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Abstract 

Background We study the problem of finding maximal exact matches (MEMs) between a query string Q 
and a labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of practical 
alignment methods because of their strong connections to classical metrics. A principled way to speed up chaining 
is to limit the number of MEMs by considering only MEMs of length at least κ ( κ-MEMs). However, on arbitrary input 
graphs, the problem of finding MEMs cannot be solved in truly sub-quadratic time under SETH (Equi et al., TALG 2023) 
even on acyclic graphs.

Results In this paper we show an O(n · L · dL−1 +m+Mκ ,L)-time algorithm finding all κ-MEMs between Q and G 
spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum degree of a node in G, 
m = |Q| , and Mκ ,L is the number of output MEMs. We use this algorithm to develop a κ-MEM finding solution 
on indexable Elastic Founder Graphs (Equi et al., Algorithmica 2022) running in time O(nH2 +m+Mκ) , where H 
is the maximum number of nodes in a block, and Mκ is the total number of κ-MEMs. Our results generalize to the anal-
ysis of multiple query strings (MEMs between G and any of the strings). Additionally, we provide some experimental 
results showing that the number of graph MEMs is an order of magnitude smaller than the number of string MEMs 
of the corresponding concatenated collection.

Conclusions We show that seed-chain-extend type of alignment methods can be implemented on top of indexable 
Elastic Founder Graphs by providing an efficient way to produce the seeds between a set of queries and the graph. 
The code is available in https:// github. com/ algbio/ efg- mems.

Keywords Sequence to graph alignment, Bidirectional BWT, r-index, Suffix tree, Founder graphs

Introduction
Sequence alignment has been studied since the 1970s [1, 
2] and is a fundamental problem of computational 
molecular biology. Solving the classical problems of long-
est common subsequence (LCS) and edit distance (ED) 
between two strings takes quadratic time with simple 
dynamic programs, and it was recently proven that no 
strongly subquadratic-time algorithms exist conditioned 
on the Strong Exponential Time Hypothesis (SETH)  [3, 
4]. To overcome this hardness, researchers have used 

heuristics such as co-linear chaining [5]: by taking (short) 
matches between the input strings, known as anchors, we 
can take an ordered subset of these anchors and chain 
them together into an alignment. Furthermore, when 
using maximal exact matches (MEMs) as anchors, differ-
ent co-linear chaining formulations capture both LCS [6] 
and ED  [7] in near-linear time. MEMs are also used in 
popular seed-and-extend read aligners  [8, 9]. In fact, 
practical tools limit the number of MEMs by considering 
only κ-MEMs (MEMs of length at least κ ) [10, 11].

Extending alignment between sequences to sequence-
to-graph alignment is an emerging and central challenge 
of computational pangenomics  [12], as labeled graphs 
are a popular representation of pangenomes used in 
recent bioinformatics tools  [13–16]. We assume that a 
labeled graph G = (V ,E, ℓ) ( ℓ : V → �+ ) is the reference 
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pangenome of interest. Unfortunately, even finding 
exact occurrences of a given pattern in G does not admit 
strongly subquadratic-time solutions under SETH  [17], 
and furthermore, a graph cannot be indexed in polyno-
mial time to answer strongly subquadratic-time pattern 
matching queries  [18]. To circumvent this difficulty, 
research efforts have concentrated on finding param-
eterized solutions to (exact) pattern matching in labeled 
graphs [19–22]. Moreover, the use of MEMs and co-lin-
ear chaining has also been extended to graphs [13–16].

In this paper, we study the problem of efficiently finding 
MEMs between a query string Q and a labeled graph G, 
where we extend the MEM definition to capture any maxi-
mal match between Q and the string spelled by some path 
of G. More precisely, our contributions are as follows:

• We adapt the MEM finding algorithm between 
two strings of Belazzougui et  al.  [23] to find all 
κ-node-MEMs between Q and G = (V ,E, ℓ) 
in O(m+ n+Mκ) time, where m = |Q| , 
n =

∑

v∈V |ℓ(v)| is the cumulative length of the node 
labels, and Mκ is the number of κ-node-MEMs (of 
length at least κ and between the node labels and Q).

• We extend the previous algorithm to find all κ
-MEMs spanning exactly L nodes of G in time 
O(m+ n · L · dL−1 +Mκ ,L) , where d is the maximum 
degree of any node v ∈ V  and Mκ ,L are the κ-MEMs 
of interest. Note that MEMs spanning less than L 
nodes can occur multiple times in paths spanning 
exactly L nodes, and our contribution is to introduce 
an efficient technique to filter out these MEMs.

• Then we focus on graphs where constant L is suffi-
cient for κ-MEM finding:

– We study κ-MEMs in indexable Elastic Founder 
Graphs (EFGs)  [24], a subclass of labeled acyclic 
graphs admitting a poly-time indexing scheme for 
linear-time pattern matching. Given an indexable 
EFG G of height H (the maximum number of nodes 
in a graph block), we develop a suffix-tree-based 
solution to find all κ-MEMs spanning more than 
3 nodes in G in O(nH2 +m+Mκ ,4+) time, where 
Mκ ,4+ are the number of output MEMs.

– Combined with the above results for L = 1, 2, 3 , 
we can find κ-MEMs of an indexable EFG G in 
O(nH2 +m+Mκ) time.

– We note that the previous results easily general-
ize to the batched query setting: by substituting Q 
with the concatenation of different query strings 
Q1 , ..., Qt of total length m , we compute all κ-MEMs 
between any query string and the graph with the 
same stated running time.

• Finally, we provide experimental results on finding 
MEMs from a collection of strains of SARS-CoV-2 
and on an E.  coli dataset. We use the bidirectional 
r-index [25] as the underlying machinery. On the one 
hand, we build the r-index of the concatenation of 
the covid19 strains and find all mκ κ-MEMs. On the 
other hand, we build an indexable EFG of the strains 
and find an upper bound on all Mκ κ-MEMs in this 
case. On 100 strains, Mκ is at least 34 times smaller 
than mκ , thus confirming that graph MEMs com-
pactly represent all MEMs. With the larger E.  coli 
dataset, we study the indexing properties of our 
MEM finding approach. Experiments indicate that 
in practice MEM exploration depends linearly on the 
query length, while the theoretic worst case is quad-
ratic.

The extensions to the conference version of this 
paper [26] consist of a) a more detailed description of the 
MEM finding algorithm (previous work and our adapta-
tions) supported by pseudo-code and illustration, b) a 
study of the indexing setting, and c) a more engineered 
practical implementation as well as new experimental 
results.

Preliminaries
Strings
We denote integer intervals by [x..y], x and y inclusive. Let 
� = [1..σ ] be an alphabet. A string T[1..n] is a sequence 
of symbols from � , that is, T ∈ �n where �n denotes the 
set of strings of length n over � . The length of a string T is 
denoted |T| and the empty string ε is the string of length 
0. In this paper, we assume that |�| is constant. The con-
catenation of strings T1 and T2 is denoted as T1 · T2 , or 
just T1T2 . We denote by T[x..y] the substring of T made 
of the concatenation of its characters from the x-th to the 
y-th, both inclusive; if x = y then we also use T[x] and 
if y < x then T [x..y] = ε . The reverse of a string T[1..n], 
denoted by T  , is the string T read from right to left, that 
is, T = T [n]T [n− 1]..T [1] . A suffix (prefix) of string 
T[1..n] is T[x..n] (T[1..y]) for 1 ≤ x ≤ n ( 1 ≤ y ≤ n ) and 
we say it is proper if x > 1 ( y < n ). We denote by �∗ the 
set of finite strings over � , and also �+ = �∗\{ε} . String 
Q occurs in T if Q = T [x..y] for some interval [x..y]; in this 
case, we say that [x..y] is a match of Q in T. Moreover, 
we study matches between substrings of Q and T: a maxi-
mal exact match (MEM) between Q and T is a triplet 
(x1, x2, ℓ) such that Q[x1..x1 + ℓ− 1] = T [x2..x2 + ℓ− 1] 
and the match cannot be extended to the left nor to the 
right, that is, x1 = 1 or x2 = 1 or Q[x1 − 1] �= T [x2 − 1] 
(left-maximality) and x1 + ℓ = |Q| or x2 + ℓ = |T | or 
Q[x1 + ℓ] �= T [x2 + ℓ] (right-maximality). In this case, 
we say that the substring Q[x1..x1 + ℓ− 1] is a MEM 
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string between Q and T. The lexicographic order of 
two strings T1 and T2 is naturally defined by the total 
order ≤ of the alphabet: T1 < T2 if and only if T1  = T2 
and T1 is a prefix of T2 or there exists y ≥ 0 such that 
T1[1..y] = T2[1..y] and T1[y+ 1] < T2[y+ 1] . We avoid 
the prefix case by adding an end marker $  ∈ � to the 
strings and considering $ to be lexicographically smaller 
than any character in �.

