
Rizzo et al. Algorithms for Molecular Biology (2024) 19:10
https://doi.org/10.1186/s13015-024-00255-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Finding maximal exact matches in graphs
Nicola Rizzo1*   , Manuel Cáceres1    and Veli Mäkinen1    

Abstract 

Background  We study the problem of finding maximal exact matches (MEMs) between a query string Q
and a labeled graph G. MEMs are an important class of seeds, often used in seed-chain-extend type of practical
alignment methods because of their strong connections to classical metrics. A principled way to speed up chaining
is to limit the number of MEMs by considering only MEMs of length at least κ ( κ-MEMs). However, on arbitrary input
graphs, the problem of finding MEMs cannot be solved in truly sub-quadratic time under SETH (Equi et al., TALG 2023)
even on acyclic graphs.

Results  In this paper we show an O(n · L · dL−1 +m+Mκ ,L)-time algorithm finding all κ-MEMs between Q and G
spanning exactly L nodes in G, where n is the total length of node labels, d is the maximum degree of a node in G,
m = |Q| , and Mκ ,L is the number of output MEMs. We use this algorithm to develop a κ-MEM finding solution
on indexable Elastic Founder Graphs (Equi et al., Algorithmica 2022) running in time O(nH2 +m+Mκ) , where H
is the maximum number of nodes in a block, and Mκ is the total number of κ-MEMs. Our results generalize to the anal-
ysis of multiple query strings (MEMs between G and any of the strings). Additionally, we provide some experimental
results showing that the number of graph MEMs is an order of magnitude smaller than the number of string MEMs
of the corresponding concatenated collection.

Conclusions  We show that seed-chain-extend type of alignment methods can be implemented on top of indexable
Elastic Founder Graphs by providing an efficient way to produce the seeds between a set of queries and the graph.
The code is available in https://​github.​com/​algbio/​efg-​mems.

Keywords  Sequence to graph alignment, Bidirectional BWT, r-index, Suffix tree, Founder graphs

Introduction
Sequence alignment has been studied since the 1970s [1,
2] and is a fundamental problem of computational
molecular biology. Solving the classical problems of long-
est common subsequence (LCS) and edit distance (ED)
between two strings takes quadratic time with simple
dynamic programs, and it was recently proven that no
strongly subquadratic-time algorithms exist conditioned
on the Strong Exponential Time Hypothesis (SETH) [3,
4]. To overcome this hardness, researchers have used

heuristics such as co-linear chaining [5]: by taking (short)
matches between the input strings, known as anchors, we
can take an ordered subset of these anchors and chain
them together into an alignment. Furthermore, when
using maximal exact matches (MEMs) as anchors, differ-
ent co-linear chaining formulations capture both LCS [6]
and ED [7] in near-linear time. MEMs are also used in
popular seed-and-extend read aligners [8, 9]. In fact,
practical tools limit the number of MEMs by considering
only κ-MEMs (MEMs of length at least κ ) [10, 11].

Extending alignment between sequences to sequence-
to-graph alignment is an emerging and central challenge
of computational pangenomics [12], as labeled graphs
are a popular representation of pangenomes used in
recent bioinformatics tools [13–16]. We assume that a
labeled graph G = (V ,E, ℓ) ( ℓ : V → �+ ) is the reference

*Correspondence:
Nicola Rizzo
nicola.rizzo@helsinki.fi
1 Department of Computer Science, University of Helsinki, Pietari Kalmin
katu 5, P.O. Box 68, Helsinki 00014, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00255-5&domain=pdf
http://orcid.org/0000-0002-2035-6309
http://orcid.org/0000-0003-0235-6951
http://orcid.org/0000-0003-4454-1493
https://github.com/algbio/efg-mems

Page 2 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

pangenome of interest. Unfortunately, even finding
exact occurrences of a given pattern in G does not admit
strongly subquadratic-time solutions under SETH [17],
and furthermore, a graph cannot be indexed in polyno-
mial time to answer strongly subquadratic-time pattern
matching queries [18]. To circumvent this difficulty,
research efforts have concentrated on finding param-
eterized solutions to (exact) pattern matching in labeled
graphs [19–22]. Moreover, the use of MEMs and co-lin-
ear chaining has also been extended to graphs [13–16].

In this paper, we study the problem of efficiently finding
MEMs between a query string Q and a labeled graph G,
where we extend the MEM definition to capture any maxi-
mal match between Q and the string spelled by some path
of G. More precisely, our contributions are as follows:

•	 We adapt the MEM finding algorithm between
two strings of Belazzougui et al. [23] to find all
κ-node-MEMs between Q and G = (V ,E, ℓ)
in O(m+ n+Mκ) time, where m = |Q| ,
n =

∑

v∈V |ℓ(v)| is the cumulative length of the node
labels, and Mκ is the number of κ-node-MEMs (of
length at least κ and between the node labels and Q).

•	 We extend the previous algorithm to find all κ
-MEMs spanning exactly L nodes of G in time
O(m+ n · L · dL−1 +Mκ ,L) , where d is the maximum
degree of any node v ∈ V and Mκ ,L are the κ-MEMs
of interest. Note that MEMs spanning less than L
nodes can occur multiple times in paths spanning
exactly L nodes, and our contribution is to introduce
an efficient technique to filter out these MEMs.

•	 Then we focus on graphs where constant L is suffi-
cient for κ-MEM finding:

–	 We study κ-MEMs in indexable Elastic Founder
Graphs (EFGs) [24], a subclass of labeled acyclic
graphs admitting a poly-time indexing scheme for
linear-time pattern matching. Given an indexable
EFG G of height H (the maximum number of nodes
in a graph block), we develop a suffix-tree-based
solution to find all κ-MEMs spanning more than
3 nodes in G in O(nH2 +m+Mκ ,4+) time, where
Mκ ,4+ are the number of output MEMs.

–	 Combined with the above results for L = 1, 2, 3 ,
we can find κ-MEMs of an indexable EFG G in
O(nH2 +m+Mκ) time.

–	 We note that the previous results easily general-
ize to the batched query setting: by substituting Q
with the concatenation of different query strings
Q1 , ..., Qt of total length m , we compute all κ-MEMs
between any query string and the graph with the
same stated running time.

•	 Finally, we provide experimental results on finding
MEMs from a collection of strains of SARS-CoV-2
and on an E. coli dataset. We use the bidirectional
r-index [25] as the underlying machinery. On the one
hand, we build the r-index of the concatenation of
the covid19 strains and find all mκ κ-MEMs. On the
other hand, we build an indexable EFG of the strains
and find an upper bound on all Mκ κ-MEMs in this
case. On 100 strains, Mκ is at least 34 times smaller
than mκ , thus confirming that graph MEMs com-
pactly represent all MEMs. With the larger E. coli
dataset, we study the indexing properties of our
MEM finding approach. Experiments indicate that
in practice MEM exploration depends linearly on the
query length, while the theoretic worst case is quad-
ratic.

The extensions to the conference version of this
paper [26] consist of a) a more detailed description of the
MEM finding algorithm (previous work and our adapta-
tions) supported by pseudo-code and illustration, b) a
study of the indexing setting, and c) a more engineered
practical implementation as well as new experimental
results.

Preliminaries
Strings
We denote integer intervals by [x..y], x and y inclusive. Let
� = [1..σ] be an alphabet. A string T[1..n] is a sequence
of symbols from � , that is, T ∈ �n where �n denotes the
set of strings of length n over � . The length of a string T is
denoted |T| and the empty string ε is the string of length
0. In this paper, we assume that |�| is constant. The con-
catenation of strings T1 and T2 is denoted as T1 · T2 , or
just T1T2 . We denote by T[x..y] the substring of T made
of the concatenation of its characters from the x-th to the
y-th, both inclusive; if x = y then we also use T[x] and
if y < x then T [x..y] = ε . The reverse of a string T[1..n],
denoted by T  , is the string T read from right to left, that
is, T = T [n]T [n− 1]..T [1] . A suffix (prefix) of string
T[1..n] is T[x..n] (T[1..y]) for 1 ≤ x ≤ n ( 1 ≤ y ≤ n ) and
we say it is proper if x > 1 ( y < n ). We denote by �∗ the
set of finite strings over � , and also �+ = �∗\{ε} . String
Q occurs in T if Q = T [x..y] for some interval [x..y]; in this
case, we say that [x..y] is a match of Q in T. Moreover,
we study matches between substrings of Q and T: a maxi-
mal exact match (MEM) between Q and T is a triplet
(x1, x2, ℓ) such that Q[x1..x1 + ℓ− 1] = T [x2..x2 + ℓ− 1]
and the match cannot be extended to the left nor to the
right, that is, x1 = 1 or x2 = 1 or Q[x1 − 1] �= T [x2 − 1]
(left-maximality) and x1 + ℓ = |Q| or x2 + ℓ = |T | or
Q[x1 + ℓ] �= T [x2 + ℓ] (right-maximality). In this case,
we say that the substring Q[x1..x1 + ℓ− 1] is a MEM

Page 3 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

string between Q and T. The lexicographic order of
two strings T1 and T2 is naturally defined by the total
order ≤ of the alphabet: T1 < T2 if and only if T1 = T2
and T1 is a prefix of T2 or there exists y ≥ 0 such that
T1[1..y] = T2[1..y] and T1[y+ 1] < T2[y+ 1] . We avoid
the prefix case by adding an end marker $ ∈ � to the
strings and considering $ to be lexicographically smaller
than any character in �.

Labeled graphs
Let G = (V ,E, ℓ) be a labeled graph with V being the set
of nodes, E being the set of edges, and ℓ : V → �+ being
a function giving a label to each node. A length-k path P
from v1 to vk is a sequence of nodes v1, . . . , vk connected
by edges, that is, (v1, v2), (v2, v3), . . . , (vk−1, vk) ∈ E . A
node u reaches a node v if there is a path from u to v.
The label ℓ(P) := ℓ(v1) · · · ℓ(vk) of P is the concatena-
tion of the labels of the nodes in the path. For a node
v and a path P we use � · � to denote its string length,
that is, �v� = |ℓ(v)| and �P� = |ℓ(P)| . Let Q be a query
string. We say that Q occurs in G if Q occurs in ℓ(P)
for some path P. In this case, the exact match of Q in
G can be identified by the triple (i,P = v1 . . . vk , j) ,
where Q = ℓ(v1)[i..] · ℓ(v2) · · · ℓ(vk−1) · ℓ(vk)[..j] , with
1 ≤ i ≤ �v1� and 1 ≤ j ≤ �vk� , and we call such tri-
ple a substring of G. Given a substring (i, P, j) of G, we
define its left-extension lext(i,P, j) as the singleton
{ℓ(v1)[i − 1]} if i > 1 and otherwise as the set of charac-
ters {ℓ(u)[�u�] | (u, v1) ∈ E} . Symmetrically, the right-
extension rext(i,P, j) is {ℓ(vk)[j + 1]} if j < ‖vk‖ and
otherwise it is {ℓ(v)[1] | (vk , v) ∈ E} . Note that the left
(right) extension can be equal to the empty set ∅ , if the
start (end) node of P does not have incoming (outgoing)
edges. Figure 1 illustrates these concepts.

Basic tools
A trie or keyword tree [27] of a set of strings is an ordinal
tree where the outgoing edges of each node are labeled
by distinct symbols (the order of the children follows the
order of the alphabet) and there is a unique root-to-leaf
path spelling each string in the set; the shared part of
two root-to-leaf paths spells the longest common prefix
of the corresponding strings. In a compact trie [28], the
maximal non-branching paths of a trie become edges

labeled with the concatenation of labels on the path. The
suffix tree of T ∈ �∗ is the compact trie of all suffixes of
the string T ′ = T$ [29]. In this case, the edge labels are
substrings of T and can be represented in constant space
as an interval of T. Such a tree uses linear space and can
be constructed in linear time, assuming that |�| ≤ |T | , so
that when reading the root-to-leaf paths from left to right,
the suffixes are listed in their lexicographic order [30, 31].
As such, the order spelled by the leaves of the suffix tree
forms the suffix array SAT [1..|T

′|] , where SAT [i] = j iff
T ′[j..|T ′|] is the i-th smallest suffix in lexicographic order.
When applied to a string T, the Burrows–Wheeler trans-
form (BWT) [32] yields another string BWTT such that
BWTT [i] = T ′[SA[i] − 1] (we assume T ′ to be a circular
string, i.e. T ′[−1] = T ′[|T | + 1] = $).

Let Q[1..m] be a query string. If Q occurs in T, then the
locus or implicit node of Q in the suffix tree of T is (v, k)
such that Q = XY  , where X is the path spelled from the
root to the parent of v and Y is the prefix of length k of the
edge from the parent of v to v. The leaves in the subtree
rooted at v, also known as the leaves covered by v, cor-
respond to all the suffixes sharing the common prefix Q.
Such leaves form an interval in the SA and equivalently
in the BWT. Let aX and X be the strings spelled from the
root of the suffix tree to nodes v and w, respectively. Then
one can store a suffix link from v to w. Suffix links from
implicit nodes are called implicit suffix links.

The bidirectional BWT of T [33], that we denote as
idxT , is a compact BWT-based index capable of per-
forming a text search in T ′ in both directions while
synchronizing the intervals of the searched string in
SAT and SAT  . In the following, we assume T ′ to be cir-
cular, thus the character preceding T ′[1] is $ and the
one following T ′[|T ′|] is T[1]. The index supports the
following operations, given interval [i..j] in SAT and
interval [i′..j′] in SAT representing a substring Q′ of T:
idxT .isLeftMaximal(i, j) ( isRightMaximal(i′, j′) )
returns false if and only if all occurrences of Q′ in T are
preceded (followed) by the same character, and true oth-
erwise, in which case we say that Q′ is a left-maximal
(right-maximal) string of T; idxT .enumerateLeft(i, j)
( enumerateRight(i′, j′) ) returns all distinct charac-
ters that precede (follow) the occurrences of Q′ in T; and,
given c ∈ � ∪ {$} , idxT .extendLeft(c, [i..j], [i

′..j′])
( extendRight(c, [i..j], [i′..j′]) ) returns the pair of inter-
vals [x..y] , [x′..y′] of SAT and SAT  , respectively, repre-
senting the substring cQ′ ( Q′c ) of T. Since we assume
|�| ∈ O(1) , index idxT can be built in O(|T |) time to
support the presented operations in output-sensitive
time, that is, linear in the size of the output [33]. The
bidirectional BWT of T is capable of simulating the navi-
gation of the suffix tree nodes of T in O(|T |) time. More-
over, Belazzougui et al. [23] show how to solve the MEM

Fig. 1  Substring ACCGTA (underlined) with left-extension {A,C}
and right-extension {G} , and substring GGA​ACC​ (underlined, bold
edge) with left-extension {T} and right-extension {A}

Page 4 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

finding problem in linear time: their algorithm uses the
indices idxQ and idxT and simulates the traversal of the
common strings in the suffix tree of Q#T  , with # /∈ � .
When this traversal finds a candidate MEM string, the
algorithm outputs all the corresponding MEMs in out-
put-sensitive time by using a cross-product routine. We
present a detailed explanation of this solution in the next
section.

Let B[1..n] be a bitvector, that is, a string over the
alphabet {0, 1} . There is a data structure that can be con-
structed in time O(n) which answers r = rank(B, i) and
j = select(B, r) in constant time, where the former
operation returns the number of 1s in B[1..i] and the lat-
ter returns the position j ≤ i of the r-th 1 in B [34, 35].

Let D[1..n] be an array of integers. There is a range
minimum query data structure that can be constructed
in O(n) time which answers RMQD(i, j) in constant time
[36], where RMQD(i, j) returns an index k such that
D[k] is the minimum value in the subarray D[i..j]. We
will use the following lemma that exploits range queries
recursively.

Lemma 1  Let D[1..n] be an array of integers. One can
preprocess D in O(n) time so that given a threshold � , one
can list all elements of D such that D[i] ≤ � in linear time
in the size of the output.

Proof  We can build the range minimum query data
structure on D. Consider a recursive algorithm analogous
to the one in [37] which starts with k = RMQD(1, n) .
If D[k] > � , the algorithm stops as no element in the
range is at least � . Otherwise, the algorithm reports
k and recursively continues with RMQD(1, k − 1) and
RMQD(k + 1, n) . Note that each recursive call performs
exactly one RMQ operation: if an element is reported the
RMQ is charged to this element, otherwise it is charged
to its parent (in the recursion tree), and thus the number
of RMQ operations is linear in the output size.

Finding MEMs in labeled graphs
Let us consider the problem of finding all maximal exact
matches (MEMs) between a labeled graph G = (V ,E, ℓ) ,
with ℓ : V → �+ , and a query string Q ∈ �+.

Definition 1  (MEM between a pattern and a graph) Let
G = (V ,E, ℓ) be a labeled graph, with ℓ : V → �+ , let
Q ∈ �+ be a query string, and let κ > 0 be a threshold.

Given a match (i, P, j) of Q[x..y] in G, we say that the pair
([x..y], (i, P, j)) is left-maximal (right-maximal) if it can-
not be extended to the left (right, respectively) in both Q
and G, that is,

We call ([x...y], (i, P, j)) a κ-MEM iff
LeftMax ∨ | lext(i,P, j)| ≥ 2 , RightMax ∨ | rext(i,P, j)| ≥ 2 ,
and y− x + 1 ≥ κ , meaning that it is of length at least κ ,
it is left-maximal or its left (graph) extension is not a sin-
gleton, and it is right-maximal or its right (graph) exten-
sion is not a singleton.

We use this particular extension of MEMs to graphs—
with the additional conditions on non-singletons lext and
rext—as it captures all MEMs between Q and ℓ(P) , where
P is a source-to-sink path in G. Indeed, note that remov-
ing the non-singleton conditions would miss matches
that can be extended through one path but not another.
For example, with Q = CACCGTAT , κ = 0 , v being the
first underlined node of Fig. 1, and u being the second in-
neighbor of v, then ([1..7], (5, uv, 6)) is a MEM since it is
left and right maximal. Note that pair ([2..7], (1, v, 6)) is
also a MEM since it is right-maximal, and the left exten-
sion of (1, v, 6) is not a singleton ( lext(v) = {A,C} ): this
match is not left-maximal but our definition includes it
as there are at least two different characters to the left.
Moreover, this MEM formulation (with κ = 1 ) captures
LCS through co-linear chaining, whereas avoiding the
additional conditions would fail [38].

The rest of this section is structured as follows. First,
we show how to adapt the MEM finding algorithm of
Belazzougui et al. [23] for the case of node κ-MEMs,
which ignore the singleton conditions of Definition 1.
Then, we show how to further generalize this approach to
report all κ-MEMs spanning exactly L nodes.

MEMs in node labels
We say that a match ([x..y], (i, P, j)) is a node MEM if P
is a path of length 1, i.e. P = v for some node v, and the
match is left and right maximal w.r.t. ℓ(P) only in the
string sense. In other words, a node MEM is a (string)
MEM between Q and ℓ(v) (especially in the case x = 1 or
y = ℓ(v) ). For this, we consider the text

(LeftMax) x = 1 ∨ lext(i,P, j) = ∅ ∨

∨ Q[x − 1] /∈ lext(i,P, j) and

(RightMax) y = |Q| ∨ rext(i,P, j) = ∅ ∨

∨ Q[y+ 1] /∈ rext(i,P, j).

