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Abstract 

One of the most fundamental problems in genome rearrangement studies is the (genomic) distance problem. It 
is typically formulated as finding the minimum number of rearrangements under a model that are needed to trans-
form one genome into the other. A powerful multi-chromosomal model is the Double Cut and Join (DCJ) model.
While the DCJ model is not able to deal with some situations that occur in practice, like duplicated or lost regions, it 
was extended over time to handle these cases. First, it was extended to the DCJ-indel model, solving the issue of lost 
markers. Later ILP-solutions for so called natural genomes, in which each genomic region may occur an arbitrary num-
ber of times, were developed, enabling in theory to solve the distance problem for any pair of genomes. However, 
some theoretical and practical issues remained unsolved. On the theoretical side of things, there exist two disparate 
views of the DCJ-indel model, motivated in the same way, but with different conceptualizations that could not be 
reconciled so far. On the practical side, while ILP solutions for natural genomes typically perform well on telomere 
to telomere resolved genomes, they have been shown in recent years to quickly loose performance on genomes 
with a large number of contigs or linear chromosomes. This has been linked to a particular technique, namely cap-
ping. Simply put, capping circularizes linear chromosomes by concatenating them during solving time, increasing 
the solution space of the ILP superexponentially. Recently, we introduced a new conceptualization of the DCJ-indel 
model within the context of another rearrangement problem. In this manuscript, we will apply this new conceptu-
alization to the distance problem. In doing this, we uncover the relation between the disparate conceptualizations 
of the DCJ-indel model. We are also able to derive an ILP solution to the distance problem that does not rely on cap-
ping. This solution significantly improves upon the performance of previous solutions on genomes with high num-
bers of contigs while still solving the problem exactly and being competitive in performance otherwise. We demon-
strate the performance advantage on simulated genomes as well as showing its practical usefulness in an analysis 
of 11 Drosophila genomes.

Keywords Comparative genomics, Genome rearrangement, Double-cut-and-join, Indels, Integer linear 
programming, Capping

Introduction
In genome rearrangement studies, genomes are analyzed 
on a high level. Most often, the basic unit used is there-
fore not nucleotides, but oriented genetic markers, such 
as genes. The most fundamental problem in theoretical 
studies of genome rearrangements is the distance prob-
lem, which asks to provide the minimum number of rear-
rangements needed to transform one genome into the 
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other under a restricted set of operations, also called a 
model.

In early approaches, such as the inversion model  [1], 
solutions to the distance problem focused primarily on 
unichromosomal data, in which each marker appeared 
exactly once in each genome. These assumptions lim-
ited the applications of the models to real biological data, 
which often contained multiple chromosomes and a wide 
variety of marker distributions. Since then, researchers 
have sought to enable models to handle more realistic 
data. A major breakthrough was the DCJ-model intro-
duced by Yancopoulos et al. in 2005 [2], a simple model 
that was nonetheless capable of handling multiple chro-
mosomes. In 2010, Braga, Willing and Stoye extended 
the DCJ-model to the DCJ-indel model, enabling it to 
handle markers unique to one genome [3]. An independ-
ent, equivalent conceptualization of the same DCJ and 
indel operations was developed by Compeau in 2012 [4], 
although the precise relationship of the two conceptual-
izations remained unclear [5]. We refer to these views as 
the BWS- and Compeau-conceptualization respectively.

In 2021, previous results by Shao et al.  [6] were com-
bined with the BWS-conceptualization in [7] to yield the 
performant ILP solution ding for genome pairs with 
arbitrary distributions of markers, the so called natural 
genomes. In theory, ding enables the computation of the 
rearrangement distance between any pair of genomes 
available today.

However, ding uses a technique known as capping, 
which transforms linear chromosomes into circular 
ones during solving time. As described in  [8], capping 
increases the solution space of ILPs like ding super-
exponentially in the number of linear chromosomes. 
Since many assemblies available today are not resolved 
on a chromosome level and instead fragment into some-
times thousands of contigs, this renders distance com-
putation infeasible yet again for many available genomes 
today. In  [8], Rubert and Braga develop a heuristic 

solution to reduce the search space spanned by capping. 
Nonetheless, no exact solutions for the DCJ-indel dis-
tance problem of natural genomes avoiding capping exist 
as of yet.

In this work, we apply a new view on the DCJ-indel 
model developed in  [9] to the distance problem. Using 
this, we are able to bridge the gap between the BWS- 
and Compeau conceptualizations in  the "Relation of the 
BWS- and Compeau-Conceptualization" section.  Fur-
thermore, this new conceptualization lends itself to a 
new distance formula (see Theorem  1), which is simple 
enough to be developed into a capping-free ILP ("Cap-
ping-free Generalization to Natural Genomes" section), 
which we then evaluate in the "Evaluation of the ILP" sec-
tion  to show its performance advantage over ding.

Problem definition
For this work, we use the same notation as in our pre-
vious work. Therefore large parts of this section are 
adapted from  [9]. We conceptualize a genome G as a 
graph (XG,MG ∪ AG) . Its vertices XG are the beginnings 
mt and ends mh of markers m := {mt ,mh} ∈ MG . We 
refer to mt ,mh as extremities. The genome’s  adjacencies 
AG are undirected edges {mx, ny} ∈ AG , which signify 
that the extremities mx and ny are neighboring on the 
same chromosome. As a shorthand notation, we write ab 
for an adjacency {a, b} . We require both AG and MG to be 
a matching on XG.

Because of that requirement, each path in G is sim-
ple and alternates between markers and adjacencies. A 
component of a genome is thus either a linear or circular 
simple path. We refer to them as linear and circular chro-
mosomes respectively. The extremities in which a linear 
chromosome ends are called telomeres. Additionally, we 
refer to a subpath of a chromosome that starts and ends 
in a marker a chromosome segment (called a marker path 
in [9]). An example of a genome is given in Fig. 1.

Fig. 1 Genome of 7 markers with one linear and one circular chromosome. Markers drawn as arrows, adjacencies drawn as double lines



Page 3 of 19Bohnenkämper  Algorithms for Molecular Biology            (2024) 19:8  

In our model, each marker is unique, thus there are no 
markers shared between genomes. Therefore, in order 
to calculate a meaningful distance between genomes, 
we borrow a concept from biology, namely homology. 
Homology can be modeled as an equivalence relation 
on the markers, i.e. m ≡ n for some m, n ∈ MG . We call 
the equivalence class [m] of a marker m its family. We 
also extend the equivalence relation to the extremities 
with mt ≡ nt and mh ≡ nh if and only if m ≡ n . How-
ever, we require that no head is equivalent to any tail, 
i.e. mt  ≡n

h∀m, n ∈ MG . We can then extend the equiva-
lence relation to adjacencies as follows: ab ≡ cd if and 
only if both of the extremities are equivalent, that is 
a ≡ c ∧ b ≡ d or a ≡ d ∧ b ≡ c.

To illustrate our concept of homology, we introduce 
the Multi-Relational Diagram (MRD), a graph data 
structure that is also useful for the distance computa-
tion. We deviate from the definition in [7] by omitting 
indel edges from our definition. This allows us to be 
closer to the breakpoint graph definition used in [5] and 
enables the use of the simpler formula in Theorem 1.

Definition 1 The MRD of two genomes A,B and a 
homology relation ( ≡ ) is a graph MRD(A,B,≡) = (V ,E) 
with V = XA ∪ XB and two types of edges E = Eγ ∪ Eξ , 
namely adjacency edges Eγ = AA ∪ AB and extremity 
edges Eξ = {{x, y} ∈ XA × XB | x ≡ y}.

We give an example of a MRD in Fig. 2. We see that 
in that example, 41 and 51 have no homologues in the 
other genome respectively. We refer to such markers as 
singular. Additionally, we call a circular or linear chro-
mosome consisting only of singular markers a circular 
or linear singleton.