Labeled graphs
Let G = (V ,E, ℓ) be a labeled graph with V being the set 
of nodes, E being the set of edges, and ℓ : V → �+ being 
a function giving a label to each node. A length-k path P 
from v1 to vk is a sequence of nodes v1, . . . , vk connected 
by edges, that is, (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E . A 
node u reaches a node v if there is a path from u to v. 
The label ℓ(P) := ℓ(v1) · · · ℓ(vk) of P is the concatena-
tion of the labels of the nodes in the path. For a node 
v and a path P we use � · � to denote its string length, 
that is, �v� = |ℓ(v)| and �P� = |ℓ(P)| . Let Q be a query 
string. We say that Q occurs in G if Q occurs in ℓ(P) 
for some path P. In this case, the exact match of Q in 
G can be identified by the triple (i,P = v1 . . . vk , j) , 
where Q = ℓ(v1)[i..] · ℓ(v2) · · · ℓ(vk−1) · ℓ(vk)[..j] , with 
1 ≤ i ≤ �v1� and 1 ≤ j ≤ �vk� , and we call such tri-
ple a substring of G. Given a substring (i,  P,  j) of G, we 
define its left-extension lext(i,P, j) as the singleton 
{ℓ(v1)[i − 1]} if i > 1 and otherwise as the set of charac-
ters {ℓ(u)[�u�] | (u, v1) ∈ E} . Symmetrically, the right-
extension rext(i,P, j) is {ℓ(vk)[j + 1]} if j < ‖vk‖ and 
otherwise it is {ℓ(v)[1] | (vk , v) ∈ E} . Note that the left 
(right) extension can be equal to the empty set ∅ , if the 
start (end) node of P does not have incoming (outgoing) 
edges. Figure 1 illustrates these concepts.

Basic tools
A trie or keyword tree [27] of a set of strings is an ordinal 
tree where the outgoing edges of each node are labeled 
by distinct symbols (the order of the children follows the 
order of the alphabet) and there is a unique root-to-leaf 
path spelling each string in the set; the shared part of 
two root-to-leaf paths spells the longest common prefix 
of the corresponding strings. In a compact trie  [28], the 
maximal non-branching paths of a trie become edges 

labeled with the concatenation of labels on the path. The 
suffix tree of T ∈ �∗ is the compact trie of all suffixes of 
the string T ′ = T$ [29]. In this case, the edge labels are 
substrings of T and can be represented in constant space 
as an interval of T. Such a tree uses linear space and can 
be constructed in linear time, assuming that |�| ≤ |T | , so 
that when reading the root-to-leaf paths from left to right, 
the suffixes are listed in their lexicographic order [30, 31]. 
As such, the order spelled by the leaves of the suffix tree 
forms the suffix array SAT [1..|T

′|] , where SAT [i] = j iff 
T ′[j..|T ′|] is the i-th smallest suffix in lexicographic order. 
When applied to a string T, the Burrows–Wheeler trans-
form (BWT) [32] yields another string BWTT such that 
BWTT [i] = T ′[SA[i] − 1] (we assume T ′ to be a circular 
string, i.e. T ′[−1] = T ′[|T | + 1] = $).

Let Q[1..m] be a query string. If Q occurs in T, then the 
locus or implicit node of Q in the suffix tree of T is (v, k) 
such that Q = XY  , where X is the path spelled from the 
root to the parent of v and Y is the prefix of length k of the 
edge from the parent of v to v. The leaves in the subtree 
rooted at v, also known as the leaves covered by v, cor-
respond to all the suffixes sharing the common prefix Q. 
Such leaves form an interval in the SA and equivalently 
in the BWT. Let aX and X be the strings spelled from the 
root of the suffix tree to nodes v and w, respectively. Then 
one can store a suffix link from v to w. Suffix links from 
implicit nodes are called implicit suffix links.

The bidirectional BWT of T  [33], that we denote as 
idxT , is a compact BWT-based index capable of per-
forming a text search in T ′ in both directions while 
synchronizing the intervals of the searched string in 
SAT and SAT  . In the following, we assume T ′ to be cir-
cular, thus the character preceding T ′[1] is $ and the 
one following T ′[|T ′|] is T[1]. The index supports the 
following operations, given interval [i..j] in SAT and 
interval [i′..j′] in SAT  representing a substring Q′ of T: 
idxT .isLeftMaximal(i, j) ( isRightMaximal(i′, j′) ) 
returns false if and only if all occurrences of Q′ in T are 
preceded (followed) by the same character, and true oth-
erwise, in which case we say that Q′ is a left-maximal 
(right-maximal) string of T; idxT .enumerateLeft(i, j) 
( enumerateRight(i′, j′) ) returns all distinct charac-
ters that precede (follow) the occurrences of Q′ in T; and, 
given c ∈ � ∪ {$} , idxT .extendLeft(c, [i..j], [i

′..j′]) 
( extendRight(c, [i..j], [i′..j′]) ) returns the pair of inter-
vals [x..y] , [x′..y′] of SAT and SAT  , respectively, repre-
senting the substring cQ′ ( Q′c ) of T. Since we assume 
|�| ∈ O(1) , index idxT can be built in O(|T |) time to 
support the presented operations in output-sensitive 
time, that is, linear in the size of the output  [33]. The 
bidirectional BWT of T is capable of simulating the navi-
gation of the suffix tree nodes of T in O(|T |) time. More-
over, Belazzougui et al. [23] show how to solve the MEM 

Fig. 1 Substring ACCGTA (underlined) with left-extension {A,C} 
and right-extension {G} , and substring GGA ACC  (underlined, bold 
edge) with left-extension {T} and right-extension {A}
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finding problem in linear time: their algorithm uses the 
indices idxQ and idxT and simulates the traversal of the 
common strings in the suffix tree of Q#T  , with # /∈ � . 
When this traversal finds a candidate MEM string, the 
algorithm outputs all the corresponding MEMs in out-
put-sensitive time by using a cross-product routine. We 
present a detailed explanation of this solution in the next 
section.

Let B[1..n] be a bitvector, that is, a string over the 
alphabet {0, 1} . There is a data structure that can be con-
structed in time O(n) which answers r = rank(B, i) and 
j = select(B, r) in constant time, where the former 
operation returns the number of 1s in B[1..i] and the lat-
ter returns the position j ≤ i of the r-th 1 in B [34, 35].

Let D[1..n] be an array of integers. There is a range 
minimum query data structure that can be constructed 
in O(n) time which answers RMQD(i, j) in constant time 
[36], where RMQD(i, j) returns an index k such that 
D[k] is the minimum value in the subarray D[i..j]. We 
will use the following lemma that exploits range queries 
recursively.