Page 5 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

where 0 /∈ � is used as a delimiter to prevent MEMs
spanning more than a node label.

Running the MEM finding algorithm of Belaz-
zougui et al. [23, Theorem 7.10] on Q and Tnodes
will retrieve exactly the node MEMs we are look-
ing for. Given such a MEM (x1, x2, ℓ) , to transform the

Tnodes = 0 ·
∏

v∈V

(

ℓ(v) · 0
)

, coordinates of Tnodes[x2..x2 + ℓ− 1] into the correspond-
ing graph substring (i, P, j) we augment the index with a
bitvector B marking the locations of 0 s of Tnodes , so that
r = rank(B, x2) identifies the corresponding node of G,
i = x2 − select(B, r) and j = i + ℓ− 1 . The following
result follows directly.

Algorithm 1  Computing a representation of κ-MEMs between Q and T = Tnodes using their bidirectional BWT indexes. The algorithm explores all MEM
candidates and it calls Algorithm 2 to output the MEMs.

Page 6 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

Algorithm 2  Cross-product computation for outputting a representation of maximal exact matches using two bidirectional BWT indexes. The input
is a MEM candidate computed in Algorithm 1. Here (a, b, c, d) ∈ A⊗ B iff (a, b) ∈ A , (c, d) ∈ B , a = c , and b = d.

Lemma 2  Let alphabet � be of constant size. Given a
labeled graph G = (V ,E, ℓ) , with ℓ : V → �+ , a query
string Q, and a threshold κ > 0 , we can compute all
node MEMs of length at least κ between Q and G in time
O(n+m+ Nκ) , where n is the total length of node labels,
m = |Q| , and Nκ is the number of output MEMs.

As we will modify this algorithm later on, we now
describe a self-contained and simplified version of the
MEM finding algorithm of [23, Theorem 7.10] sufficient
for our purposes as Algorithms 1 and 2. This version
closely follows the one in the textbook [29, Algorithms
18 and 19], with the simple modification of computing
only MEMs of length at least κ (highlighted in Algo-
rithm 1). Moreover, we discuss the differences from the
original approach at the end of this section.

Let T = Tnodes . We say that a string Q′ is a MEM can-
didate if |Q′| ≥ κ , Q′ is left- and right-maximal in T#Q ,
and it occurs in both T and Q. Algorithm 1 uses idxT
and idxQ , supporting the operations described in the

Fig. 2  Representation of the suffix tree of T#Q , with T = AGAAAG
and Q = GAAT , where leaves corresponding to suffixes starting
inside T and Q are marked in blue and orange, respectively. The
colored arrows follow the traversal simulated by Algorithm 1:
the recursion stops when the considered substring of Q does
not occur in T (line 5), as is the case for Q[4] = T , or when the same
character follows all of its occurrences in both Q and T (line 13),
as is the case for Q[1..2] = T [2..3] = GA

Page 7 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

preliminaries, to recursively consider all right-maximal
substrings of T#Q that occur in both T and Q. Then, for
the subset of these substrings that are MEM candidates,
it calls a cross-product routine, Algorithm 2, outputting
all MEMs whose MEM string is Q′.

To see the linearity with respect to the input strings,
let us study how the MEM candidates Q′ are explored.
The algorithm starts with intervals of idxQ and idxT
corresponding to the empty string ε (line 2). By using
stack S, it then considers recursively all strings Q′ that
occur in both Q and T and that are right-maximal in
T#Q by extending the currently matched Q′ to the left
with all possible extensions in Q (lines 10-11). The
recursion continues only if the extended string is still
right-maximal (line 13) and occurs in T (line 5). See
Fig. 2 for a visual example in the corresponding suffix
tree of T#Q . When a considered right-maximal Q′ is of
length at least κ and is also left-maximal in Q#T (lines
7–8), thus it is a MEM candidate, Algorithm 2 is called
to report the corresponding MEMs: it implements a
cross-product routine considering the occurrences of
aQ′b in Q (lines 1–5) and of cQ′d in T (lines 6–10) such
that a = c and b = d (lines 11–18). In other words, if A
is the set or pairs (a, b) such that aQ′b occurs in Q and
B is the set of pairs (c, d) such that cQ′d occurs in T, it
has to consider the cross product A⊗ B , defined as the
set of tuples (a, b, c, d) such that (a, b) ∈ A , (c, d) ∈ B ,
and a = c and b = d.

Recall that operations on idxQ and idxT take con-
stant time. The time complexity of Algorithm 1 is
O(|T | + |Q| + Nκ) . The exploration performed by Algo-
rithm 1 takes constant time per right-maximal substring
of T#Q : the right-maximal substrings are the suffix tree
nodes of T#Q , and the number of left extensions where
the recursion does not continue is at most the number of
right-maximal substrings multiplied by a constant alpha-
bet factor. Moreover, since � has constant size, the calls
to Algorithm 2 globally consider at most |�2| ∈ O(1)
extensions for each MEM candidate Q′ and they output
all Nκ MEMs in O(|T | + |Q| + Nκ) time, reaching the
stated time complexity.

Finally, note that Algorithms 1 and 2 output the repre-
sentation of MEMs using their positions in SAQ and SAT ,
instead of their position in the text. More precisely, these
positions refer to an occurrence of aQ′b in Q and cQ′d
in T such that a = c and b = d and each triple (k , k ′, ℓ)
in this format corresponds to MEM (x, y, ℓ) between Q
and T such that x = SAQ[k] + 1 and y = SAT [k

′] + 1 .
This conversion can be executed in O(|T | + |Q|) time by
simply computing SAQ and SAT and retrieving x and y
as described above. Alternatively, the original algorithm

proposes a batched locate query solution that, in our
setting, works in O(|T | + |Q| + Nκ) time and has work-
ing space complexity of O(Nκ(log |T | + log |Q|)) bits [23,
Lemma 3.1].

Our description differs from the original [23] as
follows:

•	 we assume that alphabet � has constant size, instead
of assumption |�| ∈ o(

√
|T |/ log |T |);

•	 we use the bidirectional BWT index as the represen-
tation of T and Q , while the original uses a unidirec-
tional BWT index to avoid randomized construction
time for larger alphabets;

•	 our simplified complexity analysis works for a
constant-sized alphabet, but the authors prove—
with a more sophisticated analysis—that Algo-
rithms 1 and 2 take time O(|T | + |Q| + Nκ) , when
|�| ∈ o(

√
|T |/ log |T |);

•	 the original algorithm, when branching in the
exploration of the suffix tree of T#Q , explores
first the branch with the most occurrences in T
or Q , to claim the working space complexity of
O((|T | + |Q|) · log |�|) bits.

Our later modifications assume a constant-sized alphabet
and use more working space, thus our analysis and the
simplified exploration of Algorithm 1 are sufficient.

MEMs spanning exactly L nodes
Given a threshold κ , we want to find all κ-MEMs
([x...y], (i, P, j)) spanning exactly L nodes in G, that
is, |P| = L . Note that the MEMs obtained for L = 1
are a subset of the node MEMs obtained in Lemma 2:
for a node MEM ([x...y], (i, v, j)) it might hold that
i = 1 and {Q[x − 1]} = lext(1, v, j) , or that j = �v� and
{Q[y+ 1]} = rext(i, v, j) . Indeed, as per Definition 1,
MEMs cannot be recognized without looking at the
context of the paths in G (sets lext and rext ). With this
in mind, we consider the text

where left(u) = c when lext(u) = {c} and otherwise
left(u) = # , right(u) = d when rext(u) = {d} and other-
wise right(u) = # , with 0, # /∈ � two distinct characters
and

(1)

TL := 0 ·
∏

(u1,...,uL)∈P
L
G

(

left(u1) · ℓ(u1) · · · ℓ(uL) · right(uL) · 0
)

,

P
L
G :=

{

P

∣

∣

∣

∣

P path of G,
|P| = L

}

.

Page 8 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

We have added the unique left- and right-extension sym-
bols c and d to avoid reporting exact matches that can
potentially be extended to longer paths. When these
extensions are not unique (or empty), one can safely
report a MEM, since there is a path diverting with a sym-
bol different from that of the pattern (or the path can-
not be extended further). In addition to these left- and
right-extension symbols, we modify the MEM finding
algorithm designed for node MEMs to use some extra
information regarding the starting position of each suffix
inside string ℓ(P) , as explained next.

To avoid reporting MEMs spanning less than L
nodes (only if L > 1 ), we use an array D[1..|TL|] such
that D[k] = ∞ if the k-th suffix TL[s..|TL|] of TL in
the lexicographic order is such that TL[s + 1..|TL|] is
not starting inside node u1 of a path P = u1 · · ·uL ,
otherwise D[k] = |ℓ(P)| − ℓ(uL)− i + 2 , where suf-
fix TL[s + 1..|TL|] starts at position i inside u1 . That is,
when D[k] �= ∞ , it tells the distance of the k-th suf-
fix of TL in the lexicographic order to the start of the
last node of the corresponding path. With the help of
Lemma 1 on D, we can then adapt the MEM finding
algorithm to output suffixes corresponding to MEMs
spanning exactly L nodes as follows.

Lemma 3  Let alphabet � be of constant size. Given a
labeled graph G = (V ,E, ℓ) , a pattern Q ∈ �m , a thresh-
old κ ≥ 1 , and an integer L ≥ 1 , we can compute all κ-
MEMs between Q and G spanning exactly L nodes of G in
time O(m+ |TL| +Mκ ,L) . Here, TL is defined as in Equa-
tion (1) and Mκ ,L is the number of output MEMs.

Proof  We build the bidirectional BWT indexes idxTL
and idxQ and the suffix arrays SATL and SAQ for TL and
Q, respectively, and preprocess D[1..|TL|] as in Lemma 1

in time O(|TL| + |Q|) . We also preprocess, in linear time,
a bitvector B marking the locations of 0 s of TL so that we
can map in constant time a position i in TL to the r-th
path appended to TL for r = rank(B, i).
The modifications to Algorithms 1 and 2 required to only
output an encoding of MEMs between Q and G spanning
exactly L nodes (and only if L > 1 ) is to change its last
steps in Algorithm 2 when considering a MEM candidate
Q′ . We present such modifications in Algorithm 3 (high-
lighted lines). Namely, the cross-product routine loops
over all characters a, b ∈ � ∪ {#, $} and c, d ∈ � ∪ {#}
with a = c and b = d , such that aQ′b is a substring of
Q and cQ′d is a substring of TL . It then computes (in
constant time) the intervals [iaQ′b..jaQ′b] , [i′aQ′b..j

′
aQ′b] ,

[icQ′d ..jcQ′d] , and [i′cQ′d ..j
′
cQ′d] , where the first two are the

intervals in the bidirectional BWT on Q corresponding
to aQ′b and the latter two are the intervals in the bidirec-
tional BWT on TL corresponding to cQ′d . Note that the
modification to the computation of set B in Algorithm 3
avoids extensions with 0 in lines 3 and 5. Finally, the
algorithm outputs a triple (k ′, k , |Q′|) representing each
MEM, where k ∈ [icQ′d ..jcQ′d] and k ′ ∈ [iaQ′b..jaQ′b] . Here
it suffices to modify the first iteration using Lemma 1 to
loop only over k ∈ [icQ′d ..jcQ′d] such that D[k] ≤ |Q′| + 1
(line 12).

Our claims are that the running time stays linear in the
input and output size on constant-size alphabet and that
only MEMs spanning exactly L nodes are output. The lat-
ter claim follows directly on how array D is defined and
used with Lemma 1. For the former claim, the cross-
product part of the original algorithm is linear in the
output size (also on non-constant-size alphabet) since for
each combination of left- and right-extension considered,
the work can be charged to the output. In our case, due
to the use of Lemma 1, some combinations may lead to
empty outputs introducing an alphabet-factor (constant)
multiplier on the input length.

Page 9 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

Algorithm 3  Constrained cross-product computation for outputting maximal exact matches using two bidirectional BWT indexes

Remark 1  Note that the algorithm in Lemma 3 works
in time O(m+ n · L · dL−1 +Mκ ,L) , where n =

∑

v∈V ℓ(v)
is the total label length of G and d is the maximum in- or
out-degree of a node. Indeed, TL corresponds to the con-
catenation of length-L paths of G: the number of paths
containing label ℓ(v) (for a node v) is at most L · dL−1.

MEMs in elastic founder graphs
Recall that exact pattern matching in labeled graphs does
not admit a strongly subquadratic-time solution. More
specifically, Equi et al. proved that answering whether
a pattern Q occurs in a labeled graph G = (V ,E, ℓ) can-
not be answered in O(m1−ε|E|) or O(m|E|1−ε) time for
any constant ε > 0 under the Strong Exponential Time
Hypothesis (SETH), even if G is acyclic [17]1. It is easy to
see that this hardness extends to κ-MEM finding between
Q and G: if κ = |Q| , the κ-MEMs between Q and G are
exactly the occurrences of Q in G. As shown in Remark
1, the approach of Lemma 3 to find MEMs spanning L
nodes in G is exponential on L and it is unfeasible for
large values of L. To have an efficient solution for MEM
finding, we restrict the family of graphs that we consider

to that of indexable Elastic Founder Graphs (indexable
EFGs), which are a subclass of labeled directed acyclic
graphs (labeled DAGs) that admit exact pattern match-
ing solutions breaking through the quadratic-time lower
bounds [24]. In this section, we show that Lemma 3,
together with the extension of the techniques used to
query if Q appears in an indexable EFG G, can solve κ-
MEM finding in G in parameterized linear time.

Definition 2  (Elastic Founder Graph [24, 39]) Consider
a block graph G = (V ,E, ℓ) , where ℓ : V → �+ , V is par-
titioned into k blocks V1 , ..., Vk , and edges (u, v) ∈ E are
such that u ∈ Vi , v ∈ Vi+1 for some i ∈ [1..k − 1] . We say
that a block graph is an indexable Elastic Founder Graph
(indexable EFG) if the semi-repeat-free property holds:
each ℓ(v) for v ∈ V occurs in G only starting from the
beginning of w ∈ V  , where w is from the same block as v.

Note that the semi-repeat-free property allows a node
label to be a prefix of other node labels in the same
block, whereas it forbids them to appear as a proper suf-
fix of other node labels or anywhere else in the graph.
Indexable EFGs can be obtained from a set of aligned
sequences, in a way such that the resulting indexable EFG
spells the sequences but also their recombination: for a
gapless alignment, we can build in time linear to the size 1  Note that Equi et al. assume G to be a node-labeled graph with labels

of length 1, i.e. ℓ : V → � , whereas in this paper we assume the labels to
be non-empty strings over alphabet � , i.e. ℓ : V → �+ . The latter class of
graphs includes the former, so the quadratic-time lower bound still holds.

Page 10 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

of the alignment an optimal indexable EFG with mini-
mum height H of a block, where the height of block Vi is
defined as |Vi| , solution generalized to the case with gaps
by using an alternative height definition [40].

Let us now consider MEM finding with threshold κ on
an indexable EFG G = (V ,E, ℓ) . We can use the general κ
-MEM finding algorithm of Lemma 3 between Q and G
spanning exactly L nodes, with L = 1, 2, 3 ; then, we find
κ-MEMs that span longer paths with a solution specific
to indexable EFGs. To find all MEMs between Q and G
spanning more than three nodes, we index

Equi et al. [24] showed that the suffix tree of T ′
3 can be

used to query string Q in G, taking time O(|Q|) . We now
extend this algorithm to find MEMs between Q and
indexable EFG G with threshold κ and spanning more
than 3 nodes. For simplicity, we describe a solution for
case κ = 1 and later argue case κ > 1.

First, we augment the suffix tree of T ′
3:

•	 we mark all implicit or explicit nodes p such that
the corresponding root-to-p path spells ℓ(u)ℓ(v) for
some (u, v) ∈ E , so that we can query in constant
time if p is such a node;

•	 we compute pointers from each node p to an arbi-
trarily chosen leaf in the subtree rooted at p;

•	 for each node v ∈ V of the indexable EFG we build
trie Tv for the set of strings {ℓ(u) : (u, v) ∈ E};

•	 for each leaf, we store the corresponding path
uvw and the starting position of the suffix inside
ℓ(u)ℓ(v)ℓ(w).

Observation 1  ([24, Lemma 9]) Given an indexable
EFG G = (V ,E, ℓ) , for each (v,w) ∈ E string ℓ(v)ℓ(w)
occurs only as prefix of paths starting with v. Thus, all
occurrences of some string S in G spanning at least
four nodes can be decomposed as αℓ(u2) · · · ℓ(uL−1)β
such that: (i) u2 · · ·uL−1 is a path in G and u2 , ..., uL−1
are unequivocally identified; (ii) α = ℓ(u1)[i..�u1�] with
1 ≤ i ≤ �u1� for some (u1,u2) ∈ E ; and (iii) β = ℓ(uL)
for some (uL−1,uL) ∈ E or β = ℓ(uL)(ℓ(uL+1)[1..j]) with
1 ≤ j < �uL+1� for some (uL−1,uL), (uL,uL+1) ∈ E . Note
that α,β = ε and β has as prefix a full node label, whereas
α might spell any suffix of a node label.

The strategy to compute long MEMs between Q and
G is to first consider, with a left-to-right scan of Q, all
MEMs ([x..y], (i, P, j)) such that:

T ′
3 := 0 ·

∏

(u,v),(v,w)∈E

(

ℓ(u) · ℓ(v) · ℓ(w) · 0
)

where 0 /∈ �.

	 I.	 |P| > 3;
	II.	 they satisfy conditions LeftMax and RightMax of

Definition 1; and
	III.	 are maximal with respect to substring Q[x..y], that

is, there is no other MEM ([x′..y′], (i′,P′, j′)) with
x ≤ x′ ≤ y′ ≤ y.

Next, we will describe how to modify our solution to
compute all the other MEMs spanning more than 3
nodes. Due to Observation 1, if αℓ(u2) · · · ℓ(uL−1)β is
a decomposition of Q[x..y], all MEMs ([x′..y′], (i′,P′, j′))

with x ≤ x′ < y′ ≤ y spanning more than 3 nodes are
constrained to involve some ui with i ∈ [2..L− 1].

Consider the following modification of [24, Theo-
rem 8] that matches Q[1..y] in G. Let p be the suffix tree
node of T ′

3 reached from the root by spelling Q[1..y] in
the suffix tree until we cannot continue with Q[y+ 1] :

1.	 If we cannot continue with 0 , Q[1..y] is part of some
MEM between Q and G spanning at most 3 nodes,
so we ignore it, take the suffix link of p and consider
matching Q[2..y] in G.

2.	 If we can continue with 0 and the occurrences of
Q[1..y] span at most two nodes in G , then we also
take the suffix link of p and consider matching
Q[2..y] . Thanks to the semi-repeat-free property, we
can check this condition by retrieving any leaf in the
subtree rooted at node p0 , reached by reading 0 from
p.