Note also that the family {21, 22, 23} in this exam-
ple has more than just one marker per genome. We 

call markers of such families ambiguous. We refer to 
a homology, in which no markers are ambiguous as 
resolved. In order to determine the precise nature of 
rearrangements occurring between two genomes, it is 
helpful to find a matching between the markers of two 
genomes.

Definition 2 A matching ( ⋆≡ ) on a given homology ( ≡ ) 
is a resolved homology for which holds m ⋆

≡n =⇒ m ≡ n 
for any pair of markers m, n.

We call two genomes A,B equal under a homology 
( ≡ ), if there is a matching ( ⋆≡ ) on ( ≡ ), such that each 
marker and adjacency of A has exactly one equivalent 
in B under ⋆≡ ) and vice versa.

We note that when the homology is resolved, in the 
MRD at most one extremity edge connects to each ver-
tex. Because the adjacencies form a matching on the 
extremities, the resulting MRD consists of only simple 
cycles and paths. We therefore call such MRDs simple. 
We note that a simple MRD fits the definition of a sim-
ple rearrangement graph as studied in Section 3 of [9]. 
An example of a simple MRD is given in Fig. 3.

Rearrangements in our transformation distance are 
modeled by the Double-Cut-And-Join (DCJ) operation. 
A DCJ operation applies up to two cuts in the genome 
and reconnects the incident extremities or telomeres. 
More formally, we can write as in [10]:

Definition 3 A DCJ operation transforms up to two the 
adjacencies ab, cd ∈ AA or telomeres s, t of genome A in 
one of the following ways:

• ab, cd → ac, bd or ab, cd → ad, bc

• ab → a, b

• ab, s → as, b or ab, s → bs, a

• s, t → st

Fig. 2 MRD for two genomes on an unresolved homology ( ≡1 ) with families {11, 12}, {21, 22, 23}, {31, 32}, {41}, {51}
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To model markers being gained or lost, we introduce 
segmental insertions and deletions.

Definition 4 An insertion of length k transforms a 
genome A into A′ by adding a chromosome segment 
p = p1, p2, ..., p2k−1p2k to the genome. Note that this adds 
the markers (p1, p2), ..., (p2k−1, p2k) ∈ MA′ . An insertion 
may additionally either add the adjacency p2kp1 ∈ AA′ , 
apply the transformation ab → ap1, p2kb for an adja-
cency ab or the transformation s → p1s for a telomere s. 
A deletion of length k removes the chromosome segment 
p = p1, ..., p2k and creates the adjacency ab if previously 
ap1, p2kb ∈ AA.

We are now in a position to formulate the distance 
problem as finding a shortest transformation of DCJ 
and indel operations of one genome into the other.

Problem  1 Given two genomes, A,B and a homology 
( ≡ ), find a shortest sequence s1, ..., sk of DCJ and indel-
operations transforming A into a genome equal to B . We 
call the length of k the DCJ-indel distance of A,B under 
( ≡ ) and write didDCJ (A,B,≡) = k.

The original DCJ-indel model by Braga et al. [11] only 
allowed indels on chromosome segments of singular 
markers to avoid scenarios that deleted and reinserted 
whole chromosomes. For a resolved homology ⋆

≡ , we 
call didDCJ (A,B,

⋆
≡) the restricted DCJ-indel distance if we 

allow only indels of segments comprised solely of sin-
gular markers in scenarios in Problem 1.

For unresolved homologies, we can apply the same 
model by just finding a matching on the original homol-
ogy. However, in order to not create a similar “free 
lunch” issue, we restrict ourselves to an established 
model, the Maximum Matching model  [12]. We call a 

matching ( +≡ ) on a homology ( ≡ ) maximal if there are 
only singular markers in one genome for every family 
in ( ≡).

Problem  2 Given two genomes, A,B and a homol-
ogy ( ≡ ), find a maximal matching ( +≡ ) on ( ≡ ), such that 
didDCJ (A,B,

+
≡) is minimized.

A new DCJ‑indel distance formula
We note that the only maximal matching on a resolved 
homology ( ⋆≡ ) is ( ⋆≡ ) itself. Thus, for resolved homolo-
gies, in any scenario for Problem  2, we know deletions 
can only affect singular markers. Let us now regard the 
MRD of a pair of genomes A,B for a resolved homol-
ogy ( ⋆≡ ). Since each marker has at most one homologue, 
each vertex is connected to at most one extremity edge. 
Since adjacency edges form a matching on the vertices, 
again, the graph consists only of simple cycles and paths. 
All cycles are even and we write the set of cycles as C◦ . 
Paths can end either in a vertex without an extremity 
edge or adjacency edges. We name the vertices, in which 
a path ends in its endpoints. Vertices without extremity 
edges are special, because, as we established earlier, they 
are the extremities of the markers that will be part of 
indels during the sorting. We therefore name them lava 
vertices. The other type of vertex are vertices not con-
nected by an adjacency edges. We refer to these as tel-
omeres. Note that there is a special case wherein a lava 
vertex can also be a telomere. We can then identify dif-
ferent types of paths by their endpoints. We write a or 
b for a lava vertex and A or B for a telomere, depending 
on whether its part of genome A or B . We then obtain 
a partition of paths into 10 different subsets, namely 
PA◦A,PA|B,PB◦B,PA◦a,PA|b,PB|a,PB◦b,Pa◦a,Pa|b,Pb◦b  . 
In order to be consistent with  [9], we use ◦ and  to 

Fig. 3 MRD for two genomes on a resolved homology ( 
⋆
≡1 ) with families {11, 12}, {21, 22}, {23}, {31, 32}, {41}, {51} . Extremities of singular markers 

(called lava vertices from "A New DCJ-Indel Distance Formula" section onward) are filled black. ( 
⋆
≡1 ) is a (maximal) matching on ( ≡1 ) of Fig. 2
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distinguish even and odd paths respectively. Further-
more, we write px(∗)y as a shorthand for the cardinality 
of Px(∗)y and Px(∗)y for a generic example of an element of 
Px(∗)y.

Usually it is not necessary to think of all 10 different 
sets as separate entities, because they behave very simi-
larly with respect to applied DCJ or indel operations. In 
textual form we therefore often use a coarser distinction, 
naming paths with two lava vertices as pontoons, paths 
with a telomere and a lava vertex as piers as well as paths 
with two telomeres as viaducts. An overview of this nota-
tion is given in Fig. 4.

Another notation we adopt from  [9] is for a DCJ 
ab, cd → ac, bd affecting the adjacencies ab and cd in 
components Kab,Kcd of the MRD respectively, we can 
instead view the DCJ as Kab,Kcd → Kac,Kbd trans-
forming the components Kab,Kcd into Kac,Kbd . In 
combination with the generic member notation from 
above, we can write operations abstractly like so: 
PA◦a,PB|a → PA|B,Pa◦a . For reference, we have also 
shown this DCJ operation in Fig. 5.

Based on this notation and with the help of observa-
tions from [9], it is possible to derive a new distance for-
mula. We do so in detail in Appendix  A. However, this 
formula is equivalent to that of Compeau and BWS as we 

will see in the following subsection. We thus only state it 
here.

Theorem 1 For two genomes A,B and a resolved homol-
ogy ( ⋆≡ ) for which both genomes contain no circular single-
tons, we have the distance formula

with n the number of matched markers, 
n = |{(m,m′) ∈ MA ×MB | m

⋆
≡m

′}|.

Note that constraining ourselves to genomes with-
out circular singletons constitutes no serious restric-
tion, as Compeau showed that circular singletons each 
require one indel operation and can thus be dealt with 
in pre-processing [5].