Lemma 1 Let D[1..n] be an array of integers. One can 
preprocess D in O(n) time so that given a threshold � , one 
can list all elements of D such that D[i] ≤ � in linear time 
in the size of the output.

Proof We can build the range minimum query data 
structure on D. Consider a recursive algorithm analogous 
to the one in [37] which starts with k = RMQD(1, n) . 
If D[k] > � , the algorithm stops as no element in the 
range is at least � . Otherwise, the algorithm reports 
k and recursively continues with RMQD(1, k − 1) and 
RMQD(k + 1, n) . Note that each recursive call performs 
exactly one RMQ operation: if an element is reported the 
RMQ is charged to this element, otherwise it is charged 
to its parent (in the recursion tree), and thus the number 
of RMQ operations is linear in the output size.

Finding MEMs in labeled graphs
Let us consider the problem of finding all maximal exact 
matches (MEMs) between a labeled graph G = (V ,E, ℓ) , 
with ℓ : V → �+ , and a query string Q ∈ �+.

Definition 1 (MEM between a pattern and a graph) Let 
G = (V ,E, ℓ) be a labeled graph, with ℓ : V → �+ , let 
Q ∈ �+ be a query string, and let κ > 0 be a threshold. 

Given a match (i, P, j) of Q[x..y] in G, we say that the pair 
([x..y], (i, P,  j)) is left-maximal (right-maximal) if it can-
not be extended to the left (right, respectively) in both Q 
and G, that is,

We call ([x...y],  (i,  P,  j)) a κ-MEM iff 
LeftMax ∨ | lext(i,P, j)| ≥ 2 , RightMax ∨ | rext(i,P, j)| ≥ 2 , 
and y− x + 1 ≥ κ , meaning that it is of length at least κ , 
it is left-maximal or its left (graph) extension is not a sin-
gleton, and it is right-maximal or its right (graph) exten-
sion is not a singleton.

We use this particular extension of MEMs to graphs—
with the additional conditions on non-singletons lext and 
rext—as it captures all MEMs between Q and ℓ(P) , where 
P is a source-to-sink path in G. Indeed, note that remov-
ing the non-singleton conditions would miss matches 
that can be extended through one path but not another. 
For example, with Q = CACCGTAT , κ = 0 , v being the 
first underlined node of Fig. 1, and u being the second in-
neighbor of v, then ([1..7], (5, uv, 6)) is a MEM since it is 
left and right maximal. Note that pair ([2..7], (1, v, 6)) is 
also a MEM since it is right-maximal, and the left exten-
sion of (1,  v,  6) is not a singleton ( lext(v) = {A,C} ): this 
match is not left-maximal but our definition includes it 
as there are at least two different characters to the left. 
Moreover, this MEM formulation (with κ = 1 ) captures 
LCS through co-linear chaining, whereas avoiding the 
additional conditions would fail [38].

The rest of this section is structured as follows. First, 
we show how to adapt the MEM finding algorithm of 
Belazzougui et  al.  [23] for the case of node κ-MEMs, 
which ignore the singleton conditions of Definition  1. 
Then, we show how to further generalize this approach to 
report all κ-MEMs spanning exactly L nodes.

MEMs in node labels
We say that a match ([x..y],  (i, P,  j)) is a node MEM if P 
is a path of length 1, i.e. P = v for some node v, and the 
match is left and right maximal w.r.t. ℓ(P) only in the 
string sense. In other words, a node MEM is a (string) 
MEM between Q and ℓ(v) (especially in the case x = 1 or 
y = ℓ(v) ). For this, we consider the text

(LeftMax) x = 1 ∨ lext(i,P, j) = ∅ ∨

∨ Q[x − 1] /∈ lext(i,P, j) and

(RightMax) y = |Q| ∨ rext(i,P, j) = ∅ ∨

∨ Q[y+ 1] /∈ rext(i,P, j).
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where 0 /∈ � is used as a delimiter to prevent MEMs 
spanning more than a node label.

Running the MEM finding algorithm of Belaz-
zougui et  al.  [23, Theorem  7.10] on Q and Tnodes 
will retrieve exactly the node MEMs we are look-
ing for. Given such a MEM (x1, x2, ℓ) , to transform the 

Tnodes = 0 ·
∏

v∈V

(

ℓ(v) · 0
)

, coordinates of Tnodes[x2..x2 + ℓ− 1] into the correspond-
ing graph substring (i,  P,  j) we augment the index with a 
bitvector B marking the locations of 0 s of Tnodes , so that 
r = rank(B, x2) identifies the corresponding node of G, 
i = x2 − select(B, r) and j = i + ℓ− 1 . The following 
result follows directly.

Algorithm 1 Computing a representation of κ-MEMs between Q and T = Tnodes using their bidirectional BWT indexes. The algorithm explores all MEM 
candidates and it calls Algorithm 2 to output the MEMs.
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Algorithm 2 Cross-product computation for outputting a representation of maximal exact matches using two bidirectional BWT indexes. The input 
is a MEM candidate computed in Algorithm 1. Here (a, b, c, d) ∈ A⊗ B iff (a, b) ∈ A , (c, d) ∈ B , a  = c , and b  = d.

Lemma 2 Let alphabet � be of constant size. Given a 
labeled graph G = (V ,E, ℓ) , with ℓ : V → �+ , a query 
string Q, and a threshold κ > 0 , we can compute all 
node MEMs of length at least κ between Q and G in time 
O(n+m+ Nκ) , where n is the total length of node labels, 
m = |Q| , and Nκ is the number of output MEMs.

As we will modify this algorithm later on, we now 
describe a self-contained and simplified version of the 
MEM finding algorithm of [23, Theorem 7.10] sufficient 
for our purposes as Algorithms  1 and 2. This version 
closely follows the one in the textbook [29, Algorithms 
18 and 19], with the simple modification of computing 
only MEMs of length at least κ (highlighted in Algo-
rithm 1). Moreover, we discuss the differences from the 
original approach at the end of this section.

Let T = Tnodes . We say that a string Q′ is a MEM can-
didate if |Q′| ≥ κ , Q′ is left- and right-maximal in T#Q , 
and it occurs in both T and Q. Algorithm  1 uses idxT 
and idxQ , supporting the operations described in the 

Fig. 2 Representation of the suffix tree of T#Q , with T = AGAAAG 
and Q = GAAT , where leaves corresponding to suffixes starting 
inside T and Q are marked in blue and orange, respectively. The 
colored arrows follow the traversal simulated by Algorithm 1: 
the recursion stops when the considered substring of Q does 
not occur in T (line 5), as is the case for Q[4] = T , or when the same 
character follows all of its occurrences in both Q and T (line 13), 
as is the case for Q[1..2] = T [2..3] = GA
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preliminaries, to recursively consider all right-maximal 
substrings of T#Q that occur in both T and Q. Then, for 
the subset of these substrings that are MEM candidates, 
it calls a cross-product routine, Algorithm  2, outputting 
all MEMs whose MEM string is Q′.

To see the linearity with respect to the input strings, 
let us study how the MEM candidates Q′ are explored. 
The algorithm starts with intervals of idxQ and idxT 
corresponding to the empty string ε (line 2). By using 
stack S, it then considers recursively all strings Q′ that 
occur in both Q and T and that are right-maximal in 
T#Q by extending the currently matched Q′ to the left 
with all possible extensions in Q (lines 10-11). The 
recursion continues only if the extended string is still 
right-maximal (line 13) and occurs in T (line 5). See 
Fig.  2 for a visual example in the corresponding suffix 
tree of T#Q . When a considered right-maximal Q′ is of 
length at least κ and is also left-maximal in Q#T  (lines 
7–8), thus it is a MEM candidate, Algorithm 2 is called 
to report the corresponding MEMs: it implements a 
cross-product routine considering the occurrences of 
aQ′b in Q (lines 1–5) and of cQ′d in T (lines 6–10) such 
that a  = c and b  = d (lines 11–18). In other words, if A 
is the set or pairs (a, b) such that aQ′b occurs in Q and 
B is the set of pairs (c, d) such that cQ′d occurs in T, it 
has to consider the cross product A⊗ B , defined as the 
set of tuples (a,  b,  c,  d) such that (a, b) ∈ A , (c, d) ∈ B , 
and a  = c and b  = d.