3.	 In the remaining case, Q[1..y] = αℓ(u2)ℓ(u3) for
exactly one u2 ∈ V  , with (u2,u3) ∈ E , due to Obser-
vation 1, and we follow the suffix link walk from p
until we find the marked node q corresponding to
ℓ(u2)ℓ(u3) : from q we try to match Q[y+ 1..] until
failure, matching Q[y+ 1..y′] and reaching node r.

By repeating the suffix walk and tentative match of
case 3 until we cannot read 0 from the failing node,
we find the maximal prefix Q[1..y] occurring in G and
its decomposition αℓ(u2) · · · ℓ(uL−1)β as per Observa-
tion 1. Indeed, we can find unique nodes u2 , ..., uL−1
by analyzing the (arbitrarily chosen) leaf of the subtree
rooted at q in every iteration of case 3. Moreover, we
can retrieve:

•	 set U1 of pairs (i, u) such that (u,u2) ∈ E and
α = ℓ(u)[i..�u�] , by iterating over the leaves of p;

Page 11 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

•	 unique node uL such that (uL−1,uL) ∈ E and
ℓ(uL) = β , if such uL exists; and

•	 set EL of triplets (u,u′, j) such that
(uL−1,u), (u,u

′) ∈ E and ℓ(u)ℓ(u′)[1..j] = β.

Then ([1..y], (i,u1 · u2 · · ·uL−1 · u · uL+1, j)) is a MEM
between Q and G for all (i,u1) ∈ U1 and (u,uL+1, j) ∈ EL ,
and also ([1..y], (i,u1 · u2 · · ·uL−1 · uL, �uL�)) is a MEM
for all (i,u1) ∈ U1 , if uL exists: these MEMs satisfy condi-
tions I, II, and III, and U1 , u2 · · ·uL−1 , uL , and EL form a
compact representation of all MEMs spelling Q[1..y].

So far the procedure computes all MEMs spanning
more than 3 nodes, satisfying LeftMax and RightMax ,
and spelling maximal Q[1..y]. We can extend it to find
all MEMs satisfying the first two constraints and spelling
any substring Q[x..y], with Q[x..y] maximal. Let x̂ be the
index for which we have computed MEMs spelling Q[x̂..y]
( ̂x = 1 in the first iteration). If cases 1 or 2 hold, we can
start to search MEMs spelling Q[x̂ + 1..] in amortized
linear time, since we follow the suffix link of p . If case
3 holds, we can restart the algorithm looking for MEMs
spelling Q[x̂′..y] , where x̂′ = x̂ + |αℓ(u2) · · · ℓ(uL−2)| .
We are not missing any MEM satisfying conditions I, II,
and III: due to the semi-repeat-free property, any MEM
([x..y], (i′,P′, j′)) with x̂ < x < x̂′ spanning more than 3
nodes shares substring ℓ(uk)ℓ(uk+1) with the previously
computed MEM, for some k ∈ [2..L− 3] , and is such that
x̂′ < y since we assume III to hold; the algorithm would
have matched Q[x̂..y] with case 3 in the previous itera-
tion, leading to a contradiction. The time globally spent
reading Q is still O(|Q|) , because each character of Q is
considered at most twice.

Finally, we are ready to describe how to compute all
remaining MEMs ([x..y], (i, P, j)) between Q and index-
able EFG G spanning at least 4 nodes, that is, MEMs
such that condition I holds and at least one of II and
III do not: it is easy to see that Q[x..y] must be contained
in the MEMs that we have already computed; also, since
they span at least 4 nodes their matches must involve
some of nodes u2 , ..., uL−1 of MEMs satisfying I, II, and
III. Indeed, whenever case 3 holds and we decompose
Q[x̂..y] as αℓ(u2) · · · ℓ(uL−1)β , we can find set URT of pairs
(v, j), with v ∈ V and 1 ≤ j ≤ �v� , such that (v, j) ∈ URT iff
(i,P = u · u2 · · ·ub−1 · v, j) is a match of Q[x̂..y′] in G, with
(i,u) ∈ U1 , |P| < L , y′ < y , and Q[y′ + 1] /∈ rext(1,u, j)

—verifying RightMax and describing a MEM where III
fails—or | rext(1,u, j)| ≥ 2—verifying the non-singleton
condition of Definition 1 and describing a MEM where
II fails. We can gather all the elements of URT during
each descending walk in the suffix tree of T ′

3 , since they
correspond to the leaves of subtrees of branching nodes
in the tentative match of Q[x̂..y] . Analogously, we can
find set ULT of pairs (i, v), with v ∈ V and 1 ≤ i ≤ �v� ,

such that (i, v) ∈ ULT iff (i, v) = (1,ui) for 2 ≤ i ≤ L− 1
and lext(ui) ≥ 2 , or (i,P = v · ub · · ·uL−1, �uL−1�)
is a match of Q[x..y− |β|] in G, with x > x̂ and
Q[x − 1] /∈ lext(i, v, �v�) . We can compute ULT by ana-
lyzing the leaves of subtrees of branching nodes in the
walk of Tui spelling ℓ(ui) , with 2 ≤ i ≤ L− 1 . Sets U1 ,
u2 · · ·uL−1 , uL , EL , ULT and URT are a compact representa-
tion of all MEMs spanning at least 4 nodes and involving
(any substring of) Q[x̂..y] : a cross-product-like algorithm
that matches elements of U1 or L with elements of uL ,
EL , or URT , joined by the relevant part of u2 · · ·uL−1 , can
explicitly output the MEMs spanning more than 3 nodes
in linear time with respect to the size of the output, by
exploiting the fact that ULT and URT are computed and
ordered block by block.

Theorem 1  Let alphabet � be of constant size, and let
G = (V ,E, ℓ) be an indexable Elastic Founder Graph
of height H, that is, the maximum number of nodes in a
block of G is H. MEMs between query string Q ∈ �m and
G with arbitrary length threshold κ can be reported in
time O(nH2 +m+Mκ) , where n =

∑

v∈V �v� and Mκ is
the number of MEMs of interest.

Proof  We can apply the algorithm of Lemma 3 to find
κ-MEMs spanning L nodes, with L = 1, 2, 3 , taking time
O(|Q| + |T1| + |T2| + |T3| +Mκ ,1 +Mκ ,2 +Mκ ,3).
Let Mκ ,4+ be the number of MEMs satisfying threshold
κ and spanning at least 4 nodes in G. The suffix tree of
T ′
3 can be constructed in time O(|T ′

3|) and the described
modification of a descending suffix walk on Q takes con-
stant amortized time per step, assuming constant-size
alphabet. The time spent gathering U1 , u2 · · ·uL−1 , EL ,
ULT , and URT , forming an encoding of the MEMs involv-
ing Q[x̂..y] , can be charged to Mκ ,4+ because each ele-
ment of U1 , EL , ULT , and URT corresponds to one or more
MEMs, that could be retrieved in an explicit form with
a cross-product-like procedure. Indeed: for U1 we can
retrieve all leaves of the subtree rooted at p of the suffix
tree of T ′

3 ; for EL and URT , we can do the same for node r
reached by the last tentative match of Q[y+ 1..] , and for
branching nodes reached during every tentative match;
for ULT , using a compact trie and blind search [41] in
the representation of each Tu allows to compare only the
branching symbols. Finally, it is easy to see that in case
14, after we decomposed |Q[x̂..y]| as αℓ(u2) · · · ℓ(uL−1)β
as in Observation 1, we know the length of strings α ,
ℓ(u2) , ..., ℓ(uL−1) , and β , so we can postpone the compu-
tation of sets U1 , EL , ULT , and URT and avoid computing
MEMs of length smaller than κ . Thus, finding an encod-
ing of all MEMs between Q and G with threshold κ and

Page 12 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

spanning more than 3 nodes takes O(|Q| + |T ′
3| +Mκ ,4+)

time.

The stated time complexity is reached due to the fact that
|T3| dominates |T ′

3| , |T2| , and |T1| , and for indexable EFGs
|T3| ∈ O(nH2) , since every character of every node label
ℓ(u) gets repeated at most H2 times, which is an upper
bound on the number of paths of length 3 containing u.

Corollary 1  (batch queries) The results of Lem-
mas 2 and 3 and Theorem 1 hold when query Q[1..m] is
replaced by a set of queries of total length m. The respec-
tive algorithms can be modified to report MEMs between
the graph and each query separately.

Proof  Consider a concatenation Q = Q1$Q2$ · · ·Qd of
d query sequences, where $ is a unique symbol not occur-
ring in the queries nor in the graph. No MEM can span
over the unique separators and hence the MEMs between
graph G and concatenation Q are the same as those
between G and each Qi . It is thus sufficient to feed con-
catenation Q as input to the algorithms and project each
resulting MEM to the corresponding query sequence.
Corollary 2  (filtering) The algorithms of Lem-
mas 2 and 3, Theorem 1, and Corollary 1 can be modified
to report only MEMs that occur in text T formed by con-
catenating the rows (ignoring gaps and adding separator
symbols) of the input MSA of the indexable EFG. This can
be done in additional O(|T | + r log r) time and O(r log n)
bits of space and with multiplicative factor O(log log n)
added to the running times of the respective algorithms,
where r is the number of equal-letter runs in the BWT of
T.