To more easily address individual terms in the for-
mula, we use the followig shorthands,

didDCJ (A,B,
⋆
≡) = n− c◦+

⌈

pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b)− pA|B

2

⌉

F : = n− c◦ + P̃ := n− c◦ +

⌈

p̃
2

⌉

: = n− c◦ +

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

.

Fig. 4 All different types of components in a simple MRD. Vertices of genome A are on the top, vertices of genome B are on the bottom of each 
component. Lava vertexs are filled black

Fig. 5 An example of a DCJ operation of the type PA◦a , PB|a → PA|B , Pa◦a
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Relation of the BWS‑ and compeau‑conceptualization
We now examine how the terms in our distance for-
mula relate to both the Compeau- and BWS-concep-
tualizations of the DCJ-indel model. In doing that, we 
uncover the nature of the relation between these two 
views that have been perceived as entirely separate 
since their conception [5].

Braga et  al.  [11] and Compeau  [5] use the adjacency 
and breakpoint graphs respectively. Both graphs are 
strongly related to the MRD. In fact, one obtains the adja-
cency graph by collapsing all adjacency edges of a sim-
ple MRD and the breakpoint graph by collapsing all its 
extremity edges. In order to avoid confusion, we will pre-
sent their results here as if they had been formulated on 
a simple MRD. When consulting the original works in [5, 
11], the reader should keep this in mind. Particularly 
in [5] the length of a path is determined by its adjacency 
edges instead of by its extremity edges as defined here. 
Therefore, parities of viaducts and pontoons are exactly 
opposite in [5] to the ones stated here.

We will compare the models by examining the chro-
mosome segments that are deleted or inserted (see 
Definition  4), which we refer to as indel groups. We 
say an adjacency ab or its extremities a,  b are part of 
an indel group p if there is a′b′ ≡ ab with a′b′ ∈ p or p 
starts and ends in a′ and b′ . In terms of indel groups, 
our view is closely related to the BWS-conceptualiza-
tion, because both create the indel groups implicitly 
during sorting (see Appendix A). In terms of the graph, 
our conceptualization is more closely related to Com-
peau’s because it essentially operates on the same type 
of components (lava vertices are called open in  [5], 
piers are π - and γ-paths and pontoons are {π ,π} -, 
{π , γ } - and {γ , γ }-paths). However, in  [5], indels are 
not modeled as an explicit operation, but instead 
emulated by integrating or excising artificial circu-
lar chromosomes during sorting. Adding the correct 

chromosomes, the completion, is therefore the main 
problem solved in  [5]. These additional chromosomes 
are then the explicitly constructed indel groups in the 
sorting. Because the homology of the markers needed 
for the completion is known beforehand on a resolved 
homology, the task is to find the correct new adjacen-
cies to add to the graph. Then, if an adjacency a′b′ is 
found in the completion, the extremities a ≡ a′, b ≡ b′ 
of the originally singular markers will be part of the 
same indel group. Once the completion is constructed, 
there are no more lava vertices in the graph. Instead, 
former piers and pontoons are joined into new compo-
nents, either bracelets, which are circular and consist 
of pontoons only, or chains, which consist of two piers 
and possibly pontoons. An example of a completion 
can be found in Fig. 6.

In  [11], lava vertices are avoided by viewing singu-
lar markers as part of adjacencies of matched markers, 
called G-adjacencies. This is equivalent to connecting 
the head and tail vertex of a singular marker with a 
special type of edge, called indel edge as is done in [7]. 
Introducing indel edges concatenates components with 
lava vertices. We name these concatenated component 
crossings and distinguish between circular crossings 
called ferries and linear crossings called bridges.

Definition 5 A pontoon bridge b1, .., bk for k ≥ 2 is a 
string of components bi , such that b1, bk are piers, (bi)k−1

i=2  
are pontoons and there are singular markers (mi)

k−1
i=1  with 

mi  = mj for i  = j whose extremities are contained as 
lava vertex in bi, bi+1 for all mi . A string of components 
is called a bridge if it is a pontoon bridge or consists of a 
single viaduct.

Definition 6 A pontoon ferry f1, ..., fl for l ≥ 1 is a 
string of pontoons fi , such that here are singular markers 

Fig. 6 Components resulting from a completion as in [5]. Vertices and Edges added during completion are colored in grey

Fig. 7 Path as found in [7] as another way of writing the paths in [11] by adding indel edges between lava vertices of the same gene. Indel edges 
here drawn in dashed. In this work, indel edges are omitted and the collection of components arising is called a bridge 
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(mi)
l
i=1 with mi  = mj for i  = j whose extremities are con-

tained as lava vertices in fi, fi+1 for all mi for i < l and 
the extremities of ml are contained in f1 and fl . A string 
of components is called a ferry if it is a pontoon ferry or 
consists of a single cycle.

Ferries and bridges are cycles and paths in [11] respec-
tively. An example of a bridge can be found in Fig.  7. 
Crossings are first sorted separately in  [11], so we start 
our comparison by doing the same. We thus aim to find 
internal operations that only involve components of the 
same crossing. During sorting, we want to make sure that 
the operations we apply are not only optimal in the con-
text of the crossing, but in the graph as a whole. There 
are certain operations that are guaranteed to be optimal 
because they reduce F  in any MRD by 1, no matter which 
other components are found in the graph. We call such 
an operation safe. For example, extracting a cycle from 
any component is safe (as �c◦ = 1 ), whereas recombin-
ing two even piers, such as PA◦a,PA◦a → PA◦A,Pa◦a is not 
safe, because it is only optimal under the premise that 
pA◦a > pB|a . There are only 7 distinct types of safe DCJ 
operations. We list them in Table  1. We also note that 
as in [11], instead of sorting A to B , we can sort both A 
and B to a common genome. By thinking this way, we can 
better exploit the symmetry of the situation.

The most obvious safe operation is the extraction of 
an even cycle from another component. If one continues 
to extract even cycles from an even pontoon p = x1...xk 
with lava vertices x1 and xk , one arrives at the pontoon 
p′ = x1xk , which consists of a single adjacency. The cor-
responding singular markers of x1 and xk can then be 

dealt with with the same indel operation, meaning x1, xk 
are part of the same indel group. Braga et al. notice the 
same thing in  [11]; they refer to markers that are only 
separated by even pontoons as a run, which they notice 
can be “accumulated” in this fashion. For an extensive 
example, see Additional file  1: Fig.  S16 in Appendix B, 
Steps (a), (b). In [5], genomes are not explicitly sorted, so 
there is no true equivalent to safe operations, but Com-
peau systematically finds chains and bracelets he can be 
sure are optimal in any breakpoint graph (Algorithm  9, 
Steps  1 to  3). We therefore call these chains and brace-
lets safe, too. In fact, the very first safe bracelet Compeau 
identifies, is a 1-bracelet consisting of a single even pon-
toon (Lemma 5 in  [5]). If one creates this bracelet from 
the even pontoon p = x1...xk the adjacency added for 
the completion is x′1x

′
k with x1 ≡ x′1 and xk ≡ x′k . Thus, 

here too, x1xk are part of the same indel group. This way 
of constructing the indel groups is shown in Additional 
file 1: Appendix B, Fig. S17 with Bracelets (a), (b). Notice 
also that the safe operations sorting the two adjacent lava 
vertices of an even pontoon together remain optimal in a 
bracelet like this (see Fig. 8).