Recall that operations on idxQ and idxT take con-
stant time. The time complexity of Algorithm  1 is 
O(|T | + |Q| + Nκ) . The exploration performed by Algo-
rithm 1 takes constant time per right-maximal substring 
of T#Q : the right-maximal substrings are the suffix tree 
nodes of T#Q , and the number of left extensions where 
the recursion does not continue is at most the number of 
right-maximal substrings multiplied by a constant alpha-
bet factor. Moreover, since � has constant size, the calls 
to Algorithm  2 globally consider at most |�2| ∈ O(1) 
extensions for each MEM candidate Q′ and they output 
all Nκ MEMs in O(|T | + |Q| + Nκ) time, reaching the 
stated time complexity.

Finally, note that Algorithms 1 and 2 output the repre-
sentation of MEMs using their positions in SAQ and SAT , 
instead of their position in the text. More precisely, these 
positions refer to an occurrence of aQ′b in Q and cQ′d 
in T such that a  = c and b  = d and each triple (k , k ′, ℓ) 
in this format corresponds to MEM (x, y, ℓ) between Q 
and T such that x = SAQ[k] + 1 and y = SAT [k

′] + 1 . 
This conversion can be executed in O(|T | + |Q|) time by 
simply computing SAQ and SAT and retrieving x and y 
as described above. Alternatively, the original algorithm 

proposes a batched locate query solution that, in our 
setting, works in O(|T | + |Q| + Nκ) time and has work-
ing space complexity of O(Nκ(log |T | + log |Q|)) bits [23, 
Lemma 3.1].

Our description differs from the original  [23] as 
follows:

• we assume that alphabet � has constant size, instead 
of assumption |�| ∈ o(

√
|T |/ log |T |);

• we use the bidirectional BWT index as the represen-
tation of T  and Q , while the original uses a unidirec-
tional BWT index to avoid randomized construction 
time for larger alphabets;

• our simplified complexity analysis works for a 
constant-sized alphabet, but the authors prove—
with a more sophisticated analysis—that Algo-
rithms  1 and 2 take time O(|T | + |Q| + Nκ) , when 
|�| ∈ o(

√
|T |/ log |T |);

• the original algorithm, when branching in the 
exploration of the suffix tree of T#Q , explores 
first the branch with the most occurrences in T  
or Q , to claim the working space complexity of 
O((|T | + |Q|) · log |�|) bits.

Our later modifications assume a constant-sized alphabet 
and use more working space, thus our analysis and the 
simplified exploration of Algorithm 1 are sufficient.

MEMs spanning exactly L nodes
Given a threshold κ , we want to find all κ-MEMs 
([x...y],  (i,  P,  j)) spanning exactly L nodes in G, that 
is, |P| = L . Note that the MEMs obtained for L = 1 
are a subset of the node MEMs obtained in Lemma 2: 
for a node MEM ([x...y],  (i,  v,  j)) it might hold that 
i = 1 and {Q[x − 1]} = lext(1, v, j) , or that j = �v� and 
{Q[y+ 1]} = rext(i, v, j) . Indeed, as per Definition  1, 
MEMs cannot be recognized without looking at the 
context of the paths in G (sets lext and rext ). With this 
in mind, we consider the text

where left(u) = c when lext(u) = {c} and otherwise 
left(u) = # , right(u) = d when rext(u) = {d} and other-
wise right(u) = # , with 0, # /∈ � two distinct characters 
and

(1)

TL := 0 ·
∏

(u1,...,uL)∈P
L
G

(

left(u1) · ℓ(u1) · · · ℓ(uL) · right(uL) · 0
)

,

P
L
G :=

{

P

∣

∣

∣

∣

P path of G,
|P| = L

}

.
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We have added the unique left- and right-extension sym-
bols c and d to avoid reporting exact matches that can 
potentially be extended to longer paths. When these 
extensions are not unique (or empty), one can safely 
report a MEM, since there is a path diverting with a sym-
bol different from that of the pattern (or the path can-
not be extended further). In addition to these left- and 
right-extension symbols, we modify the MEM finding 
algorithm designed for node MEMs to use some extra 
information regarding the starting position of each suffix 
inside string ℓ(P) , as explained next.

To avoid reporting MEMs spanning less than L 
nodes (only if L > 1 ), we use an array D[1..|TL|] such 
that D[k] = ∞ if the k-th suffix TL[s..|TL|] of TL in 
the lexicographic order is such that TL[s + 1..|TL|] is 
not starting inside node u1 of a path P = u1 · · ·uL , 
otherwise D[k] = |ℓ(P)| − ℓ(uL)− i + 2 , where suf-
fix TL[s + 1..|TL|] starts at position i inside u1 . That is, 
when D[k] �= ∞ , it tells the distance of the k-th suf-
fix of TL in the lexicographic order to the start of the 
last node of the corresponding path. With the help of 
Lemma  1 on D, we can then adapt the MEM finding 
algorithm to output suffixes corresponding to MEMs 
spanning exactly L nodes as follows.

Lemma 3 Let alphabet � be of constant size. Given a 
labeled graph G = (V ,E, ℓ) , a pattern Q ∈ �m , a thresh-
old κ ≥ 1 , and an integer L ≥ 1 , we can compute all κ-
MEMs between Q and G spanning exactly L nodes of G in 
time O(m+ |TL| +Mκ ,L) . Here, TL is defined as in Equa-
tion (1) and Mκ ,L is the number of output MEMs.

Proof We build the bidirectional BWT indexes idxTL 
and idxQ and the suffix arrays SATL and SAQ for TL and 
Q, respectively, and preprocess D[1..|TL|] as in Lemma 1 

in time O(|TL| + |Q|) . We also preprocess, in linear time, 
a bitvector B marking the locations of 0 s of TL so that we 
can map in constant time a position i in TL to the r-th 
path appended to TL for r = rank(B, i).
The modifications to Algorithms 1 and 2 required to only 
output an encoding of MEMs between Q and G spanning 
exactly L nodes (and only if L > 1 ) is to change its last 
steps in Algorithm 2 when considering a MEM candidate 
Q′ . We present such modifications in Algorithm 3 (high-
lighted lines). Namely, the cross-product routine loops 
over all characters a, b ∈ � ∪ {#, $} and c, d ∈ � ∪ {#} 
with a  = c and b  = d , such that aQ′b is a substring of 
Q and cQ′d is a substring of TL . It then computes (in 
constant time) the intervals [iaQ′b..jaQ′b] , [i′aQ′b..j

′
aQ′b] , 

[icQ′d ..jcQ′d] , and [i′cQ′d ..j
′
cQ′d] , where the first two are the 

intervals in the bidirectional BWT on Q corresponding 
to aQ′b and the latter two are the intervals in the bidirec-
tional BWT on TL corresponding to cQ′d . Note that the 
modification to the computation of set B in Algorithm 3 
avoids extensions with 0 in lines 3 and 5. Finally, the 
algorithm outputs a triple (k ′, k , |Q′|) representing each 
MEM, where k ∈ [icQ′d ..jcQ′d] and k ′ ∈ [iaQ′b..jaQ′b] . Here 
it suffices to modify the first iteration using Lemma 1 to 
loop only over k ∈ [icQ′d ..jcQ′d] such that D[k] ≤ |Q′| + 1 
(line 12).