Proof  Lemma 2 does not need any modification as the
node labels are automatically substrings of T. The same
applies to the edge labels, but for longer paths, we need
to make sure we do not create combinations not sup-
ported by T. This can be accomplished with the help of
the r-index: with the claimed time and space one can
build the run-length encoded BWT of T [42] and the
associated data structures to form the counting version
of the r-index that supports backward step in O(log log n)
time [43]. As we concatenate paths consisting of L nodes
for MEM finding in Lemma 3, we can first search them
using the r-index and only include them if they occur in
T. MEMs spanning more than 3 nodes in Theorem 1 and
Corollary 1 can be searched afterward with the r-index to
filter out those MEMs not occurring in T; these MEMs
cannot mutually overlap each other in Q by more than

one full node label, so the running time of the verification
can be charged on the size of the Elastic Founder Graph.
Corollary 3  (indexing) Running times in Lem-
mas 2 and 3 can be separated to an O(|T|)-time
indexing phase and O(|Q| + Nrmax + occ)-time
query phase, assuming constant alphabet. Here
Nrmax ≤ min(|Q|2, |Q| + |T |) is the number of recur-
sion tree nodes visited and occ is the number of κ-MEMs
reported by the respective algorithm.

Proof  Indexing T and Q was shown to take linear time.
Exploring the MEM candidates takes O(Nrmax) time. The
cross-product routine is output-sensitive on constant
alphabet � . It was shown that Nrmax ≤ |Q| + |T | . Since
each MEM candidate Q′ needs to be a substring of Q and
the algorithm makes at most |�| left-extensions from Q′
that leads to aQ′ that does not occur in Q, it follows that
Nrmax ≤ |�||Q|2.

Experiments
Comparison to r‑index
The benefit of Corollary 2 over the mere use of r-index
for MEM finding [44] is that a MEM can occur many
times in a repetitive collection while the occurrences
starting at the same column of an MSA of the collection
can be represented by a small number of paths in the
indexable Elastic Founder Graph.

To test this hypothesis, in the conference version of this
paper [26] we implemented the MEM finding algorithm
using the bidirectional r-index [25]. That implementa-
tion covers the algorithms described earlier up to paths
of length 3 nodes. Although we were able to demonstrate
that the number of MEMs on the graph is significantly
smaller than on the concatenation of sequences, the scal-
ability of the approach was not satisfactory: while node
and edge concatenations yield competitive space and
time, paths of length 3 are a bottleneck [26].

To make the approach scalable, we engineered the
approach further so that paths of length 3 are no
longer required. Namely, we observed that it suffices
to consider full node MEMs and edge prefix and suf-
fix MEMs: Full node MEMs are such that Q[i..j] = ℓ(v)
for some node v. Edge prefix MEMs are edge MEMs
s.t. Q[i..j] = ℓ(u)ℓ(v)[1..j′] , where (u, v) is an edge in the

Fig. 3  A κ-MEM (dashed line on the bottom) split to full node MEM,
edge suffix MEM, and edge prefix MEM (dashed lines on the top)

Page 13 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

graph and j′ ≥ 1 . Edge suffix MEMs are edge MEMs
s.t. Q[i..j] = ℓ(u)[i′..|ℓ(u)|]ℓ(v) , where (u, v) is and
edge in the graph and 1 ≤ i′ ≤ ℓ(u) . While we consider
minimum length κ in node and edge MEMs, we do not
restrict the length of full node, edge prefix, and edge suf-
fix MEMs. This has the negative consequence that we
lose the theoretical guarantee on the number of MEMs
reported. However, we do not lose the guarantee on the
accuracy of the approach: A MEM of length at least κ
that does not occur inside a node or inside an edge can
be split into a (possibly empty) suffix edge MEM, one
or more full node MEMs, and a (possibly empty) prefix
edge MEM (see Fig. 3). That is, the set of κ-MEMs is fully
represented by node κ-MEMs, edge κ-MEMs, full node
MEMs, and edge prefix and suffix MEMs. For the com-
putation of the latter, it is sufficient to use the same index
as for edge κ-MEMs. In fact, the algorithm to compute

these is simpler: For full node MEMs, one can just back-
ward search ℓ(v) for all nodes v in the BWT index of the
query Q. For reporting edge suffix MEMs for edge (u, v)
one can proceed similarly backward searching ℓ(u)ℓ(v)
using the BWT index of Q. After having read cℓ(v) , where
c = ℓ(u)[|ℓ(u)|] , we check if the range shrinks with the
next symbol, d = ℓ(u)[|ℓ(u)| − 1] , and report the occur-
rences Q[i..j] = cℓ(v) such that Q[i − 1] �= d or i = 1 .
This reporting can continue until ℓ(u)ℓ(v) is read or the
search range becomes empty. The reporting of edge pre-
fix MEMs is symmetric. Furthermore, if we start report-
ing MEMs just after reaching the node boundary, the
latter algorithms also report full node MEMs, so we do
not need to report them separately.

In the following, we repeat the same experiment as in
the conference version but we replace path MEMs with
full node MEMs and edge suffix and prefix MEMs.

We performed experiments with the same multiple
sequence alignment (MSA) of SARS-CoV-2 strains as
in [45]. We first filtered out strains whose alignments
had a run of gaps of length of more than 100 bases.2 Then
we extracted a sub-MSA of 100 random strains from the
remaining and extracted MSAs of the first 20, 40, 60,
and 80 strains from this MSA of 100 strains. For each
such dataset, we built the bidirectional r-index of the
sequences (without gaps) and the indexable EFG of the
MSA. The latter was constructed using the tool https://​
github.​com/​algbio/​found​erblo​ckgra​phs with parame-
ters—elastic—gfa. We post-processed the resulting GFA
file by merging unary paths, as this merging does not
break the semi-repeat property. In this merging, we left
the first and the last nodes of a unary path unaltered to
minimize the growth of edge concatenations.

We used κ = 12 in all experiments: this parameter was
chosen in order to be backward-compatible with the
experiments on the previous version of the tool [26]. For
the queries, we extracted 1000 substrings of length 100
from the first 20 strains. For each query, we selected two
random positions and mutated them with equal probabil-
ity for A, C, G, or T. The queries were then concatenated
into a long sequence and the bidirectional r-index was
built on it as described by Corollary 1. The MEMs were
computed between the queries and the respective text/
graph index.

The number of MEMs for each index is reported
in Fig. 4 and the number of runs in the two Burrows-
Wheeler transforms of each index is reported in Fig. 5.
As can be seen from the results, the number of MEMs
is greatly reduced when indexing the graph compared to
indexing the collection of strains. Moreover, long MEMs

Fig. 4  Number of MEMs with different indexes and varying number
of SARS-CoV-2 strains. Here, text-MEMs refers to bidirectional r-index.
For indexable EFG the results are shown for node κ-MEMs, edge κ
-MEMs, edge suffix MEMs, and edge prefix MEMs. Line efg-total-MEMs
is the total number of EFG MEMs. Note the logarithmic scale
on the y-axis

Fig. 5  Number of BWT runs with different indexes and varying
number of SARS-CoV-2 strains. Here text refers to the bidirectional
r-index, while labels efg-nodes and efg-edges refer to EFG node
concatenations and edge concatenations, respectively. Label
efg-total is the sum of the previous two numbers of runs

2  We used this filter to address a current limitation of the MSA segmenta-
tion algorithms for indexable EFG, where a long gap at the beginning or end
of an MSA row hurts the effectiveness of the method.

https://github.com/algbio/founderblockgraphs
https://github.com/algbio/founderblockgraphs

Page 14 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

may be reported in smaller pieces, so the actual number
of κ-MEMs can be much smaller than what is reported.

The number of runs (a major factor affecting the space
used by the indexes) for the bidirectional r-index of the
collection and that of the concatenation of node labels
are comparable. For edges the number of runs is slightly
higher. Fortunately, the growth of these metrics when
more strains are added is limited. This is not surprising,
as the strains are highly similar and thus the added infor-
mation content is limited and known to be correlated
with the number of BWT runs [46].

Table 1 gives resource usage statistics for the largest
collection of strains. The running times and space usages
were measured on a server with Intel Xeon 2.9 Ghz pro-
cessor and include index construction. Resident Set Size
(RSS) was used as the measurement tool. To speed up
MEM finding on indexable EFGs, we also tested switch-
ing the underlying bidirectional r-index to a wavelet tree

implementation of the bidirectional BWT (https://​www.​
github.​com/​jnala​nko/​BD_​BWT_​index). As can be seen,
this gives a 9-fold speed up over the use of bidirectional
r-index with EFG. The space bottleneck on the bidirec-
tional r-index is the indexing part, while with both EFG
implementations it is the MEM finding part. The former
used 7.7 MB during MEM finding, which is less than the
EFG implementations did.

Indexing properties
While our MEM finding approach has been designed for
batch processing, we wanted to check if it can be used
as an index. As considered earlier, the worst-case query
time is quadratic in the query length, but it is not clear
if this worst case is achieved in practice. To test this, we
created a multiple alignment of E. coli reference genome
and 9 mutated variants of it. Each of these mutated vari-
ants was created by choosing uniformly at random 1%
of the bases and mutating these bases with 1/3 probabil-
ity to one of the other bases. Then we constructed the
indexable EFG of this MSA and created queries of length
100, 200, . . . , 1000 by sampling from the reference as in
the earlier experiment and mutating 2% of bases. Fig-
ure 6 plots the number of recursion tree nodes visited
when exploring κ-MEMs on node concatenations with 10
queries over each different length. There appears to be a
linear dependency on the query length and only a small
deviation within each query length, so the average run-
ning time may be better than the worst case.

Conclusions
Motivated by co-linear chaining of matches between
a sequence and a labeled graph, we studied the prob-
lem of finding MEMs of at least length κ between a
sequence and a graph, we proposed an efficient solution
to compute κ-MEMs spanning 1 node, and we general-
ized this computation to MEMs spanning L nodes and
to indexable Elastic Founder Graphs. As explained in

Table 1  Input data and EFG properties (top)

Time and space usage of MEM finding on different indexes (bottom)

Text Length (bases) Number of runs in forward BWT Number of
runs in reverse
BWT

100 strains of SARS-Cov-2 2,978,342 23,856 23,848

EFG node concatenation 42,379 24,869 24,890

EFG edge concatenation 85,909 30,653 30,655

Index Time (seconds) Space (MB)

bidirectional r-index 21 52.5

EFG using bidirectional r-index 226 14.7

EFG using bidirectional BWT index 25 11.6

Fig. 6  The number of recursion tree nodes for efg-node-κ-MEMs
grows linearly by the query length (data shown against the best fit
linear function). Ten different queries per length were measured. We
added a small offset in the x-axis to show that there are indeed many
measurements, but the values are very close

https://www.github.com/jnalanko/BD_BWT_index
https://www.github.com/jnalanko/BD_BWT_index

Page 15 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

the introduction, κ-MEM finding on graphs admits a
quadratic-time conditional lower bound, so this natu-
rally poses the question of whether a quadratic-time
solution exists. We believe that a quadratic-time solu-
tion to κ-MEM finding on graphs can be achieved with
an application of the labeled direct product [22]—the
graph based on the Cartesian product that finds all
subpaths of G and substrings of Q spelling the same
string—and we reserve the study of this problem as
future work.

An alternative strategy to achieve the same goal as
in our experiments is to encode the graph as an aggre-
gate over the collection, apply MEM finding on the
r-index, and report the distinct aggregate values on
lexicographic MEM ranges to identify MEM locations
in the graph [47]. This approach is not comparable to
ours directly, as the compressibility of the aggregates
depends on the graph properties, and the indexable
Elastic Founder Graph’s size has not been analyzed
with respect to r. Also, the two approaches use differ-
ent MEM definitions. Our Definition 1 is symmetric
and local, while the version used in earlier work with
the r-index [44, 47] is asymmetric and semi-global: they
define a MEM as a substring of a query that occurs in
the text, but its query extensions do not appear in the
text. For the purpose of chaining, only the symmet-
ric definition yields connections to the Longest Com-
mon Subsequence problem [38]. For completeness, our
implementation also supports this asymmetric MEM
definition; our algorithms can be simplified for this
case.

We did not implement the general suffix tree-based
approach to handle arbitrary long MEMs, but instead
a relaxed variant that does work correctly, while unfor-
tunately sacrificing output-sensitivity. In our recent
work [39], we have solved pattern search in index-
able EFGs using only edges, and our aim is to extend
that approach to work with MEMs, so that the whole
mechanism could work on top of a plain bidirec-
tional r-index, without resorting to relaxation. Also,
our implementation has not been optimized for space
usage, and therefore we studied an implementation-
independent indicator, the number of runs in the BWT,
in more detail. This is to illustrate the potential of the
approach. Currently, the implementation uses linear
space with respect to the length of the edge concatena-
tions rather than to the number of runs in its BWT. It
is easy to modify the implementation to be linear in the
number of BWT runs, trading the space of suffix array
and range minimum queries on the D-array to report-
ing duplicate MEMs. We leave it for future work to
experimentally evaluate this option.

Finally, all of our theoretical results assume a constant-
size alphabet. This assumption can be relaxed with addi-
tional data structures. We are working on a more careful
amortized analysis to relax such assumption.

Acknowledgements
We would like to thank the anonymous reviewers for helping us improve the
presentation of the paper.

Author contributions
All authors contributed to the conceptualization, design, and analysis of the
algorithms. VM wrote the first draft of the manuscript excluding the founder
graph part. NR added the founder graph part. NR and MC polished the con-
cepts and finalized the manuscript. NR implemented founder graph construc-
tion and VM implemented MEM finding. VM conducted the experiments.

Funding
Open Access funding provided by University of Helsinki (including Helsinki
University Central Hospital). This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innovation programme under the
Marie Skłodowska-Curie Grant agreement No. 956229, and from the Academy
of Finland Grants No. 352821 and 328877.

Data availability
The code and data to reproduce the experiments are available in https://​
github.​com/​algbio/​efg-​mems.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 8 November 2023 Accepted: 30 January 2024

References
	1.	 Needleman SB, Wunsch CD. A general method applicable to the search

for similarities in the amino acid sequence of two proteins. J Mol Biol.
1970;48(3):443–53.

	2.	 Wagner RA, Fischer MJ. The string-to-string correction problem. J ACM.
1974;21(1):168–73.

	3.	 Bringmann K, Künnemann M. Quadratic conditional lower bounds for
string problems and dynamic time warping. In: 2015 IEEE 56th Annual
Symposium on Foundations of Computer Science, pp. 79–97 (2015). IEEE.

	4.	 Backurs A, Indyk P. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). SIAM J Comput. 2018;47(3):1087–97.
https://​doi.​org/​10.​1137/​15M10​53128.

	5.	 Abouelhoda MI. A chaining algorithm for mapping cDNA sequences to
multiple genomic sequences. In: Ziviani, N., Baeza-Yates, R.A. (eds.) String
Processing and Information Retrieval, 14th International Symposium,
SPIRE 2007, Santiago, Chile, October 29-31, 2007, Proceedings. Lecture
Notes in Computer Science, vol. 4726, pp. 1–13. Springer, Berlin, Heidel-
berg (2007). 10.1007/978-3-540-75530-2_1.

	6.	 Mäkinen V, Sahlin K. Chaining with overlaps revisited. In: Gørtz IL, Wei-
mann O. (eds.) 31st Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2020, June 17-19, 2020, Copenhagen, Denmark. LIPIcs, vol.
161, pp. 25–12512. Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2020). 10.4230/LIPIcs.CPM.2020.25.

	7.	 Jain C, Gibney D, Thankachan SV. Co-linear chaining with overlaps
and gap costs. In: Pe’er I. (ed.) Research in Computational Molecular

https://github.com/algbio/efg-mems
https://github.com/algbio/efg-mems
https://doi.org/10.1137/15M1053128

Page 16 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10

Biology—26th Annual International Conference, RECOMB 2022,
San Diego, CA, USA, May 22-25, 2022, Proceedings. Lecture Notes in
Computer Science, vol. 13278, pp. 246–262. Springer, Cham (2022).
10.1007/978-3-031-04749-7_15.

	8.	 Li H. Aligning sequence reads, clone sequences and assembly contigs
with BWA-MEM. arXiv preprint arXiv:​1303.​3997. 2013.

	9.	 Marçais G, Delcher AL, Phillippy AM, Coston R, Salzberg SL, Zimin A. Mum-
mer4: a fast and versatile genome alignment system. PLoS Comput Biol.
2018;14(1):1005944.

	10.	 Ohlebusch E, Gog S, Kügel A. Computing matching statistics and
maximal exact matches on compressed full-text indexes. In: Chávez,
E., Lonardi, S. (eds.) String Processing and Information Retrieval—
17th International Symposium, SPIRE 2010, Los Cabos, Mexico,
October 11-13, 2010. Proceedings. Lecture Notes in Computer Sci-
ence, vol. 6393, pp. 347–358. Springer, Berlin, Heidelberg (2010).
10.1007/978-3-642-16321-0_36.

	11.	 Vyverman M, Baets BD, Fack V, Dawyndt P. essaMEM: finding maxi-
mal exact matches using enhanced sparse suffix arrays. Bioinform.
2013;29(6):802–4. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt042.

	12.	 T.C.P.-G, Consortium. Computational pan-genomics: status, promises and
challenges. Brief Bioinformatics. 2016;19(1):118–35. https://​doi.​org/​10.​
1093/​bib/​bbw089.

	13.	 Ma J, Cáceres M, Salmela L, Mäkinen V, Tomescu AI. Chaining for accurate
alignment of erroneous long reads to acyclic variation graphs. Bioinfor-
matics. 2023;39(8):460. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btad4​60.

	14.	 Chandra G, Jain C. Sequence to graph alignment using gap-sensitive co-
linear chaining. In: Tang H, editor. Research in Computational Molecular
Biology. Cham: Springer; 2023. p. 58–73.

	15.	 Rautiainen M, Marschall T. Graphaligner: rapid and versatile sequence-to-
graph alignment. Genome Biol. 2020;21(1):1–28.

	16.	 Li H, Feng X, Chu C. The design and construction of reference pange-
nome graphs with minigraph. Genome Biol. 2020;21:1–19.

	17.	 Equi M, Mäkinen V, Tomescu AI, Grossi R. On the complexity of string
matching for graphs. ACM Trans Algorithms. 2023;19(3):1–25.

	18.	 Equi M, Mäkinen V, Tomescu AI. Graphs cannot be indexed in polynomial
time for sub-quadratic time string matching, unless SETH fails. Theor
Comput Sci. 2023;975: 114128. https://​doi.​org/​10.​1016/J.​TCS.​2023.​
114128.

	19.	 Cáceres M. Parameterized algorithms for string matching to DAGs: Fun-
nels and beyond. In: Bulteau L, Lipták Z. (eds.) 34th Annual Symposium
on Combinatorial Pattern Matching, CPM 2023, June 26–28, 2023,
Marne-la-Vallée, France. LIPIcs, vol. 259, pp. 7–1719. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 2023. 10.4230/LIPIcs.
CPM.2023.7,

	20.	 Cotumaccio N, Prezza N. On indexing and compressing finite automata.
In: Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 2585–2599 (2021). SIAM.

	21.	 Cotumaccio N. Graphs can be succinctly indexed for pattern matching
in O(|E|2 + |V |5/2) time. In: Bilgin A, Marcellin MW, Serra-Sagristà J,
Storer JA. (eds.) Data Compression Conference, DCC 2022, Snowbird, UT,
USA, March 22-25, 2022, pp. 272–281. IEEE, USA (2022). https://​doi.​org/​10.​
1109/​DCC52​660.​2022.​00035.

	22.	 Rizzo N, Tomescu AI, Policriti A. Solving string problems on graphs using
the labeled direct product. Algorithmica. 2022;84(10):3008–33.

	23.	 Belazzougui D, Cunial F, Kärkkäinen J, Mäkinen V. Linear-time string index-
ing and analysis in small space. ACM Trans Algorithms. 2020;16(2):17–
11754. https://​doi.​org/​10.​1145/​33814​17.

	24.	 Equi M, Norri T, Alanko J, Cazaux B, Tomescu AI, Mäkinen V. Algo-
rithms and complexity on indexing founder graphs. Algorithmica.
2023;85(6):1586–623. https://​doi.​org/​10.​1007/​S00453-​022-​01007-W.

	25.	 Arakawa Y, Navarro G, Sadakane K. Bi-directional r-indexes. In: Bannai H,
Holub J. (eds.) 33rd Annual Symposium on Combinatorial Pattern Match-
ing, CPM 2022, June 27-29, 2022, Prague, Czech Republic. LIPIcs, vol.
223, pp. 11–11114. Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
Dagstuhl, Germany. 2022. https://​doi.​org/​10.​4230/​LIPIcs.​CPM.​2022.​11.

	26.	 Rizzo N, Cáceres M, Mäkinen V. Finding maximal exact matches in graphs.
In: Belazzougui D, Ouangraoua A. (eds.) 23rd International Workshop
on Algorithms in Bioinformatics, WABI 2023, September 4-6, 2023,
Houston, TX, USA. LIPIcs, vol. 273, pp. 10–11017. Schloss Dagstuhl—
Leibniz-Zentrum für Informatik, Dagstuhl, Germany. 2023. 10.4230/LIPIcs.
WABI.2023.10.

	27.	 De La Briandais R. File searching using variable length keys. In: Papers Pre-
sented at the the March 3-5, 1959, Western Joint Computer Conference.
IRE-AIEE-ACM ’59 (Western), pp. 295–298. Association for Computing
Machinery, New York, NY, USA. 1959. https://​doi.​org/​10.​1145/​14578​38.​
14578​95.

	28.	 Gusfield D. Algorithms on Strings, Trees, and Sequences—Computer
Science and Computational Biology. Cambridge University Press, Cam-
bridge. 1997. https://​doi.​org/​10.​1017/​cbo97​80511​574931.

	29.	 Mäkinen V, Belazzougui D, Cunial F, Tomescu AI. Genome-scale algorithm
design: bioinformatics in the era of high-throughput sequencing. 2nd ed.
USA: Cambridge University Press; 2023.

	30.	 Ukkonen E. On-line construction of suffix trees. Algorithmica.
1995;14(3):249–60. https://​doi.​org/​10.​1007/​BF012​06331.

	31.	 Farach M. Optimal suffix tree construction with large alphabets. In: Pro-
ceedings 38th Annual Symposium on Foundations of Computer Science,
pp. 137–143 (1997). IEEE.

	32.	 Burrows M, Wheeler D. A block-sorting lossless data compression algo-
rithm. Technical Report 124, Digital Equipment Corporation. 1994.

	33.	 Schnattinger T, Ohlebusch E, Gog S. Bidirectional search in a string
with wavelet trees and bidirectional matching statistics. Inf Comput.
2012;213:13–22. https://​doi.​org/​10.​1016/j.​ic.​2011.​03.​007.

	34.	 Clark D. Compact PAT trees. PhD thesis. 1997.
	35.	 Jacobson G. Space-efficient static trees and graphs. In: 30th Annual Sym-

posium on Foundations of Computer Science, Research Triangle Park,
North Carolina, USA, 30 October–1 November 1989, pp. 549–554. IEEE
Computer Society, USA. 1989. https://​doi.​org/​10.​1109/​SFCS.​1989.​63533.

	36.	 Fischer J, Heun V. Space-efficient preprocessing schemes for range mini-
mum queries on static arrays. SIAM J Comput. 2011;40(2):465–92. https://​
doi.​org/​10.​1137/​09077​9759.

	37.	 Muthukrishnan S. Efficient algorithms for document retrieval problems.
In: Eppstein D. (ed.) Proceedings of the Thirteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6–8, 2002, San Francisco,
CA, USA, pp. 657–666. ACM/SIAM, USA. 2002. http://dl.acm.org/citation.
cfm?id=545381.545469.

	38.	 Rizzo N, Cáceres M, Mäkinen V. Chaining of maximal exact matches in
graphs. In: Nardini FM, Pisanti N, Venturini R. (eds.) String Processing and
Information Retrieval—30th International Symposium, SPIRE 2023, Pisa,
Italy, September 26–28, 2023, Proceedings. Lecture Notes in Computer
Science, vol. 14240, pp. 353–366. Springer, Cham, 2023. https://​doi.​org/​
10.​1007/​978-3-​031-​43980-3_​29.

	39.	 Rizzo N, Equi M, Norri T, Mäkinen V. Elastic founder graphs improved and
enhanced. Theoret Comput Sci. 2024;982: 114269. https://​doi.​org/​10.​
1016/j.​tcs.​2023.​114269.

	40.	 Rizzo N, Mäkinen V. Indexable elastic founder graphs of minimum height.
In: Bannai H, Holub J. (eds.) 33rd Annual Symposium on Combinatorial
Pattern Matching, CPM 2022, June 27-29, 2022, Prague, Czech Republic.
LIPIcs, vol. 223, pp. 19–11919. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2022. https://​doi.​org/​10.​4230/​LIPIcs.​CPM.​
2022.​19.

	41.	 Ferragina P, Grossi R. The String B-tree: a new data structure for string
search in external memory and its applications. J ACM. 1999;46(2):236–80.
https://​doi.​org/​10.​1145/​301970.​301973.

	42.	 Nishimoto T, Kanda S, Tabei Y. An Optimal-Time RLBWT Construction in
BWT-Runs Bounded Space. In: Bojańczyk M, Merelli E, Woodruff DP. (eds.)
49th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2022). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 229, pp. 99–19920. Schloss Dagstuhl—Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2022. https://​doi.​org/​10.​4230/​LIPIcs.​ICALP.​
2022.​99.

	43.	 Gagie T, Navarro G, Prezza N. Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J ACM. 2020;67(1):2–1254.

	44.	 Rossi M, Oliva M, Bonizzoni P, Langmead B, Gagie T, Boucher C.
Finding maximal exact matches using the r-index. J Comput Biol.
2022;29(2):188–94.

	45.	 Mäkinen V, Cazaux B, Equi M, Norri T, Tomescu AI. Linear time construc-
tion of indexable founder block graphs. In: Kingsford C, Pisanti N. (eds.)
20th International Workshop on Algorithms in Bioinformatics, WABI 2020,
September 7–9, 2020, Pisa, Italy (Virtual Conference). LIPIcs, vol. 172, pp.
7–1718. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 2020. https://​doi.​org/​10.​4230/​LIPIcs.​WABI.​2020.7.

http://arxiv.org/abs/1303.3997
https://doi.org/10.1093/bioinformatics/btt042
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bioinformatics/btad460
https://doi.org/10.1016/J.TCS.2023.114128
https://doi.org/10.1016/J.TCS.2023.114128
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1109/DCC52660.2022.00035
https://doi.org/10.1145/3381417
https://doi.org/10.1007/S00453-022-01007-W
https://doi.org/10.4230/LIPIcs.CPM.2022.11
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1145/1457838.1457895
https://doi.org/10.1017/cbo9780511574931
https://doi.org/10.1007/BF01206331
https://doi.org/10.1016/j.ic.2011.03.007
https://doi.org/10.1109/SFCS.1989.63533
https://doi.org/10.1137/090779759
https://doi.org/10.1137/090779759
https://doi.org/10.1007/978-3-031-43980-3_29
https://doi.org/10.1007/978-3-031-43980-3_29
https://doi.org/10.1016/j.tcs.2023.114269
https://doi.org/10.1016/j.tcs.2023.114269
https://doi.org/10.4230/LIPIcs.CPM.2022.19
https://doi.org/10.4230/LIPIcs.CPM.2022.19
https://doi.org/10.1145/301970.301973
https://doi.org/10.4230/LIPIcs.ICALP.2022.99
https://doi.org/10.4230/LIPIcs.ICALP.2022.99
https://doi.org/10.4230/LIPIcs.WABI.2020.7

Page 17 of 17Rizzo et al. Algorithms for Molecular Biology (2024) 19:10 	

	46.	 Mäkinen V, Navarro G, Sirén J, Välimäki N. Storage and retrieval of highly
repetitive sequence collections. J Comput Biol. 2010;17(3):281–308.

	47.	 Goga A, Baláz A, Petescia A, Gagie T. MARIA: multiple-alignment r-index
with aggregation. CoRR abs/2209.09218. 2022. https://​doi.​org/​10.​48550/​
arXiv.​2209.​09218.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.48550/arXiv.2209.09218
https://doi.org/10.48550/arXiv.2209.09218

	Finding maximal exact matches in graphs
	Abstract
	Background
	Results
	Conclusions

	Introduction
	Preliminaries
	Strings
	Labeled graphs
	Basic tools

	Finding MEMs in labeled graphs
	MEMs in node labels
	MEMs spanning exactly L nodes

	MEMs in elastic founder graphs
	Experiments
	Comparison to r-index
	Indexing properties

	Conclusions
	Acknowledgements
	References

