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Abstract 

Motivation Computational RNA secondary structure prediction by free energy minimization is indispensable 
for analyzing structural RNAs and their interactions. These methods find the structure with the minimum free energy 
(MFE) among exponentially many possible structures and have a restrictive time and space complexity ( O(n3) time 
and O(n2) space for pseudoknot-free structures) for longer RNA sequences. Furthermore, accurate free energy calcula-
tions, including dangle contributions can be difficult and costly to implement, particularly when optimizing for time 
and space requirements.

Results Here we introduce a fast and efficient sparsified MFE pseudoknot-free structure prediction algorithm, 
SparseRNAFolD, that utilizes an accurate energy model that accounts for dangle contributions. While the sparsifica-
tion technique was previously employed to improve the time and space complexity of a pseudoknot-free structure 
prediction method with a realistic energy model, SparseMFEFold, it was not extended to include dangle contributions 
due to the complexity of computation. This may come at the cost of prediction accuracy. In this work, we compare 
three different sparsified implementations for dangle contributions and provide pros and cons of each method. As 
well, we compare our algorithm to LinearFold, a linear time and space algorithm, where we find that in practice, Spar-
seRNAFolD has lower memory consumption across all lengths of sequence and a faster time for lengths up to 1000 
bases.

Conclusion Our SparseRNAFolD algorithm is an MFE-based algorithm that guarantees optimality of result 
and employs the most general energy model, including dangle contributions. We provide a basis for applying dangles 
to sparsified recursion in a pseudoknot-free model that has the potential to be extended to pseudoknots.

Keywords RNA, MFE, Secondary structure prediction, Dangle, Sparsification, Space complexity, Time complexity

Introduction
Non-coding RNAs play crucial roles in the cell, such as in 
transcription [1], translation [1, 2], splicing [3, 4], cataly-
sis [1, 5] and regulating gene expression [1, 3, 6, 7]. Since 
RNA’s function heavily relies on its molecular structure, 
facilitated by hydrogen bonding both within and between 
molecules, predicting and comprehending the structure 
of RNA is a dynamic area of research. It is reasonable to 
assume (without further knowledge) that RNA forms the 
structure with the lowest free energy [8, 9]. This is the 
motivation for algorithms that aim to predict the RNA 
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minimum free energy (MFE) structure from the pool of 
exponentially many structures it can form. Such meth-
ods employ a set of energy parameters for various loop 
types, called an energy model; to find the free energy of a 
structure, they add up the energy of its loops. While pre-
diction accuracy of these methods depends on the qual-
ity of their energy models, these methods are applicable to 
novel RNAs with unknown families or functions and for 
the prediction of the structure of interacting molecules. 
The large time and space complexity of MFE-based meth-
ods ( O(n3) time and O(n2) space where n is the length of 
the RNA), however, restricted their applications to small 
RNAs. The sparsification technique was recently utilized 
in existing MFE-based algorithms to reduce their time 
and/or space complexity [10–17] by removing redundant 
cases in the complexity-limiting steps of the dynamic pro-
gramming algorithms. While the majority of these meth-
ods focused on simple energy models, some expanded 
sparsification techniques to more realistic energy models 
[15–17]. To the best of our knowledge, no existing method 
has yet incorporated dangles energy contributions into a 
sparsified prediction algorithm. Dangle energies refer to 
the free energy contributions of unpaired nucleotides that 
occur at the end of a stem-loop structure.

We show in Fig.  1 the location of dangles on a pseu-
doknot-free structure (see Fig.  1a) and a pseudoknot-
ted structure (see Fig.  1b). The complexity of dangles 
in a pseudoknot further increases as dangles have to be 
tracked for both bands within the pseudoknot.

Neglecting dangle energies in the prediction of RNA 
structure stability can lead to inaccuracies. For instance, a 
stem-loop structure that includes an unpaired nucleotide 
at the end may appear less stable than its actual stability 
if the dangle energy contribution is ignored. Conversely, 
a stem-loop structure with an unpaired nucleotide that 
interacts positively with another one may appear more 
stable than its actual stability if the dangle energy contri-
bution is not taken into account.

Dangles, in some form, are implemented in the majority 
of MFE pseudoknot-free secondary structure prediction 
algorithms [18, 19]. RNAFold [18, 20–23, 25] is an O(n3) 
time and O(n2) space algorithm which implements the dan-
gle 0 (“no dangle”), dangle 2 (“always dangle”), and dangle 
1 (“exclusive dangle”) model (defined in Section “Dangles”). 
It also utilizes a dangle model that implements coaxial 
stacking—a type of stacking that gives a bonus to stacks in 
the vicinity of each other. LinearFold [19], a sparsified O(n) 
space heuristic algorithm has implemented the “no dan-
gle” and “always dangle” model but has not implemented 
an “exclusive dangle” model. Fold from the RNAstructure 
library [26] is an O(n3) time and O(n2) space algorithm 
which implements an “exclusive dangle” model with coaxial 
stacking. MFold [27–29] is an O(n3) time and O(n2) space 
algorithm which has implemented an “exclusive dangle” 
model with coaxial stacking.

Handling dangles in pseudoknot prediction algorithms 
is less developed. Pknots [30], an O(n6) time and O(n4) 
space pseudoknot prediction algorithm has implemented 
an “exclusive dangle” model that also includes coaxial 
stacking. Within Pknots, a set of parameters is defined for 
pseudoknot-free and pseudoknot dangles. The pseudo-
knot parameters are estimated and rely on an estimated 
weighting parameter. Hotknots [31], a heuristic algorithm, 
uses the DP09 parameters, which include pseudoknot-
ted parameters from Dirks and Pierce [32] and tuned by 
Andronescu et al. [31]; however, the energies for the pseu-
doknotted dangles are the same as those for pseudoknot-
free dangles, and there is no weighting parameter.

Contributions
In [15], we already discussed the sparsification of RNA 
secondary structure prediction by minimizing the energy 
in the Turner energy model. However, in this former 
work, we did not yet consider the energy contributions 
due to the interactions of base pairs at helix ends with 
dangling bases (i.e., ‘dangling ends’). Here, we identify the 

Fig. 1 An RNA structure is shown with dangles highlighted. a In red, we have the dangles on the bands in the multi-loop. In blue, we have 
the dangle on the closing bases of the multi-loop. In gray, we have dangles on the outer end of the RNA. b We include purple to show dangles 
occurring in a pseudoknot. Dangles in pseudoknots can be handled differently depending on the program
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correct handling of dangling end energies in the context 
of sparsification as a non-trivial problem, characterize 
the issues, and present solutions.

For this purpose, we first state precisely how dan-
gle energies are handled by energy minimization algo-
rithms; to the best of our knowledge, this is elaborated 
here for the first time. Consequently, we devise novel 
MFE prediction algorithms that include dangling energy 
contributions and use sparsification techniques to sig-
nificantly improve the time and space complexity of MFE 
prediction.

Like the algorithm in [15], our efficient SparseRNA-
FolD algorithm keeps the additional information to a 
minimum using garbage collection. In total, we study 
three different possible implementations and compare 
their properties, which make them suitable for different 
application scenarios. Finally, while we study the case of 
non-crossing structure prediction, we discuss extensions 
to the more complex cases of pseudoknot and RNA–
RNA interaction prediction (such extensions being the 
main motivation for this work in the first place).

Preliminaries: sparsification without dangling ends
We restate the preliminaries and main results from our 
former work on sparsification of free energy minimiza-
tion without dangling ends [15].

We represent an RNA sequence of length n as a 
sequence S = S1, . . . , Sn over the alphabet {A,C ,G,U} ; 
Si,j denotes the subsequence Si, . . . , Sj . A base pair of S is 

an ordered pair i.j with 1 ≤ i < j ≤ n , such that ith and 
jth bases of S are complementary (i.e. {Si, Sj} is one of 
{A,U}, {C ,G}, or {G,U} ). A secondary structure R for S 
is a set of base pairs with at most one pairing per base 
(i.e. for all i.j, i′.j′ ∈ R : {i, j} ∩ {i′, j′} = ∅ ). Base pairs of 
secondary structure R partition the unpaired bases of 
sequence S into loops [33] (i.e., hairpin loop, interior loop 
and multiloop). Hairpin loops have a minimum length of 
m; consequently, j − i > m for all base pairs i.j of R. Two 
base pairs i.j and i′.j′ cross each other iff i < i′ < j < j′ or 
i′ < i < j′ < j . A secondary structure R is pseudoknot-
free if it does not contain crossing base pairs.

The unsparsified, original algorithm for energy mini-
mization over pseudoknot-free secondary structures was 
stated by Zuker and Stiegler [24]. It is a dynamic pro-
gramming algorithm that, given an RNA sequence S of 
length n, recursively calculates the minimum free ener-
gies (MFEs) for subsequences Si,j as W (i, j) (stored in a 
dynamic programming matrix). Finally, W (1, n) is the 
optimal free energy. We state this algorithm in a sparsi-
fication-friendly form following [15]. As usual, the algo-
rithm is described by a set of recursion equations (for a 
minimum hairpin loop size of m and a maximum interior 
loop size of M)—see Fig. 2. For 1 ≤ i < j ≤ n , i < j −m:

(1)W (i, j) = min{Wp(i, j),V (i, j) } ,

(2)

Wp(i, j) = min{W (i, j − 1), min
i<k<j

W (i, k − 1)+W (k , j) } ,

(3)
V (i, j) = min{H(i, j); min

i < p < q < j
p− i + j − q − 2 ≤ M

I(i, j; p, q)+ V (p, q);WM2(i + 1, j − 1)+ a}
,

Fig. 2 We show in graphical format each of the recursions. The notation for these figures is as follows: a solid horizontal line signifies the RNA 
sequence, a solid arc denotes a base pair, and dashed arcs represent regions. Fixed endpoints of a region are depicted by red circles, while blue 
squares indicate unpaired elements used for boundary determination
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Here, a,  b,  c are multi-loop initialization penalty, branch 
penalty, and unpaired penalty in a multi-loop, respec-
tively. I(i, j; p, q) refers to an interior loop between base 
pairs i.j and p.q. The initialization cases are W (i, i) = 0 ; 
V (i, j) = WM(i, j) = ∞ for all j − i ≤ m and WM2 = ∞ 
for all j − i ≤ 2m+ 3.

In these recursions, all function values (e.g. W (i, j) or 
Wp(i, j) ) denote minimum free energies over certain classes 
of structures of subsequences Si,j . The classical Zuker/Stie-
gler matrices W  , V  and WM are defined as: W  yields the 
MFEs over general structures; V  , over closed structures, 
which contain the base pair i.j; WM , over structures that are 
part of a multi-loop and contain at least one base pair.

Since sparsification is based on the idea that certain 
optimal structures can be decomposed into two optimal 
parts, while others (namely closed structures) are non-
decomposable, we single out the partitioning cases and 
introduce additional function symbols Wp , WMp , and 
WM2.

Recurrence visualization terminology
In Fig.  2, we visualize each of the recurrences listed in 
Eqs.  (1) through  6. In our notation a solid horizontal 

(4)WM(i, j) = min{WMp(i, j),V (i, j)+ b } ,

(5)

WMp(i, j) = min
{
WM(i + 1, j)+ c,WM(i, j − 1)

+c,WM2(i, j)
}
,

(6)WM2(i, j) = min
i<k<j

WM(i, k − 1)+WM(k , j) .

line signifies the RNA sequence, a solid arc denotes a 
base pair, and dashed arcs represent regions. Fixed end-
points of a region are depicted by red circles, while blue 
squares indicate unpaired elements used for boundary 
determination.

Sparsification without dangling ends
This allows us to cleanly explain the key idea of sparsifi-
cation and consequently formalize it: to minimize over 
the energies of general structures in W (i, j)—note that 
there is another minimization inside of multi-loops that 
is handled analogously—the algorithm considers all 
closed structures V(i,  j) and all others Wp(i, j) . Optimal 
structures in the latter class can be decomposed into two 
optimal structures of some prefix Si,k−1 and suffix Sk ,j of 
the subsequence. Classically, the minimum is therefore 
obtained by minimizing over all ways to split the sub-
sequence. Sparsification saves time and space since it is 
sufficient to consider only the splits where the optimum 
of the suffix Sk ,j is not further decomposable (formally, 
where W (k , j) < Wp(k , j) ). Briefly (for more detail, see 
[15] or [10]), this is sufficient since otherwise there is a 
k ′ to optimally split the suffix further into Sk ,k ′−1 and Sk ′,j . 
The split of Si,j at k cannot be better than the split at k ′ 
and therefore does not have to be considered in the mini-
mization; thus, it can be restricted to a set of candidates. 
This is argued by the triangle inequality for W  (which 
directly follows from the definition of W  as minimum):

Consequently, sparsification improves the computation 
of Wp , WMp and WM2 . The corresponding sparsified ver-
sion are

W (i, j) ≤ W (i, k − 1)+W (k , j) for all 1 ≤ i < k ≤ j ≤ n..

Ŵ p(i, j) = min{W (i, j − 1); min
[k ,j] is candidate, k>i

W (i, k − 1)+ V (k , j) }

ŴM
p
(i, j) = min{WM(i, j − 1)+ c; min

[k ,j] is candidate, k>i
c · (k − i)+ V (k , j) ; ŴM2(i, j)}

ŴM2(i, j) = min{ ŴM2(i, j − 1)+ c; min
[k ,j] is candidate, k>i

WM(i, k − 1)+ V (k , j) },

Fig. 3 Graphical representation of the sparsified versions of the recursions: Wp , WMp , and WM2 . The notation for these figures is as follows: a solid 
horizontal line signifies the RNA sequence, a solid arc denotes base pairs, and dashed arcs represent regions. Fixed endpoints of a region are 
depicted by red circles, while blue squares indicate unpaired elements used for boundary determination
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where candidates [k , j] correspond to the not opti-
mally decomposable subsequences Sk ,j (in either 
situation: general structures or structures inside of multi-
loops), i.e. [i, j] is a candidate iff V (i, j) < Ŵ p(i, j) or 
V (i, j)+ b < ŴM

p
(i, j) . Similarly, the modified versions 

of the recursions can be found in Fig. 3.

Time and space complexity of sparsified energy 
minimization
Will and Jabbari showed that following the above algo-
rithm, W (1, n) can be calculated in O(n2 + nZ) time, 
where Z is the total number of candidates. While the MFE 
structure in the Zuker and Stiegler algorithm can be trivi-
ally reconstructed following a traceback procedure, this 
is not the case if sparsification is used for improving time 
and space as in the SparseMFEFold algorithm (and our 
novel algorithms). To improve the space complexity, spar-
sification avoids storing all entries of the energy matrix. 
The idea is to store the candidates and as few additional 
matrix entries as possible. A specific challenge is posed by 
the decomposition of interior loops (the single most sig-
nificant major complication over base pair maximization, 
see [13]). For this reason, Will and Jabbari introduced trace 
arrows for cases, where the trace cannot be recomputed 
efficiently during the traceback procedure; they discussed 
several space optimization techniques, such as avoiding 
trace arrows by rewriting the MFE recursions, and remov-
ing trace arrows as soon as they become obsolete. Due to 
such techniques, SparseMFEFold requires only linear space 
in addition to the space for candidates and trace arrows; its 
space complexity is best described as O(n+ T + Z) , where 
T is the maximum number of trace arrows.

Dangles
Recall that sparsification was discussed before (e.g., in 
SparseMFEFold) only for the simplest and least accu-
rate variant of the Turner model, namely the one with-
out dangling end contributions. Before we improve this 
situation, let’s look in more detail at dangling ends and 
different common ways to handle them. Specifically, we 
discuss different dangle models “no dangle” (model 0), 
“exclusive dangle” (model 1), and “always dangle” (model 
2) as implemented by RNAFold of the Vienna RNA pack-
age (and available via respective command line options 
-d0, -d1, and -d2).

Dangling end contributions occur only at the ends of 
stems (either in multiloops or externally) due to stacking 
interaction between the closing base pair of the stem and 
one or both immediately adjacent unpaired bases. In con-
trast, dangling end terms are not considered within (inte-
rior loops of ) stems by the energy model.

We present modified DP recursions in order to reflect 
precisely where and how dangling ends are taken into 
account. Therefore, in preparation, let’s replace V  in the 
Equations  (1) and (4) of the free energy minimization 
recursions of Section  “Preliminaries” by a new function 
V d . The dangle models differ in the exact definition of V d.

Note that in the energy model, dangling ends can also 
occur at the inner ends of helices that close a multi-loop. 
These dangles can be handled directly in the recurrence 
of V (i, j) ; specifically, in the subcase where i.j closes a 
multi-loop.

No dangles
In the simplest model “no dangle”, dangling ends are 
ignored. We achieve this by defining

While easy to implement, it is clearly wrong to ignore 
dangling end contributions, and this has a significant 
negative effect on the prediction accuracy compared to 
the other dangle models [34–36].

Always dangle
A second relatively simple way is to apply a 53’ dan-
gle energy at both ends of a stem (both 5’ and 3’ ends), 
assuming that stem ends always dangle with their adja-
cent bases. As a strong simplification, in this model, one 
disregards whether the bases are paired and/or dangle 
with a different stem (either case would actually make 
them unavailable for dangling).

This dangle model allows the dangling ends to have a 
thermodynamic influence while keeping the model easy 
to implement as neither the conflicting adjacent nucleo-
tides nor the energies of single dangle have to be tracked; 
it only requires knowledge of the bases on the 3’ and 5’ 
sides of a base pair. Formally, we implement V d as

Moreover, we add the appropriate dangle contribution 
when closing a multi-loop in Eq. (3) in the last case of the 
V -recurrence of Eq.  (3). The term WM2(i + 1, j − 1)+ a 
is rewritten to

(1’)W (i, j) = min{Wp(i, j),V d(i, j) } .

(4’)WM(i, j) = min{WMp(i, j),V d(i, j)+ b } .

(no dangle)V d(i, j) := V (i, j).

(always dangle)V d(i, j) := V (i, j)+ dangle53(i, j).

(always dangle, ML 
closing)

WM2(i + 1, j − 1)+ a+ dangle53(i + 1, j − 1).
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Exclusive dangling
The most complex but general secondary structure dan-
gle model, “exclusive dangle” considers both single and 
double unpaired nucleotides adjacent to a stem. Further-
more, the model does not allow shared dangling ends i.e. 
no base can be used simultaneously in two dangles (in 
other words, adjacent unpaired bases dangle exclusively 
with a single stem end). As the restriction requires track-
ing of unpaired bases, V(i, j) places the possible unpaired 
bases at i and j and looks at the adjacent V energies. As 

this requires knowledge of energies adjacent to the cur-
rent bases being looked at, this inherently causes diffi-
culty in sparsification.

Moreover, we consider dangles at the closing of a multi-
loop. In this model, the case WM2(i + 1, j − 1)+ a in the 
minimization of Eq. (3) is replaced by (the minimum of) 
four different cases:

Space‑efficient sparsification with exclusive 
dangles is non‑trivial
We approach our main motivation for this work, 
which is to study and solve the issues of sparsification 
in the exclusive dangle model (dangle model 1). Let’s 
thus start by applying the idea of sparsification (Sec-
tion  “Preliminaries”) straightforwardly to the Recur-
sion  (2) (where W  and V d are defined for exclusive 
dangles).

We quickly come up with the equation:

(exclusive dangle)

V d(i, j) := min





V (i, j)
V (i + 1, j)+ dangle5(i)
V (i, j − 1)+ dangle3(j)
V (i + 1, j − 1)+ dangle53(i, j)

(exclusive dangle, ML 
closing)

min





WM2(i + 1, j − 1)+ a

WM2(i + 2, j − 1)+ a+ dangle3(i)

WM2(i + 1, j − 2)+ a+ dangle5(j)

WM2(i + 2, j − 2)+ a+ dangle53(i, j)

but we would still have to define ed-candidate (exclusive 
dangle candidate) to make this work. We could define: [i,j] 
is an ed-candidate iff V d(i, j) < Ŵ p(i, j) , where the cor-
rectness of sparsification holds to a sparsification-typical 
triangle inequality argument (Section “Preliminaries”).

Expanding V d shows that this is not the only possible 
path to sparsifying the recursion. We could consider

with different sets of candidates for all four cases. How-
ever, storing all these candidate sets (recall that there is 
even a second recursion that needs to be sparsified) is 
easily prone to compromising any space benefits due to 
sparsification in practice.

The transfer of the techniques from [15] brings even 
more problems, since due to such definitions, can-
didates [i,j] do not necessarily correspond to subse-
quences that have closed optimal structures. Will and 
Jabbari strongly exploited this fact for their strong 
space savings.

Even considering our definition of an ed-candidate, we 
still run into the challenge of to tracing back to the cor-
responding base pair. With just the dangle energy, this 
poses issues as an ed-candidate can be one of four cases.

Lemma 1 In the exclusive dangle model, storing only the 
energy of each ed-candidate is not sufficient to correctly 
trace back from the candidate.

Proof Concretely, for the loop-based Turner 2004 
energy model [37] with exclusive dangles, consider the 
following RNA sequence S of length 12 with its MFE 
structure:

In the calculation of W (1, 12) , the recur-
rences unfold to W (1, 12) = W (1, 1)+ V

d(2, 12)

= W (1, 1)+ V (2, 11)+ dangle3(12) = · · · = −2.9 kcal/

Ŵ p(i, j) = min{W (i, j − 1);

min
[k ,j] is ed-candidate,k>i

W (i, k − 1)+ V d(k , j) },

�W p(i, j) = min




W (i, j − 1)
min[k ,j] is ed0-candidate,k>i W (i, k − 1)+ V (i, j)
min[k ,j] is ed5-candidate,k>i W (i, k − 1)+ V (i + 1, j)+ dangle5(i)
min[k ,j] is ed3-candidate,k>i W (i, k − 1)+ V (i, j − 1)+ dangle3(j)
min[k ,j] is ed53-candidate,k>i W (i, k − 1)+ V (i + 1, j − 1)+ dangle53(i, j)
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mol, i.e. it is optimal to assume dangling of base pair 
(2, 11) to the right.

In a non time- and space-sparsified algorithm, recom-
puting V d from V  adjacent energies would be trivial. 
However, due to space sparsification, the values of V  
are generally unavailable in the trace-back phase. In the 
constructed example, recomputation would require us 
to know V (2, 12) , V (2, 11) , V (3, 12) , and V (3, 11) . Thus, 
under the assumption of the lemma, the optimal dangling 
cannot be efficiently recomputed for a candidate like 
[2,12].  �

In our preceding work, SparseMFEFold [15], trace 
arrows were introduced to trace back to non-candidate val-
ues necessary to the structure within the interior loop case: 
V il-cand(i, j) . Trace arrows that point to candidates are not 
stored as they can be avoided by minimizing over candi-
dates as seen in Eq. (7).

Consequently, finding the inner base pair of a loop 
through a candidate relies on the energy saved being 
V(p, q). However, as shown in Eq. (exclusive dangle, ML 
closing), the dangle energy could be V(p, q), V (p+ 1, q) , 
V (p, q − 1) , or V (p+ 1, q − 1) . Replacing the stored 
energy within a candidate with V d may conflict with the 
interior loop calculation. Recomputation of the V  values 
required for Vd would negate the sparsification benefit. 
In summary, there is no easy or direct way to save the 
V  energy required for the interior loop as well as the V d 
energy required for a multi-loop or external loop within 
the current candidate structure.

Lemma 2 The minimization over inner base pairs in the 
recursion of V  cannot be restricted to candidates in the 
same way as in SparseMFEFold.

Proof Again consider the loop-based Turner 2004 
energy model. There is a sequence S and 1 ≤ i < j ≤ n , 
such that V d(p, q) < V (p, q) , but there is no way to trace 
back to p and q from i and j, namely, consider the RNA 
sequence S of length 19 with its MFE structure:

(7)

V il-cand(i, j) = min

i < p < q < j

p− i + j − q − 2 ≤ M

[p, q]is candidate

I(i, j; p, q)+ V (p, q).

The optimal recursion case of V (3, 17) forms the inte-
rior loop closed by 3.17 with inner base pair 5.15, 
because V (5, 15) = −2.4 kcal/mol and V(3,17) = 
I(3, 17; 5, 15)+ V (5, 15) = −1.5 kcal/mol.

The space optimization of SparseMFEFold removes trace 
arrows to candidates since the trace-back to candidates 
can be reconstructed based on candidate energies (com-
pare Eq. (7)).

In the way of SparseMFEFold, we would not store a 
trace arrow pointing to 5.15 from [3, 17] , since [5, 15] is 
a candidate. However, without a trace arrow, we would 
not reconstruct the correct trace. This happens, since 
the optimal structure in the subsequence 5..15, GGG AAA 
ACCCC , would be (((....))). due to the 3’ dangle 
( V d(5, 15) = −2.9 kcal/mol). Consequently, tracing back 
the optimal path from V d(5, 15) wrongly introduces a 
base pair at 5.14.  �

SparseRNAFolD
SparseRNAFolD combines the power of sparsification 
and a general energy model including dangle energies to 
achieve a fast and highly accurate RNA pseudoknot-free 
secondary structure prediction. To this end, we started 
with the sparsified dynamic programming recurrences 
of SparseMFEFold (which implements the “no dangles” 
model), rewriting and revising them to accommodate 
various dangle energies.

“Always dangle” model
Recall that “always dangle” model considers both the 5’ 
and 3’ ends of a branch of a multi-loop or external loop 
for dangle contributions. The addition of this model is 
trivial, with no change necessary to the recurrences of 
the SparseMFEFold. Note that, as mentioned earlier, this 
model ignores overlapping cases and may overcount the 
contributions of dangles.

“Exclusive dangle” model
As mentioned in Section  Space-efficient sparsification 
with exclusive dangles is non313 trivial, accounting for 
the “exclusive dangle” model is non-trivial when dealing 
with candidates, as ed-candidates do not hold enough 
information to identify the direction of dangles. To allevi-
ate this problem, we provide three different strategies, as 
described below. Each strategy has its pros and cons and 
should be selected based on the application.

In order to handle the changes for exclusive dangles, 
we extend the candidate data structure. A candidate base 
pair, [i, j] as implemented in SparseMFEFold, holds i, the 
start position, and the energy V (i, j) as a tuple (i,V (i, j)) 
and is stored at the jth index of the candidate list. Our 
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extensions to candidate structures involves including the 
energy values for W  and WM in the candidate tuples as 
(i,V (i, j),W (i, j),WM(i, j)) . The modification reflects the 
need to store more information about the dangles posi-
tions and directions.

Strategy 1: trace arrow implementation
As the first strategy to trace an ed-candidate to its posi-
tion, we used modified trace arrows. We refer to this 
strategy as SparseRNAFolD-Trace.

Recall that in SparseMFEFold, a trace arrow struc-
tures were introduced to identify energy matrix entries 
that are necessary for calculating the energy of internal 
loops but are not kept as candidates. Here, we define ed-
trace-arrows to hold information about dangle positions 
to aid with the traceback procedure from ed-candidates. 
In particular, in the sparse fold reconstruction procedure 
of SparseRNAFolD, an ed-trace-arrow is checked for a 
chosen ed-candidate within W  , WM , and ŴM2 to adjust 
the energy and position of the base pair as required. The 
drawback of this strategy comes from the innate ineffi-
ciencies of the trace arrows, meaning an increase in space 
usage. Recall that within SparseMFEFold, we used strate-
gies such as garbage collection and trace arrow avoidance 
to save space. These strategies are not, however, possible 
for SparseRNAFolD-Trace, as an ed-candidate cannot be 
excluded from the optimal MFE path, and an ed-trace-
arrow is therefore required for every ed-candidate.

Bit encoding Within the second and third strategies, as 
explained next, we employed bit encoding and bit decod-
ing to store the information about the dangle within the 
energy values to reduce space usage. Currently, energy 
values are stored as 32-bits int data type. We note that the 
maximum expected bit usage for the energy value of an 
RNA sequence of up to 20000 bases is about 13 bits. We 
employed a bit shift to store the dangle type in the first 
two bits of the V entries, referred to as Venc , and repre-
sented in Eq. (8).

Bit decoding technique was used to retrieve the energy 
value and type/direction of dangle contributions. Bit 
decoding was done in two steps. Shifting the encoded 
energy, Venc , two bits forward gave back the energy, V 
(see Eq. 9).

The dangle type is found in the first two bits; no dangle 
is represented with a “00” in bits; a 5’ dangle with a “01”; 
a 3’ dangle with a “10”; and a 53’ dangle with a “11”. The 

(8)Venc = (V ≪ 2) | dangle

(9)V = Venc ≫ 2

dangle type is decoded using a bit-wise AND with “11” 
to only keep the first two bits of the encoded energy, as 
represented in Eq. (10).

Strategy 2: Bit encoding with candidate extension
As the second strategy, we used bit encoding within the 
W  and WM entries of the ed-candidate data structure. 
We refer to this strategy as SparseRNAFolD-Standard. 
This implementation of bit encoding was utilized in W  
and WM entries, as other loop types do not deal with 
dangles.

Strategy 3: Bit encoding with altered candidate
As the third strategy, we further optimize for space by 
reducing the candidate size. To reduce candidate size, 
we stored energy values in ed-candidates in W  and WM 
as V d minus the dangle energy. We refer to this strategy 
as SparseRNAFolD-Triplet. This strategy allows for the 
correct identification of dangle types regardless of energy 
parameters used. Note that currently, in the Turner 2004 
energy model, the parameter values for 53’ dangle for an 
external loop and multi-loop are the same. These values 
may be further estimated and revised in future energy 
models. The extra calculations to retrieve the V d value 
ensure the accuracy of the result in the event of such a 
change.

As we only require constant space for each candi-
date, the asymptotic time and space complexity can be 
expressed analogously to SparseMFEFold [15] with the 
time as O(n2 + nZ) and O(n+ Z + T ) with Z << n2 – 
where Z is the number of candidates in SparseRNAFolD 
and T is the number of trace arrows in SparseRNAFolD.

Compared methods
To evaluate the performance of our SparseRNAFolD, we 
compared it to two of the best-performing methods for 
prediction of pseudoknot-free RNA secondary structure, 
namely RNAFold [18] and LinearFold [19].

RNAFold
RNAFold is part of the Vienna RNA package [18]. As dis-
cussed in Section  “Dangles”, RNAFold is an O(n3) time 
and O(n2) space pseudoknot-free RNA secondary struc-
ture prediction algorithm. It takes an RNA sequence as 
input and provides the MFE structure as output. RNA-
Fold is well-maintained and highly optimized and is used 
here as a benchmark for a fast implementation of the 
Zuker and Steigler-type MFE algorithm.

(10)dangle = Venc && 11
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LinearFold
LinearFold [19] is a pseudoknot-free RNA secondary 
structure prediction algorithm that uses heuristic tech-
niques to run in linear time and space. As the main goal 
of sparsification is to speed up the time and space com-
plexity of MFE prediction, we set out to investigate how 
our SparseRNAFolD compares in practice to LinearFold 
with better asymptotic complexities.

LinearFold employs two techniques to reduce its time 
and space complexity to O(n), namely beam pruning and 
k-best parsing. Both methods aim to prune the structure 
path to optimal cases only. Beam pruning works by only 
keeping a predetermined number (specified by the beam 
width, b) of the optimal states. Within LinearFold, best 
sets are kept for each possible loop type as defined in 
the Zuker algorithm: hairpin, multi-loop fragments, and 
internal loop. Through beam pruning, time complexity is 
reduced to O(nb2) and the space to O(nb) where b is the 
beam width. K-best parsing further reduces the time to 
O(nb log(b)) . We note that due to the heuristic nature of 
the LinearFold algorithm, it does not guarantee finding 
the MFE structure for a given RNA sequence.

Experimental design
We implemented SparseRNAFolD in C++. All experi-
ments were performed using an Azure virtual machine. 
The virtual machine contained 8 vCPUs with 128 GiB of 
memory.

Dataset
We used the original dataset from SparseMFEFold [15]. 
This dataset is comprised of 3704 sequences in 6 differ-
ent families selected from the RNAstrand V2.0 database 
[38]. The smallest sequence is 8 nucleotides long, while 
the largest is 4381 nucleotides long.

Energy model
We used the energy parameters of the Turner 2004 
energy model [37, 39], as implemented in the Vien-
naRNA package [18].

Accuracy measures
The number of true positives (TP) is defined as the num-
ber of correctly predicted base pairings within the struc-
ture. The number of false positives (FP), similarly, is the 
number of predicted base pairs that do not exist in the 
reference structure. Any base missed in the prediction 
that corresponds to a pairing in the reference structure is 
a false negative (FN).

We evaluate the performance of algorithms based on 
three measures: sensitivity, positive predictive value 
(PPV), and their harmonic mean (F-measure).

Proof of concept with RNAFold
As a proof of concept for the correct implementation of 
dangle energy models (i.e., “always dangle” and “exclu-
sive dangle”), we assessed SparseRNAFolD against 
RNAFold. As the MFE structure may not be unique, we 
restricted our assessment to the MFE value obtained by 
each method. We found that the MFE predicted by Spar-
seRNAFolD and RNAFold was the same. Details of the 
results can be found in our repository.

Results
We measured runtime using user time and memory using 
the maximum resident set size.

Alternative models
We start by comparing the three different implementa-
tions of SparseRNAFolD. SparseRNAFolD-Standard was 
found to be in the middle in terms of memory and time. 
The effect of additional trace arrows in SparseRNAFolD-
Trace had a 27% increase in memory usage on the largest 
sequence compared to SparseRNAFolD-Standard. How-
ever, the increase in computation from the bit encod-
ing only resulted in a 5% increase in time on the largest 
sequence. We find a similar effect when comparing Spar-
seRNAFolD-Standard and SparseRNAFolD-Triplet. The 
altered triplet structure reduced the memory by 9% but 
increased the time by 10% due to extra computation. 
These are highlighted in Fig. 4.

Comparison with LinearFold and RNAFold
When comparing SparseRNAFolD-Standard with Linear-
Fold and RNAFold, we look at the “always dangle” model, 
as LinearFold does not implement the “exclusive dangle” 
model.

We first compared the three algorithms by their predic-
tive accuracy (F-measure). For comparison, we selected 
all sequences from our dataset whose structure was 
available on RNAstrand. We further constrained it to 
sequences that contained hairpins greater than 3 and 
no pseudoknots. This resulted in 986 sequences. We 
found that SparseRNAFolD-Standard had a marginally 
better, but not significant, average F-measure of 0.6394 

(11)Sensitivity =
TP

TP + FN
,

(12)PPV =
TP

TP + FP
,

(13)Fmeasure =
2 · PPV · Sensitivity

PPV + Sensitivity
.
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compared to 0.6391 of LinearFold. As described in Sec-
tion  “Proof  450 of concept with RNAFold”, RNAFold 
and SparseRNAFold-Standard are identical in predictive 
accuracy.

We then assessed their time and space usage. To 
increase the size of our dataset for this testing, we 
included a dinucleotide shifted version of our dataset in 
our test data. We then constrained the size of sequences 
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Fig. 4 We plot the results of the three versions of SparseRNAFolD when given RNA sequence only as input against each other and an “exclusive 
dangle” model based on the dataset. a Memory Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark instances. 
The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1 , c2 , and exponent x for the fit. We ignored all values < 1000 . b 
Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we report (in parenthesis) the exponent x that we 
estimated from the benchmark results; it describes the observed complexity as �(nx)
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to those > 400 . The maximum time and memory used 
by LinearFold on this dataset were 3.34 s and 118,  848 
KB. The maximum time and memory used by RNAFold 
were 22.26 s and 109136 KB. In contrast, the maximum 
time and memory spent by SparseRNAFold were 18.32 s 
and 13,000 KB, respectively. This is illustrated in Fig. 5a, 
b. The results show that SparseRNAFolD-Standard uses 
far less memory on even the largest pseudoknot-free 
sequences in our dataset. Note that the maximum resi-
dent set size is nine times lower than that of LinearFold 
and eight times lower than that of RNAFold. RNAFold’s 
time remained consistent with SparseRNAFolD-Standard 
until longer sequences where it falls behind. LinearFold, 
whose time complexity is O(nb log(b)) , where n is the 
length of the sequence and b is the beam width, did per-
form faster than SparseRNAFolD-Standard as the length 
of the sequence increased. However, we did find that 
SparseRNAFolD-Standard outperformed LinearFold in 
practice for sequences of up to about 1000 nucleotides.

Highlighting RNAFold
To highlight the difference in space between RNA-
Fold and SparseRNAFolD-Standard, we selected 81 
sequences from our dataset with size greater than or 
equal to 2500. The sequence with the maximum length 
in the set was 4381 nucleotides long.

As seen in Table 1, while SparseRNAFolD-Standard’s 
runtime is comparable to RNAFold’s, its memory con-
sumption is about five times lower.

Candidate comparison
In order to illustrate the effectiveness of candidates in 
terms of memory consumption, we plotted the rela-
tionship between the number of candidates and trace 
arrows, against the quadratic space, using the dataset that 

includes dinucleotide shifted elements. To emphasize 
the upper limit of candidate usage when executing Spar-
seRNAFolD-Standard, we employ the “exclusive dangle” 
model.

For a more meaningful comparison, we juxtapose the 
counts of candidates and trace arrows with the count 
obtained from a single quadratic matrix. It is important 
to note that the majority of algorithms employing quad-
ratic space make use of multiple quadratic matrices. Con-
sidering this aspect, we discovered that, on average, the 
disparity in count between the number of candidates and 
trace arrows with quadratic space was approximately a 
factor of 100. Figure 6 highlights that the increase in can-
didates is consistent with the increase in length.

Folding with hard constraints
As partial information on structures has become more 
available and is extensively used for better prediction of 
possibly pseudoknotted structures [40, 41], we further 
extend our evaluation of the SparseRNAFolD versions to 
cases where we are folding with hard constraints [23] in 
addition to the RNA sequence.

To study the effect of hard structure constraints on the 
efficiency of our sparsified folding algorithm, for each 
sequence, a pseudoknot-free constraint structure was 
generated. The structure was generated by taking two 
random indices at a time from the sequence. If the two 
bases could pair, were at least 3 bases apart, and did not 
form a pseudoknot with the other base pairs, the base 

Table 1 We tabulate the results of the comparison between 
RNAFold and SparseRNAFolD-Standard when given only 
sequences with length > 2500 from our dataset as input and 
using the “exclusive dangle” model

We looked at time (s) and memory (maximum resident set size in KB) for the 
minimum, median and maximum length sequence within the constrained 
dataset

Run-time (s) Memory: resident set size 
(KB)

RNAFold SparseRNAFolD RNAFold SparseRNAFolD

Minimum 5.04 5.36 40,148 8832

Median 7.28 7.86 51,284 12,592

Maximum 22.08 18.32 109,040 16,836
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pair was added to the constraint structure. In order to 
avoid overpopulating the constraint structure, the num-
ber of base pairs in a constraint structure was capped at 
0.5× log2(length) . This resulted in an average of 3–7 base 
pairs per sequence. There was a noticeable decrease in 
time and space when a constraint structure was provided 
in addition to an RNA sequence. Between RNA sequence 
only as input and sequence as well as a constraint struc-
ture, SparseRNAFolD saw a 67% decrease in time and a 
40% decrease in memory. As the constraint structure 
reduced the number of candidates for a sequence, the 
difference in memory was less apparent between the 
models. SparseRNAFolD-Standard had a 6% increase in 
time from SparseRNAFolD-Trace but a 15% decrease in 
memory on the largest sequence. From SparseRNAFolD-
Standard to SparseRNAFolD-Triplet, there was an 8% 
decrease in memory but a 13% increase in time. Note 
that even when reducing the number of candidates, the 
increase in time from Standard to Triplet was greater by 
3% . This can be seen in Fig. 7.

Modification of internal loop logic
In MFE-based dynamic programming algorithms, the 
calculation of the internal loop stands out as the primary 
time-consuming element in the prediction process. This 
holds particularly true in the context of sparsified pre-
diction, as the internal loop remains the singular aspect 
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Fig. 7 We plot the results of the three versions of SparseRNAFolD when given an RNA sequence, an “exclusive dangle” model, and a random 
pseudoknot-free structure as input against each other based on our dataset. a Memory usage (maximum resident set size in KB) versus length 
(log-log plot) over all benchmark instances. The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1,c2 , and exponent 
x for the fit. We ignored all values < 1000 . b Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we 
report (in parenthesis) the exponent x that we estimated from the benchmark results; it describes the observed complexity as �(nx)

where sparsification struggles to enhance runtime during 
energy calculations. Given this bottleneck, any enhance-
ment to the internal loop logic signifies a substantial 
improvement in sparsified algorithms.

To accommodate constraint folding, a logic check was 
incorporated to verify that the interior base pair does 
not violate the specified structural constraint. Given the 
higher frequency of occurrences of internal loops com-
pared to non-internal loop calculations, the impact of 
frequent branch mispredictions on processing time is 
substantial. Specifically, a typical branch instruction 
requires 0–2 clock cycles, whereas a branch mispre-
diction can lead to a significant latency of 12–25 clock 
cycles, depending on the processor [42]. To mitigate the 
impact of branch misprediction, we opted to reconfigure 
the logic check, shifting its reliance from branching to 
operations involving addition and bit manipulations. We 
refer to this version of SparseRNAFold as SparseRNA-
Fold V2.0. The initial format of the logic check involves 
nested if statements within the for loops. The first if state-
ment verifies the absence of paired bases between the 
two opening bases of the base pairs, while the second if 
statement ensures the presence of only unpaired bases 
between the two closing bases—see Algorithm 1. Never-
theless, we can achieve equivalent functionality through 
bit manipulation, eliminating the need for explicit if 
statements. 
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Algorithm 1 Original internal loop

1. Fundamentally, our objective is to attain the energy 
value when feasible and assign infinity otherwise. 
With this perspective, we can conceptualize this 
process as adding 0 when achievable and incorpo-
rating infinity when the energy value is not attain-
able.

2. The second key point to keep in mind is that, for a 
signed integer, the representation of 0 entails the 
signed bit as 0, followed by all subsequent bits as 0. 
Conversely, the representation of −1 involves the 
signed bit as 1, with all subsequent bits set to 1.

Algorithm 2 Modified internal loop

In our initial if statement, we store the boolean indicat-
ing the absence of bases on the left as an integer and sub-
tract 1, guaranteeing a result of either 0 or −1 . The same 
process is then applied to the right side, and the results 
are combined using a bitwise OR operation. If both sides 
permit pairing, the result is 0; otherwise, it is −1 . This 
result is subsequently bitwise ANDed with a predefined 
large value representing infinity. Consequently, if the 
result was 0, the outcome is 0, and if the result was −1 , it 
is set to infinity. Finally, we add our energy value to this 
outcome. This sequence of operations ensures that both 
sides permit pairing, all without the need for explicit 
branching via an if statement—see Algorithm 2.

We observed an approximately 17% reduction in predic-
tion time for the largest sequence in the dataset (10241) 
when comparing the original SparseRNAFolD to Spar-
seRNAFold V2.0.

Since the internal loop represents an area within spar-
sified algorithms that cannot be sparsified, this improve-
ment can be applied not only to SparseRNAFold V2.0 but 
also to other MFE-based dynamic programming algo-
rithms (Fig. 8).

Performance on very large sequences
The advantage of utilizing heuristic approaches such 
as LinearFold lies in their capability to predict larger 
sequences efficiently, attributed to their low time com-
plexity. However, this advantage comes with the trade-
off that they cannot guarantee the prediction of the 
MFE structure for the given sequence. To underscore 
the effectiveness of sparsification and the enhancements 
in internal loop logic, we conducted an analysis on the 
SARS-CoV-2 RNA, which spans a length of 29, 903 bases. 
As seen in Table 2, although SparseRNAFolD V2.0 exhib-
ited a longer prediction time for predicting the MFE 
structure of this RNA, it delivered a structure with lower 
free energy while utilizing only 25.5% of the memory at 
this extended length.

Conclusions
In this work, we introduced SparseRNAFolD, a sparsi-
fied MFE RNA secondary prediction algorithm that 
incorporates dangles contribution to the energy calcu-
lation of a sparsified method. We showed that while “no 
dangle” and “always dangle” models were easy to incor-
porate into the existing algorithms, “exclusive dangle” 
introduces non-trivial challenges that need calculated 
changes to the sparsified recursions to alleviate. We 
identified three strategies to implement dangle contri-
butions: SparseRNAFolD-Trace which utilizes addi-
tional trace arrows; SparseRNAFolD-Standard, which 
incorporates bit encoding as well as extension to the 
definition of candidate structures; and SparseRNA-
FolD-Triplet, which, similar to the SparseRNAFolD-
Standard, utilizes bit encoding but modifies candidate 
energy calculation in anticipation of possible change 
in parameters in the future. Comparing these three 
versions on a large dataset, we concluded that the 
SparseRNAFolD-Triplet implementation is the most 
efficient in terms of memory, and SparseRNAFolD-
Trace is the most efficient in terms of time. These two 
versions showcase how space and time trade-offs can 
improve performance for a specific application. The 
SparseRNAFolD-Standard version provides a middle 
ground for improvement in both time and space and 
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has been chosen as the standard implementation of our 
algorithm. While guaranteeing the MFE structure and 
matching the energy of RNAFold, our SparseRNAFolD 
is on par with LinearFold on memory usage and run 
time for sequences up to about 1000 bases. This pro-
vides a promising starting point to bring dangles con-
tributions to pseudoknotted MFE structure prediction 
methods in which memory usage is the prohibitive fac-
tor [17].

Our results showcase the substantial difference in 
the number of candidates when compared to quadratic 
space. This provides an illuminating perspective on the 
space improvement achieved through sparsification.

We further assessed the effect of hard structural con-
straints on the performance of SparseRNAFolD, pre-
senting significant improvements both in terms of time 

and space. We believe the significant improvement in 
time and space due to the limitation of search space 
by hard structural constraints can have a more pro-
nounced impact on sparsified pseudoknotted MFE pre-
diction, which is our ultimate goal.

We enhanced our initial algorithm by refining the 
internal loop logic, mitigating branch mispredictions 
through the elimination of conditionals and incorporat-
ing the same functionality via addition and bit manip-
ulation. This optimization resulted in a notable 17% 
improvement over the original code

Additionally, we demonstrated SparseRNAFolD V2.0’s 
proficiency in predicting extensive sequences, exempli-
fied by its handling of the SARS-CoV-2 sequence com-
prising 29, 903 bases. Notably, our approach ensures the 
prediction of the MFE structure while consuming less 
memory compared to LinearFold.

Finally, memory consumption becomes a bottleneck for 
the prediction of MFE structure for long RNA sequences 
or MFE pseudoknotted structure prediction. Utilizing 
the power of computational servers, such restrictions 
have been somewhat alleviated. Sparsification provides 
improvements in both time and space requirements and 
can be used to bring computations back to personal com-
puters, providing equal access to the existing technology. 
In addition, improvements in memory usage can improve 
use cases for computing clusters, as the amount of mem-
ory assigned to a computing node is also limited.
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Fig. 8 We plot the results of SparseRNAFolD V2.0 against two state of the art algorithms: RNAFold and LinearFold when given RNA sequence 
only as input against each other and an “always dangle” model on our dataset and the dinucleotide shuffled version of our dataset and three added 
sequences of length: 6380, 8082, and 10241. a Memory Usage (maximum resident set size in KB) versus length (log-log plot) over all benchmark 
instances. The solid line shows an asymptotic fit (c1 + c2n

x) for sequence length n, constants c1,c2 , and exponent x for the fit. We ignored all 
values < 1000 . b Run-time (s) versus length (log-log plot) over all benchmark instances. For each tool in both plots, we report (in parenthesis) 
the exponent x that we estimated from the benchmark results; it describes the observed complexity as �(nx)

Table 2 We tabulate the results of the comparison between 
LinearFold and SparseRNAFolD V2.0 when given the SARS-COV-2 
sequence of length 29,903 as input and using the “always dangle” 
model

We looked at the energy (kcal/mol), time (s) and memory (maximum resident set 
size in KB)

SparseRNAFolD V2.0 LinearFold

Energy (kcal/mol) − 8787.50 − 8476.20

Run-time (s) 1127.92 27.67

Memory: resident set size (KB) 274,704 1,076,904
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