The next safe bracelet Compeau finds, is joining two 
odd pontoons together. He shows that it is safe by rul-
ing out all other uses of two pontoons as at best co-opti-
mal (Lemma 6, Proof of Thm 8 and Step 2 of Algorithm 9 
in  [5]). An example can be found as Bracelet  (c) of Addi-
tional file 1: Fig. S17. This again, corresponds to a safe oper-
ation, namely Pa|b,Pa|b → Pa◦a,Pb◦b . In fact, all safe chains 
and bracelets of two components correspond directly 
to safe operations. We have visualized this fact in Fig.  9. 
Note that the corresponding safe operation again remains 

Table 1 All safe types of DCJ operations

Each reduces the F by 1, no matter the number of other components in the graph. Above are all safe operations in a pure DCJ scenario. The operations below can also 
function as safe deletions if one of the resultants in brackets is removed. For reference: F = n− c◦ +

⌈

(pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B)/2
⌉

Safe operation −�c◦ �pa|b �max(pA◦a, pB|a) �max(pA|b, pB◦b) −�pA|B

K → K
′ + C◦ − 1 0 0 0 0

PA◦A → PA|B , PA|B 0 0 0 0 − 2

PB◦B → PA|B , PA|B 0 0 0 0 − 2

PA◦A , PB◦B → PA|B , PA|B 0 0 0 0 − 2

Pa|b , Pa|b → (Pa◦a)
∗ , (Pb◦b)

∗ 0 − 2 0 0 0

PA◦a , PB|a → PA|B , (Pa◦a)
∗ 0 0 − 1 0 − 1

PA|b , PB◦b → PA|B , (Pb◦b)
∗ 0 0 0 − 1 − 1

Fig. 8 Safe DCJ operations accumulating markers separated by even pontoons (in [11] called a run) remain optimal in the safe bracelet joining 
the extremities of these markers
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optimal in the safe chain or bracelet. Because of this more 
direct correspondence between the Compeau-conceptual-
ization and our formula, we focus more on the correspond-
ence between the BWS-conceptualization and our formula 
in the following. Braga et  al. identify the same operation 
by noticing that the number of runs can be reduced by 2 if 
one applies cuts in between between runs of A and B (see 
Proposition  3 in  [11]). This is of course precisely a DCJ 
with two odd pontoons as sources in our model. Because 
the resultants of this operation are the two even pontoons 
Pa◦a,Pb◦b , these can in turn be reduced to single adjacen-
cies by excising even cycles. Again, the implication for 
indel groups in all models is that for two odd pontoons 
p1 = a1x1, ..., xkb1, p2 = a2xk+1, ..., xlb2 , the adjacency 
a1a2 can be part of the same indel group if b1b2 is part of 
the same indel group and vice versa. This equivalence is 
further illustrated by comparing the effects of Steps  (c) 
and (d) of Additional file 1: Fig. S16 to Bracelet (c) of Addi-
tional file 1: Fig. S17 of Appendix B.

Dealing in this fashion with all pontoons of a crossing, we 
reduce all but possibly one odd pontoon to single adjacency 
edges, which can then be dealt with in a single indel opera-
tion. Because ferries must contain an even number of odd 
pontoons, they can be sorted entirely by safe operations in 
this way. To quantify the number of operations needed, 
Braga et al. define the indel potential �(X) of a crossing X as 
the number of indel operations obtained in a DCJ-optimal 
sorting [11]. Since it is possible to trade off indel and DCJ 
operations, this definition is not easily reflected in the other 
conceptualizations. However, as they show that sorting a 
crossing X separately needs didDCJ (X) = dDCJ(X)+ �(X) 
steps, we can also think of the indel potential as the over-
head introduced by the singular markers if we sort the 
crossing separately. In  [11], it is shown that 
�(X) =

⌈

�(X)+1
2

⌉

 with �(X) the number of runs for a 
crossing X. If a ferry contains at least two runs, we can find 
a bijection between runs and odd pontoons. Denoting q(X) 
as the contribution to quantity q by crossing X. We can 
thus write �(X) = pa|b(X) for a ferry with at least two 

runs. Therefore, we find for a ferry X with at least two runs, 
their formula translates to ours,

Similarly, this equivalence can be shown if there is only 1 
run in X. By the Compeau method, if there are d singu-
lar markers, d markers are added as part of completion 
chromosomes, so the number of markers after comple-
tion is N = n+ d . Meanwhile, each Pa◦a and Pb◦b creates 
a bracelet. Each pair Pa|b,Pa|b also forms a bracelet. Since 
d = pa|b + pa◦a + pb◦b , we have

which is precisely the Compeau formula if no piers or 
viaducts are involved. We see that our formula acts as a 
sort of missing link between the two other formulas here. 
Since ferries can be dealt with entirely with internal safe 
operations, this formula can even be generalized to the 
whole graph for circular genomes. In fact, this has been 
done in [7], yielding our formula for this specific case.

Using this way of examining the contribution of 
individual crossings, we were also able to re-calculate 
the indel potential with our formula for all 10 types of 
bridges in [11]. The results can be found in Additional 
file  1: Table  S4 of Appendix B. Notably, when sort-
ing a bridge independently, one can also first exhaust 
all safe operations. After this, only the piers and pos-
sibly a single odd pontoon might be “left over” (see 

n(X)− c(X)+ �(X) = n(X)− c(X)+
⌈

�(X)+ 1
2

⌉

= n(X)− 1+
�(X)+ 2

2

= n(X)+
�(X)
2

= n(X)+
⌈

pa|b(X)
2

⌉

.

n(X)+
⌈

pa|b(X)
2

⌉

= n(X)+
pa|b(X)

2
= n(X)−

pa|b(X)
2

+ pa|b(X)

= n(X)+ d(X)−
pa|b(X)

2
− pa◦a(X)− pb◦b(X)

= N (X)−
(

pπ ,π (X)+ pγ ,γ (X)+
⌊

pπ ,γ (X)
2

⌋)

,

Fig. 9 For all safe DCJ operations with two piers or pontoons as sources, there is a safe bracelet or chain in which the same operation is optimal 
and vice versa
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also Additional file  1: Fig.  S16 after Step  (d)). We call 
these components unsaturated. Since each safe opera-
tion also has a corresponding safe chain or bracelet, 
these are also the only components, which end up in 
unsafe chains if one restricts the completion to a single 
crossing (compare to Additional file 1: Fig. S17). Since 
every other component can be dealt with safe opera-
tions, unsaturated components are the only ones that 
might have to be involved in what is called in  [11] a 
(path) recombination, that is, a DCJ operation involv-
ing more than one crossing. When studying recombi-
nations, we can therefore abstract from any concrete 
bridge p = p1, ..., pk with piers p1, pk and only write it 
as its unsaturated components. We therefore write 
such a component as p1pk if p contains an even num-
ber of odd pontoons or as p1Pa|bpk otherwise. We call 
this the reduced bridge. Interestingly, Braga et al. make 
the same abstraction and identify the bridges by the 
genome of their telomeres and the genome of the first 
and last run. This direct correspondence is illustrated 
by comparing Columns  1 and  4 of Additional file  1: 
Table S4. In [11], another observation is that (reduced) 
bridges of the type PA|b,PB◦b or PA◦a,PB|a never need 
to appear as sources for any recombination. Using 
our conceptualization, we can confirm that because 
PA|b,PB◦b → PA|B,Pb◦b and PA◦a,PB|a → PA|B,Pa◦a are 
safe operations, these types of bridges can be sorted 
entirely by internal safe operations. It therefore makes 
sense to group them as in [11] with viaducts, the other 
type of bridge that can be sorted in this way.

All other bridges might need recombinations to be 
sorted optimally. If there is a safe operation between the 
components of two bridges, we know that this recombi-
nation must be optimal. In fact, if we only regard unsatu-
rated components, we see that the only remaining safe 
operations are (i) PA◦a,PB|a → PA|B,Pa◦a , (ii) 
PA|b,PB◦b → PA|B,Pb◦b and (iii) Pa|b,Pa|b → Pa◦a,Pb◦b . 
We know (either by combinatorics or Additional file  1: 
Table S4) that each source of (i) and (ii) appears in 3 types 
of (reduced) bridges and thus there are 3× 3 = 9 path 
recombinations facilitated by each of these two safe oper-
ations. For (iii), we have 4 types of (reduced) bridges con-

taining Pa|b and thus 
(

4

1

)

+

(

4

2

)

= 10 path 

recombinations using this operation. Of course, these are 
not mutually exclusive, but since Operations  (i) and  (ii) 
involve the end of a bridge and one of its resultants is a 
viaduct, we can always choose to do one of these 

operations first, upon which all other possible safe opera-
tions on piers and pontoons will be in the same compo-
nent and will not require any further recombinations. 
In  [11] all of these recombinations are catalogued. We 
were able to confirm this by recreating their tables of 
recombinations with �d ≤ 0 as Additional file 1: Table S5 
of Appendix B. It is easily checked that (i) and (ii) each 
occur 9 and (iii) occurs 10 times. The unsaturated com-
ponents after the operation in these cases form precisely 
those bridges listed in [11] as the resultant(s). The precise 
difference for the distance as opposed to sorting the 
crossing separately can then be derived by comparing the 
term P̃ in our formula on the graphs containing each 
bridge separately and on a graph containing the union of 
the two bridges (see Additional file  1: Table  S5 Col-
umns 3, 6, 9, 10). In summary, we can see that in all but 
two cases, the DCJ chosen to recombine the bridges 
in [11] is safe and the resultants are exactly comprised of 
the unsaturated components after the operation.

The two exceptions are the recombinations of 
PA◦a,PA◦a with PB◦b,PB◦b and PA|a,PA|b with PB|a,PB|a 
(marked with ⋆ in the table). In these cases, there 
is no safe operation and therefore all piers remain 
unsaturated. The reason this recombination can still 
be done in some cases is that an unsafe operation like 
PA◦a,PB◦b → PA|B,Pa|b in this specific case reduces F  by 
one, but since there are equally optimal internal opera-
tions (i.e. PA◦a,PA◦a → PA◦A,Pa◦a ) in this case, this 
recombination actually never has to be used. The only 
task remaining is then to find a sequence of recombina-
tions that improve upon the distance. Braga et al. give 
this as their recombination groups. We have listed these 
groups in Additional file 1: Table S6 of Appendix B. The 
first observation is that by exhausting all safe DCJ oper-
ations in a recombination group, we are able to create 
the unsaturated components of what are called in  [11] 
reusable resultants. In combination with our observa-
tions about pairwise recombinations, we thus know 
that all recombinations in the groups can be facilitated 
purely by safe DCJs. We also see that in many cases, 
after sorting a group, no further unsaturated compo-
nents are present. In the other cases, Braga et al. make 
sure that all partners of the unsaturated components 
are “used up” in earlier recombinations of the table (see 
last column) or that remaining safe operations are at 
most co-optimal, such that the unsafe operations sort-
ing the unsaturated components are still optimal.
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Capping‑free generalization to natural genomes
Algorithm 1 Capping-free ILP to compute the DCJ-indel distance for natural genomes

In this section, we describe briefly how to general-
ize the distance formula presented as Theorem 1 to an 
ILP for which no capping of the MRD is required. The 
ILP works by determining a matching on the mark-
ers as described in Problem  2. Equivalent to finding a 
matching is to find a decomposition of the MRD, that 
is, a subset of extremity edges, such that each vertex is 
connected to at most one extremity edge. In this case, 
it is important that the decomposition is consistent, 
meaning the matched extremity edges should express 
the same matching of the markers. More formally, if 
m ∈ MA, n ∈ MB with m ≡ n then the extremity edge 
ntmt is part of a consistent decomposition if and only 
if nhmh is. We call the edges ntmt and nhmh siblings [7].

Before we give the ILP, we describe the modifications 
to the MRD necessary to construct the program.

Firstly, in order to be consistent with predecessor 
ILPs, we retain indel edges as used in  [7]. Indel edges 
connect the head and tail vertices of a marker and we 
denote their set by Eι . However, we do not use them 
to connect form bridges and ferries as in the previous 

section. Instead, we still use the distinction of com-
ponents and formula of Fig.  4. We use an indel edge 
merely to indicate when a marker’s vertices are not con-
nected to any extremity edges in the decomposition 
and thus the vertices are lava vertices.

To avoid the edge case of a path with only a single ver-
tex and no edges, we apply a slight modification for tel-
omeres: For each telomere v, we add another vertex v∅ 
and add vv∅ as an adjacency edge. We name these added 
vertices pseudo-caps and write the set of these vertices as 
V∅ . An example of these modifications can be found in 
Fig. 10.

Note that in contrast to “real” capping as applied in [7], 
pseudo-caps do not significantly increase the solution 
space, because they are not connected by extremity 
edges, which would need to be resolved as part of finding 
a decomposition.

Finally, each vertex v of the MRD is assigned a unique 
identifier ix(v) with ix(v) ≥ 1 . We assign vertices of 
genome A lower identifiers than vertices of genome B . 
Since we continue to make some distinctions based on 
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the genome vertices or edges in, we use the notation SA 
and SB to stand for the subsets of a set S with elements in 
genome A and B respectively. For reasons that will become 
clear later, we assign pseudo-caps the lowest ids, that is, 
∀v ∈ VA

∅ , ∀u ∈ V B
∅, ∀w ∈ V : ix(v) < ix(u) < ix(w).

We now begin the description of the ILP. The basic 
framework to compute consistent decompositions 
(Constraints C.01 to C.06) is the same as for ding  [7] 
and the ILP by Shao et al. [6]: A binary variable x is used 
to indicate whether or not an edge is part of the decom-
position. Variable yv in an optimal solution is equal to 
the lowest vertex id of in the component and zv marks 
the vertex v with the lowest index ix(v) in a component 
without lava vertices. In components with lava vertices, 
all y-variables and consequently all z-variables are set 
to 0. We also adopt the way circular singletons are dealt 
with in [7] as Constraint C.28.

The only major change we make w.r.t.  [7] in Con-
straints C.01 to C.06 is the addition of Constraint C.06, 
where we allow for other matching models in addi-
tion to the maximum matching model by specifying 
an upper ( Uf  ) and lower bound ( Lf  ) for the number 
of markers to be matched per family f. Specifications 
for how to set these bounds to achieve the maximum 
matching model and other popular models can be 
found in Table 2.

Our goal is to find the consistent decompositions 
with the lowest DCJ-indel distance (see Problem 2). To 
calculate the DCJ-indel distance for the objective, we 
then need to distinguish the different components from 
each other. We thus have to distinguish the 11 types of 
cycles, viaducts, piers and pontoons from each other 
(see Fig.  4 for a reminder of what these components 
look like).

From a birds-eye view, we detect the type of a compo-
nent via binary report variables anchored at adjacency 
edges. These are named named rCe  for reporting com-
ponent type C at edge e (see Domains D.05 to D.08). 
We then sum up these report variables to obtain the 
terms of the formula (see C.16 to C.27) with variable q 

representing the fraction P̃ . Together with n, the num-
ber of markers in the decomposition (C.15) and s, 
number of circular singletons (C.29), we are able to 
construct our distance formula for the objective 
function.

Of course, we need to ensure that an rC-variable is set 
to 1 only once per component as well as if and only if 
the component type is actually C. To detect, in which 
genome the endpoints of a path lie, we use the label 
variable l  (D.04). This variable is set to 0 for endpoints 
in genome A and to 1 for endpoints in genome B . This 
is done statically for pseudo-caps (C.07) and dynami-
cally for other vertices if they become lava vertices 
(C.08). We require this variable to be the same for two 
connected vertices (C.09), but escape the cases when an 
edge is not part of the decomposition ( 1− xuv ) or when 
reporting a component type with endpoints in both 
genomes ( ra|b, rA|B, rA|b, rB|a).

