
Díaz‑Domínguez et al.
Algorithms for Molecular Biology (2024) 19:14
https://doi.org/10.1186/s13015‑024‑00259‑1

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Space‑efficient computation of k‑mer
dictionaries for large values of k
Diego Díaz‑Domínguez1*†, Miika Leinonen1† and Leena Salmela1*†

Abstract

Computing k‑mer frequencies in a collection of reads is a common procedure in many genomic applications. Several
state‑of‑the‑art k‑mer counters rely on hash tables to carry out this task but they are often optimised for small k
as a hash table keeping keys explicitly (i.e., k‑mer sequences) takes O(N k

w
) computer words, N being the num‑

ber of distinct k‑mers and w the computer word size, which is impractical for long values of k. This space usage
is an important limitation as analysis of long and accurate HiFi sequencing reads can require larger values of k. We
propose Kaarme, a space‑efficient hash table for k‑mers using O(N + u

k

w
) words of space, where u is the number

of reads. Our framework exploits the fact that consecutive k‑mers overlap by k − 1 symbols. Thus, we only store
the last symbol of a k‑mer and a pointer within the hash table to a previous one, which we can use to recover
the remaining k − 1 symbols. We adapt Kaarme to compute canonical k‑mers as well. This variant also uses point‑
ers within the hash table to save space but requires more work to decode the k‑mers. Specifically, it takes O(σ k) time
in the worst case, σ being the DNA alphabet, but our experiments show this is hardly ever the case. The canonical
variant does not improve our theoretical results but greatly reduces space usage in practice while keeping a competi‑
tive performance to get the k‑mers and their frequencies. We compare canonical Kaarme to a regular hash table
storing canonical k‑mers explicitly as keys and show that our method uses up to five times less space while being
less than 1.5 times slower. We also show that canonical Kaarme uses significantly less memory than state‑of‑the‑art
k‑mer counters when they do not resort to disk to keep intermediate results.

Keywords Genomics, String hashing, k‑mers

Introduction
Strings of length k called k-mers are central in many
genomic analyses. While in the past, relatively short
k-mers with k less than 100 have been used to analyse
short read data produced by Illumina sequencers, the

development of long and very low error rate sequenc-
ing technologies such as HiFi sequencing by Pacific Bio-
sciences has created a need to support longer k-mers to
take advantage of the length of the reads. For example,
when assembling this data to whole genomes using de
Bruijn graphs, assemblers use k-mers with k up to sev-
eral thousand base pairs to decrease branching in the de
Bruijn graph [2, 25]. A hash table associating k-mers to
values such as the frequency of a k-mer is a basic data
structure used in the analysis of k-mers. This work pre-
sents a space-efficient hash table for long k-mers.

The use of k-mers is common in many tasks in the
analysis of sequencing data including error correction [7,
13], genome assembly [11, 21], genetic variant calling [20,
30], metagenomic classification [32], and repeat analysis

†Diego Díaz‑Domínguez, Miika Leinonen and Leena Salmela have contributed
equally to this work.

*Correspondence:
Diego Díaz‑Domínguez
diego.diaz@helsinki.fi
Leena Salmela
leena.salmela@helsinki.fi
1 Department of Computer Science, University of Helsinki, Pietari Kalmin
katu 5, 00014 Helsinki, Finland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00259-1&domain=pdf

Page 2 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

[6, 15]. The first step in most k-mer-based methods is
counting [17], where the aim is to compute the frequen-
cies of all k-mers occurring in a sequencing read set. One
approach to k-mer counting, taken e.g. by Jellyfish
[18], DSK [26], and CHTKC [31], is to use a hash table to
associate the k-mers with their frequencies. In addition
to counting, k-mer hash tables are useful in applications
where k-mers have to be associated with values and ran-
dom access to the k-mers is needed.

The hash tables used by tools like Jellyfish [18] and
CHTKC [31] are highly optimised for short k-mers. A k-
mer of DNA can be encoded in 2k bits and thus the k-
mer can be stored in each hash table entry when k ≤ 32 ,
i.e. the sequence fits the computer word of modern com-
puter architectures. However, when k becomes large, this
approach is space-consuming as the space complexity is
O(N k

w) words, where N is the number of unique k-mers
and w is the computer word size. For example, in de-
Bruijn-graph-based genome assemblers for HiFi reads,
it is crucial to use a large value of k to take advantage of
the read lengths and decrease branching in the de Bruijn
graph. However, due to the memory bottleneck caused
by long k-mers, these tools resort to various ways to
avoid creating a dictionary of all k-mers in the read set.
For instance, MBG (Minimizer-based sparse de Bruijn
Graph) [25] uses minimizer winnowing [27] to choose a
subset of the k-mers and then builds a sparse de Bruijn
graph using this subset.

LJA (La Jolla Assembler) [2] uses a complex procedure
to directly construct the compressed de Bruijn graph,
which is a memory-efficient version of a de Bruijn graph
where all nonbranching paths have been compressed.
LJA first builds a sparse de Bruijn graph using minimiz-
ers similar to MBG. The sparse de Bruijn graph is then
used to create a set of disjointigs, a set of strings contain-
ing all k-mers of the original read set as substrings. Then
a Bloom-filter is used to record all k-mers present in the
disjointigs and finally the compressed de Bruijn graph is
built.

We propose Kaarme,1 a space-efficient hash table for
k-mers that uses O(N + u k

w) words of space, where u is
the number of strings in the input data set. Kaarme is an
in-memory data structure that stores for each hash table
entry the last symbol of the k-mer, a pointer to a previ-
ous k-mer, and some bookkeeping bits. A key insight
in Kaarme is that a common pattern in many applica-
tions is to access the entries so that each k-mer overlaps
by k − 1 symbols with the previous one. This allows for
fast detection of collisions in our scheme in most cases
as it suffices to check that the pointer in the hash table

entry matches the pointer of the previous k-mer and that
the last symbol of the k-mer matches the symbol saved
in the hash table entry. Additionally, we show how the
hash table can be adapted to store only canonical k-mers,
i.e. k-mers that are smaller than their reverse comple-
ments in some predefined order, and we give a lock-
free parallel implementation of the hash table and its
construction.

We compare canonical Kaarme against a regular hash
table storing the whole k-mer’s canonical sequence in
each entry and show that Kaarme uses up to five times
less space than a regular hash table while being at most
1.5 times slower. Additionally, we compare canonical
Kaarme against k-mer counters that rely on hash tables
and show that, for data sets where the k-mer counters do
not resort to disk space, Kaarme uses significantly less
RAM.

Related work
The problem of constructing a compact representation
for an input set of k-mers has been studied before. These
solutions typically also take advantage of the k-mers
sharing long overlaps with each other. BOSS [4] uses
a data structure that resembles the Burrows–Wheeler
transform to represent a de Bruijn graph, i.e. a set of
k-mers. UST [24] and ProphASM [5] find a small spec-
trum preserving string set (SPSS) which is a set of strings
containing all k-mers in the input k-mer set and Eulertigs
[28] gives a minimum SPSS. Shibuya et al. [29] consider
compressing a k-mer count table using compressed static
functions and minimizers. Finally, Pibiri [22] and Pibiri
et al. [23] consider the problem of associating each k-mer
in a k-mer set with a unique integer in the range [1 . . . n]
where n is the number of k-mers. However, all these tools
require that the set of k-mers has already been counted,
which is exactly what Kaarme hash table is designed for.

Bifrost [10] can directly compute the compacted de
Bruijn graph from input reads. However, it outputs the
compacted de Bruijn graph, which does not allow values
to be associated with single k-mers like our hash table.
Methods such as TwoPaCo [19] and Cuttlefish [14] com-
pute a de Bruijn graph for genomic sequences. These
tools exploit the length of the sequences and the fact that
all k-mers will be kept in the final data structure, unlike
when working with reads, where k-mers with low counts
are often discarded.

Some k-mer counters [8, 9, 16] exploit the overlaps
between k-mers by using super k-mers and minimiz-
ers. A minimizer of a string is the smallest substring of a
given length in some predefined order, and a super k-mer
is a string consisting of consecutive k-mers that share
the same minimizer. These k-mer counters first split the
reads into super k-mers, and the super k-mers are then

1 Käärme is a snake in Finnish. The way the k-mers are arranged in the hash
table resembles a snake weaving its way through the table.

Page 3 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

partitioned into bins so that the super k-mers sharing the
same minimizer end up in the same bin. Since all k-mers
with the same minimizer are now in the same bin, differ-
ent bins do not share any k-mers and can thus be counted
independently, allowing for efficient parallelization.

Preliminaries
De Bruijn graphs
The order k de Bruijn graph (dBG) G = (V ,E) of a string
S[1 . . . n] over the alphabet � is a labelled directed graph
that encodes the distinct k-length substrings of S. Each
node v ∈ V is labelled with one of the distinct k-length
substrings. Thus, if S has N distinct k-length substrings,
G has N nodes. Additionally, two nodes u and v are con-
nected by an edge (u, v) ∈ E if the k − 1-length suffix of
label(u) matches the k − 1-length prefix of label(v), and
the collapse of the overlap yields a k + 1-length sequence
that exists as a substring in S. The label of (u, v) is the
rightmost symbol of label(v).

String fingerprints and rolling hashing
The Karp–Rabin method [12] computes fingerprints
(integer values) for strings of arbitrary size. Given a
sequence K [1 . . . k] over the alphabet � , a fingerprint
function hp : �k

→ [1 . . . p] is defined as

where q ∈ [1 . . . p] is an integer chosen uniformly at ran-
dom and p is a prime number. Karp–Rabin fingerprints
can be updated in constant time. Given hp(K [1 . . . k])
and a symbol c ∈ � , one can compute hp(K [2 . . . k]·c)
or hp(c·K [1 . . . k − 1]) in O(1) time (among other opera-
tions). The fast update makes Karp–Rabin fingerprints
the preferred solution to implement rolling hashing in
linear time. That is, given a string T [1 . . . n] and an inte-
ger k < n , compute the fingerprint hp(T [i . . . i + k − 1])
of every k-length substring T [i . . . i + k − 1] , with
i ∈ [1 . . . n− k + 1].

To insert the strings visited by the rolling hash into a
hash table of size m, it is convenient to combine hp with
a universal hash function hm : [1 . . . p] → [1 . . .m] using

hp(K [1 . . . k]) =

(

k
∑

i=1

K [i] · qi−2

)

mod p,

the composition h(K) = hm(hp(K)) with m < p . By using
a large prime p, the probability for two random strings
over �k to be assigned the same integer in [1 . . .m] is
close to 1/m.

Our contribution
Definitions
We consider the RAM model of computation. Given an
input of n symbols, we assume our procedures run in
random-access memory, where the machine words are
w = �(log n) bits in length and can be manipulated in
constant time.

Let {a,c,g,t} be the DNA alphabet, and let
� = {0, 1, 2, 3, 4} be another set of size σ = |�| = 5 to
which we map the DNA alphabet as a = 1 , c = 2 , g = 3 ,
t = 4 . For technical reasons, we define ε = 0 ∈ � as the
empty symbol. Additionally, we regard the DNA comple-
ment as a permutation π [1, σ] that reorders the symbols
in � , exchanging 1 = a with 4 = t , 2 = c with 3 = g , and
keeping the same value π [ε] = ε for the empty symbol.
The reverse complement of R ∈ �∗ , denoted R̂ , is the
string formed by reversing R and replacing every symbol
R[j] by its complement π(R[j]).

Given two strings K ,K ′
∈ �k , the operator K ⊕ K ′

means that the k − 1-length suffix K [2 . . . k] overlaps the
k − 1-length prefix K ′

[1 . . . k − 1].
We consider a collection R = {R1, . . . ,Ru} of u

strings over the alphabet �∗ , with a total length of
n = ||R|| =

∑u
i=1 |Ri| symbols.

Let hp : �k
→ [0 . . . p− 1] be a function that maps

k-length strings to integers in [0 . . . p− 1] uniformly
at random, where p is a prime number. We define the
canonical version of a k-mer K, denoted Kc , to be the
string Kc

∈ {K , K̂ } with the smallest value in hp . If hp
assigns the same integer to K and K̂ , we set Kc equal to
the smallest string in lexicographical order between K
and K̂ .

A k-mer dictionary Dk ,R is a dictionary where the keys
are the distinct k-length substrings of R (i.e., the k-mers),
and their associated values are the frequencies of those
k-mers in R . The canonical k-mer dictionary Dc

k ,R stores
as keys the canonical k-mers of R . The value associated

Page 4 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

with each key Kc in Dc
k ,R is the sum of the frequencies in

R for K and K̂ .
Our framework consists of three algorithms:

1. GetDict(R, k) (“Building the dictionary” section):
recieves R as input and returns a hash table H encod-
ing Dk ,R in compressed form.

2. GetCanDict(R, k) (“Building the canonical diction-
ary” section): receives R as input and returns a hash
table H encoding Dc

k ,R in compressed form.
3. DumpDict(H) (“Reporting the k-mers in the com-

pact dictionary” section): receives as input a hash
table H encoding a k-mer dictionary (canonical or
non-canonical) in compressed form and returns the
same dictionary in uncompressed form. That is, each
entry (K, f) of key K and frequency f is represented as
a string in �k and an integer, respectively.

Our theoretical descriptions in the following sections
assume a suitable size m for H is known prior to the exe-
cution of GetDict or GetCanDict. A suitable m is big
enough to encode the distinct k-mers of R . Let H be a
hash table that uses open addressing to resolve collisions
and h a hash function that maps k-mers to buckets in H.
We define the following operations:

1. incval(H, K, f): increments the value associated with
the key K in H by f or stores a new entry (K, f) in H if
K does not exist as key.

2. value(H, K): returns the value associated with the key
K in H.

3. probe(h(K), m, d): receives as input the fingerprint
h(K) of a k-mer K (“String fingerprints and rolling
hashing” section) and returns the hash table bucket
in [1 . . .m] that the probing function of the open
addressing scheme produces in step d.

We assume probe(h(K), m, d) computes the bucket using
quadratic probing.

Dictionary of k‑mers
We begin by describing how to build the k-mer diction-
ary Dk ,R efficiently. “Our compact hash table” section
presents our compact data structure that exploits the
redundancy of consecutive k-mer in R . Then, in “Build-
ing the dictionary” section, we explain our algorithm
GetDict, which builds Dk ,R using this compact data

structure. “Connection with de Bruijn graphs” section
describes the link between our method and the de Bruijn
graph of R . Finally, in “Space and time complexity” sec-
tion, we present the space and time complexities of Get-
Dict, and in “Improving the time complexity” section,
we show how to improve its running time.

Our compact hash table
We devise a compact hash table H where the keys
are the distinct k-mers of R , and the associated val-
ues are their frequencies. We reduce space usage by
exploiting the fact that k-mers occurring consecu-
tively in R contain redundant information. Specifi-
cally, let Kpr = Ri[x − 1 . . . y− 1] and K = Ri[x . . . y]
be two consecutive substrings in Ri ∈ R , with
k = y− x + 1 and Kpr = K . Our simple observa-
tion is that, storing Kpr and K explicitly in H pro-
duces a redundant copy of the (k − 1)-length string
Ri[x . . . y− 1] = Kpr[2 . . . k] = K [1 . . . k − 1].

In our encoding, a bucket H[b] stores a k-mer K in
relative form along with its frequency in R . This repre-
sentation has three fields H [b] = (f , r, a) , where f is the
frequency of K in R , r is another bucket in H where we
can recover the prefix K [1 . . . k − 1] and a = K [k] ∈ � is
the rightmost symbol in K. We refer to H [b].r = bpr as
the reference bucket for K. We also keep a dynamic buffer
B to store the k-mers that we cannot encode immedi-
ately in relative form. This situation occurs when, dur-
ing the execution of GetDict, we visit the kth prefix
K = Ri[1 . . . k] of a string Ri ∈ R . The problem arises
because we do not know a bucket H [bpr] encoding a k-
mer Kpr with Ri[1 . . . k − 1] = Kpr[2 . . . k] that we can
record as a reference in H[b].r. Thus, we get the leftmost
available block B[l . . . l + k − 1] , copy K there, and set
H [b] = (1, l, ε) , where ε serves as a flag that indicates
that K is in the dynamic buffer. We say that B is dynamic
because, as soon as we find a bucket H [bpr] , we remove K
from B and store H [b].r = bpr instead.

Building the dictionary
We now describe GetDict, our method to compute the
dictionary Dk ,R that relies on the compact hash table H
of “Our compact hash table” section. Algorithm 4.2.2
contains more details about its implementation.

We start the algorithm by defining a rolling hash func-
tion h : �k

→ [1 . . .m] that maps k-mers to buckets in
H uniformly at random as described in “Preliminaries”

Page 5 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

section, and by creating an empty dynamic buffer B.
Subsequently, we scan R from left to right, and for
every k-mer K = R[x . . . y] we visit, with R ∈ R , we call
the operation incval(H, K, 1) (“Definitions” section).
Lines 28–33 depict this idea.

Before describing how incval works, we will intro-
duce some useful notation. Let K = R[x . . . y] , with
y− x + 1 = k , be the active window in the scan of R
during the execution of GetDict. Additionally, let bpr
be the bucket in H where we inserted the predecessor
k-mer Kpr = R[x − 1 . . . y− 1] (i.e., the reference bucket
of K). We assume bpr is null if K is the kth prefix of R.
For convenience, we also change the signature of incval
to incval(H ,K , 1, bpr) = b , where b is the bucket where K
resides.

When we call incval(H ,K , 1, bpr) , we probe buckets in
H using the function probe (“Definitions” section) until
we find one that either is empty or has a key that matches
K. Every time we probe a non-empty bucket H [b′] , we
check if K matches its key in O(k) time by following
bucket references recursively. We refer to this procedure
as keycomp:

• keycomp(H , b′,K , bpr) : receives as input the hash
table H, a bucket b′ , a k-mer K ∈ �∗ , and a (possible
null) bucket bpr whose triplet H [bpr] encodes a k-mer
Kpr = c·K [1 . . . k − 1] , with c ∈ � , and returns true
if the key in H [b′] matches K or false otherwise

When the probing mechanism reaches an empty bucket
H [b′] , we insert K there, but we need to check if we
have a valid reference bucket first. Thus, if bpr is null,
we store B[l . . . l + k − 1] = K and set H [b′] = (1, l, ε) .
On the other hand, when bpr is not null, there is an
available reference bucket to recover K [1 . . . k − 1] , so
we just store the triplet H [b′] = (1, bpr ,K [k]) . On the

other hand, if the probing mechanism reaches a bucket
H [b′] such that keycomp(H , b′,K , bpr) is true, it means
K already exist in H, so we just increment H [b′].f by
one. Additionally, if H [b′].a = ε and bpr is not null, we
remove B[l . . . l + k − 1] and store H [b′].r = bpr and
H [b′].a = K [k] because now we have a reference bucket
H [bpr] where to extract K [1 . . . k − 1] . We can flag the
area B[l . . . l + k − 1] as reusable and fill it again later
in the scan of R with another k-mer. The pseudocode of
incval is in Lines 10–26.

The last aspect we will discuss in this section is the
implementation of keycomp(H , b′,K , bpr) (Lines 1–9).
We start the execution by checking if H [b′].r = bpr and
K [k] = H [b′].a . When these conditions hold, we return
true immediately because the key of H [bpr] is suffixed
by K [1 . . . k − 1] . Notice we can finish the call without
further symbol comparisons because incval is a sub-
routine of GetDict , and this function scans R from
left to right. Therefore, it always hold that the bucket
H [bpr] encodes a k-mer Kpr that immediately precedes
K in R . On the other hand, if bpr = H [b′].r , we start the
decompression of H [b′] ’s key. We first compare H [b′].a
against K[k] and set the next bucket b′ = H [b′].r if they
match. As a general rule, in every ith step, we compare
H [b′].a against K [k − i + 1] and return false if they
differ or go to the next bucket b′ = H [b′].r and per-
form another symbol comparison. When every symbol
K [k − i + 1] matched its corresponding symbol H [b′].a ,
with i ∈ [1 . . . k] , we can be sure that H [b′] encodes K, so
keycomp(H , b′,K , bpr) returns true. The only exception
to the procedure of keycomp is when we reach a bucket
H [b′] whose key is in B. We can easily detect this situa-
tion because H [b′].a = ǫ is a special symbol. When this
happens, we get the buffer offset l = H [b′].r and compare
the k − i + 1 suffix of B[l . . . l + k − 1] against the prefix
K [1 . . . k − i + 1].

Page 6 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Algorithm 1 Framework of GetDict

Page 7 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Figure 1 shows an example of the compact hash table
H we obtain with GetDict.

Connection with de Bruijn graphs
It is not difficult to see that our compact hash table
resembles the de Bruijn graph. Let G = (V ,E) be
the de Bruijn graph of order k obtained from R . The
pair (H, B) encodes a graph G′

= (V ′,E′) that repre-
sents a sparse version of G, with V ′

= V and E′
⊆ E .

Each bucket H[b] stores a node v ∈ V ′ , and the field
H[b].r represents an edge connecting v with one of its
incoming nodes u ∈ V ′ . To put it differently, let H[b]
be the bucket for v ∈ V ′ and let H [b′] be the bucket
for u = v ∈ V ′ . The link H [b].r = b′ implies the edge
(u, v) ∈ E′ labelled H [b].a ∈ � . On the other hand,
every node v encoded in B has indegree zero.
G′ is a sparse version of G because some edges of E

might not be present in E′ since every bucket H[b] stores
at most one incoming edge for v, and the remaining ones
are ignored to save space. We remark that (H, B) offers
limited navigational functionality for G′ : each node v can
only visit its incoming node u (via H[b].r) and retrieve the
symbol H[b].a that labels (u, v) ∈ E′ . Still, this feature is
enough for us to implement keycomp during the probing
phase of incval.

Space and time complexity
We now describe the upper bounds of our framework.
We will refine these results in the following sections.

Theorem 1 Let G = (V ,E) be the de Bruijn graph of
order k built from a collection R = {R1, . . . ,Ru} of u
strings and ||R|| = n symbols, V being the set of nodes and
E the set of edges. GetDict(R, k) requires O(|V | + u k

w)
words of space to encode (H, B) and runs in O(nk)
expected time.

Proof The rolling hash function h allows us to get
h(K) from the preceding value h(Kpr) in O(1) time.
Thus, obtaining the buckets for all the k-mers in R takes
O(n) time. When we visit K in R , the probing mecha-
nism of incval(H ,K , 1, bpr) will start to probe buckets
from H[h(K)] until it finds one that either is empty or
encodes a key matching K. The classical result on hash
tables tells us that, by choosing a hash function h with
collision probability 1/m, and setting the load factor of
H to a constant value α , the number of probes to find a
bucket for K is O(1) in expectation. Still, every time the
probing mechanism visits an occupied bucket, it has to
call the function keycomp to compare keys, which takes
O(k) time. Thus, the call of incval(H ,K , 1, bpr) takes O(k)
in expectation. Summing up, the complete running time
of GetDict is O(nk) in expectation. H uses O(|V|) words
of space as there is one bucket for each de Bruijn graph
node v ∈ V , and there are O(m(1− α)) empty buckets, m
being the hash table size. The final aspect to consider is
the space usage of B: there are at most u k-mers in R that
(potentially) do not have a reference in H, that is, the kth
prefix of every Ri ∈ R , with i ∈ [1 . . .u] . Assuming � uses
⌈log σ⌉ = 3 bits per symbol, then each of these k-mers
use ⌈3k/w⌉ words, and thus the total space for B is O(u k

w)
words. As a conclusion, the total space usage of (H, B) is
O(|V | + u k

w) words. �

Improving the time complexity
The running time O(nk) of Theorem 1 is a rather pessi-
mistic upper bound for GetDict as invcal(H ,K , 1, bpr)
does not always require k operations. The only case when
incval(H ,K , 1, bpr) will incur in k symbol comparisons is
when K is encoded in a bucket H [b′] with H [b′].r �= bpr .
In that case, we need to match K against the key in H [b′]
to be sure they are equal. We can express this situation
in terms of de Bruijn graphs: the bucket H [b′] encoding
the node v labelled label(v) = K stores an incoming edge

Fig. 1 Example of our compact hash table H filled by GetDict
using the 4‑length k‑mers of the read R = cgttagttaa . The
arrows indicate the references where we recover the (k − 1)

‑prefixes of the k‑mers. We first map R[1 . . . k] = cgtt
to its bucket H[h(cgtt) = 4] . However, as we
do not know a reference bucket H[bpr] to recover the prefix
R[1 . . . k − 1] = cgt , we store the k‑mer’s full sequence
in the dynamic buffer as B[l = 1 . . . l + k − 1 = 4] = cgtt
and store H[4] = (f = 1, r = l, a = ε) . The next k‑mer
in R is R[2 . . . k + 1] = gtta , whose designated bucket
is H[h(gtta) = 7] . In this case, we have available a preceding
k‑mer Kpr = cgtt and its bucket bpr = 4 . Thus, we encode gtta
as H[4] = (1, 4,a) . We continue with the remaining k‑mers of R
in the same way

Page 8 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

(u, v) in H [b′].r that is different from the incoming edge
(u′, v) associated with bpr.

In an ideal scenario, where we know the set
Iv = {b1, . . . , bσ ′ } of buckets in H storing the σ ′

≤ σ
incoming nodes of v, checking if an arbitrary bucket
H [b′] encodes v takes O(1) time as the comparison of K
against the key of H [b′] reduces to check if H [b′].r ∈ Iv .
In reality, however, in the best case, we know one incom-
ing node for v, i.e., the node u′ encoded in the bucket
H [bpr] . Still, we can get closer to the ideal scenario by
increasing the space of our data structure.

We keep an auxiliary hash table He that stores indexes
of H as keys. Each key in He is associated with a list of
up to σ − 2 = 3 integers. Thus, for a k-mer K encoded
in the bucket H[b], the list L = value(He, b) contains
the buckets in Iv that are different from H[b].r. We will
also add a new field to the buckets of H. The new field
H [b].d ≥ 0 will store the number of probing steps incval
incurred to reach b from h(K) when inserted K the
first time. For example, if probe(h(K),m, 3) = b , then
H [b].d = 3 . We also change the signature of keycomp
to keycomp(H , b′, d,K , bpr) , with probe(h,K , d) = b′ .
In other words, d is the number of probing steps incval
performed to reach the bucket H [b′] from H[h(K)]. We
remark that we call keycomp during the execution of
incval, so we always know d when we call keycomp.

We implement keycomp(H , b′, d,K , bpr) as follows: we
start by checking that H [b′].a = K [k] , and return false if
they differ. Now suppose H [b′].a = K [k] . If H [b′].r �= bpr ,
we access the list L = value(He, b′) and check if one
of the buckets in L matches bpr . If that is the case, we
return true. On the other hand, if bpr /∈ {L ∪H [b′].r} ;
and |L| + 2 = σ or H [b′].d �= d , we return false. When
H [b′].d = d and |L| + 2 < σ , we compare K against the
key in H [b′] as usual. When they match, we store b′ in L
and return true, otherwise we return false.

Theorem 2 Let G = (V ,E) be the de Bruijn graph with
order k built from the collection R of u strings over the
constant alphabet of size 4, and with a total of ||R|| = n
symbols. An instance of GetDict(R, k) that uses the
encoding (H ,B,He) requires O(|E| + u k

w) words of space
and runs in O(n+ (|E| − |V |)k + q) expected time, where
q is the total number of times GetDict finds colliding
k-mers in H.

Proof The table He uses O(|E| − |V |) words of space
as it only contains the missing edges of G that are not
in H. Thus, the combined space of H and He is O(|E|)
words. If we also consider the buffer B, the final space

usage of our compact representation is O(|E| + u k
w)

words. In our new encoding, the function keycomp will
fully decompress the key of a bucket H [b′] in one spe-
cific case: when H [b′] encodes K, but the reference bpr
is not in {L,H [b′].r} . This situation is equivalent to dis-
covering a new incoming edge for the node v labelled
label(K). GetDict discovers indegree(v)− 1 edges this
way because the remaining edge is stored in H [b′].r
when the algorithm inserts K into H [b′] . Thus, the total
cost of counting the f occurrences of K in R (without
considering collisions) is f + (indegree(v)− 1)k . If we
consider all the nodes of G, the total cost of counting
without collisions is O(n+ (|E| − |V |)k) expected time.
Now let us consider the collisions. The purpose of the
field d is to ensure that we decompress a k-mer K ′ from
a bucket H [b′] only if h assigns the same initial bucket
h(K) = h(K ′) to K and K ′ . If K = K ′ , GetDict discovered
a new de Bruijn graph edge, and that cost was already
covered. On the other hand, if K = K ′ , it means K and K ′
collide. Assuming the k-mers collide at random in h, the
average number of symbols to determine that two ran-
dom strings do not match is constant [1]. Now, assum-
ing GetDict found colliding k-mers q times during the
scan of R , the total cost of failed k-mer decompression
is O(q) on expectation. This argument gives us the final
O(n+ (|E| − |V |)k + q) expected running time. �

Dictionary of canonical k‑mers
We present our framework to compute the canonical dic-
tionary Dc

k ,R . We first describe how to adapt our compact
hash table to the canonical setting (“Our canonical com-
pact hash table” section). Then, we show how to extract
keys in the new encoding (“Reconstructing a k-mer from
our canonical encoding”, and “Implementing our k-mer
retrieval algorithm” sections), and the associated cost
of the extraction (“Analysis of our k-mer retrieval algo-
rithm” section). Subsequently, we present GetCanDict:
our space-efficient algorithm that builds Dc

k ,R using the
canonical variant of our compact hash table (“Building
the canonical dictionary” section). Finally, “Correctness
of our canonical encoding” section explains the correct-
ness of the output of GetCanDict.

We remark that the canonical framework we pre-
sent here does not improve the asymptotic space usage
of “Building the dictionary” section, but in practice, it
reduces the number of hash table entries by one-half.
Additionally, the ideas we present here do not consider
the improvements of “Improving the time complexity”
section.

Page 9 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Our canonical compact hash table
The main difference compared to our previous scheme
is that now every k-mer K occurring as a key in H is
the canonical sequence Kc

∈ {K , K̂ } . This strategy col-
lapses K and Kc into one single bucket and reduces H’s
overall size. However, it also invalidates our mechanism
to spell the keys right to left as consecutive k-mers in
R do not necessarily have canonical versions in the
same DNA strand. In terms of the de Bruijn graph
(“Connection with de Bruijn graphs” section), the refer-
ence bucket bpr of a k-mer Kc now could be a incom-
ing or outgoing node of Kc . This change makes the
retrieval of k-mers from H more difficult compared to
the non-canonical variant because our original decod-
ing method spells Kc by following only incoming nodes
(see “Building the dictionary” section). We will adapt
our technique to overcome this problem, giving a solu-
tion that keeps the advantages of the canonical encod-
ing at the expense of performing more computations in
H.

Our canonical encoding is closely related to the way
in which our algorithm GetCanDict works (“Building
the canonical dictionary” section). However, we can-
not explain that algorithm without first describing the
new compact encoding. For the moment, it is enough
to know that, during the execution of GetCanDict,
we scan the reads in R left to right, and for each k-mer
R[x . . . y] , we obtain its canonical sequence Kc and insert
it in some bucket H[b]. The reference bucket bpr we store

in H [b].r = bpr is the one storing the canonical sequence
Kc
pr of R[x − 1 . . . y− 1] . When R[x . . . y] is the kth prefix

of R, there is no Kc
pr we can use as reference, so we store

Kc explicitly in a buffer B.
A relevant concept in our new scheme is that of text

overlap:

Definition 1 Text overlap: let R[x . . . y] be the leftmost
occurrence in R of Kc

∈ {K , K̂ } and let R[x − 1 . . . y− 1]
be an occurrence of a string in {Kpr , K̂pr} , not necessar-
ily the leftmost one. The text overlap of Kc

pr and Kc is the
overlap between the strings of {Kpr , K̂pr} and {K , K̂ } that
match R[x − 1 . . . y− 1] and R[x . . . y] , respectively. This
overlap always matches a k − 1 suffix in {Kpr , K̂pr} with a
k − 1 prefix in {K , K̂ }.

The important observation about this definition is
that the orientation R[x − 1 . . . y− 1] ⊕ R[x . . . y] we
encode in H [b].r = bpr does not necessarily match
Kc
pr ⊕ Kc like in the non-canonical version of H. There-

fore, when we set the DNA orientation of H [b].r = bpr
with respect to Kc , H[b].r can spells Kc

[2] or Kc
[k − 1] .

In general, there are four possible text overlaps for Kc
pr

and Kc , each with a specific DNA orientation in the
spelling of Kc . Figure 2 summarises the combinations
and their outcomes.

The use of text overlaps to encode the keys
requires a new format for H. In particular, the entry

Fig. 2 A Example of text overlap. The substring R[x − 1 . . . y] = atgcc encodes two k‑mers, R[x − 1 . . . y − 1] = atgc and R[x . . . y] = tgcc .
Let us assume the canonical Kcpr ∈ {Kpr , K̂pr} matches the DNA reverse complement of R[x − 1 . . . y − 1] , i.e., gcat . On the other hand, let us assume

R[x . . . y] = Kc matches the canonical of {K , K̂} . Thus, the relative DNA orientation of R[x − 1 . . . y − 1] ⊕ R[x . . . y] with respect to Kc is K̂ cpr ⊕ Kc . This
means that Kc[k − 1] = π(Kcpr [1]) = c is the symbol we obtain from the link H[b].r in Kc ’s bucket H[b]. The grey arrow from H to the grey rectangle
depicts this situation. B Text overlaps for Kcpr and Kc relative to Kc ’s DNA orientation. The x marks the symbol in Kc we obtain by following H[b].r

Page 10 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

H [b] = (f , r, a, v, o, e) for Kc now has six fields. The first
three (f, r, a) have a similar meaning as in “Our compact
hash table” section: f is the sum of the frequencies in R
for {K , K̂ } , r = bpr is the reference bucket H [bpr] encod-
ing the predecessor Kc

pr , and a = Kc
[k] . Additionally,

v = Kc
[1] is the leftmost symbol of Kc . The field o is a

bit indicating the relative orientation of Ri[x . . . y] and
Kc , where Ri ∈ R is the string where Kc first occurred.
Specifically, o = 1 if Ri[x . . . y] = K = Kc , and o = 0 if
Ri[x . . . y] = K̂ = Kc . Finally, the field e is a bit indicating
the relative orientation of Ri[x − 1 . . . y− 1] and Kc

pr with
similar encoding as o. Notice that (o, e) encodes the text
overlap of Kc and Kc

pr . The next section will explain how
to use the new format to recover Kc from H.

Reconstructing a k‑mer from our canonical encoding
Now that we have relaxed the orientation in which Kc over-
laps its predecessor Kc

pr , the reconstruction of Kc might
take more than k steps. We will slightly change the notation
to explain this idea. Let S = bk ′ , . . . , b2, b1 be the chain of
reference buckets we visit in H to spell Kc , with H [b1 = b]
storing Kc . Similarly, let Kc

k ′ , . . . ,K
c
1 be the k-mers these

buckets represent, with Kc
1 = Kc . The relationship of Kc

1
and Kc

2 is equivalent to that of Kc and Kc
pr.

The general idea to reconstruct Kc from H[b] is to scan S
right to left, and for every bucket H [bj] we visit, we extract
the symbol from one of the ends of Kc

j and insert it into Kc .
We refer to this procedure as canspell:

• canspell(b): returns the sequence Kc from the input
bucket H[b] of our compact hash table H.

In the non-canonical encoding of “Our compact hash
table” section, we spell Kc right to left as it holds
Kc
k ′ ⊕ · · ·Kc

2 ⊕ Kc
1 . In contrast, in the canonical encod-

ing, the text overlaps of the k-mers in S do not induce
a particular spelling direction. As we see in Fig. 2b, if
H [bj].r = bj+1 represents the overlap Kc

j+1 ⊕ Kc
j , then

Kc
j+1[k] = Kc

j [k − 1] and we retrieve a symbol from
the right end of Kc . On the other hand, if H [bj].r = bj+1
represents Kc

j ⊕ Kc
j+1 , then Kc

j [2] = Kc
j+1[1] and we get

a symbol from the left end of Kc . Changes in the spell-
ing direction can happen multiple times as we scan S and
induce an inward reconstruction of Kc : we obtain the end
symbols of Kc and advance to its centre.

We also need to consider the orientation of the k-mers in
S relative to Kc . In other words, for each Kc

j in S, we need
to know the string Ko

j ∈ {Kc
j , K̂

c
j } overlapping Kc according

to the information in S. Before explaining this concept for-
mally, we will define a function rorS that gives the relative
orientation. This is its signature:

• rorS(j) : returns 0 if Ko
j = K̂ c

j , and 1 if Ko
j = Kc

j .

We implement rorS using the following recursive function:

Initially, rorS(1) = 1 because the key Kc
1 in H [b1 = b] is

precisely Kc . Now let us assume without loss of generality
that, when we visit H [bj] in the scan of S, rorS(j) returns 0.
Also assume that the information in H [bj].e and H [bj].o
tells us the link H [bj].r = bj+1 represents Kc

j+1 ⊕ Kc
j . We

notice that the overlap H [bj].r = bj+1 is inconsistent with
rorS(j) = 0 because Ko

j = K̂ c
j is the reverse complement

of the string we use in Kc
j+1 ⊕ Kc

j . We fix this problem
by flipping the DNA orientation of the overlap encoded
by H [bj].r to obtain K̂ c

j ⊕ K̂ c
j+1 , and now the two k-mers

are oriented with respect to Kc . However, this strand flip
has a chain effect because it makes Ko

j+1 equal to K̂ c
j+1

(i.e., rorS(j + 1) = 0), and depending on H [bj+1].e and
H [bj+1].o , we might need to flip H [bj+1].r = bj+2 as well.
We will generally continue flipping k-mers in S until we
reach a bucket bj′ where the text overlap is consistent
with rorS(j′).

Considering all this information, we can fairly say
that traversing S right to left resembles sliding a win-
dow over Kc back and forward as we visit the buckets.
Initially, the window is set to wℓ = 1,wr = k when we
are in H [b1 = b] . Then, when we reach H [bj] , we move
the window to the left: wℓ = wℓ − 1,wr = wr − 1 if
Ko
j+1 ⊕ Ko

j is the orientation of H [bj].r = bj+1 relative
to Kc . In contrast, we move the window to the right:
wℓ = wℓ + 1,wr = wr + 1 if Ko

j ⊕ Ko
j+1 is the orienta-

tion of H [bj].r = bj+1 relative to Kc . Figure 3b shows an
example of this idea.

The implementation of canspell(b) thus translates to
extracting symbols from the distinct k-mers Ko

j we visit
as we slide wℓ,wr , stopping only when we have covered
all the positions of Kc . As mentioned before, this mech-
anism reconstructs Kc inwards.

We will keep two variables cℓ = 1, cr = k that mark
the inner ends of the reconstruction. Initially, the
symbols within Kc

[cℓ . . . cr] are unknown, but we will
obtain them as we slide wℓ,wr . When we recover Kc

[cℓ] ,
we update the inner left end cℓ = cℓ + 1 , and when we
obtain K [cr] , we update the inner right end cr = cr − 1 .
Notice that canspell will run as long as cℓ ≤ cr.

(1)

rorS(j) =

1, if j = 1
¬rorS(j − 1), if H [bj−1].e �= H [bj−1].o
rorS(j − 1) if H [bj−1].e = H [bj−1].o

Page 11 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Our canonical encoding only enables the extraction
of the symbols Ko

j [1] and Ko
j [k] of each k-mer Ko

j (fields
a and v in H), meaning that we cannot recover Kc

[cℓ]
or Kc

[cr] every time we visit a bucket in S. We consider
the following two scenarios to extract symbols:

1. wℓ < 1 , 1 ≤ wr < k : if cr = wr , then it holds
Ko
j [k − wr + 1 . . . k] = Kc

[1 . . .wr = cr] , so we
recover Kc

[cr] = Ko
j [k].

2. wr > k , 1 < wℓ ≤ k : if cℓ = wℓ , then it holds
Kc

[cℓ = wℓ . . . k] = Ko
j [1 . . . k − wℓ + 1] , so we

recover Kc
[cℓ] = Ko

j [1].

It is also worth mentioning that when we reach a bucket
bj in S whose key is in B, we have direct access to the
full sequence of Ko

j . Therefore, we copy the correspond-
ing area of Ko

j within Kc
[cℓ . . . cr] and finish canspell(b).

This condition makes bj the last bucket in S.

We now show that canspell always returns an answer
and that that answer is the correct sequence of Kc.

Lemma 3 The execution of canspell(b) always finishes
and returns a k-mer.

Proof We first demonstrate that S does not have loops
bj , bj+x, . . . , bj+1, bj . This type of structure would pro-
duce that, after visiting bj+x , we return to bj and thus
never end the reconstruction of Kc . GetCanDict fills
H keeping the following invariant: when we insert Kc

j in
bj , the bucket H [bj+1] already encodes Kc

j+1 and H [bj] is
empty, so it is safe to store H [bj].r = bj+1 . The invari-
ant, in turn, induces the transitive property that all the
buckets bj , bj+x, . . . , bj+1 of S already contained a k-mer
when we inserted Kc

j . Further, H [bj] was empty and Kc
j

did not exist as a key up to that point. However, the loop

Fig. 3 A Spelling Kc = Kc
1
= atgat from H[b1] . The white arrow to the left indicates that the figure is read bottom‑up. Each jth circle is the bucket

H[bj] in the reference chain S. The black string is Kcj and the grey string is K̂ cj . The incomplete string next to each circle has the symbols of Kc we
know up to that bucket. The green symbol is the one we extract from Koj and insert it in one of the inner ends of Kc . The arrow from H[bj] to H[bj+1]
indicates the text overlap of H[bj].r = bj+1 . The red line is the k − 1 prefix in H[bj] that matches a k − 1 suffix in H[bj+1] (blue line). B The k‑mers Koj
we use in the spell of Kc . When we change the spelling direction from H[bj+1] to H[bj+2] , Koj+2

 does not match Koj because the chain of buckets
S = b9, . . . , b2, b1 spelling Kc cannot have repeated elements (see Lemma 3). We mark the mismatching symbols of Koj and Koj+2

 with vertical lines
in the figure. On the other hand, we remark that changes in the spelling direction are induced by the order in which we insert the k‑mers in H
and the reference bucket we have available at the moment of the insertion

Page 12 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

bj , bj+x, . . . , bj+1, bj contradicts these ideas because the
leftmost occurrence of bj indicates that H [bj] already
contained Kc

j when we inserted it and created the link
H [bj].r = bj+1 (rightmost occurrence of bj in the loop).
Thus, we conclude that S cannot have a loop. �

We remark that the absence of cycles in S (Lemma 3)
implies that not all the k-mers encoded by S overlap
Kc . Suppose that, starting from Ko

j , we slide the win-
dow x positions to the right and then x′ < x positions
to the left. When we return the window back to the
left, the k-mers we visit are not the same as those we
visited when sliding the window to the right, otherwise
it would mean S has a cycle. If we combine this idea
with the fact that the k-mers in S have transitive over-
laps, we have that Ko

j does not have a suffix-prefix
overlap with Ko

j+x+x′ , but a substring match (see the
vertical lines in Fig. 3b). However, this condition does
not prevent us from reconstructing Kc.

Lemma 4 canspell(b) returns the canonical k-mer Kc
encoded by the bucket H[b].

Proof We show that each k-mer Ko
j we obtain from S

has a substring matching Kc
[cℓ . . . cr] at the moment we

reach the bucket bj . We refer to this idea as the match-
ing property. The validity of the matching property
proves canspell outputs Kc correctly because the algo-
rithm obtains Kc

[cℓ] or Kc
[cr] from the substring of Ko

j
matching Ko

[cℓ . . . cr] . Our proof below uses an arbitrary
sequence of slides for wℓ,wr , but we can give a symmetric
argument for other sliding sequences.

When we start canspell(b), the matching property is
trivially true as cℓ = 1, cr = k and the bucket H [b1 = b]
encodes precisely the k-mer Ko

1 = Kc . Now assume the
sequence bj , bj−1, . . . b1 in S slide the window j − 1 < k
positions to the left, so the right boundary now is
cr = cr − j + 1 . The matching property still holds as
the k-mers Ko

j ,K
o
j−1, . . . ,K

o
2 have a suffix overlapping

the prefix Kc
[1 . . . cr = k − x + 1] , with x ∈ [2 . . . j] ,

due to the transitive overlaps Ko
j ⊕ Ko

j−1· · ·K
c .

The active area we need to compute becomes
Ko
j [j . . . k − 1] = Kc

[cℓ = 1 . . . cr = k − j] as we moved cr
inwards after processing H [bj] . Now assume that the next
u buckets in S slide the window u positions to the right
(i.e., we change the sliding direction). We distinguish
three cases:

• u < j − 1 : we know that
Ko
j [u+ 1 . . . k] = Ko

j+u[1 . . . k − u] holds because
of the transitive overlaps Ko

j ⊕ Ko
j+1· · ·K

o
j+u when

sliding the window to the right. If we consider this
match and Ko

j [j . . . k − 1] = Kc
[cℓ . . . cr] , then by

the transitive overlaps Ko
j ⊕ Ko

j+1· · ·K
o
j+u when

sliding the window to the right, we get the match
Ko
j+u[j − u . . . k − 1− u] = Kc

[cℓ . . . cr] . Notice
that Ko

j+u[j − u . . . k − 1− u] is not a prefix or a suf-
fix because j − u > 1 and k − 1− u < k , and our
encoding does not support direct access to this area
of Ko

j+u . This situation means that we cannot shrink
Kc

[cℓ . . . cr] as we visit Ko
j+u , or any in any of the

k-mers Kj+u−1, . . . ,K
o
j+1.

• u = j − 1 : the match Ko
j+u[j − u . . . k − 1− u] = Kc

[cℓ . . . cr]
becomes Ko

j+u[1 . . . k − j] = Kc
[cℓ . . . cr] . Ko

j+u
and Kc have the same sliding window position
wℓ = 1,wr = k , but they have different sequences
due to Lemma 3. However, the substring of Ko

j+u
matching Kc

[cℓ . . . cr] is a prefix and we have access
to Ko

j+u[1] in our encoding. Therefore, we extract
Kc

[cℓ] and move cℓ one position inwards cℓ = cℓ + 1.
• j ≤ u : for the buckets bj+1, . . . , bj+j−1 the previ-

ous cases apply. The remaining buckets b2j , . . . , bj+u
move the inner left end cℓ by one position each
because the matches induced by the transitive over-
laps Ko

2j ⊕ Ko
2j+1· · ·K

o
j+u when sliding the window

to the right go in the same direction as we move
cℓ . For every Ko

x , with x ∈ [2j . . . j + u] , we have
Ko
x [1 . . . cr − cℓ + 1] = Kc

[cℓ . . . cr] , and because we
have access to Ko

x [1] in our encoding, we can retrieve
Kc

[cℓ] and move cℓ = cℓ + 1 . Thus, the inner left end
becomes cℓ = cℓ + u− j + 1 after visiting bj+u.

After consuming bj+u, . . . , b2 , it might happen that the
window changes direction again to the left. However, in
this scenario, symmetrical conditions to those explained
above apply. �

We will present a formal implementation of canspell in
the next section.

Implementing our k‑mer retrieval algorithm
This section describes the practical aspects of imple-
menting canspell(b) = Kc . We present the pseudocode in
Algorithm 2 and explain all the details below.

We begin (Lines 1–3) by initialising the variables
cℓ = 1, cr = k that mark the inner left and right ends
of Kc (respectively) in the inward reconstruction. We
also define a bit q = rorS(j) that tells us the string

Page 13 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Ko
j ∈ {Kc

j , K̂
c
j } overlapping Kc . We set the initial value

q = rorS(1) = 1 according to Eq. 1.
We continue canspell by traversing S right to left. Every

time we reach a new bucket H [bj] , we perform three
steps:

 (i) Check if the key of H [bj] is in the buffer B.
 (ii) Check if the window wℓ,wr crosses the inner ends

of Kc
[cℓ . . . cr].

 (iii) Slide the window in some direction and move to
the next bucket H [bj+1] in S.

Lines 5–13 show the process of step (i). Recall from “Our
canonical compact hash table” section that we store
k-mers explicitly in a dynamic buffer B whenever we do
not have a predecessor we can reference in H, flagging
the buckets in this situation with ε . Thus, when the tra-
versal of S reaches a bucket bj such that H [bj].r = ε , it
means the full sequence of Kc

j is in B[l . . . l + k − 1] , with
l = H [bj].r . The advantage of the buffer is that it contains
all the information we need to complete the inner sub-
string Kc

[cℓ . . . cr] (see Lemma 4). Therefore, we get the
positions oℓ = cℓ − wℓ + 1, or = oℓ + cr − cℓ of the sub-
string Ko

j [oℓ . . . or] = Kc
[cr . . . cℓ] . Subsequently, if Ko

j
matches Kc

j (q = 1), we copy B[l + oℓ − 1 . . . l + or − 1]
in Kc

[cℓ . . . cr] . In contrast, when Ko
j matches

K̂ c
j (q = 0), we copy the reverse complement of

B[l + k − or . . . l + k − oℓ] in Kc
[cℓ . . . cr] instead. We fin-

ish the execution of canspell by returning Kc . On the other
hand, if the key of H [bj] is not in B, we move to step (ii).

Lines 14–19 represent the work of step (ii). We start
by computing the ends of Ko

j using the bit q. Specifi-
cally, if q = rorS(j) = 1 , we get Ko

j [1] = Kc
j [1] = H [bj].v

and Ko
j [k] = Kc

j [k] = H [bj].a . In contrast, when

q = rorS(j) = 0 , we get Ko
j [1] = π(Kc

j [k]) = π(H [bj].a)
and Ko

c [k] = π(Kc
j [1]) = π(H [bj].v) . We continue by

checking if the window wℓ,wr crosses an inner end of Kc .
If that is the case, we insert Ko

j [1] or Ko
j [k] in Kc depending

on which matching scenario holds (see Cases 1 and 2 at the
end of “Reconstructing a k-mer from our canonical encod-
ing” section).

Lines 20–30 depict the work we perform during step (iii).
We first infer the direction (left or right) in which we slide
the window. For that purpose, we rely on the text over-
laps we presented in Fig. 2b. Recall that our encoding sets
H [bj].o = 1 if the link H [bj].r = bj+1 uses Kc

j for the text
overlap between Kc

j+1 and Kc
j , and 0 if it uses K̂ c

j . Equiva-
lently, H [bj].e = 1 means the link uses Kc

j+1 for the overlap,
and H [bj].e = 0 means K̂ c

j+1 . Thus, we slide the window to
the left if H [bj].o = 1 , and to the right if H [bj].o = 0.

When computing the sliding direction, we also need to
consider the orientation of Kc

j relative to Kc . In particular,
if rorS(j) = 0 , we invert the slide direction, otherwise we
leave it unchanged. It is not difficult to see why we need
to do this inversion: suppose H [bj].r = bj+1 defines the
overlap Kc

j+1 ⊕ Kc
j but q = rorS(j) . The overlap indicates

that we need to slide the window to the left, but the bit in q
indicates we need to flip the overlap to K̂ c

j ⊕ K̂ c
j+1 , which is

equivalent to sliding the window to the right.
After setting the slide direction, we update q as follows:

if H [bj].e �= H [bj].o , we flip q = ¬q = rorS(j + 1) , other-
wise we leave it unchanged (i.e., q = rorS(j) = rorS(j + 1)).
Finally, we move to the next bucket H [bj+1] and repeat the
same three steps above.

The reconstruction of Kc finishes when cℓ > cr , which
means we already cover all the symbols of H[b]’s key. Fig-
ure 3 and Example 1 show how we reconstruct Kc in the
canonical encoding.

Page 14 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Algorithm 2 Pseudocode of canspell

Page 15 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Example 1 Spelling of Kc
= Kc

1 = atgat from H [b1]
in Fig. 3. We initialise the sliding window wℓ = 1,wr = k
and the inner ends cℓ = 2, cr = 4 of Kc as H [b1] already
stores Kc

[1] and Kc
[k] . Then, the fields e = 1, o = 0 in

H [b1] indicate the overlap Kc
1 ⊕ K̂ c

2 , which means slid-
ing the window to the right wℓ = 2,wr = 6 . Besides,
as q = rorS(1) = 1 , we do not invert the sliding direc-
tion. However, as H [b1].e �= H [b1].o , q becomes
rorS(2) = ¬rorS(1) = 0 . When we visit H [b2] , wℓ matches
cℓ = 2 , so we set Kc

[cℓ = 2] = Ko
2 [1] = π(Kc

2 [k]) and
move Kc ’s inner left end to cℓ = 3 . The fields e = 1, o = 0
in H [b2] indicate Kc

2 ⊕ K̂ c
3 , which means sliding the win-

dow to the right, but as Ko
2 = K̂ c

2 (q = 0), we invert the
direction and slide the window to the left wℓ = 1,wr = 5
instead. Further, q = ¬rorS(2) = rorS(3) becomes 1 as
H [b2].e �= H [b2].o . When we visit H [b3] , the window
does not match the inner ends cℓ = 3, cr = 4 , so we
do not recover any symbol. Additionally, H [b3].e = 1
and H [b3].o = 1 indicate Kc

4 ⊕ Kc
3 , and because

q = 1 , we slide the window to the left wℓ = 0,wr = 4 .
The bit q = ror(3) = ror(4) remains the same as
H [b3].e = H [b3].o . In H [b4] , it holds cr = wr = 4 , so
we get Kc

[cr = 4] = Ko
4 [5] and set cr = 3 . The win-

dow does not match the inner ends cℓ = 3, cr = 3 in
buckets b5, b6, b7 , and b8 , so we do not get any symbol.
The window in H [b9] is wℓ = 3,wr = 7 , and because
wℓ = cℓ = 3 , we get Kc

[cℓ = 3] = Ko
9 [1] = π(Kc

9 [k]) , set
cℓ = 4 > cr = 3 , and we are done.

Analysis of our k‑mer retrieval algorithm
We now analyse the cost of running canspell. We will see
that its execution is exponential in the worst case, but our
experiments showed that it is much faster in practice (see
Fig. 9). We summarise the running time of canspell with
this theorem:

Theorem 5 The function canspell(b) = Kc returns in
O(σ k) time the canonical sequence Kc stored in the bucket
H[b] of our canonical compact hash table H.

Proof Since all buckets in S are distinct, they repre-
sent different canonical k-mers. There are at most O(σ k)
different canonical k-mers and thus canspell(b) visits at
most O(σ k) buckets. Processing each bucket requires
constant time, and thus, the function canspell(b) has
time complexity O(σ k) . �

Our proof of Theorem 5 demonstrates in a simple way
that the running time of canspell is exponential in the
worst case. However, the proof is incompatible with our
proof of Lemma 4, which states that all the k-mers Ko

j
encoded by S share a substring with Kc . In the follow-
ing, we will present an analysis that shows that we have
an exponential upper bound for our k-mer retrieval algo-
rithm even if all the Ko

j in S have a match with Kc.

Fig. 4 Demonstration of the running time of canspell. A The current bucket bj in S’s traversal stores Kcj = labelI(uh)·K
c
[cℓ . . . cr]·labelD(vo−h) (dotted

red line). The triangles are the tries I and D. B Sliding wℓ ,wr x = 1 position to the left, and then x = 1 position to the right (i.e., visiting the next two
buckets in S). The new node vo−h is different from that of A because of Lemma 3. We already traversed the blue path and can not traverse it again
due to Lemma 3. C, D The remaining window sliding options visiting uh . After (D), we can only slide wℓ ,wr to the right without breaking Lemma 3.
Therefore, we visited uh σ − 1 = 3 times, with σ being the trie’s degree

Page 16 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

We will assume canspell only extends the inner left end
cℓ of Kc as it traverses the buckets of S, and maintains the
invariant that cr = k . This assumption is only to simplify
our explanations, and it does not affect the correctness of
the reconstruction.

Let o be the number of symbols in Kc we have already
discovered at some point in the execution of canspell. As
we fixed cr = k , it holds o = cℓ . We will prove our the-
oretical bound by studying, for each value of o ≤ k , the
maximum number of buckets we could visit in S before
moving cℓ one position. We finish the construction of Kc
after moving cℓ k times.

When o = 0 , the cost of moving cℓ is O(1) as the first
bucket b1 in S is precisely the one encoding Kc , and our
compact encoding H keeps Kc

[1] in H [b1].
Now we study the case 0 < o ≤ k . Figure 4 depicts

a graphical example of our argument. We consider two
copies of the trie encoding the strings in �o . We will
refer to them as I and D, and will associate I with moving
wℓ,wr to the left and D with moving wℓ,wr to the right.
Let uh be a node at height h in any of these tries. We will
use the notation uh,uh+1 to indicate we descend from uh
to its child uh+1 , and uh+1,uh to indicate we climb from
uh+1 to its parent uh.

Let uh ∈ I be a node at height h and let vo−h ∈ D be a
node at height o− h . The operator labelI (uh) returns the
string spelled by the path uh,uh−1, . . . ,u1 from uh to the
root u1 of I, while labelD(v) is the string spelled by the
path v1, v2, . . . , vo−h starting at the root v1 of D and ending
at vo−h . The string labelI (uh)·Kc

[cℓ . . . cr]·labelD(vo−h)
forms one of the k-mers encoded by S before moving
the inner end cℓ . Although different nodes uo ∈ I and
vo−h ∈ D form different k-mers, Lemma 3 limits the node
combinations that form k-mers we could see in S. We will
explain this idea below.

Moving wℓ,wr to the left by x ≤ o− h positions trans-
lates to descend a path uh+1,uh+2, . . . ,uh+x in the sub-
tree of I rooted at uh , at the same time it means climbing
the x ancestors vo−h−1, vo−h−2, . . . , vo−h−x of vo−h in D.
Moving the window to the right represents the opposite
operation: climbing the ancestors of uh+x and descend-
ing a path from the subtree of D rooted at vo−h−x . How-
ever, when we move to the right, we cannot descend the
same path vo−h−x+1, vo−h−x+2, . . . , vo−h we climbed in D
before because it would mean visiting k-mers of S more
than once, which contradicts Lemma 3. Symmetrically,
once we choose a path in D to move to the right, if we
require to move to the left again, we can not descend
uh+1,uh+2, . . . ,uh+x in I.

In conclusion, sliding wℓ,wr back and forward over a
node in I or D cancels branches, reducing the forma-
tion of k-mers that we could see in S. Figure 3B depicts
this situation with vertical lines. The cancellations

produce each internal node v in I or D to be associated
with σ − 1 different k-mers in S as we can descend only
once through each of v’s children and then climb back
to v. We use the remaining child to slide the window
in the same direction we did before, thus keeping the
invariant of Lemma 3. On the other hand, every leaf
in the tries is associated with one k-mer of S. Once we
exhausted all the possible visits in all the nodes in I and
D, we do not have any other choice but to slide wℓ,wr to
the right and move cℓ.

The trie with the strings in �o is a full k-ary tree of
degree σ , meaning it has σ o leaves and σ o

− 1/σ − 1
internal nodes. If we add the cost of the σ − 1 possible
visits to an internal node, we obtain a cost of σ o

− 1 for
processing the internal nodes and a total cost of 2σ o

− 1
for processing the full trie.

Now let us assume we moved the inner end cℓ one
position, so now we know o+ 1 symbols of Kc . Let
Io,Do be the tries we used for o and let Io+1,Do+1 be
the new tries we will use for o+ 1 . We know that Io is a
subtree of Io+1 (respectively, Do of Di+1) that we already
traversed when the number of known symbols of Kc
was o. Therefore, if at some point in the synchronized
traversal of Io+1 and Do+1 , we visit two nodes uh and
vo+1−h such that uh belongs to the subtree Io and vo+1−h
belongs to Do , then we would form a k-mer we already
visited, thus breaking Lemma 3. Therefore, the cost of
moving cℓ when o+ 1 becomes (2σ o+1

− 1)− (2σ o
− 1)

as we discard the subtrees Io and Do of visited k-mers.
Further, if we consider all the possible values for o, we
obtain

Equation 2 is a sum that telescopes to 2σ k
− 1 , so we

obtain the running time O(σ k) for canspell.
The analysis we presented here is rather pessimistic as

having full tries I and D implies that the input read collec-
tion R produces a complete de Bruijn graph with order k,
which is hardly the case in practical scenarios.

Building the canonical dictionary
Our algorithm GetCanDict constructs the canoni-
cal dictionary Dc

R,k using our compact data structure of
“Our canonical compact hash table” section. The idea is
to scan R left to right, and for each k-mer K = R[x . . . y] ,
we compute its canonical Kc

∈ {K , K̂ } and insert Kc into
H using the operation incval (see “Building the diction-
ary” section). The most relevant change of GetCan-
Dict compared to GetDict is the implementation of
keycomp(H , b′,Kc, bpr) , the subroutine that incval calls

(2)
k

∑

o=1

(2σ o
− 1)− (2σ o−1

− 1)

Page 17 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

to compare k-mers while probing buckets in the compact
hash table (see Algorithm 4.2.2).

The function keycomp(H , b′,Kc, bpr) receives a bucket
H [b′] and an input k-mer Kc , and returns true if Kc
matches the key in H [b′] , and false otherwise. The param-
eter bpr is a bucket H [bpr] encoding Kc

pr . In the canoni-
cal variant of keycomp, we will add two extra parameters
e′ and o′ . Let R[x . . . y] be the substring in R where we
obtain the occurrence of Kc we are querying in keycomp,
and let R[x − 1 . . . y− 1] the occurrence of the predeces-
sor Kc

pr associated with H [bpr] . The field o′ tells the rela-
tive orientation of Kc

pr and R[x − 1 . . . y− 1] and the field
e′ tells the relative orientation of Kc and R[x . . . y] . The
meaning of the values for e′ and o′ is the same as those for
H [b′].e and H [b′].o.

We start the canonical variant of keycomp by compar-
ing the tuple (Kc

[1],Kc
[k], bpr , e

′, o′) against (H [b′].v ,
H [b′].a , H [b′].r , H [b′].e , H [b′].o). If they are equal, we
conclude that Kc equals the k-mer in H [b′] , so we return
true. If they differ, we need to reconstruct H [b′] ’s key to
check if it matches Kc.

This process is almost the same as running canspell
on H [b′] (Algorithm 2). The only difference is that every
time we extract symbols for H [b′] ’s key (Lines 10, 12,18,
or 19), we compare them against their corresponding
positions in Kc , and if they differ, we return false. If all the
symbols in H [b′] ’s key matched their corresponding posi-
tions in Kc , we return true.

We also introduce a small modification to incval to
maintain the correctness of the dictionary. In the non-
canonical scheme, when we call incval with a k-mer K
that currently is in B, but now we have a predecessor
bucket bpr for it, we remove K from B and update the
predecessor reference in H [b].r = bpr (see Line 24 in
Algorithm 4.2.2). In the canonical variant of incval, we
do something similar: we remove a canonical sequence
Kc from B if we now know a bucket bpr we can use for
its reconstruction. However, we also need to ensure that
all k-mers in H can be reconstructed after this update.
This invariant can be violated if the reconstruction of
the key Kc

pr in H [bpr] depends on the reconstruction of
Kc . In this situation, setting H [b].r = bpr creates a cycle
in the chain S spelling Kc

pr from H [bpr] , thus invalidating
Lemma 3. We can easily check this condition by calling
keycomp on bucket bpr and checking if the chain of refer-
ences includes Kc . If this is the case, we keep Kc in B to
ensure that all k-mers in H are reconstructible.

Correctness of our canonical encoding
We will show that the canonical encoding of H and the
way GetCanDict works do not prevent the correct
construction of the k-mers in Dc

k ,R . The only important

aspect to demonstrate is that keycomp always returns the
correct answer.

Lemma 6 Let Kc
∈ {K , K̂ } be a canonical k-mer

encoded in H[b] with an occurrence K = