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Abstract 

Computing k‑mer frequencies in a collection of reads is a common procedure in many genomic applications. Several 
state‑of‑the‑art k‑mer counters rely on hash tables to carry out this task but they are often optimised for small k 
as a hash table keeping keys explicitly (i.e., k‑mer sequences) takes O(N k

w
) computer words, N being the num‑

ber of distinct k‑mers and w the computer word size, which is impractical for long values of k. This space usage 
is an important limitation as analysis of long and accurate HiFi sequencing reads can require larger values of k. We 
propose Kaarme, a space‑efficient hash table for k‑mers using O(N + u

k

w
) words of space, where u is the number 

of reads. Our framework exploits the fact that consecutive k‑mers overlap by k − 1 symbols. Thus, we only store 
the last symbol of a k‑mer and a pointer within the hash table to a previous one, which we can use to recover 
the remaining k − 1 symbols. We adapt Kaarme to compute canonical k‑mers as well. This variant also uses point‑
ers within the hash table to save space but requires more work to decode the k‑mers. Specifically, it takes O(σ k) time 
in the worst case, σ being the DNA alphabet, but our experiments show this is hardly ever the case. The canonical 
variant does not improve our theoretical results but greatly reduces space usage in practice while keeping a competi‑
tive performance to get the k‑mers and their frequencies. We compare canonical Kaarme to a regular hash table 
storing canonical k‑mers explicitly as keys and show that our method uses up to five times less space while being 
less than 1.5 times slower. We also show that canonical Kaarme uses significantly less memory than state‑of‑the‑art 
k‑mer counters when they do not resort to disk to keep intermediate results.

Keywords Genomics, String hashing, k‑mers

Introduction
Strings of length k called k-mers are central in many 
genomic analyses. While in the past, relatively short 
k-mers with k less than 100 have been used to analyse 
short read data produced by Illumina sequencers, the 

development of long and very low error rate sequenc-
ing technologies such as HiFi sequencing by Pacific Bio-
sciences has created a need to support longer k-mers to 
take advantage of the length of the reads. For example, 
when assembling this data to whole genomes using de 
Bruijn graphs, assemblers use k-mers with k up to sev-
eral thousand base pairs to decrease branching in the de 
Bruijn graph [2, 25]. A hash table associating k-mers to 
values such as the frequency of a k-mer is a basic data 
structure used in the analysis of k-mers. This work pre-
sents a space-efficient hash table for long k-mers.

The use of k-mers is common in many tasks in the 
analysis of sequencing data including error correction [7, 
13], genome assembly [11, 21], genetic variant calling [20, 
30], metagenomic classification [32], and repeat analysis 
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[6, 15]. The first step in most k-mer-based methods is 
counting [17], where the aim is to compute the frequen-
cies of all k-mers occurring in a sequencing read set. One 
approach to k-mer counting, taken e.g. by Jellyfish 
[18], DSK [26], and CHTKC [31], is to use a hash table to 
associate the k-mers with their frequencies. In addition 
to counting, k-mer hash tables are useful in applications 
where k-mers have to be associated with values and ran-
dom access to the k-mers is needed.

The hash tables used by tools like Jellyfish [18] and 
CHTKC [31] are highly optimised for short k-mers. A k-
mer of DNA can be encoded in 2k bits and thus the k-
mer can be stored in each hash table entry when k ≤ 32 , 
i.e. the sequence fits the computer word of modern com-
puter architectures. However, when k becomes large, this 
approach is space-consuming as the space complexity is 
O(N k

w ) words, where N is the number of unique k-mers 
and w is the computer word size. For example, in de-
Bruijn-graph-based genome assemblers for HiFi reads, 
it is crucial to use a large value of k to take advantage of 
the read lengths and decrease branching in the de Bruijn 
graph. However, due to the memory bottleneck caused 
by long k-mers, these tools resort to various ways to 
avoid creating a dictionary of all k-mers in the read set. 
For instance, MBG (Minimizer-based sparse de Bruijn 
Graph) [25] uses minimizer winnowing [27] to choose a 
subset of the k-mers and then builds a sparse de Bruijn 
graph using this subset.

LJA (La Jolla Assembler) [2] uses a complex procedure 
to directly construct the compressed de Bruijn graph, 
which is a memory-efficient version of a de Bruijn graph 
where all nonbranching paths have been compressed. 
LJA first builds a sparse de Bruijn graph using minimiz-
ers similar to MBG. The sparse de Bruijn graph is then 
used to create a set of disjointigs, a set of strings contain-
ing all k-mers of the original read set as substrings. Then 
a Bloom-filter is used to record all k-mers present in the 
disjointigs and finally the compressed de Bruijn graph is 
built.

We propose Kaarme,1 a space-efficient hash table for 
k-mers that uses O(N + u k

w ) words of space, where u is 
the number of strings in the input data set. Kaarme is an 
in-memory data structure that stores for each hash table 
entry the last symbol of the k-mer, a pointer to a previ-
ous k-mer, and some bookkeeping bits. A key insight 
in Kaarme is that a common pattern in many applica-
tions is to access the entries so that each k-mer overlaps 
by k − 1 symbols with the previous one. This allows for 
fast detection of collisions in our scheme in most cases 
as it suffices to check that the pointer in the hash table 

entry matches the pointer of the previous k-mer and that 
the last symbol of the k-mer matches the symbol saved 
in the hash table entry. Additionally, we show how the 
hash table can be adapted to store only canonical k-mers, 
i.e.  k-mers that are smaller than their reverse comple-
ments in some predefined order, and we give a lock-
free parallel implementation of the hash table and its 
construction.

We compare canonical Kaarme against a regular hash 
table storing the whole k-mer’s canonical sequence in 
each entry and show that Kaarme uses up to five times 
less space than a regular hash table while being at most 
1.5 times slower. Additionally, we compare canonical 
Kaarme against k-mer counters that rely on hash tables 
and show that, for data sets where the k-mer counters do 
not resort to disk space, Kaarme uses significantly less 
RAM.

Related work
The problem of constructing a compact representation 
for an input set of k-mers has been studied before. These 
solutions typically also take advantage of the k-mers 
sharing long overlaps with each other. BOSS [4] uses 
a data structure that resembles the Burrows–Wheeler 
transform to represent a de Bruijn graph, i.e.  a set of 
k-mers. UST [24] and ProphASM [5] find a small spec-
trum preserving string set (SPSS) which is a set of strings 
containing all k-mers in the input k-mer set and Eulertigs 
[28] gives a minimum SPSS. Shibuya et al. [29] consider 
compressing a k-mer count table using compressed static 
functions and minimizers. Finally, Pibiri [22] and Pibiri 
et al. [23] consider the problem of associating each k-mer 
in a k-mer set with a unique integer in the range [1 . . . n] 
where n is the number of k-mers. However, all these tools 
require that the set of k-mers has already been counted, 
which is exactly what Kaarme hash table is designed for.

Bifrost [10] can directly compute the compacted de 
Bruijn graph from input reads. However, it outputs the 
compacted de Bruijn graph, which does not allow values 
to be associated with single k-mers like our hash table. 
Methods such as TwoPaCo [19] and Cuttlefish [14] com-
pute a de Bruijn graph for genomic sequences. These 
tools exploit the length of the sequences and the fact that 
all k-mers will be kept in the final data structure, unlike 
when working with reads, where k-mers with low counts 
are often discarded.

Some k-mer counters [8, 9, 16] exploit the overlaps 
between k-mers by using super k-mers and minimiz-
ers. A minimizer of a string is the smallest substring of a 
given length in some predefined order, and a super k-mer 
is a string consisting of consecutive k-mers that share 
the same minimizer. These k-mer counters first split the 
reads into super k-mers, and the super k-mers are then 

1 Käärme is a snake in Finnish. The way the k-mers are arranged in the hash 
table resembles a snake weaving its way through the table.



Page 3 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology           (2024) 19:14  

partitioned into bins so that the super k-mers sharing the 
same minimizer end up in the same bin. Since all k-mers 
with the same minimizer are now in the same bin, differ-
ent bins do not share any k-mers and can thus be counted 
independently, allowing for efficient parallelization.

Preliminaries
De Bruijn graphs
The order k de Bruijn graph (dBG) G = (V ,E) of a string 
S[1 . . . n] over the alphabet � is a labelled directed graph 
that encodes the distinct k-length substrings of S. Each 
node v ∈ V  is labelled with one of the distinct k-length 
substrings. Thus, if S has N distinct k-length substrings, 
G has N nodes. Additionally, two nodes u and v are con-
nected by an edge (u, v) ∈ E if the k − 1-length suffix of 
label(u) matches the k − 1-length prefix of label(v), and 
the collapse of the overlap yields a k + 1-length sequence 
that exists as a substring in S. The label of (u,  v) is the 
rightmost symbol of label(v).

String fingerprints and rolling hashing
The Karp–Rabin method [12] computes fingerprints 
(integer values) for strings of arbitrary size. Given a 
sequence K [1 . . . k] over the alphabet � , a fingerprint 
function hp : �k

→ [1 . . . p] is defined as

where q ∈ [1 . . . p] is an integer chosen uniformly at ran-
dom and p is a prime number. Karp–Rabin fingerprints 
can be updated in constant time. Given hp(K [1 . . . k]) 
and a symbol c ∈ � , one can compute hp(K [2 . . . k]·c) 
or hp(c·K [1 . . . k − 1]) in O(1) time (among other opera-
tions). The fast update makes Karp–Rabin fingerprints 
the preferred solution to implement rolling hashing in 
linear time. That is, given a string T [1 . . . n] and an inte-
ger k < n , compute the fingerprint hp(T [i . . . i + k − 1]) 
of every k-length substring T [i . . . i + k − 1] , with 
i ∈ [1 . . . n− k + 1].

To insert the strings visited by the rolling hash into a 
hash table of size m, it is convenient to combine hp with 
a universal hash function hm : [1 . . . p] → [1 . . .m] using 

hp(K [1 . . . k]) =

(

k
∑

i=1

K [i] · qi−2

)

mod p,

the composition h(K ) = hm(hp(K )) with m < p . By using 
a large prime p, the probability for two random strings 
over �k to be assigned the same integer in [1 . . .m] is 
close to 1/m.

Our contribution
Definitions
We consider the RAM model of computation. Given an 
input of n symbols, we assume our procedures run in 
random-access memory, where the machine words are 
w = �(log n) bits in length and can be manipulated in 
constant time.

Let {a,c,g,t} be the DNA alphabet, and let 
� = {0, 1, 2, 3, 4} be another set of size σ = |�| = 5 to 
which we map the DNA alphabet as a = 1 , c = 2 , g = 3 , 
t = 4 . For technical reasons, we define ε = 0 ∈ � as the 
empty symbol. Additionally, we regard the DNA comple-
ment as a permutation π [1, σ ] that reorders the symbols 
in � , exchanging 1 = a with 4 = t , 2 = c with 3 = g , and 
keeping the same value π [ε] = ε for the empty symbol. 
The reverse complement of R ∈ �∗ , denoted R̂ , is the 
string formed by reversing R and replacing every symbol 
R[j] by its complement π(R[j]).

Given two strings K ,K ′
∈ �k , the operator K ⊕ K ′ 

means that the k − 1-length suffix K [2 . . . k] overlaps the 
k − 1-length prefix K ′

[1 . . . k − 1].
We consider a collection R = {R1, . . . ,Ru} of u 

strings over the alphabet �∗ , with a total length of 
n = ||R|| =

∑u
i=1 |Ri| symbols.

Let hp : �k
→ [0 . . . p− 1] be a function that maps 

k-length strings to integers in [0 . . . p− 1] uniformly 
at random, where p is a prime number. We define the 
canonical version of a k-mer K, denoted Kc , to be the 
string Kc

∈ {K , K̂ } with the smallest value in hp . If hp 
assigns the same integer to K and K̂  , we set Kc equal to 
the smallest string in lexicographical order between K 
and K̂ .

A k-mer dictionary Dk ,R is a dictionary where the keys 
are the distinct k-length substrings of R (i.e., the k-mers), 
and their associated values are the frequencies of those 
k-mers in R . The canonical k-mer dictionary Dc

k ,R stores 
as keys the canonical k-mers of R . The value associated 



Page 4 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology           (2024) 19:14 

with each key Kc in Dc
k ,R is the sum of the frequencies in 

R for K and K̂ .
Our framework consists of three algorithms: 

1. GetDict(R, k) (“Building the dictionary” section): 
recieves R as input and returns a hash table H encod-
ing Dk ,R in compressed form.

2. GetCanDict(R, k) (“Building the canonical diction-
ary” section): receives R as input and returns a hash 
table H encoding Dc

k ,R in compressed form.
3. DumpDict(H) (“Reporting the k-mers in the com-

pact dictionary” section): receives as input a hash 
table H encoding a k-mer dictionary (canonical or 
non-canonical) in compressed form and returns the 
same dictionary in uncompressed form. That is, each 
entry (K, f) of key K and frequency f is represented as 
a string in �k and an integer, respectively.

Our theoretical descriptions in the following sections 
assume a suitable size m for H is known prior to the exe-
cution of GetDict or GetCanDict. A suitable m is big 
enough to encode the distinct k-mers of R . Let H be a 
hash table that uses open addressing to resolve collisions 
and h a hash function that maps k-mers to buckets in H. 
We define the following operations: 

1. incval(H, K,  f): increments the value associated with 
the key K in H by f or stores a new entry (K, f) in H if 
K does not exist as key.

2. value(H, K): returns the value associated with the key 
K in H.

3. probe(h(K),  m,  d): receives as input the fingerprint 
h(K) of a k-mer K (“String fingerprints and rolling 
hashing” section) and returns the hash table bucket 
in [1 . . .m] that the probing function of the open 
addressing scheme produces in step d.

We assume probe(h(K), m, d) computes the bucket using 
quadratic probing.

Dictionary of k‑mers
We begin by describing how to build the k-mer diction-
ary Dk ,R efficiently. “Our compact hash table” section 
presents our compact data structure that exploits the 
redundancy of consecutive k-mer in R . Then, in “Build-
ing the dictionary” section, we explain our algorithm 
GetDict, which builds Dk ,R using this compact data 

structure. “Connection with de Bruijn graphs” section 
describes the link between our method and the de Bruijn 
graph of R . Finally, in “Space and time complexity” sec-
tion, we present the space and time complexities of Get-
Dict, and in “Improving the time complexity” section, 
we show how to improve its running time.

Our compact hash table
We devise a compact hash table H where the keys 
are the distinct k-mers of R , and the associated val-
ues are their frequencies. We reduce space usage by 
exploiting the fact that k-mers occurring consecu-
tively in R contain redundant information. Specifi-
cally, let Kpr = Ri[x − 1 . . . y− 1] and K = Ri[x . . . y] 
be two consecutive substrings in Ri ∈ R , with 
k = y− x + 1 and Kpr  = K  . Our simple observa-
tion is that, storing Kpr and K explicitly in H pro-
duces a redundant copy of the (k − 1)-length string 
Ri[x . . . y− 1] = Kpr[2 . . . k] = K [1 . . . k − 1].

In our encoding, a bucket H[b] stores a k-mer K in 
relative form along with its frequency in R . This repre-
sentation has three fields H [b] = (f , r, a) , where f is the 
frequency of K in R , r is another bucket in H where we 
can recover the prefix K [1 . . . k − 1] and a = K [k] ∈ � is 
the rightmost symbol in K. We refer to H [b].r = bpr as 
the reference bucket for K. We also keep a dynamic buffer 
B to store the k-mers that we cannot encode immedi-
ately in relative form. This situation occurs when, dur-
ing the execution of GetDict, we visit the kth prefix 
K = Ri[1 . . . k] of a string Ri ∈ R . The problem arises 
because we do not know a bucket H [bpr] encoding a k-
mer Kpr with Ri[1 . . . k − 1] = Kpr[2 . . . k] that we can 
record as a reference in H[b].r. Thus, we get the leftmost 
available block B[l . . . l + k − 1] , copy K there, and set 
H [b] = (1, l, ε) , where ε serves as a flag that indicates 
that K is in the dynamic buffer. We say that B is dynamic 
because, as soon as we find a bucket H [bpr] , we remove K 
from B and store H [b].r = bpr instead.

Building the dictionary
We now describe GetDict, our method to compute the 
dictionary Dk ,R that relies on the compact hash table H 
of “Our compact hash table” section. Algorithm  4.2.2 
contains more details about its implementation.

We start the algorithm by defining a rolling hash func-
tion h : �k

→ [1 . . .m] that maps k-mers to buckets in 
H uniformly at random as described in “Preliminaries” 
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section, and by creating an empty dynamic buffer B. 
Subsequently, we scan R from left to right, and for 
every k-mer K = R[x . . . y] we visit, with R ∈ R , we call 
the operation incval(H,  K,  1) (“Definitions” section). 
Lines 28–33 depict this idea.

Before describing how incval works, we will intro-
duce some useful notation. Let K = R[x . . . y] , with 
y− x + 1 = k , be the active window in the scan of R 
during the execution of GetDict. Additionally, let bpr 
be the bucket in H where we inserted the predecessor 
k-mer Kpr = R[x − 1 . . . y− 1] (i.e., the reference bucket 
of K). We assume bpr is null if K is the kth prefix of R. 
For convenience, we also change the signature of incval 
to incval(H ,K , 1, bpr) = b , where b is the bucket where K 
resides.

When we call incval(H ,K , 1, bpr) , we probe buckets in 
H using the function probe (“Definitions” section) until 
we find one that either is empty or has a key that matches 
K. Every time we probe a non-empty bucket H [b′] , we 
check if K matches its key in O(k) time by following 
bucket references recursively. We refer to this procedure 
as keycomp:

• keycomp(H , b′,K , bpr) : receives as input the hash 
table H, a bucket b′ , a k-mer K ∈ �∗ , and a (possible 
null) bucket bpr whose triplet H [bpr] encodes a k-mer 
Kpr = c·K [1 . . . k − 1] , with c ∈ � , and returns true 
if the key in H [b′] matches K or false otherwise

When the probing mechanism reaches an empty bucket 
H [b′] , we insert K there, but we need to check if we 
have a valid reference bucket first. Thus, if bpr is null, 
we store B[l . . . l + k − 1] = K  and set H [b′] = (1, l, ε) . 
On the other hand, when bpr is not null, there is an 
available reference bucket to recover K [1 . . . k − 1] , so 
we just store the triplet H [b′] = (1, bpr ,K [k]) . On the 

other hand, if the probing mechanism reaches a bucket 
H [b′] such that keycomp(H , b′,K , bpr) is true, it means 
K already exist in H, so we just increment H [b′].f  by 
one. Additionally, if H [b′].a = ε and bpr is not null, we 
remove B[l . . . l + k − 1] and store H [b′].r = bpr and 
H [b′].a = K [k] because now we have a reference bucket 
H [bpr] where to extract K [1 . . . k − 1] . We can flag the 
area B[l . . . l + k − 1] as reusable and fill it again later 
in the scan of R with another k-mer. The pseudocode of 
incval is in Lines 10–26.

The last aspect we will discuss in this section is the 
implementation of keycomp(H , b′,K , bpr) (Lines  1–9). 
We start the execution by checking if H [b′].r = bpr and 
K [k] = H [b′].a . When these conditions hold, we return 
true immediately because the key of H [bpr] is suffixed 
by K [1 . . . k − 1] . Notice we can finish the call without 
further symbol comparisons because incval is a sub-
routine of GetDict , and this function scans R from 
left to right. Therefore, it always hold that the bucket 
H [bpr] encodes a k-mer Kpr that immediately precedes 
K in R . On the other hand, if bpr  = H [b′].r , we start the 
decompression of H [b′] ’s key. We first compare H [b′].a 
against K[k] and set the next bucket b′ = H [b′].r if they 
match. As a general rule, in every ith step, we compare 
H [b′].a against K [k − i + 1] and return false if they 
differ or go to the next bucket b′ = H [b′].r and per-
form another symbol comparison. When every symbol 
K [k − i + 1] matched its corresponding symbol H [b′].a , 
with i ∈ [1 . . . k] , we can be sure that H [b′] encodes K, so 
keycomp(H , b′,K , bpr) returns true. The only exception 
to the procedure of keycomp is when we reach a bucket 
H [b′] whose key is in B. We can easily detect this situa-
tion because H [b′].a = ǫ is a special symbol. When this 
happens, we get the buffer offset l = H [b′].r and compare 
the k − i + 1 suffix of B[l . . . l + k − 1] against the prefix 
K [1 . . . k − i + 1].
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Algorithm 1 Framework of GetDict 
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Figure 1 shows an example of the compact hash table 
H we obtain with GetDict.

Connection with de Bruijn graphs
It is not difficult to see that our compact hash table 
resembles the de Bruijn graph. Let G = (V ,E) be 
the de Bruijn graph of order k obtained from R . The 
pair (H,  B) encodes a graph G′

= (V ′,E′) that repre-
sents a sparse version of G, with V ′

= V  and E′
⊆ E . 

Each bucket H[b] stores a node v ∈ V ′ , and the field 
H[b].r represents an edge connecting v with one of its 
incoming nodes u ∈ V ′ . To put it differently, let H[b] 
be the bucket for v ∈ V ′ and let H [b′] be the bucket 
for u  = v ∈ V ′ . The link H [b].r = b′ implies the edge 
(u, v) ∈ E′ labelled H [b].a ∈ � . On the other hand, 
every node v encoded in B has indegree zero.
G′ is a sparse version of G because some edges of E 

might not be present in E′ since every bucket H[b] stores 
at most one incoming edge for v, and the remaining ones 
are ignored to save space. We remark that (H,  B) offers 
limited navigational functionality for G′ : each node v can 
only visit its incoming node u (via H[b].r) and retrieve the 
symbol H[b].a that labels (u, v) ∈ E′ . Still, this feature is 
enough for us to implement keycomp during the probing 
phase of incval.

Space and time complexity
We now describe the upper bounds of our framework. 
We will refine these results in the following sections.

Theorem  1 Let G = (V ,E) be the de Bruijn graph of 
order k built from a collection R = {R1, . . . ,Ru} of u 
strings and ||R|| = n symbols, V being the set of nodes and 
E the set of edges. GetDict(R, k) requires O(|V | + u k

w ) 
words of space to encode (H,  B) and runs in O(nk) 
expected time.

Proof The rolling hash function h allows us to get 
h(K) from the preceding value h(Kpr) in O(1) time. 
Thus, obtaining the buckets for all the k-mers in R takes 
O(n) time. When we visit K in R , the probing mecha-
nism of incval(H ,K , 1, bpr) will start to probe buckets 
from H[h(K)] until it finds one that either is empty or 
encodes a key matching K. The classical result on hash 
tables tells us that, by choosing a hash function h with 
collision probability 1/m, and setting the load factor of 
H to a constant value α , the number of probes to find a 
bucket for K is O(1) in expectation. Still, every time the 
probing mechanism visits an occupied bucket, it has to 
call the function keycomp to compare keys, which takes 
O(k) time. Thus, the call of incval(H ,K , 1, bpr) takes O(k) 
in expectation. Summing up, the complete running time 
of GetDict is O(nk) in expectation. H uses O(|V|) words 
of space as there is one bucket for each de Bruijn graph 
node v ∈ V  , and there are O(m(1− α)) empty buckets, m 
being the hash table size. The final aspect to consider is 
the space usage of B: there are at most u k-mers in R that 
(potentially) do not have a reference in H, that is, the kth 
prefix of every Ri ∈ R , with i ∈ [1 . . .u] . Assuming � uses 
⌈log σ⌉ = 3 bits per symbol, then each of these k-mers 
use ⌈3k/w⌉ words, and thus the total space for B is O(u k

w ) 
words. As a conclusion, the total space usage of (H, B) is 
O(|V | + u k

w ) words.  �

Improving the time complexity
The running time O(nk) of Theorem 1 is a rather pessi-
mistic upper bound for GetDict as invcal(H ,K , 1, bpr) 
does not always require k operations. The only case when 
incval(H ,K , 1, bpr) will incur in k symbol comparisons is 
when K is encoded in a bucket H [b′] with H [b′].r �= bpr . 
In that case, we need to match K against the key in H [b′] 
to be sure they are equal. We can express this situation 
in terms of de Bruijn graphs: the bucket H [b′] encoding 
the node v labelled label(v) = K  stores an incoming edge 

Fig. 1 Example of our compact hash table H filled by GetDict 
using the 4‑length k‑mers of the read R = cgttagttaa . The 
arrows indicate the references where we recover the (k − 1)

‑prefixes of the k‑mers. We first map R[1 . . . k] = cgtt 
to its bucket H[h(cgtt) = 4] . However, as we 
do not know a reference bucket H[bpr ] to recover the prefix 
R[1 . . . k − 1] = cgt , we store the k‑mer’s full sequence 
in the dynamic buffer as B[l = 1 . . . l + k − 1 = 4] = cgtt 
and store H[4] = (f = 1, r = l, a = ε) . The next k‑mer 
in R is R[2 . . . k + 1] = gtta , whose designated bucket 
is H[h(gtta) = 7] . In this case, we have available a preceding 
k‑mer Kpr = cgtt and its bucket bpr = 4 . Thus, we encode gtta 
as H[4] = (1, 4,a) . We continue with the remaining k‑mers of R 
in the same way
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(u, v) in H [b′].r that is different from the incoming edge 
(u′, v) associated with bpr.

In an ideal scenario, where we know the set 
Iv = {b1, . . . , bσ ′ } of buckets in H storing the σ ′

≤ σ 
incoming nodes of v, checking if an arbitrary bucket 
H [b′] encodes v takes O(1) time as the comparison of K 
against the key of H [b′] reduces to check if H [b′].r ∈ Iv . 
In reality, however, in the best case, we know one incom-
ing node for v, i.e., the node u′ encoded in the bucket 
H [bpr] . Still, we can get closer to the ideal scenario by 
increasing the space of our data structure.

We keep an auxiliary hash table He that stores indexes 
of H as keys. Each key in He is associated with a list of 
up to σ − 2 = 3 integers. Thus, for a k-mer K encoded 
in the bucket H[b], the list L = value(He, b) contains 
the buckets in Iv that are different from H[b].r. We will 
also add a new field to the buckets of H. The new field 
H [b].d ≥ 0 will store the number of probing steps incval 
incurred to reach b from h(K) when inserted K the 
first time. For example, if probe(h(K ),m, 3) = b , then 
H [b].d = 3 . We also change the signature of keycomp 
to keycomp(H , b′, d,K , bpr) , with probe(h,K , d) = b′ . 
In other words, d is the number of probing steps incval 
performed to reach the bucket H [b′] from H[h(K)]. We 
remark that we call keycomp during the execution of 
incval, so we always know d when we call keycomp.

We implement keycomp(H , b′, d,K , bpr) as follows: we 
start by checking that H [b′].a = K [k] , and return false if 
they differ. Now suppose H [b′].a = K [k] . If H [b′].r �= bpr , 
we access the list L = value(He, b′) and check if one 
of the buckets in L matches bpr . If that is the case, we 
return true. On the other hand, if bpr /∈ {L ∪H [b′].r} ; 
and |L| + 2 = σ or H [b′].d �= d , we return false. When 
H [b′].d = d and |L| + 2 < σ , we compare K against the 
key in H [b′] as usual. When they match, we store b′ in L 
and return true, otherwise we return false.

Theorem 2 Let G = (V ,E) be the de Bruijn graph with 
order k built from the collection R of u strings over the 
constant alphabet of size 4, and with a total of ||R|| = n 
symbols. An instance of GetDict(R, k) that uses the 
encoding (H ,B,He) requires O(|E| + u k

w ) words of space 
and runs in O(n+ (|E| − |V |)k + q) expected time, where 
q is the total number of times GetDict finds colliding 
k-mers in H.

Proof The table He uses O(|E| − |V |) words of space 
as it only contains the missing edges of G that are not 
in H. Thus, the combined space of H and He is O(|E|) 
words. If we also consider the buffer B, the final space 

usage of our compact representation is O(|E| + u k
w ) 

words. In our new encoding, the function keycomp will 
fully decompress the key of a bucket H [b′] in one spe-
cific case: when H [b′] encodes K, but the reference bpr 
is not in {L,H [b′].r} . This situation is equivalent to dis-
covering a new incoming edge for the node v labelled 
label(K). GetDict discovers indegree(v)− 1 edges this 
way because the remaining edge is stored in H [b′].r 
when the algorithm inserts K into H [b′] . Thus, the total 
cost of counting the f occurrences of K in R (without 
considering collisions) is f + (indegree(v)− 1)k . If we 
consider all the nodes of G, the total cost of counting 
without collisions is O(n+ (|E| − |V |)k) expected time. 
Now let us consider the collisions. The purpose of the 
field d is to ensure that we decompress a k-mer K ′ from 
a bucket H [b′] only if h assigns the same initial bucket 
h(K ) = h(K ′) to K and K ′ . If K = K ′ , GetDict discovered 
a new de Bruijn graph edge, and that cost was already 
covered. On the other hand, if K  = K ′ , it means K and K ′ 
collide. Assuming the k-mers collide at random in h, the 
average number of symbols to determine that two ran-
dom strings do not match is constant [1]. Now, assum-
ing GetDict found colliding k-mers q times during the 
scan of R , the total cost of failed k-mer decompression 
is O(q) on expectation. This argument gives us the final 
O(n+ (|E| − |V |)k + q) expected running time.  �

Dictionary of canonical k‑mers
We present our framework to compute the canonical dic-
tionary Dc

k ,R . We first describe how to adapt our compact 
hash table to the canonical setting (“Our canonical com-
pact hash table” section). Then, we show how to extract 
keys in the new encoding (“Reconstructing a k-mer from 
our canonical encoding”, and “Implementing our k-mer 
retrieval algorithm” sections), and the associated cost 
of the extraction (“Analysis of our k-mer retrieval algo-
rithm” section). Subsequently, we present GetCanDict: 
our space-efficient algorithm that builds Dc

k ,R using the 
canonical variant of our compact hash table (“Building 
the canonical dictionary” section). Finally, “Correctness 
of our canonical encoding” section explains the correct-
ness of the output of GetCanDict.

We remark that the canonical framework we pre-
sent here does not improve the asymptotic space usage 
of “Building the dictionary” section, but in practice, it 
reduces the number of hash table entries by one-half. 
Additionally, the ideas we present here do not consider 
the improvements of “Improving the time complexity” 
section.



Page 9 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology           (2024) 19:14  

Our canonical compact hash table
The main difference compared to our previous scheme 
is that now every k-mer K occurring as a key in H is 
the canonical sequence Kc

∈ {K , K̂ } . This strategy col-
lapses K and Kc into one single bucket and reduces H’s 
overall size. However, it also invalidates our mechanism 
to spell the keys right to left as consecutive k-mers in 
R do not necessarily have canonical versions in the 
same DNA strand. In terms of the de Bruijn graph 
(“Connection with de Bruijn graphs” section), the refer-
ence bucket bpr of a k-mer Kc now could be a incom-
ing or outgoing node of Kc . This change makes the 
retrieval of k-mers from H more difficult compared to 
the non-canonical variant because our original decod-
ing method spells Kc by following only incoming nodes 
(see “Building the dictionary” section). We will adapt 
our technique to overcome this problem, giving a solu-
tion that keeps the advantages of the canonical encod-
ing at the expense of performing more computations in 
H.

Our canonical encoding is closely related to the way 
in which our algorithm GetCanDict works (“Building 
the canonical dictionary” section). However, we can-
not explain that algorithm without first describing the 
new compact encoding. For the moment, it is enough 
to know that, during the execution of GetCanDict, 
we scan the reads in R left to right, and for each k-mer 
R[x . . . y] , we obtain its canonical sequence Kc and insert 
it in some bucket H[b]. The reference bucket bpr we store 

in H [b].r = bpr is the one storing the canonical sequence 
Kc
pr of R[x − 1 . . . y− 1] . When R[x . . . y] is the kth prefix 

of R, there is no Kc
pr we can use as reference, so we store 

Kc explicitly in a buffer B.
A relevant concept in our new scheme is that of text 

overlap:

Definition 1 Text overlap: let R[x . . . y] be the leftmost 
occurrence in R of Kc

∈ {K , K̂ } and let R[x − 1 . . . y− 1] 
be an occurrence of a string in {Kpr , K̂pr} , not necessar-
ily the leftmost one. The text overlap of Kc

pr and Kc is the 
overlap between the strings of {Kpr , K̂pr} and {K , K̂ } that 
match R[x − 1 . . . y− 1] and R[x . . . y] , respectively. This 
overlap always matches a k − 1 suffix in {Kpr , K̂pr} with a 
k − 1 prefix in {K , K̂ }.

The important observation about this definition is 
that the orientation R[x − 1 . . . y− 1] ⊕ R[x . . . y] we 
encode in H [b].r = bpr does not necessarily match 
Kc
pr ⊕ Kc like in the non-canonical version of H. There-

fore, when we set the DNA orientation of H [b].r = bpr 
with respect to Kc , H[b].r can spells Kc

[2] or Kc
[k − 1] . 

In general, there are four possible text overlaps for Kc
pr 

and Kc , each with a specific DNA orientation in the 
spelling of Kc . Figure  2 summarises the combinations 
and their outcomes.

The use of text overlaps to encode the keys 
requires a new format for H. In particular, the entry 

Fig. 2 A Example of text overlap. The substring R[x − 1 . . . y] = atgcc encodes two k‑mers, R[x − 1 . . . y − 1] = atgc and R[x . . . y] = tgcc . 
Let us assume the canonical Kcpr ∈ {Kpr , K̂pr} matches the DNA reverse complement of R[x − 1 . . . y − 1] , i.e., gcat . On the other hand, let us assume 

R[x . . . y] = Kc matches the canonical of {K , K̂} . Thus, the relative DNA orientation of R[x − 1 . . . y − 1] ⊕ R[x . . . y] with respect to Kc is K̂ cpr ⊕ Kc . This 
means that Kc[k − 1] = π(Kcpr [1]) = c is the symbol we obtain from the link H[b].r in Kc ’s bucket H[b]. The grey arrow from H to the grey rectangle 
depicts this situation. B Text overlaps for Kcpr and Kc relative to Kc ’s DNA orientation. The x marks the symbol in Kc we obtain by following H[b].r 
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H [b] = (f , r, a, v, o, e) for Kc now has six fields. The first 
three (f, r, a) have a similar meaning as in “Our compact 
hash table” section: f is the sum of the frequencies in R 
for {K , K̂ } , r = bpr is the reference bucket H [bpr] encod-
ing the predecessor Kc

pr , and a = Kc
[k] . Additionally, 

v = Kc
[1] is the leftmost symbol of Kc . The field o is a 

bit indicating the relative orientation of Ri[x . . . y] and 
Kc , where Ri ∈ R is the string where Kc first occurred. 
Specifically, o = 1 if Ri[x . . . y] = K = Kc , and o = 0 if 
Ri[x . . . y] = K̂ = Kc . Finally, the field e is a bit indicating 
the relative orientation of Ri[x − 1 . . . y− 1] and Kc

pr with 
similar encoding as o. Notice that (o, e) encodes the text 
overlap of Kc and Kc

pr . The next section will explain how 
to use the new format to recover Kc from H.

Reconstructing a k‑mer from our canonical encoding
Now that we have relaxed the orientation in which Kc over-
laps its predecessor Kc

pr , the reconstruction of Kc might 
take more than k steps. We will slightly change the notation 
to explain this idea. Let S = bk ′ , . . . , b2, b1 be the chain of 
reference buckets we visit in H to spell Kc , with H [b1 = b] 
storing Kc . Similarly, let Kc

k ′ , . . . ,K
c
1 be the k-mers these 

buckets represent, with Kc
1 = Kc . The relationship of Kc

1 
and Kc

2 is equivalent to that of Kc and Kc
pr.

The general idea to reconstruct Kc from H[b] is to scan S 
right to left, and for every bucket H [bj] we visit, we extract 
the symbol from one of the ends of Kc

j  and insert it into Kc . 
We refer to this procedure as canspell:

• canspell(b): returns the sequence Kc from the input 
bucket H[b] of our compact hash table H.

In the non-canonical encoding of “Our compact hash 
table” section, we spell Kc right to left as it holds 
Kc
k ′ ⊕ · · ·Kc

2 ⊕ Kc
1 . In contrast, in the canonical encod-

ing, the text overlaps of the k-mers in S do not induce 
a particular spelling direction. As we see in Fig.  2b, if 
H [bj].r = bj+1 represents the overlap Kc

j+1 ⊕ Kc
j  , then 

Kc
j+1[k] = Kc

j [k − 1] and we retrieve a symbol from 
the right end of Kc . On the other hand, if H [bj].r = bj+1 
represents Kc

j ⊕ Kc
j+1 , then Kc

j [2] = Kc
j+1[1] and we get 

a symbol from the left end of Kc . Changes in the spell-
ing direction can happen multiple times as we scan S and 
induce an inward reconstruction of Kc : we obtain the end 
symbols of Kc and advance to its centre.

We also need to consider the orientation of the k-mers in 
S relative to Kc . In other words, for each Kc

j  in S, we need 
to know the string Ko

j ∈ {Kc
j , K̂

c
j } overlapping Kc according 

to the information in S. Before explaining this concept for-
mally, we will define a function rorS that gives the relative 
orientation. This is its signature:

• rorS(j) : returns 0 if Ko
j = K̂ c

j  , and 1 if Ko
j = Kc

j .

We implement rorS using the following recursive function:

Initially, rorS(1) = 1 because the key Kc
1 in H [b1 = b] is 

precisely Kc . Now let us assume without loss of generality 
that, when we visit H [bj] in the scan of S, rorS(j) returns 0. 
Also assume that the information in H [bj].e and H [bj].o 
tells us the link H [bj].r = bj+1 represents Kc

j+1 ⊕ Kc
j  . We 

notice that the overlap H [bj].r = bj+1 is inconsistent with 
rorS(j) = 0 because Ko

j = K̂ c
j  is the reverse complement 

of the string we use in Kc
j+1 ⊕ Kc

j  . We fix this problem 
by flipping the DNA orientation of the overlap encoded 
by H [bj].r to obtain K̂ c

j ⊕ K̂ c
j+1 , and now the two k-mers 

are oriented with respect to Kc . However, this strand flip 
has a chain effect because it makes Ko

j+1 equal to K̂ c
j+1 

(i.e., rorS(j + 1) = 0 ), and depending on H [bj+1].e and 
H [bj+1].o , we might need to flip H [bj+1].r = bj+2 as well. 
We will generally continue flipping k-mers in S until we 
reach a bucket bj′ where the text overlap is consistent 
with rorS(j′).

Considering all this information, we can fairly say 
that traversing S right to left resembles sliding a win-
dow over Kc back and forward as we visit the buckets. 
Initially, the window is set to wℓ = 1,wr = k when we 
are in H [b1 = b] . Then, when we reach H [bj] , we move 
the window to the left: wℓ = wℓ − 1,wr = wr − 1 if 
Ko
j+1 ⊕ Ko

j  is the orientation of H [bj].r = bj+1 relative 
to Kc . In contrast, we move the window to the right: 
wℓ = wℓ + 1,wr = wr + 1 if Ko

j ⊕ Ko
j+1 is the orienta-

tion of H [bj].r = bj+1 relative to Kc . Figure 3b shows an 
example of this idea.

The implementation of canspell(b) thus translates to 
extracting symbols from the distinct k-mers Ko

j  we visit 
as we slide wℓ,wr , stopping only when we have covered 
all the positions of Kc . As mentioned before, this mech-
anism reconstructs Kc inwards.

We will keep two variables cℓ = 1, cr = k that mark 
the inner ends of the reconstruction. Initially, the 
symbols within Kc

[cℓ . . . cr] are unknown, but we will 
obtain them as we slide wℓ,wr . When we recover Kc

[cℓ] , 
we update the inner left end cℓ = cℓ + 1 , and when we 
obtain K [cr] , we update the inner right end cr = cr − 1 . 
Notice that canspell will run as long as cℓ ≤ cr.

(1)

rorS(j) =







1, if j = 1
¬rorS(j − 1), if H [bj−1].e �= H [bj−1].o
rorS(j − 1) if H [bj−1].e = H [bj−1].o
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Our canonical encoding only enables the extraction 
of the symbols Ko

j [1] and Ko
j [k] of each k-mer Ko

j  (fields 
a and v in H), meaning that we cannot recover Kc

[cℓ] 
or Kc

[cr] every time we visit a bucket in S. We consider 
the following two scenarios to extract symbols: 

1. wℓ < 1 , 1 ≤ wr < k : if cr = wr , then it holds 
Ko
j [k − wr + 1 . . . k] = Kc

[1 . . .wr = cr] , so we 
recover Kc

[cr] = Ko
j [k].

2. wr > k , 1 < wℓ ≤ k : if cℓ = wℓ , then it holds 
Kc

[cℓ = wℓ . . . k] = Ko
j [1 . . . k − wℓ + 1] , so we 

recover Kc
[cℓ] = Ko

j [1].

It is also worth mentioning that when we reach a bucket 
bj in S whose key is in B, we have direct access to the 
full sequence of Ko

j  . Therefore, we copy the correspond-
ing area of Ko

j  within Kc
[cℓ . . . cr] and finish canspell(b). 

This condition makes bj the last bucket in S.

We now show that canspell always returns an answer 
and that that answer is the correct sequence of Kc.

Lemma 3 The execution of canspell(b) always finishes 
and returns a k-mer.

Proof We first demonstrate that S does not have loops 
bj , bj+x, . . . , bj+1, bj . This type of structure would pro-
duce that, after visiting bj+x , we return to bj and thus 
never end the reconstruction of Kc . GetCanDict fills 
H keeping the following invariant: when we insert Kc

j  in 
bj , the bucket H [bj+1] already encodes Kc

j+1 and H [bj] is 
empty, so it is safe to store H [bj].r = bj+1 . The invari-
ant, in turn, induces the transitive property that all the 
buckets bj , bj+x, . . . , bj+1 of S already contained a k-mer 
when we inserted Kc

j  . Further, H [bj] was empty and Kc
j  

did not exist as a key up to that point. However, the loop 

Fig. 3 A Spelling Kc = Kc
1
= atgat from H[b1] . The white arrow to the left indicates that the figure is read bottom‑up. Each jth circle is the bucket 

H[bj] in the reference chain S. The black string is Kcj  and the grey string is K̂ cj  . The incomplete string next to each circle has the symbols of Kc we 
know up to that bucket. The green symbol is the one we extract from Koj  and insert it in one of the inner ends of Kc . The arrow from H[bj] to H[bj+1] 
indicates the text overlap of H[bj].r = bj+1 . The red line is the k − 1 prefix in H[bj] that matches a k − 1 suffix in H[bj+1] (blue line). B The k‑mers Koj  
we use in the spell of Kc . When we change the spelling direction from H[bj+1] to H[bj+2] , Koj+2

 does not match Koj  because the chain of buckets 
S = b9, . . . , b2, b1 spelling Kc cannot have repeated elements (see Lemma 3). We mark the mismatching symbols of Koj  and Koj+2

 with vertical lines 
in the figure. On the other hand, we remark that changes in the spelling direction are induced by the order in which we insert the k‑mers in H 
and the reference bucket we have available at the moment of the insertion
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bj , bj+x, . . . , bj+1, bj contradicts these ideas because the 
leftmost occurrence of bj indicates that H [bj] already 
contained Kc

j  when we inserted it and created the link 
H [bj].r = bj+1 (rightmost occurrence of bj in the loop). 
Thus, we conclude that S cannot have a loop.  �

We remark that the absence of cycles in S (Lemma 3) 
implies that not all the k-mers encoded by S overlap 
Kc . Suppose that, starting from Ko

j  , we slide the win-
dow x positions to the right and then x′ < x positions 
to the left. When we return the window back to the 
left, the k-mers we visit are not the same as those we 
visited when sliding the window to the right, otherwise 
it would mean S has a cycle. If we combine this idea 
with the fact that the k-mers in S have transitive over-
laps, we have that Ko

j  does not have a suffix-prefix 
overlap with Ko

j+x+x′ , but a substring match (see the 
vertical lines in Fig. 3b). However, this condition does 
not prevent us from reconstructing Kc.

Lemma 4 canspell(b) returns the canonical k-mer Kc 
encoded by the bucket H[b].

Proof We show that each k-mer Ko
j  we obtain from S 

has a substring matching Kc
[cℓ . . . cr] at the moment we 

reach the bucket bj . We refer to this idea as the match-
ing property. The validity of the matching property 
proves canspell outputs Kc correctly because the algo-
rithm obtains Kc

[cℓ] or Kc
[cr] from the substring of Ko

j  
matching Ko

[cℓ . . . cr] . Our proof below uses an arbitrary 
sequence of slides for wℓ,wr , but we can give a symmetric 
argument for other sliding sequences.

When we start canspell(b), the matching property is 
trivially true as cℓ = 1, cr = k and the bucket H [b1 = b] 
encodes precisely the k-mer Ko

1 = Kc . Now assume the 
sequence bj , bj−1, . . . b1 in S slide the window j − 1 < k 
positions to the left, so the right boundary now is 
cr = cr − j + 1 . The matching property still holds as 
the k-mers Ko

j ,K
o
j−1, . . . ,K

o
2  have a suffix overlapping 

the prefix Kc
[1 . . . cr = k − x + 1] , with x ∈ [2 . . . j] , 

due to the transitive overlaps Ko
j ⊕ Ko

j−1· · ·K
c . 

The active area we need to compute becomes 
Ko
j [j . . . k − 1] = Kc

[cℓ = 1 . . . cr = k − j] as we moved cr 
inwards after processing H [bj] . Now assume that the next 
u buckets in S slide the window u positions to the right 
(i.e., we change the sliding direction). We distinguish 
three cases:

• u < j − 1 : we know that 
Ko
j [u+ 1 . . . k] = Ko

j+u[1 . . . k − u] holds because 
of the transitive overlaps Ko

j ⊕ Ko
j+1· · ·K

o
j+u when 

sliding the window to the right. If we consider this 
match and Ko

j [j . . . k − 1] = Kc
[cℓ . . . cr] , then by 

the transitive overlaps Ko
j ⊕ Ko

j+1· · ·K
o
j+u when 

sliding the window to the right, we get the match 
Ko
j+u[j − u . . . k − 1− u] = Kc

[cℓ . . . cr] . Notice 
that Ko

j+u[j − u . . . k − 1− u] is not a prefix or a suf-
fix because j − u > 1 and k − 1− u < k , and our 
encoding does not support direct access to this area 
of Ko

j+u . This situation means that we cannot shrink 
Kc

[cℓ . . . cr] as we visit Ko
j+u , or any in any of the 

k-mers Kj+u−1, . . . ,K
o
j+1.

• u = j − 1 : the match Ko
j+u[j − u . . . k − 1− u] = Kc

[cℓ . . . cr ] 
becomes Ko

j+u[1 . . . k − j] = Kc
[cℓ . . . cr] . Ko

j+u 
and Kc have the same sliding window position 
wℓ = 1,wr = k , but they have different sequences 
due to Lemma  3. However, the substring of Ko

j+u 
matching Kc

[cℓ . . . cr] is a prefix and we have access 
to Ko

j+u[1] in our encoding. Therefore, we extract 
Kc

[cℓ] and move cℓ one position inwards cℓ = cℓ + 1.
• j ≤ u : for the buckets bj+1, . . . , bj+j−1 the previ-

ous cases apply. The remaining buckets b2j , . . . , bj+u 
move the inner left end cℓ by one position each 
because the matches induced by the transitive over-
laps Ko

2j ⊕ Ko
2j+1· · ·K

o
j+u when sliding the window 

to the right go in the same direction as we move 
cℓ . For every Ko

x  , with x ∈ [2j . . . j + u] , we have 
Ko
x [1 . . . cr − cℓ + 1] = Kc

[cℓ . . . cr] , and because we 
have access to Ko

x [1] in our encoding, we can retrieve 
Kc

[cℓ] and move cℓ = cℓ + 1 . Thus, the inner left end 
becomes cℓ = cℓ + u− j + 1 after visiting bj+u.

After consuming bj+u, . . . , b2 , it might happen that the 
window changes direction again to the left. However, in 
this scenario, symmetrical conditions to those explained 
above apply.  �

We will present a formal implementation of canspell in 
the next section.

Implementing our k‑mer retrieval algorithm
This section describes the practical aspects of imple-
menting canspell(b) = Kc . We present the pseudocode in 
Algorithm 2 and explain all the details below.

We begin (Lines  1–3) by initialising the variables 
cℓ = 1, cr = k that mark the inner left and right ends 
of Kc (respectively) in the inward reconstruction. We 
also define a bit q = rorS(j) that tells us the string 
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Ko
j ∈ {Kc

j , K̂
c
j } overlapping Kc . We set the initial value 

q = rorS(1) = 1 according to Eq. 1.
We continue canspell by traversing S right to left. Every 

time we reach a new bucket H [bj] , we perform three 
steps: 

 (i) Check if the key of H [bj] is in the buffer B.
 (ii) Check if the window wℓ,wr crosses the inner ends 

of Kc
[cℓ . . . cr].

 (iii) Slide the window in some direction and move to 
the next bucket H [bj+1] in S.

Lines 5–13 show the process of step (i). Recall from “Our 
canonical compact hash table” section that we store 
k-mers explicitly in a dynamic buffer B whenever we do 
not have a predecessor we can reference in H, flagging 
the buckets in this situation with ε . Thus, when the tra-
versal of S reaches a bucket bj such that H [bj].r = ε , it 
means the full sequence of Kc

j  is in B[l . . . l + k − 1] , with 
l = H [bj].r . The advantage of the buffer is that it contains 
all the information we need to complete the inner sub-
string Kc

[cℓ . . . cr] (see Lemma  4). Therefore, we get the 
positions oℓ = cℓ − wℓ + 1, or = oℓ + cr − cℓ of the sub-
string Ko

j [oℓ . . . or] = Kc
[cr . . . cℓ] . Subsequently, if Ko

j  
matches Kc

j  ( q = 1 ), we copy B[l + oℓ − 1 . . . l + or − 1] 
in Kc

[cℓ . . . cr] . In contrast, when Ko
j  matches 

K̂ c
j  ( q = 0 ), we copy the reverse complement of 

B[l + k − or . . . l + k − oℓ] in Kc
[cℓ . . . cr] instead. We fin-

ish the execution of canspell by returning Kc . On the other 
hand, if the key of H [bj] is not in B, we move to step (ii).

Lines  14–19 represent the work of step (ii). We start 
by computing the ends of Ko

j  using the bit q. Specifi-
cally, if q = rorS(j) = 1 , we get Ko

j [1] = Kc
j [1] = H [bj].v 

and Ko
j [k] = Kc

j [k] = H [bj].a . In contrast, when 

q = rorS(j) = 0 , we get Ko
j [1] = π(Kc

j [k]) = π(H [bj].a) 
and Ko

c [k] = π(Kc
j [1]) = π(H [bj].v) . We continue by 

checking if the window wℓ,wr crosses an inner end of Kc . 
If that is the case, we insert Ko

j [1] or Ko
j [k] in Kc depending 

on which matching scenario holds (see Cases 1 and 2 at the 
end of “Reconstructing a k-mer from our canonical encod-
ing” section).

Lines 20–30 depict the work we perform during step (iii). 
We first infer the direction (left or right) in which we slide 
the window. For that purpose, we rely on the text over-
laps we presented in Fig. 2b. Recall that our encoding sets 
H [bj].o = 1 if the link H [bj].r = bj+1 uses Kc

j  for the text 
overlap between Kc

j+1 and Kc
j  , and 0 if it uses K̂ c

j  . Equiva-
lently, H [bj].e = 1 means the link uses Kc

j+1 for the overlap, 
and H [bj].e = 0 means K̂ c

j+1 . Thus, we slide the window to 
the left if H [bj].o = 1 , and to the right if H [bj].o = 0.

When computing the sliding direction, we also need to 
consider the orientation of Kc

j  relative to Kc . In particular, 
if rorS(j) = 0 , we invert the slide direction, otherwise we 
leave it unchanged. It is not difficult to see why we need 
to do this inversion: suppose H [bj].r = bj+1 defines the 
overlap Kc

j+1 ⊕ Kc
j  but q = rorS(j) . The overlap indicates 

that we need to slide the window to the left, but the bit in q 
indicates we need to flip the overlap to K̂ c

j ⊕ K̂ c
j+1 , which is 

equivalent to sliding the window to the right.
After setting the slide direction, we update q as follows: 

if H [bj].e �= H [bj].o , we flip q = ¬q = rorS(j + 1) , other-
wise we leave it unchanged (i.e., q = rorS(j) = rorS(j + 1) ). 
Finally, we move to the next bucket H [bj+1] and repeat the 
same three steps above.

The reconstruction of Kc finishes when cℓ > cr , which 
means we already cover all the symbols of H[b]’s key. Fig-
ure 3 and Example 1 show how we reconstruct Kc in the 
canonical encoding.
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Algorithm 2 Pseudocode of canspell 
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Example 1 Spelling of Kc
= Kc

1 = atgat from H [b1] 
in Fig. 3. We initialise the sliding window wℓ = 1,wr = k 
and the inner ends cℓ = 2, cr = 4 of Kc as H [b1] already 
stores Kc

[1] and Kc
[k] . Then, the fields e = 1, o = 0 in 

H [b1] indicate the overlap Kc
1 ⊕ K̂ c

2 , which means slid-
ing the window to the right wℓ = 2,wr = 6 . Besides, 
as q = rorS(1) = 1 , we do not invert the sliding direc-
tion. However, as H [b1].e �= H [b1].o , q becomes 
rorS(2) = ¬rorS(1) = 0 . When we visit H [b2] , wℓ matches 
cℓ = 2 , so we set Kc

[cℓ = 2] = Ko
2 [1] = π(Kc

2 [k]) and 
move Kc ’s inner left end to cℓ = 3 . The fields e = 1, o = 0 
in H [b2] indicate Kc

2 ⊕ K̂ c
3 , which means sliding the win-

dow to the right, but as Ko
2 = K̂ c

2 ( q = 0 ), we invert the 
direction and slide the window to the left wℓ = 1,wr = 5 
instead. Further, q = ¬rorS(2) = rorS(3) becomes 1 as 
H [b2].e �= H [b2].o . When we visit H [b3] , the window 
does not match the inner ends cℓ = 3, cr = 4 , so we 
do not recover any symbol. Additionally, H [b3].e = 1 
and H [b3].o = 1 indicate Kc

4 ⊕ Kc
3 , and because 

q = 1 , we slide the window to the left wℓ = 0,wr = 4 . 
The bit q = ror(3) = ror(4) remains the same as 
H [b3].e = H [b3].o . In H [b4] , it holds cr = wr = 4 , so 
we get Kc

[cr = 4] = Ko
4 [5] and set cr = 3 . The win-

dow does not match the inner ends cℓ = 3, cr = 3 in 
buckets b5, b6, b7 , and b8 , so we do not get any symbol. 
The window in H [b9] is wℓ = 3,wr = 7 , and because 
wℓ = cℓ = 3 , we get Kc

[cℓ = 3] = Ko
9 [1] = π(Kc

9 [k]) , set 
cℓ = 4 > cr = 3 , and we are done.

Analysis of our k‑mer retrieval algorithm
We now analyse the cost of running canspell. We will see 
that its execution is exponential in the worst case, but our 
experiments showed that it is much faster in practice (see 
Fig. 9). We summarise the running time of canspell with 
this theorem:

Theorem  5 The function canspell(b) = Kc returns in 
O(σ k) time the canonical sequence Kc stored in the bucket 
H[b] of our canonical compact hash table H.

Proof Since all buckets in S are distinct, they repre-
sent different canonical k-mers. There are at most O(σ k) 
different canonical k-mers and thus canspell(b) visits at 
most O(σ k) buckets. Processing each bucket requires 
constant time, and thus, the function canspell(b) has 
time complexity O(σ k) .  �

Our proof of Theorem 5 demonstrates in a simple way 
that the running time of canspell is exponential in the 
worst case. However, the proof is incompatible with our 
proof of Lemma  4, which states that all the k-mers Ko

j  
encoded by S share a substring with Kc . In the follow-
ing, we will present an analysis that shows that we have 
an exponential upper bound for our k-mer retrieval algo-
rithm even if all the Ko

j  in S have a match with Kc.

Fig. 4 Demonstration of the running time of canspell. A The current bucket bj in S’s traversal stores Kcj = labelI(uh)·K
c
[cℓ . . . cr ]·labelD(vo−h) (dotted 

red line). The triangles are the tries I and D. B Sliding wℓ ,wr x = 1 position to the left, and then x = 1 position to the right (i.e., visiting the next two 
buckets in S). The new node vo−h is different from that of A because of Lemma 3. We already traversed the blue path and can not traverse it again 
due to Lemma 3. C, D The remaining window sliding options visiting uh . After (D), we can only slide wℓ ,wr to the right without breaking Lemma 3. 
Therefore, we visited uh σ − 1 = 3 times, with σ being the trie’s degree
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We will assume canspell only extends the inner left end 
cℓ of Kc as it traverses the buckets of S, and maintains the 
invariant that cr = k . This assumption is only to simplify 
our explanations, and it does not affect the correctness of 
the reconstruction.

Let o be the number of symbols in Kc we have already 
discovered at some point in the execution of canspell. As 
we fixed cr = k , it holds o = cℓ . We will prove our the-
oretical bound by studying, for each value of o ≤ k , the 
maximum number of buckets we could visit in S before 
moving cℓ one position. We finish the construction of Kc 
after moving cℓ k times.

When o = 0 , the cost of moving cℓ is O(1) as the first 
bucket b1 in S is precisely the one encoding Kc , and our 
compact encoding H keeps Kc

[1] in H [b1].
Now we study the case 0 < o ≤ k . Figure  4 depicts 

a graphical example of our argument. We consider two 
copies of the trie encoding the strings in �o . We will 
refer to them as I and D, and will associate I with moving 
wℓ,wr to the left and D with moving wℓ,wr to the right. 
Let uh be a node at height h in any of these tries. We will 
use the notation uh,uh+1 to indicate we descend from uh 
to its child uh+1 , and uh+1,uh to indicate we climb from 
uh+1 to its parent uh.

Let uh ∈ I be a node at height h and let vo−h ∈ D be a 
node at height o− h . The operator labelI (uh) returns the 
string spelled by the path uh,uh−1, . . . ,u1 from uh to the 
root u1 of I, while labelD(v) is the string spelled by the 
path v1, v2, . . . , vo−h starting at the root v1 of D and ending 
at vo−h . The string labelI (uh)·Kc

[cℓ . . . cr]·labelD(vo−h) 
forms one of the k-mers encoded by S before moving 
the inner end cℓ . Although different nodes uo ∈ I and 
vo−h ∈ D form different k-mers, Lemma 3 limits the node 
combinations that form k-mers we could see in S. We will 
explain this idea below.

Moving wℓ,wr to the left by x ≤ o− h positions trans-
lates to descend a path uh+1,uh+2, . . . ,uh+x in the sub-
tree of I rooted at uh , at the same time it means climbing 
the x ancestors vo−h−1, vo−h−2, . . . , vo−h−x of vo−h in D. 
Moving the window to the right represents the opposite 
operation: climbing the ancestors of uh+x and descend-
ing a path from the subtree of D rooted at vo−h−x . How-
ever, when we move to the right, we cannot descend the 
same path vo−h−x+1, vo−h−x+2, . . . , vo−h we climbed in D 
before because it would mean visiting k-mers of S more 
than once, which contradicts Lemma  3. Symmetrically, 
once we choose a path in D to move to the right, if we 
require to move to the left again, we can not descend 
uh+1,uh+2, . . . ,uh+x in I.

In conclusion, sliding wℓ,wr back and forward over a 
node in I or D cancels branches, reducing the forma-
tion of k-mers that we could see in S. Figure 3B depicts 
this situation with vertical lines. The cancellations 

produce each internal node v in I or D to be associated 
with σ − 1 different k-mers in S as we can descend only 
once through each of v’s children and then climb back 
to v. We use the remaining child to slide the window 
in the same direction we did before, thus keeping the 
invariant of Lemma  3. On the other hand, every leaf 
in the tries is associated with one k-mer of S. Once we 
exhausted all the possible visits in all the nodes in I and 
D, we do not have any other choice but to slide wℓ,wr to 
the right and move cℓ.

The trie with the strings in �o is a full k-ary tree of 
degree σ , meaning it has σ o leaves and σ o

− 1/σ − 1 
internal nodes. If we add the cost of the σ − 1 possible 
visits to an internal node, we obtain a cost of σ o

− 1 for 
processing the internal nodes and a total cost of 2σ o

− 1 
for processing the full trie.

Now let us assume we moved the inner end cℓ one 
position, so now we know o+ 1 symbols of Kc . Let 
Io,Do be the tries we used for o and let Io+1,Do+1 be 
the new tries we will use for o+ 1 . We know that Io is a 
subtree of Io+1 (respectively, Do of Di+1 ) that we already 
traversed when the number of known symbols of Kc 
was o. Therefore, if at some point in the synchronized 
traversal of Io+1 and Do+1 , we visit two nodes uh and 
vo+1−h such that uh belongs to the subtree Io and vo+1−h 
belongs to Do , then we would form a k-mer we already 
visited, thus breaking Lemma  3. Therefore, the cost of 
moving cℓ when o+ 1 becomes (2σ o+1

− 1)− (2σ o
− 1) 

as we discard the subtrees Io and Do of visited k-mers. 
Further, if we consider all the possible values for o, we 
obtain

Equation  2 is a sum that telescopes to 2σ k
− 1 , so we 

obtain the running time O(σ k) for canspell.
The analysis we presented here is rather pessimistic as 

having full tries I and D implies that the input read collec-
tion R produces a complete de Bruijn graph with order k, 
which is hardly the case in practical scenarios.

Building the canonical dictionary
Our algorithm GetCanDict constructs the canoni-
cal dictionary Dc

R,k using our compact data structure of 
“Our canonical compact hash table” section. The idea is 
to scan R left to right, and for each k-mer K = R[x . . . y] , 
we compute its canonical Kc

∈ {K , K̂ } and insert Kc into 
H using the operation incval (see “Building the diction-
ary” section). The most relevant change of GetCan-
Dict compared to GetDict is the implementation of 
keycomp(H , b′,Kc, bpr) , the subroutine that incval calls 

(2)
k

∑

o=1

(2σ o
− 1)− (2σ o−1

− 1)
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to compare k-mers while probing buckets in the compact 
hash table (see Algorithm 4.2.2).

The function keycomp(H , b′,Kc, bpr) receives a bucket 
H [b′] and an input k-mer Kc , and returns true if Kc 
matches the key in H [b′] , and false otherwise. The param-
eter bpr is a bucket H [bpr] encoding Kc

pr . In the canoni-
cal variant of keycomp, we will add two extra parameters 
e′ and o′ . Let R[x . . . y] be the substring in R where we 
obtain the occurrence of Kc we are querying in keycomp, 
and let R[x − 1 . . . y− 1] the occurrence of the predeces-
sor Kc

pr associated with H [bpr] . The field o′ tells the rela-
tive orientation of Kc

pr and R[x − 1 . . . y− 1] and the field 
e′ tells the relative orientation of Kc and R[x . . . y] . The 
meaning of the values for e′ and o′ is the same as those for 
H [b′].e and H [b′].o.

We start the canonical variant of keycomp by compar-
ing the tuple (Kc

[1],Kc
[k], bpr , e

′, o′) against ( H [b′].v , 
H [b′].a , H [b′].r , H [b′].e , H [b′].o ). If they are equal, we 
conclude that Kc equals the k-mer in H [b′] , so we return 
true. If they differ, we need to reconstruct H [b′] ’s key to 
check if it matches Kc.

This process is almost the same as running canspell 
on H [b′] (Algorithm 2). The only difference is that every 
time we extract symbols for H [b′] ’s key (Lines 10, 12,18, 
or 19), we compare them against their corresponding 
positions in Kc , and if they differ, we return false. If all the 
symbols in H [b′] ’s key matched their corresponding posi-
tions in Kc , we return true.

We also introduce a small modification to incval to 
maintain the correctness of the dictionary. In the non-
canonical scheme, when we call incval with a k-mer K 
that currently is in B, but now we have a predecessor 
bucket bpr for it, we remove K from B and update the 
predecessor reference in H [b].r = bpr (see Line  24 in 
Algorithm  4.2.2). In the canonical variant of incval, we 
do something similar: we remove a canonical sequence 
Kc from B if we now know a bucket bpr we can use for 
its reconstruction. However, we also need to ensure that 
all k-mers in H can be reconstructed after this update. 
This invariant can be violated if the reconstruction of 
the key Kc

pr in H [bpr] depends on the reconstruction of 
Kc . In this situation, setting H [b].r = bpr creates a cycle 
in the chain S spelling Kc

pr from H [bpr] , thus invalidating 
Lemma 3. We can easily check this condition by calling 
keycomp on bucket bpr and checking if the chain of refer-
ences includes Kc . If this is the case, we keep Kc in B to 
ensure that all k-mers in H are reconstructible.

Correctness of our canonical encoding
We will show that the canonical encoding of H and the 
way GetCanDict works do not prevent the correct 
construction of the k-mers in Dc

k ,R . The only important 

aspect to demonstrate is that keycomp always returns the 
correct answer.

Lemma 6 Let Kc
∈ {K , K̂ } be a canonical k-mer 

encoded in H[b] with an occurrence K = Ri[x . . . y] ∈ R . 
Additionally, let H [bpr] be the bucket encoding the canon-
ical form of Kpr = Ri[x − 1 . . . y− 1] . Given an arbitrary 
non-empty bucket H [b′] , keycomp(H , b′,Kc, bpr , e

′, o′) will 
always stop and return true or false.

Proof At the beginning of GetCanDict, H is empty 
and thus trivially all k-mers can be reconstructed. Let 
us assume that before we insert a new k-mer Kc into 
H, all k-mers already in H can be reconstructed. When 
inserting Kc , we will either (i) add Kc to the dynamic 
buffer B and store a pointer for B[l . . . l + k − 1] = Kc 
in H [b].r = l or (ii) add the first and last symbols of Kc 
to H[b] together with the bucket H [b].r = bpr of Kc

pr . In 
case (i), Kc clearly can be reconstructed as we only need 
to access B using H [b].r = l . In case (ii), we immediately 
know the first and the last symbols of Kc . Furthermore, 
we have the bucket H [bpr] storing the k-mer Kc

pr . By defi-
nition, we know that Kc overlaps by k − 1 symbol one of 
the strings {Kpr , K̂pr} from which Kc

pr was obtained (bits 
H[b].o and H[b].e tell us which string, Kpr or K̂pr , is the 
one that Kc overlaps). Since Kc

pr is already in H, it can be 
reconstructed, and thus we can uncover the remaining 
k − 2 symbols of Kc .  �

Reporting the k‑mers in the compact dictionary
Our framework also implements an algorithm to report 
the k-mers of a compact hash table H in uncompressed 
form. We refer to this procedure as DumpDict. It works 
by following the reference chains to reconstruct the 
k-mers and write them into an output file along with their 
frequencies, provided the frequency is above some input 
threshold τ . “Non-canonical scheme” section explains 
how DumpDict works when H follows the non-canon-
ical scheme, and “Canonical scheme” section describes 
how it works when H follows the canonical scheme.

Non‑canonical scheme
In the non-canonical version of H, the process is simple: 
we scan H left to right until we find the leftmost occu-
pied bucket H[i]. Let Si = bk ′ , . . . , b2, b1 be the refer-
ence chain starting at H [i = b1] , with H [bj].r = bj+1 and 
H [bk ′ ] being the only bucket that does not have a refer-
ence (i.e., Kk ′ is the dynamic buffer B). We also assume 
that Si has length |Si| = k ′ ≥ k , meaning that the chain 
encodes one or more k-mers together. We take the 
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symbol in H [b1].a and store it in the rightmost posi-
tion W[k] of a buffer W [1 . . . k] . Then, we follow the link 
H [b1].r = b2 , retrieve the DNA symbol in H [b2] , and add 
it to W [k − 1] . We keep applying this idea until we have k 
symbols in W. Notice we fill W from right to left because 
the DNA symbols we store in H are in the right end of 
their k-mers. Once W is full, we are ready to print the k-
mer K1 , the one stored in H [i = b1] . We find its count in 
H[i].f, and if it is above τ , we write W and its frequency in 
the output file. Then, we follow the reference chain fur-
ther H [bk ].r = bk+1 . Since W is full, we have to drop the 
rightmost symbol W[k], shift the buffer by one position to 
the right and insert the DNA symbol of H [bk+1] in W[1] 
to get K2 . We then check its frequency in H[H[i].r] and 
decide whether to print it or not using τ . We continue 
traversing Si until reaching Kk ′ , or until we encounter a 
k-mer that has already been printed. To do this, when a 
bucket is visited, we mark it so we do not later try to print 
the same k-mer again. After we process all the k-mers in 
Si , we move to the next occupied bucket H [i′] , with i′ > i , 
in the scan of H, and start to process the corresponding 
reference chain Si′ , unless H [i′] is marked as processed. 
In this case, we move to the next occupied bucket and 
continue with the same idea until we finish the scan of H.

We need the k-mer reference chains to be as long as 
possible to make the writing process more efficient. The 
reason is that we need to visit k buckets to reconstruct 
the first k-mer in a reference chain Si , but all subsequent 
k-mers in Si can be reconstructed by visiting one new 
bucket. So, instead of starting the writing process at the 
leftmost occupied bucket H[i], we can scan H once and 
mark all buckets that are referenced by another k-mer. 
Now, all buckets that are not marked are either empty or 
contain a k-mer that is not referenced by another k-mer. 
We can then start writing k-mers from these unmarked 
buckets to maximise the reference chain lengths and 
reduce the time needed to print the k-mers.

Canonical scheme
The k-mer writing process in the canonical variant of H is 
more involved but follows the same idea we described in 
“Non-canonical scheme” section. The first k-mer Kc

1 in a 
reference chain Si = bk ′ , . . . , b2, b1 is fully reconstructed 
by calling W = canspell(b1) (Algorithm 2). Let us assume 
this instance of canspell used the leftmost k ≤ j ≤ k ′ 
buckets bj , . . . , b2, b1 of Si to get Kc

1 . Then, reconstruct-
ing the next k-mer Kc

2 from H [b2] requires determining 
which is the symbol of W = Kc

1 that does not belong 
to Kc

2 , removing it, and adding the missing DNA sym-
bol from H [bj+1] to W. The reconstruction of Kc

1 from 
H [b1] might require visiting more than k buckets as we 
call canspell (the reason is in “Implementing our k-mer 
retrieval algorithm” section). However, after we get Kc

1 , 

we obtain the subsequent k-mers from bk ′ , . . . , b2 by vis-
iting only one new bucket for each.

Experiments
Implementation details
We implemented2 GetCanDict (“Building the canonical 
dictionary” section) and the variant of DumpDict that 
processes the canonical compact hash table (“Canoni-
cal scheme” section) in C++. We refer to this software as 
Kaarme. We did not implement GetDict and the vari-
ant of DumpDict that deals with the non-canonical hash 
table because most genomic analyses only use the canon-
ical dictionary. Our source code implements the function 
incval in GetCanDict using compare and swap (CAS) 
atomic instructions to record the k-mers of R in paral-
lel in a lock-free manner. To make the procedure more 
space efficient, we included a filtering step so GetCan-
Dict can ignore most of the k-mers that do not appear 
at least twice. More specifically, we use two Bloom filters 
[3] where the first Bloom filter includes all k-mers occur-
ring at least once in the data set, and the second Bloom 
filter includes all k-mers occurring at least twice in the 
data set. Thus, when first encountering a k-mer, we add 
it to the first Bloom filter. If a k-mer is already found in 
the first Bloom filter, we add it to the second Bloom filter. 
Only k-mers that are found in the second Bloom filter are 
added to the hash table of Kaarme. Because Bloom filters 
allow false positives, some k-mers with a single occur-
rence can be inserted into the hash table, but these are 
easily filtered out in the end when reporting the k-mers.

Competitor tools
We compared our software (Kaarme) against the follow-
ing methods: 

1. Plain: a multi-threaded k-mer counter that uses a 
generic lock-free hash table implemented by us. The 
hash table stores the full k-mer sequences in a two-
bits-per-symbol format, along with the frequencies.

2. Jellyfish [18]: a k-mer counter using a multi-
threaded lock-free hash table.

3. CHTKC [31]: a semi-external k-mer counter. When 
the hash table is full, CHTKC stores all subsequent 
new k-mers on disk to be processed in a later batch.

4. DSK [26]: a disk-based k-mer counter that partitions 
the input and stores the partitions on disk.

5. Gerbil [9]: a k-mer counter with GPU support 
designed to efficiently count k-mers for large k.

We implemented Plain as a module within Kaarme. 
We use the flag -m to tell our software to either use our 

2 https:// github. com/ Denop ia/ kaarme.

https://github.com/Denopia/kaarme
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compact hash table scheme or Plain. Additionally, 
Plain and Kaarme require the user to estimate the 
number of distinct k-mers in the data set for them to cal-
culate the bloom filter size. We computed the estimate 
by running DSK on the datasets to obtain the number 
of distinct k-mers. Jellyfish also requires an estimate 
of the number of distinct k-mers, so we gave it the value 
reported by DSK. CHTKC requires the user to define the 
maximum amount of memory it is allowed to use. We 

set this value to 15 GB, close to the maximum available 
memory of the used machine.

Datasets
We used three read collections for the experiments: 

1. ecoli280: 280x coverage PacBio HiFi Escherichia 
coli reads (acc: SRR10971019).

2. ecoli100: 100x coverage downsampled version of 
ecoli280.

Fig. 5 Memory usage (left column) and runtime (right column) of the tools on the ecoli100 (top row), ecoli280 (middle row) and dmel20 
(bottom row) data sets. Missing columns indicate that k‑mers could not be counted using the program
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Fig. 6 Estimated memory usage of the three main data structures of Kaarme during memory peak. SB = secondary buffer, HT = hash table, BF = 
bloom filter. Bloom filter size is doubled during filtering but is then halved when the unneeded first filter is deleted

Fig. 7 Memory usage of Kaarme per distinct k‑mer stored in the hash table. (The number of k‑mers in the hash table is close to the number 
of reported k‑mers. Few with count = 1 slip through the bloom filter.)
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3. dmel20: a downsampled 20x coverage PacBio HiFi 
Drosophila melanogaster reads (acc: SRR10238607).

We obtained the reads from the SRA3 database. See the 
associated accession codes in the list above.

Experimental setup
We used Kaarme and the competitors to count k-mers in 
the three data sets. The values of k we used were 51, 101, 
151, 201, 251, and 301. The tools used up to 8 threads and 
reported canonical k-mers with frequency ≥ 2 . Mem-
ory usage was measured using time -v. This was also 
used to measure k-mer counting times of DSK, CHTKC, 
Jellyfish, and Gerbil. For Plain and Kaarme an 

Fig. 8 Kaarme has three phases: bloom filtering (F), counting (C), and dumping (D). This plot shows how much time each phase takes 
with the three different data sets

Fig. 9 The average number of buckets visited when decompressing a k‑mer in the canonical dictionary built on the ecoli100 data set

3 https:// www. ncbi. nlm. nih. gov/ sra.

https://www.ncbi.nlm.nih.gov/sra


Page 22 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology           (2024) 19:14 

internal timer was used. The run time and memory usage 
is shown in Fig.  5. Missing results indicate that a tool 
could not count the k-mers with the available amount of 
memory.

To illustrate the difference in memory usage for differ-
ent values of k, statistics of Kaarme memory usage per 
distinct k-mer in the hash table can be seen in Fig. 7. To 
show how much time each procedure of Kaarme takes, 
in Fig. 8, the run times are split into three different parts: 
Bloom filtering, counting, and dumping. Figure 6 shows 
the estimated memory usages of the main Kaarme data 
structures. Note that the Bloom filter size includes both 
Bloom filters, which is halved by deleting the first bloom 
filter before we proceed to the k-mer counting step.

Finally, we measured the average number of buck-
ets visited when decompressing a k-mer in the canoni-
cal dictionary built on the ecoli100 data set. We 
first constructed the canonical dictionary Dc

k ,R . Then, 
k-mers on the occupied entries of the hash table were 
decompressed, and the number of visited buckets dur-
ing decompression was recorded. The average lengths of 
these k-mer decompression chain lengths are shown in 
Fig. 9.

The experiments were run on a laptop with 16 GB of 
RAM, Intel� CoreTM i5-8250U CPU @ 1.60GHz × 8 pro-
cessor, and a 64-bit Linux-based OS.

Results and discussion
First, we compare Kaarme to Plain. Figure  5 shows 
that Kaarme uses significantly less memory than Plain. 
On ecoli100 with k = 51 , the space usage of Kaarme 
is about 70% of the space usage of Plain (362MB vs 
529MB), and the difference grows as the value of k 
increases. On ecoli280, the difference is even more 
significant with larger values of k. On dmel20 with 
k = 51 , Kaarme also uses about 40% less memory than 
Plain, and Kaarme could run with k up to 301 while 
Plain ran out of RAM already when k was set to 151. 
However, the reduced space usage does not come com-
pletely without a cost. The runtime of Kaarme is longer 
compared to Plain (for example, 151  s vs 122  s with 
k = 51 on ecoli100).

In all the datasets, the space usage of Kaarme was 
dominated by the hash table and Bloom filters, while the 
secondary buffer took on average less than 11% of the 
total space usage (see Fig.  6). We remark that our hash 
table’s compact encoding uses a constant number of bits 
per k-mer (regardless of k), and that our experiments 
showed that the secondary buffer contributes little to the 
memory peak. Therefore, we expect the space usage per 
distinct k-mer to grow very slowly with Kaarme, and to 
grow linearly with k for Plain. This is indeed the case as 
shown in Fig. 7. On the other hand, Fig. 8 shows that the 

running time of Kaarme is dominated by the counting 
phase, especially when k grows.

We see in Fig.  5 that, when compared to other k-mer 
counters, Kaarme uses the least amount of memory in 
all other experiments except on dmel20, where Ger-
bil is more memory efficient with k < 300 . However, 
Kaarme is slower than the other k-mer counters with 
the exception of Jellyfish on some data sets where its 
memory usage is close to the total RAM available on the 
machine.

We remark that Kaarme only implements compact in-
memory hash tables that are suitable for k-mers, while 
our competitors are full-fledged counters that combine 
hash tables with other techniques. Thus, a comparison 
of Kaarme against these tools is not completely fair. This 
observation is particularly true for Gerbil, CHTKC, and 
DSK that rely on disk to reduce RAM usage.
Gerbil, DSK, and CHTKC control the amount of main 

memory they use, so they can count the k-mers in all the 
data sets without running out of RAM. CHTKC and DSK 
used RAM up to the set limit of 15GB but made exhaus-
tive use of disk when it was deemed necessary. Because of 
the disk usage, the comparison between all the programs 
is not strictly fair. Still, the space usage of Kaarme was 
usually the smallest, excluding lower k experiments on 
dmel20, indicating that Kaarme is the most memory 
frugal.

Concluding remarks
We have presented Kaarme, a space-efficient hash 
table to count large k-mers in memory. We showed that 
Kaarme uses up to five times less space than a regu-
lar hash table for counting k-mers while being at most 
1.5 times slower. When compared to k-mer counters, 
Kaarme uses the least amount of memory when k is 
large.

We note that both DSK and CHTKC make use of hash 
tables in their implementation. Thus, the adaption of 
Kaarme as a submodule in these tools could allow them 
to either use less memory or count larger k-mer sets in 
memory. However, Kaarme takes advantage of the fact 
that most of the k-mers overlap by k − 1 symbols with 
a previous k-mer in the input collection. Depending on 
how DSK partitions the k-mers, the input data set could 
become more fragmented with a much larger amount 
of k-mers without predecessors, causing the secondary 
buffer B to grow significantly. The same could be true 
for CHTKC, which writes the excess k-mers into disk for 
the next iteration.

The reconstruction of k-mers in the canonical dic-
tionary of Kaarme can be exponential, but our experi-
ments suggest that, on average, the time complexity 
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seems to be close to linear. Therefore, Kaarme is a 
practical, space-efficient hash table for large k-mers.
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