Because telomeres are known beforehand and marked 
by pseudo-caps, we can make sure one telomere end-
point of the path an r variable reports is correct by only 
defining the corresponding r variable on adjacency 
edges involving a pseudo-cap in the correct genome (see 
Domains D.06, D.07).

For reporting cycles, and viaducts of type PA|B , we 
require the z variable of an adjacent vertex to be set to 1 
(C.10). This serves two purposes: On the one hand, it 
ensures that r is only set to 1 once per component (as there 
is only one z variable set to 1 per component). On the other 
hand, it ensures that no component containing lava verti-
ces can report PA|B or a cycle. This is because components 

Fig. 10 Modifications to the MRD for the ILP: Pseudo-caps and additional adjacency edges shown in grey, indel edges shown dashed. Numbers 
show the optimal variable assignment of the l-variable for each vertex. Arrows indicate the setting of a report variable of an edge together 
with the constraints responsible. Other report variables are 0. Due to C.04 all y-variables are 0 and consequently (C.05) all z variables are 0.

Table 2 Settings for Uf , Lf  in Algorithm 1 to enforce different 
matching models described in [12] with fA and fB the markers of 
f  in A and B respectively 

Maximum matching 
(Full)

Intermediate 
matching

Exemplar 
matching

Lf min(|fA|, |fB|) min(|fA|, |fB|) 1

Uf min(|fA|, |fB|) 1 1
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with lava vertices do not have any z-variables set to 1. This 
is important because cycles as well as viaducts of type PA|B 
decrease the formula while all other component types are 
either neutral or increase the formula.

Conversely, we set all y-variables and by proxy all z-var-
iables to 0 if a pier is reported (Constraint C.11). This is to 
prevent the report variable being used to alter the l-vari-
able of PA◦A (or pB◦B ) type paths to report a PA|B path.

With the constraints described until now, the ILP 
would only correctly report piers with endpoints in dif-
ferent genomes, because while Constraint C.09enforces 
that any PA|b or PB|a are reported, there is no equiva-
lent for the type PA◦a or PB◦b . We therefore require for 
pseudo-caps to report a pier if the y-variable is 0 (C.12), 
which indicates that there is a lava vertex in the compo-
nent due to Constraint C.04. The interplay of l, the r vari-
ables and selected constraints is also visualized in Fig. 10.

Additionally, we require a change in the l-variable 
when reporting odd paths, such that no even path can be 
reported as an odd one ( C.13).

To enforce that ra|b is set only in components with lava 
vertices, we use an idea introduced in [7]: We require for 
ra|b to be set to 1 that a neighboring indel edge is part of 
the decomposition ( C.14).

Note here that we do not prevent the variable ra|b to be 
used to change l in components containing lava vertices as 
we did for other report variables before. For example, it is 
possible that in a component PA◦a any ra|b variable could 
be set to 1, meaning rA|b could be set to 1 at the pseudo-
cap instead of rA◦a . However, since any ra|b variable set to 1 
increases the formula at least as much as the report varia-
ble of any pier type, this has no effect on optimal solutions.

Evaluation of the ILP
We implemented the ILP described in the previous sec-
tion and made it publicly available.1 We refer to this 
implementation as ding-cf for the rest of this work.

In this section, we show results of applying the ILP to 
both simulated and real data and comparing its perfor-
mance to the python3 version of ding [7], namely din-
gII, a similar ILP solution to the DCJ-indel distance 
problem for natural genomes. In contrast to ding-cf, 
dingII uses the capping technique. In all experiments, 
we used gurobi10.0 on a single thread on a virtual 
machine with 256 GB RAM to solve the ILPs.

We first test the ILPs on simulated data in   "Perfor-
mance Evaluation on Simulated Data" Subsection before 
demonstrating the practical usefulness of rearrangement 
analyses on contig level resolved genomes by analysing 

11 Drosophila genomes in  "Analysis of Drosophila 
Genomes" Subsection.

Performance evaluation on simulated data
We initially planned to use the simulation script that 
comes with dingII, but due to the script regularly 
encountering stack overflows on large genomes owing to 
its reliance on recursion, we instead re-implemented it in 
C++. This implementation is also publicly available.2

The re-implementation has the same features as the 
original script with only one minor change: Instead of the 
number of DCJ-operations to be performed as a param-
eter, our simulation takes a fixed number of total opera-
tions and distributes them according to rates relative to a 
rate of 1 for DCJ operations. For more detail on the simu-
lation, the interested reader is referred to the description 
of the original simulation script in [7].

In our experiments, we simulated two genomes from 
a common root for each sample. We chose parameters 
close to those of the experiments performed in the origi-
nal ding publication  [7]. In all experiments, we set the 
length of the root genomes to 20,000 markers and per-
formed 10,000 operations in total, with an insertion rate 
of 0.1 and an deletion rate of 0.2 unless specified other-
wise. For reference, this amounts to 5882 DCJ operations 
in expectation for a duplication rate of 0.4 to compare to 
experiments run with the python script of dingII. The 
shape parameter for the Zipf distribution was set to 4 
for indel lengths and to 6 for duplication lengths. In the 
experiments of this section, we limited gurobi’s solving 
time to 1h (3600s). All experiments were designed to test 
parameters to which ILPs like ding have been shown to 
be sensitive.

In our first experiment, we increased the duplication 
rate in steps of 0.1 from 0.1 to 1.4, generating 10 genome 
pairs from a root genome with 1 linear chromosome per 
step. We then created the ILPs for dingII and ding-
cf. The number of ambiguous families ranged from 628 
to 4356 (median 3076) in this experiment with the maxi-
mum family size per sample reaching up to 7 markers.

We show the solving times of gurobi10.0 in 
Fig.  11  (a). We see that ding-cf is competitive with 
dingII. This is not surprising as most additional con-
straints of ding-cf w.r.t. dingII are due to the 
pseudo-caps and thus do not overwhelmingly come into 
effect as long as the number of linear chromosomes is 
low. We were able to further verify that on genomes with 
few linear chromosomes, ding-cf behaves similarly 
to ding for varying different parameters in Additional 
file 1: Appendix C.

2 https:// gitlab. ub. uni- biele feld. de/ gi/ ffs- dcj.1 https:// gitlab. ub. uni- biele feld. de/ gi/ ding- cf.

https://gitlab.ub.uni-bielefeld.de/gi/ffs-dcj.
https://gitlab.ub.uni-bielefeld.de/gi/ding-cf.
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To test the actual use case for ding-cf, that is, high 
numbers of linear chromosomes, we increased the num-
ber of linear chromosomes in the root genome progres-
sively from 10 to 50 to 100, 200 and 300 chromosomes 
with a fixed duplication rate of 0.4 and 10 samples per 
step. The runtimes are shown in Fig. 11 (b). We see that 
up to 100 linear chromosomes in the simulated pair of 
genomes, dingII is able to compete with ding-cf, 
but its runtime rises exponentially until the majority of 
the dingII ILPs are not solved within an hour of solving 
time. Meanwhile, the runtimes of ding-cf are stable 
throughout the experiments, staying below 20 seconds in 
each case.

In order to test the composite effect of the number 
of duplicates and the number of linear chromosomes 
on solving times, we repeated the first experiment 
(Fig.  11  (a)) with 50 and 100 linear chromosomes at 

the root genome, resulting in total numbers of about 
100 and 200 linear chromosomes for each pair. The 
results (shown in Fig.  12) indicate that dingII is far 
more sensitive to changes in the number of chromo-
somes with the first increase to 100 chromosomes in 
the pair already showing longer solving times on most 
samples. The second increase to 200 fully separates 
the two solutions, having a negligible effect on ding-
cf while making the solving times for dingII much 
more unpredictable. Many of the pairs with high dupli-
cate numbers become unsolvable within an hour for 
dingII.

To confirm that the number of linear chromosomes 
alone only plays a minor part in the runtime of ding-
cf, we ran another experiment, this time keeping the 
duplication rate fixed at 0.4 and increasing the number 
of linear chromosomes in the root genome from 500 

Fig. 11 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a common root, in a increasing the duplication rate 
in steps of 0.1 from 0.1 to 1.1, in b increasing the number of linear chromosomes in the root genome progressively from 10 to 50 to 100, 200 
and 300

Fig. 12 Runtimes for dingII and ding-cf for genomes simulated in 10,000 steps from a common root increasing the duplication rate in steps 
of 0.1 from 0.1 to 1.1 with a 100 total linear chromosomes and b 200 total linear chromosomes on average per sample pair
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to 2000 in steps of 250 with 10 samples per step. The 
runtimes are given in Fig. 13 and exhibit only a minor, 
linear increase. In fact, the increase is so slow that even 
for 2000 linear chromosomes at the root (c.a. 4000 lin-
ear chromosomes of the pair in total), the runtime is 
still below a minute for all 10 samples.

Analysis of drosophila genomes
We obtained 11 assemblies of species in the Drosophila 
genus previously analyzed by Rubert and Braga  [8]. We 
used FFGC to extract the longest transcript of each locus 
and ran OrthoFinder version 2.3.7  [13] to obtain 
orthologous groups. We then translated the genomes 
into unimog files using the orthogroups as families and 
translating linear contigs into linear chromosomes. We 
then filtered out any empty chromosomes. The genomes 
obtained in this fashion comprised 13,143 markers spread 
on 97 linear chromosomes on average. More detailed sta-
tistics about the genomes after this preprocessing step 
are listed in Additional file 1: Table S7 of Appendix D.

We then used ding-cf to calculate pairwise distances, 
running gurobi10.0 on a single thread for 12 h. Of the 
55 resulting ILPs, we obtained an exact result for 9 and 
approximate results for 46, all of which deviated at less 
than 2% from the exact solution, most of them below 1%. 
We give the distance data obtained in this manner and 
detailed performance results in Additional file 1: Table S8 
of Appendix D.

Phylogenetic Analysis. We proceeded to construct a 
phylogenetic tree via Neighbor Joining using Split-
sTree4 [14]. The tree, shown in Fig. 14, is entirely con-
sistent with the current state of knowledge about the 
Drosophila phylogeny. Additionally, the phylogenetic sig-
nal in the distance data is remarkably strong. To demon-
strate this fact, we calculated the distance matrix for the 
path metric of the tree and compared it to the distances 
calculated by ding-cf. On average, the tree path metric 
deviates only by 0.5% per entry from the distances cal-
culated by ding-cf with the largest relative difference 
being 2% for the distance of D. melanogaster and D. simu-
lans. We were able to further confirm this strong corre-
spondence between the tree and the distance data via a 
split decomposition with SplitsTree4 in Additional 
file 1: Appendix D.1 [14, 15]. Overall, judging from these 
experiments, ding-cf looks promising as a distance 
measure for phylogenetic analyses.

However, we want to draw the reader’s attention to 
one possible pitfall of our method as a phylogenetic 
tool, namely that the fragmentation of the genome itself 
appears as a signal in the distance data. To emphasize 
this, let us pose a hypothetical extreme example: Con-
sider a comparison between two assemblies A,B with n 
markers each, with a matching between all markers of 
A and B . Suppose A is fully assembled into one chro-
mosome and B fragments into n contigs of one marker. 
No matter the actual structure of the underlying (true) 
genome of B , the DCJ distance between the assemblies 
A and B is always n− 1 . The size of this effect for prac-
tical levels of fragmentation needs to be investigated, 

Fig. 13 Runtimes for ding-cf for genomes simulated from a root 
with 500 to 2000 chromosomes in steps of 250

Fig. 14 Neighbor joining tree inferred from the distances in Additional file 1: Table S8 using SplitsTree4. Edge lengths are drawn proportional 
to their weight. The absolute edge lengths can be found in Additional file 1: Appendix D
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particularly whether these problems could be exacer-
bated by biases in the assembly method used to arrive at 
the studied pair of genomes, such as might be the case for 
comparative assembly strategies.

Refining Orthology to Match Contigs and Chromosomes. 
We extracted the matchings from the ILP solutions cal-
culated by gurobi and plotted them with Circos [16]. 
We show the matching between D. virilis and D. mojaven-
sis in Fig.  15 as compared to just the marker matches 
identified by OrthoFinder. The plots for all other pairs 
can be found in Additional file 1: Appendix D.2. We see 
that even though there are some big rearrangements, 
such as inversions and transpositions as indicated by the 
arcs as well as an abundance of duplicates, the calculated 
matching identifies large stretches of matched markers 
in the same order and orientation as well as stretches 
of markers matched predominantly with markers from 
another such stretch. Depending on the particular defini-
tion of synteny, blocks such as these are known as syn-
tenic blocks in the literature. While at this point we see no 
direct relation between the DCJ-indel model and models 
explicitly focusing on synteny, such as the syntenic dis-
tance in  [17], we believe that refining orthologies using 
our ILP reveals important syntenic information.

For example, in many of the smaller contigs mark-
ers are matched predominantly to markers of one large 
contig of the other species. Matchings like this could 
therefore possibly be used to aid in improving very frag-
mented assemblies, given a sufficiently closely related 
and resolved reference genome.

Conclusion
We presented a new, simpler distance formula for the 
DCJ-indel model. Using this distance formula, we 
were able to explain the previously unclear relationship 
between the BWS- and Compeau-conceptualizations of 
the DCJ-indel model. Furthermore, our formula is easily 
generalizeable to a performant ILP solution that enables 
the distance computation even for genomes fragmented 
into thousands of contigs. We have shown that a DCJ-
indel analysis can be meaningful even with relatively 
fragmented genomes by applying the ILP to 11 Dros-
ophila assemblies. From this we obtained a well resolved 
phylogeny with little noise in the distance data, indicating 
that our method could be well suited for distance based 
phylogenetic analyses provided the effect size of genome 
fragmentation in the particular use case can be bounded. 
We also showed that the ILP can be used to disambiguate 
orthologous and paralogous regions, which has potential 
use cases in orthology assignment and the finalization of 
fragmented assemblies.

Furthermore, we are confident that using this new for-
mula, capping-free versions of other existing algorithms, 
such as for the family-free distance problem as in [8, 18] 
and parsimony problems as in [19] can be devised.

Fig. 15 Circos plots for Contigs of D. virilis (red segments) and D. mojavensis (blue segments). Blue arcs show common markers with the same 
direction, purple arcs show common markers with different directions. On the left: before matching. On the right: after matching with ding-cf 
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Appendix A Derivation of the distance formula
In this section, we derive the distance formula presented 
in the   "Relation of the BWS- and Compeau-Conceptu-
alization" section. formally. We do this mostly by heav-
ily referencing general statements about graphs like the 
MRD from  [9], particularly from Section  3 there. We 
start by presenting an upper bound.

Proposition 2 For two genomes A,B with a resolved 
homology ( ⋆≡ ) containing no circular singletons holds

where n = |{(m,m′)|m ∈ MA,m
′ ∈ MB,m

⋆
≡m

′}|.

We note that since the MRD is bipartite con-
cerning extremity edges, parity and genomes 
of endpoints are determined by each other, 
that is PXX = PX◦X ,PXx = PX◦x,Pxx = Px◦x and 
PXY = PX |Y ,PXy = PX |y,Pxy = Px|y for X,Y ∈ {A,B} 
with X  = Y . As a reminder, we use the following 
shorthands

for select formula terms. We start proving Proposition 2 
by noticing that

Proposition 3 For two genomes A,B with a resolved 
homology ( ≡ ) containing no circular singletons holds

Proof If there are no singular markers, F  reduces to

which is the DCJ distance formula by Bergeron et al. and 
therefore has already been shown to be 0 if and only if 
both genomes are equal [10]. If there are singular mark-
ers, obviously the two genomes cannot be equal, so the 
forward direction is trivial. For the backward direction, 
notice that every extremity of matched markers needs to 
either contribute to a 2-cycle or 1-path to reduce 
n− c◦ +

⌈

−pA|B
2

⌉

 to zero. Thus, every chromosome with 
at least one matched marker has a homologue. The only 

didDCJ (A,B,
�
≡) ≥n− c◦

+

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

F := n− c◦ + P̃ := n− c◦ +
⌈

p̃
2

⌉

:= n− c◦ +
⌈

pa|b +max(pA◦a, pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

A ≡ B ⇐⇒ n− c◦

+

⌈

pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b)− pA|B

2

⌉

= 0.

n− c◦ +

⌈

−
pA|B
2

⌉

= n− (c +
⌊ pA|B

2

⌋

)
pA|B even

= n− (c +
pA|B
2

),

difference between the two genomes can be singleton 
chromosomes. Since our premise is that the genomes 
contain no circular singletons, only linear singletons 
remain. These, however, contain even piers PA◦a or PB◦b 
at their ends, thus max(pA◦a, pA|b)+max(pB|a, pB◦b) > 0 
and with that F > 0 , a contradiction. Therefore, both 
genomes must be equal. �

We continue our proof of Proposition 2 by showing the 
influence of DCJ operations on the formula. To that end, 
we use the �o operator used in [9], which denotes the dif-
ference in a quantity before and after operation o.

Proposition 4 For any DCJ operation d holds

Proof Clearly, DCJ operations do not influence n. 
From  [9] we know that �c◦ ≥ −1 (see Corollary  2) and 
that none of the terms in the numerator can change if the 
number of cycles changes (see Observation 3 in [9]). We 
therefore only need to concern ourselves with P̃ . We will 
show that its numerator p̃ can be reduced by at most 2. 
To that end, we first observe the way the maximizations 
in the formula behave. Clearly, the maximum will change 
at most as much as one of the its elements.�
Observation 1 For any operation o holds

Together with Corollary 1 from [9] we are able to derive 
the first bound for the numerator.

Corollary 1 For a given DCJ operation d, there are 
x ∈ {pA◦a, pB|a} and y ∈ {pB|a, pB◦b} , for which hold

We see that the only way that p̃ could be reduced 
by more than two is if �pA|B > 0 and some other 
term is decreased at the same time. From Observa-
tion 5 from [9] we know that this cannot be pa|b . From 
Observation  4 from  [9] we know that �pA|B ≤ 1 if we 
decrease the other terms. The only remaining opera-
tions are then of the form PAy,PBz → PAB,Pyz . Clearly, 
any operation where y = z will have �p̃ = −2 . If y  = z , 
the number of odd pontoons is increased, as seen also 
in Observation  6 of  [9]. Thus, �p̃ ≥ −2 and with that 
�P̃ ≥ −1 . This concludes our proof of Proposition 4. �

�d (n− c◦ +

⌈ pa|b +max(pA◦a , pB|a)+max(pA|b , pB◦b)− pA|B
2

⌉

) ≥ −1.

�omax(x, y) ≥ �ox or

�omax(x, y) ≥ �oy

�d(pa|b +max(pA◦a, pB|a)+max(pA|b, pB◦b))

≥ �d(pa|b + x + y)
Cor. 1
≥ − 2.
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We are left to examine the effect of indel operations. 
To that end, we need the definition of a uni-indel as 
defined in  [9]. In short, uni-indels insert a single adja-
cency or delete a single marker. Regarding Observa-
tion 7 of [9], we see that a uni-indel either concatenates 
two piers or pontoons, thereby possibly creating a via-
duct or creates a cycle from an even pontoon. From 
this follows that a uni-indel i1 has either �i1c◦ ≤ 1 and 
�i1 P̃ = 0 or �i1c◦ = 0 and �i1 P̃ ≥ −1 . Since none of the 
relevant component subsets contains (even) pontoons 
of length 0, we conclude using Observation 8 of [9]:

Observation 2 For any deletion δ holds

We will treat insertions in the same way as in Obser-
vation 9 of [9]. An insertion of a circular chromosome 
of length l has �n = l , but each of the l uni-indels 
reduces F  by at most 1. Thus, we have �F ≥ 0 after 
applying the uni-indels, but before applying the DCJ 
operation. Since DCJ operations reduce F  by at most 1, 
we have

�δF ≥ −1

Observation 3 For any insertion ι holds

Together Observations  2 and 3 as well as Proposi-
tions 3 and 4, conclude our proof for the lower bound 
in Proposition 2.

To show that Theorem 1 holds, we need to show that 
this lower bound can be attained. To that end, we give 
a sorting procedure, in which each step decreases F  by 
1. For the sake of simplicity, we will sort both genomes 
to an intermediate genome that contains no mark-
ers singular to A or B . The advantage of this is that we 
do not need to consider in which genome we apply a 
DCJ operation and simply focus on the components 
involved. We can also use deletions only, which in this 
context are easier to conceptualize. Since each opera-
tion has an inverse, the sorting scenario from both 
genomes to an intermediate also describes a sorting 
scenario from A to B . We give the sorting procedure in 
Algorithm 2.

�ιF ≥ −1.

Algorithm 2 DCJ-indel sorting
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Every step in the algorithm is conceived as a DCJ 
operation X ,Y → W ,Z transforming X,  Y into Y,  Z. 
This is not always possible without creating a circu-
lar singleton, which can only arise if an even pontoon 
of length 0 is created. In these cases, we have written 
the operation as X ,Y → W , (Z)∗ instead. If creating Z 
would generate a circular singleton, we simply replace 
the operation by the deletion X ,Y → W .

We now regard the assertions written as comments. 
Both assertions in Line 9 and 10 follow from a simple 
observation: Due to the fact that there is an even num-
ber of extremities of singular markers in each genome, 
there must be an even number of paths with an odd 
number of those extremities. Thus follows:

Observation 4 

Due to the while-conditions in Lines 1 and 3, to reach 
these lines, one of the summands must be 0. Thus, we 
know that pA◦a + pB|a = max(pA◦a, pB|a) and due to 
the while-conditions in Lines 5 and 7, we know that 
pA◦a, pA|b, pB|a, pB◦b ∈ {0, 1}.

Due to the fact that for odd pa◦b the algorithm starts 
from the beginning (see Line 16), it is clear that the 
assertion in Line 18 holds, although we should note 
that this goto-instruction is used at most once due to 
the fact that the parity of pa|b is only once changed in 
the if-branch. The remaining assertions are trivial and 
follow directly from previous while-conditions being 
false in order to reach the respective line.

We see that almost every step decreases either −c◦ 
by 1 or the numerator p̃ by 2 while leaving other terms 
untouched. Therefore, these steps trivially reduce F  by 
1. As a reference, we list the corresponding differences 
in Table  3. However, there are two problematic steps, 

pA◦a + pB|a ≡ pa|b ≡ pA|b + pB◦b mod 2

namely 11 and 14, that reduce pab by only 1 and do not 
reduce any other terms. To see how they nonetheless 
reduce F  by 1, we need an additional observation: Since 
each linear chromosome has two telomeres, the num-
ber of paths containing an odd number of telomeres in 
each genome, must me even, that is:

Observation 5 

We thus know that for Lines 11, 14 the numerator p̃ 
before the operation is an odd number because of

and thus changes by −1 to an even number, decreasing P̃ 
and therefore F  by 1.
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