bwt (the
SA is saved in memory, see in “Tools compared” section).
Note that already at these smaller sizes, big-bwt shows
the least amount of memory used, due to the fact that the
input string is never in memory. On the other hand, big-
bwt uses some other internal data structures to build the
SA. Recall again that we modified the implementation of
big-bwt so that it stores the SA in memory, instead of
streaming it to disk (streaming would reduce memory at
the cost of running time).

At 4GB, three out of eight tools run out of memory.
For sais-lite this is because the implementation only
handles sequences up to length 231 due to the upper limit
of four-byte integers.

At 6GB, also gsacak runs out of memory. This is
because in the implementation it is required to use
eight bytes per input character for the SA and four bytes
per input character for the DA. For full details refer to
Tables 9 and 10. Similarly, the different parallel ver-
sions of gsaca-ds run out of memory at size 6 GB. See
Figs. 13 and 14, and Tables 11 and 12 for full details.

Effect of repetitiveness on running time
In order to study the role of eCMS size, we bench-
marked our tool on two sets of simulated data. The two
datasets were generated starting from a single reference
sequence, a SARS-CoV2 genome in one case, and a sin-
gle Human Chromosome 19 copy in the other. Starting
from this reference, we changed a number of charac-
ters in random positions, substituting the DNA charac-
ter with another one (excluding itself). The number of
positions that are changed corresponds to 0.01%, 0.1%,
1%, 5%, respectively 10% of the length of the reference.
We concatenated a number of these modified refer-
ences so that we reach 500 MB of total data.

In Figs. 15 and 16, we can see that the total running
time starts to increase quite dramatically from 5% of
sequence differences. An interesting insight is that only
two phases are affected by the increasing number of
differences, namely Phase 2 and 4. Phase 2 is impacted
by the fact that having shorter matches goes against the
heuristics we proposed to speed up the MS computa-
tion. Phase 4 is instead impacted simply by the number
of i-head s found in Phase 2. The other phases take the
same time across different datasets.

Conclusion
In this paper, we presented a new algorithm for com-
puting the generalized suffix array of a collection of
highly similar strings. It is based on a compressed

Page 17 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

representation of the matching statistics, and on effi-
cient handling of string comparisons. Our experiments
show that an implementation of the new algorithm is
competitive with the fastest existing suffix array con-
struction algorithms on datasets of highly similar
strings, in particular collections of full genome or chro-
mosome sequences.

A byproduct of our suffix sorting algorithm is a heu-
ristic for fast computation of the matching statistics
of a collection of highly similar genomes with respect
to a reference sequence, which, given the wide use of
matching statistics in genomics applications, may be
of independent interest. We also envisage uses for our
compressed matching statistics (CMS) data structure
beyond the present paper, for example as a tool for
sparse suffix sorting, or for distributed suffix sorting
in which the CMS is distributed to all sorting nodes
together with a lexicographic range of the suffixes that
each particular node is responsible for sorting. From
the CMS alone, each node can extract the positions of
its suffixes and then sort them with the aid of the CMS.

Finally, we remark that further optimizations of our
tool may be possible. In particular, a semi-external imple-
mentation of our approach, in which buckets reside on
disk, presents itself as an effective way to reduce main
memory usage. In all phases, the actual working set—the
amount of data active in main memory—is small (for the
most part, proportional to the number of i-heads), and
other authors have shown, via highly nontrivial algo-
rithm engineering, that the inducing phase is amenable
to external memory, too [38]. We leave these optimiza-
tions as future work.

Finally, handling compressed data, such as vcf files,
variation graphs [39] or elastic degenerate strings [40,
41], could be beneficial for our algorithm. It is straight-
forward how to speed up the computation of the eCMS
data structure in this case. Future research will focus on
whether the computation of the GSA can also be modi-
fied in such a way as to take advantage of the space reduc-
tion of compressed input.

Acknowledgements
We thank an anonymous reviewer for helpful comments.

Author contributions
All authors contributed equally.

Funding
Open Access funding provided by University of Helsinki (including Helsinki
University Central Hospital). Simon J. Puglisi: Academy of Finland grants
339070 and 351150.

Availability of data and materials
https:// github. com/ fmasi llo/ sacam ats.

Declarations

Competing interests
The authors declare that they have no competing interests. The authors
declare no competing interests.

Received: 31 March 2023 Accepted: 10 November 2023

References
 1. Ohlebusch E. Bioinformatics algorithms: sequence analysis, genome rear-

rangements, and phylogenetic reconstruction. Oldenbusch Verlag; 2013.
 2. Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale algorithm

design: biological sequence analysis in the era of high-throughput
sequencing. Cambridge University Press; 2015.

 3. Abouelhoda MI, Kurtz S, Ohlebusch E. Replacing suffix trees with
enhanced suffix arrays. J Discrete Algorithms. 2004;2(1):53–86.

 4. Manber U, Myers G. Suffix arrays: a new method for on-line string
searches. SIAM J Comput. 1993;22(5):935–48.

 5. Puglisi SJ, Smyth WF, Turpin A. A taxonomy of suffix array construction
algorithms. ACM Comput Surv. 2007;39(2):4.

 6. Consortium TCPG. Computational pan-genomics: status, promises and
challenges. Brief Bioinform. 2016;19(1):118–35.

 7. Liao WW, Asri M, Ebler J, Doerr D, Haukness M, Hickey G, et al. A draft
human pangenome reference. Nature. 2023;617(7960):312–24.

 8. Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J ACM. 2020;67(1):2:1-2:54.

 9. Puglisi SJ, Zhukova B. Relative lempel-ziv compression of suffix arrays. In:
Proceedings of the 27th international symposium on string processing
and information retrieval, SPIRE 2020. vol. 12303 of LNCS. Springer; 2020.
p. 89–96.

 10. Rossi M, Oliva M, Bonizzoni P, Langmead B, Gagie T, Boucher C.
Finding maximal exact matches using the r-index. J Comput Biol.
2022;29(2):188–94.

 11. Kuhnle A, Mun T, Boucher C, Gagie T, Langmead B, Manzini G. Efficient
construction of a complete index for pan-genomics read alignment. J
Comput Biol. 2020;27(4):500–13.

 12. Valenzuela D, Norri T, Välimäki N, Pitkänen E, Mäkinen V. Towards pan-
genome read alignment to improve variation calling. BMC Genomics.
2018;19(2):123–30.

 13. Mori Y. Code for divsufsort. https:// github. com/y- 256/ libdi vsufs ort.
 14. Fischer J, Kurpicz F. Dismantling DivSufSort. In: Proceedings of the Prague

stringology conference 2017. Department of Theoretical Computer
Science, Faculty of Information Technology, Czech Technical University in
Prague; 2017. p. 62–76.

 15. Mori Y. Code for sais-lite. https:// sites. google. com/ site/ yuta2 56/ sais.
 16. Nong G, Zhang S, Chan WH. Two efficient algorithms for linear time suffix

array construction. IEEE Trans Comput. 2011;60(10):1471–84.
 17. Boucher C, Gagie T, Kuhnle A, Langmead B, Manzini G, Mun T. Prefix-free

parsing for building big BWTs. Algorithms Mol Biol. 2019;14(1):13:1-13:15.
 18. Chang WI, Lawler EL. Sublinear approximate string matching and biologi-

cal applications. Algorithmica. 1994;12(4/5):327–44.
 19. Lipták Zs, Masillo F, Puglisi SJ. Suffix sorting via matching statistics. In:

Proceedings of the 22nd international workshop on algorithms in bioin-
formatics, WABI 2022. vol. 242 of LIPIcs. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik; 2022. p. 20:1–20:15.

 20. Kärkkäinen J, Manzini G, Puglisi SJ. Permuted longest-common-prefix
array. In: Proceedings of the 20th annual symposium on combinato-
rial pattern matching, CPM 2009. vol. 5577 of LNCS. Springer; 2009. p.
181–92.

 21. Fischer J. Combined data structure for previous- and next-smaller-values.
Theor Comput Sci. 2011;412(22):2451–6.

 22. Willard DE. Log-logarithmic worst-case range queries are possible in
space �(N) . Inf Process Lett. 1983;17(2):81–4.

https://github.com/fmasillo/sacamats
https://github.com/y-256/libdivsufsort
https://sites.google.com/site/yuta256/sais

Page 18 of 18Lipták et al. Algorithms for Molecular Biology (2024) 19:11

 23. Itoh H, Tanaka H. An efficient method for in memory construction of
suffix arrays. In: Proceedings of the 6th international symposium on string
processing and information retrieval and the 5th international workshop
on groupware, (SPIRE/CRIWG). IEEE Computer Society; 1999. p. 81–8.

 24. Ko P, Aluru S. Space efficient linear time construction of suffix arrays. J
Discrete Algorithms. 2005;3(2–4):143–56.

 25. Ohlebusch E, Gog S, Kügel A. Computing matching statistics and maxi-
mal exact matches on compressed full-text indexes. In: Proceedings of
the 17th international symposium on string processing and information
retrieval, SPIRE 2010. vol. 6393 of LNCS. Springer; 2010. p. 347–358.

 26. Belazzougui D, Cunial F, Denas O. Fast matching statistics in small space.
In: Proceedings of the 17th international symposium on experimental
algorithms, SEA 2018. vol. 103 of LIPIcs. Schloss Dagstuhl-Leibniz-Zen-
trum für Informatik; 2018. p. 17:1–17:14.

 27. Grebnov I. Code for libsais. https:// github. com/ IlyaG rebnov/ libsa is.
 28. Cánovas R, Navarro G. Practical Compressed Suffix Trees. In: Proceedings

of the 9th international symposium experimental algorithms, SEA 2010.
vol. 6049 of LNCS. Springer; 2010. p. 94–105.

 29. Lao B, Nong G, Chan WH, Pan Y. Fast induced sorting suffixes on a multi-
core machine. J Supercomput. 2018;74(7):3468–85.

 30. Lao B, Nong G, Chan WH, Xie JY. Fast in-place suffix sorting on a multicore
computer. IEEE Trans Comput. 2018;67(12):1737–49.

 31. Xie JY, Nong G, Lao B, Xu W. Scalable suffix sorting on a multicore
machine. IEEE Trans Comput. 2020;69(9):1364–75.

 32. Louza FA, Gog S, Telles GP. Inducing enhanced suffix arrays for string col-
lections. Theor Comput Sci. 2017;678:22–39.

 33. Nong G. Practical linear-time O(1)-workspace suffix sorting for constant
alphabets. ACM Trans Inf Syst. 2013;31(3):15.

 34. Bertram N, Ellert J, Fischer J. Lyndon Words Accelerate Suffix Sorting. In:
Proceedings of the 29th annual European symposium on algorithms, ESA
2021. vol. 204 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik;
2021. p. 15:1–15:13.

 35. Baier U. Linear-time suffix sorting—a new approach for suffix array
construction. In: Proceedings of the 27th annual symposium on combi-
natorial pattern matching, CPM 2016. vol. 54 of LIPIcs. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik; 2016. p. 23:1–23:12.

 36. Olbrich J, Ohlebusch E, Büchler T. On the optimisation of the GSACA suf-
fix array construction algorithm. In: Proceedings of the 29th international
symposium on string processing and information retrieval, SPIRE 2022.
vol. 13617 of Lecture notes in computer science. Springer; 2022. p.
99–113.

 37. The 1000 Genomes Project Consortium. A global reference for human
genetic variation. Nature. 2015;526:68–74.

 38. Kärkkäinen J, Kempa D, Puglisi SJ, Zhukova B. Engineering external
memory induced suffix sorting. In: Proceedings of the 19th workshop
on algorithm engineering and experiments, ALENEX 2017. SIAM; 2017. p.
98–108.

 39. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, et al.
Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nat Biotechnol. 2018;36(9):875–9.

 40. Iliopoulos CS, Kundu R, Pissis SP. Efficient pattern matching in elastic-
degenerate texts. In: Proceedings of the 11th international conference on
language and automata theory and applications, LATA 2017. vol. 10168 of
lecture notes in computer science; 2017. p. 131–42.

 41. Bernardini G, Pisanti N, Pissis SP, Rosone G. Pattern matching on elastic-
degenerate text with errors. In: Proceedings of the 24th international
symposium on string processing and information retrieval, SPIRE 2017.
vol. 10508 of lecture notes in computer science. Springer; 2017. p. 74–90.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://github.com/IlyaGrebnov/libsais

	Suffix sorting via matching statistics
	Abstract
	Introduction
	Basics
	Efficient suffix array construction

	Compressed matching statistics
	Enhancing the CMS
	Computing the CMS

	Comparing two suffixes via the enhanced CMS
	Putting it all together
	Implementation details
	Parallel implementation

	Experiments
	Tools compared
	Datasets
	Results
	Running time
	Parallel implementation comparisons

	Memory consumption

	Effect of repetitiveness on running time

	Conclusion
	Acknowledgements
	References