Our claims are that the running time stays linear in the 
input and output size on constant-size alphabet and that 
only MEMs spanning exactly L nodes are output. The lat-
ter claim follows directly on how array D is defined and 
used with Lemma  1. For the former claim, the cross-
product part of the original algorithm is linear in the 
output size (also on non-constant-size alphabet) since for 
each combination of left- and right-extension considered, 
the work can be charged to the output. In our case, due 
to the use of Lemma 1, some combinations may lead to 
empty outputs introducing an alphabet-factor (constant) 
multiplier on the input length.
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Algorithm 3 Constrained cross-product computation for outputting maximal exact matches using two bidirectional BWT indexes

Remark 1 Note that the algorithm in Lemma 3 works 
in time O(m+ n · L · dL−1 +Mκ ,L) , where n =

∑

v∈V ℓ(v) 
is the total label length of G and d is the maximum in- or 
out-degree of a node. Indeed, TL corresponds to the con-
catenation of length-L paths of G: the number of paths 
containing label ℓ(v) (for a node v) is at most L · dL−1.

MEMs in elastic founder graphs
Recall that exact pattern matching in labeled graphs does 
not admit a strongly subquadratic-time solution. More 
specifically, Equi et  al. proved that answering whether 
a pattern Q occurs in a labeled graph G = (V ,E, ℓ) can-
not be answered in O(m1−ε|E|) or O(m|E|1−ε) time for 
any constant ε > 0 under the Strong Exponential Time 
Hypothesis (SETH), even if G is acyclic [17]1. It is easy to 
see that this hardness extends to κ-MEM finding between 
Q and G: if κ = |Q| , the κ-MEMs between Q and G are 
exactly the occurrences of Q in G. As shown in Remark 
1, the approach of Lemma 3 to find MEMs spanning L 
nodes in G is exponential on L and it is unfeasible for 
large values of L. To have an efficient solution for MEM 
finding, we restrict the family of graphs that we consider 

to that of indexable Elastic Founder Graphs (indexable 
EFGs), which are a subclass of labeled directed acyclic 
graphs (labeled DAGs) that admit exact pattern match-
ing solutions breaking through the quadratic-time lower 
bounds  [24]. In this section, we show that Lemma 3, 
together with the extension of the techniques used to 
query if Q appears in an indexable EFG G, can solve κ-
MEM finding in G in parameterized linear time.

Definition 2 (Elastic Founder Graph [24, 39]) Consider 
a block graph G = (V ,E, ℓ) , where ℓ : V → �+ , V is par-
titioned into k blocks V1 , ..., Vk , and edges (u, v) ∈ E are 
such that u ∈ Vi , v ∈ Vi+1 for some i ∈ [1..k − 1] . We say 
that a block graph is an indexable Elastic Founder Graph 
(indexable EFG) if the semi-repeat-free property holds: 
each ℓ(v) for v ∈ V  occurs in G only starting from the 
beginning of w ∈ V  , where w is from the same block as v.

Note that the semi-repeat-free property allows a node 
label to be a prefix of other node labels in the same 
block, whereas it forbids them to appear as a proper suf-
fix of other node labels or anywhere else in the graph. 
Indexable EFGs can be obtained from a set of aligned 
sequences, in a way such that the resulting indexable EFG 
spells the sequences but also their recombination: for a 
gapless alignment, we can build in time linear to the size 1 Note that Equi et  al. assume G to be a node-labeled graph with labels 

of length 1, i.e. ℓ : V → � , whereas in this paper we assume the labels to 
be non-empty strings over alphabet � , i.e. ℓ : V → �+ . The latter class of 
graphs includes the former, so the quadratic-time lower bound still holds.
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of the alignment an optimal indexable EFG with mini-
mum height H of a block, where the height of block Vi is 
defined as |Vi| , solution generalized to the case with gaps 
by using an alternative height definition [40].

Let us now consider MEM finding with threshold κ on 
an indexable EFG G = (V ,E, ℓ) . We can use the general κ
-MEM finding algorithm of Lemma 3 between Q and G 
spanning exactly L nodes, with L = 1, 2, 3 ; then, we find 
κ-MEMs that span longer paths with a solution specific 
to indexable EFGs. To find all MEMs between Q and G 
spanning more than three nodes, we index

Equi et  al.  [24] showed that the suffix tree of T ′
3 can be 

used to query string Q in G, taking time O(|Q|) . We now 
extend this algorithm to find MEMs between Q and 
indexable EFG G with threshold κ and spanning more 
than 3 nodes. For simplicity, we describe a solution for 
case κ = 1 and later argue case κ > 1.

First, we augment the suffix tree of T ′
3:

• we mark all implicit or explicit nodes p such that 
the corresponding root-to-p path spells ℓ(u)ℓ(v) for 
some (u, v) ∈ E , so that we can query in constant 
time if p is such a node;

• we compute pointers from each node p to an arbi-
trarily chosen leaf in the subtree rooted at p;

• for each node v ∈ V  of the indexable EFG we build 
trie Tv for the set of strings {ℓ(u) : (u, v) ∈ E};

• for each leaf, we store the corresponding path 
uvw and the starting position of the suffix inside 
ℓ(u)ℓ(v)ℓ(w).

Observation 1 ([24, Lemma 9]) Given an indexable 
EFG G = (V ,E, ℓ) , for each (v,w) ∈ E string ℓ(v)ℓ(w) 
occurs only as prefix of paths starting with v. Thus, all 
occurrences of some string S in G spanning at least 
four nodes can be decomposed as αℓ(u2) · · · ℓ(uL−1)β 
such that: (i) u2 · · ·uL−1 is a path in G and u2 , ..., uL−1 
are unequivocally identified; (ii) α = ℓ(u1)[i..�u1�] with 
1 ≤ i ≤ �u1� for some (u1,u2) ∈ E ; and (iii) β = ℓ(uL) 
for some (uL−1,uL) ∈ E or β = ℓ(uL)(ℓ(uL+1)[1..j]) with 
1 ≤ j < �uL+1� for some (uL−1,uL), (uL,uL+1) ∈ E . Note 
that α,β  = ε and β has as prefix a full node label, whereas 
α might spell any suffix of a node label.

The strategy to compute long MEMs between Q and 
G is to first consider, with a left-to-right scan of Q, all 
MEMs ([x..y], (i, P, j)) such that: 

T ′
3 := 0 ·

∏

(u,v),(v,w)∈E

(

ℓ(u) · ℓ(v) · ℓ(w) · 0
)

where 0 /∈ �.

 I. |P| > 3;
 II. they satisfy conditions LeftMax and RightMax of 

Definition 1; and
 III. are maximal with respect to substring Q[x..y], that 

is, there is no other MEM ([x′..y′], (i′,P′, j′)) with 
x ≤ x′ ≤ y′ ≤ y.

Next, we will describe how to modify our solution to 
compute all the other MEMs spanning more than 3 
nodes. Due to Observation 1, if αℓ(u2) · · · ℓ(uL−1)β is 
a decomposition of Q[x..y], all MEMs ([x′..y′], (i′,P′, j′)) 

with x ≤ x′ < y′ ≤ y spanning more than 3 nodes are 
constrained to involve some ui with i ∈ [2..L− 1].

Consider the following modification of [24, Theo-
rem 8] that matches Q[1..y] in G. Let p be the suffix tree 
node of T ′

3 reached from the root by spelling Q[1..y] in 
the suffix tree until we cannot continue with Q[y+ 1] : 

1. If we cannot continue with 0 , Q[1..y] is part of some 
MEM between Q and G spanning at most 3 nodes, 
so we ignore it, take the suffix link of p and consider 
matching Q[2..y] in G.

2. If we can continue with 0 and the occurrences of 
Q[1..y] span at most two nodes in G , then we also 
take the suffix link of p and consider matching 
Q[2..y] . Thanks to the semi-repeat-free property, we 
can check this condition by retrieving any leaf in the 
subtree rooted at node p0 , reached by reading 0 from 
p.

3. In the remaining case, Q[1..y] = αℓ(u2)ℓ(u3) for 
exactly one u2 ∈ V  , with (u2,u3) ∈ E , due to Obser-
vation 1, and we follow the suffix link walk from p 
until we find the marked node q corresponding to 
ℓ(u2)ℓ(u3) : from q we try to match Q[y+ 1..] until 
failure, matching Q[y+ 1..y′] and reaching node r.

By repeating the suffix walk and tentative match of 
case 3 until we cannot read 0 from the failing node, 
we find the maximal prefix Q[1..y] occurring in G and 
its decomposition αℓ(u2) · · · ℓ(uL−1)β as per Observa-
tion 1. Indeed, we can find unique nodes u2 , ..., uL−1 
by analyzing the (arbitrarily chosen) leaf of the subtree 
rooted at q in every iteration of case 3. Moreover, we 
can retrieve:

• set U1 of pairs (i, u) such that (u,u2) ∈ E and 
α = ℓ(u)[i..�u�] , by iterating over the leaves of p;
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• unique node uL such that (uL−1,uL) ∈ E and 
ℓ(uL) = β , if such uL exists; and

• set EL of triplets (u,u′, j) such that 
(uL−1,u), (u,u

′) ∈ E and ℓ(u)ℓ(u′)[1..j] = β.

Then ([1..y], (i,u1 · u2 · · ·uL−1 · u · uL+1, j)) is a MEM 
between Q and G for all (i,u1) ∈ U1 and (u,uL+1, j) ∈ EL , 
and also ([1..y], (i,u1 · u2 · · ·uL−1 · uL, �uL�)) is a MEM 
for all (i,u1) ∈ U1 , if uL exists: these MEMs satisfy condi-
tions I, II, and III, and U1 , u2 · · ·uL−1 , uL , and EL form a 
compact representation of all MEMs spelling Q[1..y].

So far the procedure computes all MEMs spanning 
more than 3 nodes, satisfying LeftMax and RightMax , 
and spelling maximal Q[1..y]. We can extend it to find 
all MEMs satisfying the first two constraints and spelling 
any substring Q[x..y], with Q[x..y] maximal. Let x̂ be the 
index for which we have computed MEMs spelling Q[x̂..y] 
( ̂x = 1 in the first iteration). If cases 1 or 2 hold, we can 
start to search MEMs spelling Q[x̂ + 1..] in amortized 
linear time, since we follow the suffix link of p . If case 
3 holds, we can restart the algorithm looking for MEMs 
spelling Q[x̂′..y] , where x̂′ = x̂ + |αℓ(u2) · · · ℓ(uL−2)| . 
We are not missing any MEM satisfying conditions I, II, 
and III: due to the semi-repeat-free property, any MEM 
([x..y], (i′,P′, j′)) with x̂ < x < x̂′ spanning more than 3 
nodes shares substring ℓ(uk)ℓ(uk+1) with the previously 
computed MEM, for some k ∈ [2..L− 3] , and is such that 
x̂′ < y since we assume III to hold; the algorithm would 
have matched Q[x̂..y] with case 3 in the previous itera-
tion, leading to a contradiction. The time globally spent 
reading Q is still O(|Q|) , because each character of Q is 
considered at most twice.

Finally, we are ready to describe how to compute all 
remaining MEMs ([x..y],  (i, P,  j)) between Q and index-
able EFG G spanning at least 4 nodes, that is, MEMs 
such that condition I holds and at least one of II and 
III do not: it is easy to see that Q[x..y] must be contained 
in the MEMs that we have already computed; also, since 
they span at least 4 nodes their matches must involve 
some of nodes u2 , ..., uL−1 of MEMs satisfying I, II, and 
III. Indeed, whenever case 3 holds and we decompose 
Q[x̂..y] as αℓ(u2) · · · ℓ(uL−1)β , we can find set URT of pairs 
(v, j), with v ∈ V  and 1 ≤ j ≤ �v� , such that (v, j) ∈ URT iff 
(i,P = u · u2 · · ·ub−1 · v, j) is a match of Q[x̂..y′] in G, with 
(i,u) ∈ U1 , |P| < L , y′ < y , and Q[y′ + 1] /∈ rext(1,u, j)

—verifying RightMax and describing a MEM where III 
fails—or | rext(1,u, j)| ≥ 2—verifying the non-singleton 
condition of Definition  1 and describing a MEM where 
II fails. We can gather all the elements of URT during 
each descending walk in the suffix tree of T ′

3 , since they 
correspond to the leaves of subtrees of branching nodes 
in the tentative match of Q[x̂..y] . Analogously, we can 
find set ULT of pairs (i,  v), with v ∈ V  and 1 ≤ i ≤ �v� , 

such that (i, v) ∈ ULT iff (i, v) = (1,ui) for 2 ≤ i ≤ L− 1 
and lext(ui) ≥ 2 , or (i,P = v · ub · · ·uL−1, �uL−1�) 
is a match of Q[x..y− |β|] in G, with x > x̂ and 
Q[x − 1] /∈ lext(i, v, �v�) . We can compute ULT by ana-
lyzing the leaves of subtrees of branching nodes in the 
walk of Tui spelling ℓ(ui) , with 2 ≤ i ≤ L− 1 . Sets U1 , 
u2 · · ·uL−1 , uL , EL , ULT and URT are a compact representa-
tion of all MEMs spanning at least 4 nodes and involving 
(any substring of ) Q[x̂..y] : a cross-product-like algorithm 
that matches elements of U1 or L with elements of uL , 
EL , or URT , joined by the relevant part of u2 · · ·uL−1 , can 
explicitly output the MEMs spanning more than 3 nodes 
in linear time with respect to the size of the output, by 
exploiting the fact that ULT and URT are computed and 
ordered block by block.

Theorem  1 Let alphabet � be of constant size, and let 
G = (V ,E, ℓ) be an indexable Elastic Founder Graph 
of height H, that is, the maximum number of nodes in a 
block of G is H. MEMs between query string Q ∈ �m and 
G with arbitrary length threshold κ can be reported in 
time O(nH2 +m+Mκ) , where n =

∑

v∈V �v� and Mκ is 
the number of MEMs of interest.

Proof We can apply the algorithm of Lemma 3 to find 
κ-MEMs spanning L nodes, with L = 1, 2, 3 , taking time 
O(|Q| + |T1| + |T2| + |T3| +Mκ ,1 +Mκ ,2 +Mκ ,3).
Let Mκ ,4+ be the number of MEMs satisfying threshold 
κ and spanning at least 4 nodes in G. The suffix tree of 
T ′
3 can be constructed in time O(|T ′

3|) and the described 
modification of a descending suffix walk on Q takes con-
stant amortized time per step, assuming constant-size 
alphabet. The time spent gathering U1 , u2 · · ·uL−1 , EL , 
ULT , and URT , forming an encoding of the MEMs involv-
ing Q[x̂..y] , can be charged to Mκ ,4+ because each ele-
ment of U1 , EL , ULT , and URT corresponds to one or more 
MEMs, that could be retrieved in an explicit form with 
a cross-product-like procedure. Indeed: for U1 we can 
retrieve all leaves of the subtree rooted at p of the suffix 
tree of T ′

3 ; for EL and URT , we can do the same for node r 
reached by the last tentative match of Q[y+ 1..] , and for 
branching nodes reached during every tentative match; 
for ULT , using a compact trie and blind search  [41] in 
the representation of each Tu allows to compare only the 
branching symbols. Finally, it is easy to see that in case 
14, after we decomposed |Q[x̂..y]| as αℓ(u2) · · · ℓ(uL−1)β 
as in Observation 1, we know the length of strings α , 
ℓ(u2) , ..., ℓ(uL−1) , and β , so we can postpone the compu-
tation of sets U1 , EL , ULT , and URT and avoid computing 
MEMs of length smaller than κ . Thus, finding an encod-
ing of all MEMs between Q and G with threshold κ and 
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spanning more than 3 nodes takes O(|Q| + |T ′
3| +Mκ ,4+) 

time.

The stated time complexity is reached due to the fact that 
|T3| dominates |T ′

3| , |T2| , and |T1| , and for indexable EFGs 
|T3| ∈ O(nH2) , since every character of every node label 
ℓ(u) gets repeated at most H2 times, which is an upper 
bound on the number of paths of length 3 containing u.

Corollary 1 (batch queries) The results of Lem-
mas 2 and 3 and Theorem 1 hold when query Q[1..m] is 
replaced by a set of queries of total length m. The respec-
tive algorithms can be modified to report MEMs between 
the graph and each query separately.

Proof Consider a concatenation Q = Q1$Q2$ · · ·Qd of 
d query sequences, where $ is a unique symbol not occur-
ring in the queries nor in the graph. No MEM can span 
over the unique separators and hence the MEMs between 
graph G and concatenation Q are the same as those 
between G and each Qi . It is thus sufficient to feed con-
catenation Q as input to the algorithms and project each 
resulting MEM to the corresponding query sequence.
Corollary 2 (filtering) The algorithms of Lem-
mas 2 and 3, Theorem 1, and Corollary 1 can be modified 
to report only MEMs that occur in text T formed by con-
catenating the rows (ignoring gaps and adding separator 
symbols) of the input MSA of the indexable EFG. This can 
be done in additional O(|T | + r log r) time and O(r log n) 
bits of space and with multiplicative factor O(log log n) 
added to the running times of the respective algorithms, 
where r is the number of equal-letter runs in the BWT of 
T.

Proof Lemma 2 does not need any modification as the 
node labels are automatically substrings of T. The same 
applies to the edge labels, but for longer paths, we need 
to make sure we do not create combinations not sup-
ported by T. This can be accomplished with the help of 
the r-index: with the claimed time and space one can 
build the run-length encoded BWT of T [42] and the 
associated data structures to form the counting version 
of the r-index that supports backward step in O(log log n) 
time [43]. As we concatenate paths consisting of L nodes 
for MEM finding in Lemma 3, we can first search them 
using the r-index and only include them if they occur in 
T. MEMs spanning more than 3 nodes in Theorem 1 and 
Corollary 1 can be searched afterward with the r-index to 
filter out those MEMs not occurring in T; these MEMs 
cannot mutually overlap each other in Q by more than 

one full node label, so the running time of the verification 
can be charged on the size of the Elastic Founder Graph.
Corollary 3 (indexing) Running times in Lem-
mas  2  and  3 can be separated to an O(|T|)-time 
indexing phase and O(|Q| + Nrmax + occ)-time 
query phase, assuming constant alphabet. Here 
Nrmax ≤ min(|Q|2, |Q| + |T |) is the number of recur-
sion tree nodes visited and occ is the number of κ-MEMs 
reported by the respective algorithm.

Proof Indexing T and Q was shown to take linear time. 
Exploring the MEM candidates takes O(Nrmax) time. The 
cross-product routine is output-sensitive on constant 
alphabet � . It was shown that Nrmax ≤ |Q| + |T | . Since 
each MEM candidate Q′ needs to be a substring of Q and 
the algorithm makes at most |�| left-extensions from Q′ 
that leads to aQ′ that does not occur in Q, it follows that 
Nrmax ≤ |�||Q|2.

Experiments
Comparison to r‑index
The benefit of Corollary  2 over the mere use of r-index 
for MEM finding [44] is that a MEM can occur many 
times in a repetitive collection while the occurrences 
starting at the same column of an MSA of the collection 
can be represented by a small number of paths in the 
indexable Elastic Founder Graph.

To test this hypothesis, in the conference version of this 
paper [26] we implemented the MEM finding algorithm 
using the bidirectional r-index  [25]. That implementa-
tion covers the algorithms described earlier up to paths 
of length 3 nodes. Although we were able to demonstrate 
that the number of MEMs on the graph is significantly 
smaller than on the concatenation of sequences, the scal-
ability of the approach was not satisfactory: while node 
and edge concatenations yield competitive space and 
time, paths of length 3 are a bottleneck [26].

To make the approach scalable, we engineered the 
approach further so that paths of length 3 are no 
longer required. Namely, we observed that it suffices 
to consider full node MEMs and edge prefix and suf-
fix MEMs: Full node MEMs are such that Q[i..j] = ℓ(v) 
for some node v. Edge prefix MEMs are edge MEMs 
s.t. Q[i..j] = ℓ(u)ℓ(v)[1..j′] , where (u, v) is an edge in the 

Fig. 3 A κ-MEM (dashed line on the bottom) split to full node MEM, 
edge suffix MEM, and edge prefix MEM (dashed lines on the top)
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graph and j′ ≥ 1 . Edge suffix MEMs are edge MEMs 
s.t. Q[i..j] = ℓ(u)[i′..|ℓ(u)|]ℓ(v) , where (u,  v) is and 
edge in the graph and 1 ≤ i′ ≤ ℓ(u) . While we consider 
minimum length κ in node and edge MEMs, we do not 
restrict the length of full node, edge prefix, and edge suf-
fix MEMs. This has the negative consequence that we 
lose the theoretical guarantee on the number of MEMs 
reported. However, we do not lose the guarantee on the 
accuracy of the approach: A MEM of length at least κ 
that does not occur inside a node or inside an edge can 
be split into a (possibly empty) suffix edge MEM, one 
or more full node MEMs, and a (possibly empty) prefix 
edge MEM (see Fig. 3). That is, the set of κ-MEMs is fully 
represented by node κ-MEMs, edge κ-MEMs, full node 
MEMs, and edge prefix and suffix MEMs. For the com-
putation of the latter, it is sufficient to use the same index 
as for edge κ-MEMs. In fact, the algorithm to compute 

these is simpler: For full node MEMs, one can just back-
ward search ℓ(v) for all nodes v in the BWT index of the 
query Q. For reporting edge suffix MEMs for edge (u, v) 
one can proceed similarly backward searching ℓ(u)ℓ(v) 
using the BWT index of Q. After having read cℓ(v) , where 
c = ℓ(u)[|ℓ(u)|] , we check if the range shrinks with the 
next symbol, d = ℓ(u)[|ℓ(u)| − 1] , and report the occur-
rences Q[i..j] = cℓ(v) such that Q[i − 1] �= d or i = 1 . 
This reporting can continue until ℓ(u)ℓ(v) is read or the 
search range becomes empty. The reporting of edge pre-
fix MEMs is symmetric. Furthermore, if we start report-
ing MEMs just after reaching the node boundary, the 
latter algorithms also report full node MEMs, so we do 
not need to report them separately.

In the following, we repeat the same experiment as in 
the conference version but we replace path MEMs with 
full node MEMs and edge suffix and prefix MEMs.

We performed experiments with the same multiple 
sequence alignment (MSA) of SARS-CoV-2 strains as 
in  [45]. We first filtered out strains whose alignments 
had a run of gaps of length of more than 100 bases.2 Then 
we extracted a sub-MSA of 100 random strains from the 
remaining and extracted MSAs of the first 20, 40, 60, 
and 80 strains from this MSA of 100 strains. For each 
such dataset, we built the bidirectional r-index of the 
sequences (without gaps) and the indexable EFG of the 
MSA. The latter was constructed using the tool https:// 
github. com/ algbio/ found erblo ckgra phs with parame-
ters—elastic—gfa. We post-processed the resulting GFA 
file by merging unary paths, as this merging does not 
break the semi-repeat property. In this merging, we left 
the first and the last nodes of a unary path unaltered to 
minimize the growth of edge concatenations.

We used κ = 12 in all experiments: this parameter was 
chosen in order to be backward-compatible with the 
experiments on the previous version of the tool [26]. For 
the queries, we extracted 1000 substrings of length 100 
from the first 20 strains. For each query, we selected two 
random positions and mutated them with equal probabil-
ity for A, C, G, or T. The queries were then concatenated 
into a long sequence and the bidirectional r-index was 
built on it as described by Corollary 1. The MEMs were 
computed between the queries and the respective text/
graph index.

The number of MEMs for each index is reported 
in Fig.  4 and the number of runs in the two Burrows-
Wheeler transforms of each index is reported in Fig.  5. 
As can be seen from the results, the number of MEMs 
is greatly reduced when indexing the graph compared to 
indexing the collection of strains. Moreover, long MEMs 

Fig. 4 Number of MEMs with different indexes and varying number 
of SARS-CoV-2 strains. Here, text-MEMs refers to bidirectional r-index. 
For indexable EFG the results are shown for node κ-MEMs, edge κ
-MEMs, edge suffix MEMs, and edge prefix MEMs. Line efg-total-MEMs 
is the total number of EFG MEMs. Note the logarithmic scale 
on the y-axis

Fig. 5 Number of BWT runs with different indexes and varying 
number of SARS-CoV-2 strains. Here text refers to the bidirectional 
r-index, while labels efg-nodes and efg-edges refer to EFG node 
concatenations and edge concatenations, respectively. Label 
efg-total is the sum of the previous two numbers of runs

2 We used this filter to address a current limitation of the MSA segmenta-
tion algorithms for indexable EFG, where a long gap at the beginning or end 
of an MSA row hurts the effectiveness of the method.

https://github.com/algbio/founderblockgraphs
https://github.com/algbio/founderblockgraphs
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may be reported in smaller pieces, so the actual number 
of κ-MEMs can be much smaller than what is reported.

The number of runs (a major factor affecting the space 
used by the indexes) for the bidirectional r-index of the 
collection and that of the concatenation of node labels 
are comparable. For edges the number of runs is slightly 
higher. Fortunately, the growth of these metrics when 
more strains are added is limited. This is not surprising, 
as the strains are highly similar and thus the added infor-
mation content is limited and known to be correlated 
with the number of BWT runs [46].

Table  1 gives resource usage statistics for the largest 
collection of strains. The running times and space usages 
were measured on a server with Intel Xeon 2.9 Ghz pro-
cessor and include index construction. Resident Set Size 
(RSS) was used as the measurement tool. To speed up 
MEM finding on indexable EFGs, we also tested switch-
ing the underlying bidirectional r-index to a wavelet tree 

implementation of the bidirectional BWT (https:// www. 
github. com/ jnala nko/ BD_ BWT_ index). As can be seen, 
this gives a 9-fold speed up over the use of bidirectional 
r-index with EFG. The space bottleneck on the bidirec-
tional r-index is the indexing part, while with both EFG 
implementations it is the MEM finding part. The former 
used 7.7 MB during MEM finding, which is less than the 
EFG implementations did.

Indexing properties
While our MEM finding approach has been designed for 
batch processing, we wanted to check if it can be used 
as an index. As considered earlier, the worst-case query 
time is quadratic in the query length, but it is not clear 
if this worst case is achieved in practice. To test this, we 
created a multiple alignment of E. coli reference genome 
and 9 mutated variants of it. Each of these mutated vari-
ants was created by choosing uniformly at random 1% 
of the bases and mutating these bases with 1/3 probabil-
ity to one of the other bases. Then we constructed the 
indexable EFG of this MSA and created queries of length 
100, 200, . . . , 1000 by sampling from the reference as in 
the earlier experiment and mutating 2% of bases. Fig-
ure  6 plots the number of recursion tree nodes visited 
when exploring κ-MEMs on node concatenations with 10 
queries over each different length. There appears to be a 
linear dependency on the query length and only a small 
deviation within each query length, so the average run-
ning time may be better than the worst case.

Conclusions
Motivated by co-linear chaining of matches between 
a sequence and a labeled graph, we studied the prob-
lem of finding MEMs of at least length κ between a 
sequence and a graph, we proposed an efficient solution 
to compute κ-MEMs spanning 1 node, and we general-
ized this computation to MEMs spanning L nodes and 
to indexable Elastic Founder Graphs. As explained in 

Table 1 Input data and EFG properties (top)

Time and space usage of MEM finding on different indexes (bottom)

Text Length (bases) Number of runs in forward BWT Number of 
runs in reverse 
BWT

100 strains of SARS-Cov-2 2,978,342 23,856 23,848

EFG node concatenation 42,379 24,869 24,890

EFG edge concatenation 85,909 30,653 30,655

Index Time (seconds) Space (MB)

bidirectional r-index 21 52.5

EFG using bidirectional r-index 226 14.7

EFG using bidirectional BWT index 25 11.6

Fig. 6 The number of recursion tree nodes for efg-node-κ-MEMs 
grows linearly by the query length (data shown against the best fit 
linear function). Ten different queries per length were measured. We 
added a small offset in the x-axis to show that there are indeed many 
measurements, but the values are very close

https://www.github.com/jnalanko/BD_BWT_index
https://www.github.com/jnalanko/BD_BWT_index
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the introduction, κ-MEM finding on graphs admits a 
quadratic-time conditional lower bound, so this natu-
rally poses the question of whether a quadratic-time 
solution exists. We believe that a quadratic-time solu-
tion to κ-MEM finding on graphs can be achieved with 
an application of the labeled direct product  [22]—the 
graph based on the Cartesian product that finds all 
subpaths of G and substrings of Q spelling the same 
string—and we reserve the study of this problem as 
future work.

An alternative strategy to achieve the same goal as 
in our experiments is to encode the graph as an aggre-
gate over the collection, apply MEM finding on the 
r-index, and report the distinct aggregate values on 
lexicographic MEM ranges to identify MEM locations 
in the graph [47]. This approach is not comparable to 
ours directly, as the compressibility of the aggregates 
depends on the graph properties, and the indexable 
Elastic Founder Graph’s size has not been analyzed 
with respect to r. Also, the two approaches use differ-
ent MEM definitions. Our Definition  1 is symmetric 
and local, while the version used in earlier work with 
the r-index [44, 47] is asymmetric and semi-global: they 
define a MEM as a substring of a query that occurs in 
the text, but its query extensions do not appear in the 
text. For the purpose of chaining, only the symmet-
ric definition yields connections to the Longest Com-
mon Subsequence problem [38]. For completeness, our 
implementation also supports this asymmetric MEM 
definition; our algorithms can be simplified for this 
case.

We did not implement the general suffix tree-based 
approach to handle arbitrary long MEMs, but instead 
a relaxed variant that does work correctly, while unfor-
tunately sacrificing output-sensitivity. In our recent 
work [39], we have solved pattern search in index-
able EFGs using only edges, and our aim is to extend 
that approach to work with MEMs, so that the whole 
mechanism could work on top of a plain bidirec-
tional r-index, without resorting to relaxation. Also, 
our implementation has not been optimized for space 
usage, and therefore we studied an implementation-
independent indicator, the number of runs in the BWT, 
in more detail. This is to illustrate the potential of the 
approach. Currently, the implementation uses linear 
space with respect to the length of the edge concatena-
tions rather than to the number of runs in its BWT. It 
is easy to modify the implementation to be linear in the 
number of BWT runs, trading the space of suffix array 
and range minimum queries on the D-array to report-
ing duplicate MEMs. We leave it for future work to 
experimentally evaluate this option.

Finally, all of our theoretical results assume a constant-
size alphabet. This assumption can be relaxed with addi-
tional data structures. We are working on a more careful 
amortized analysis to relax such assumption.
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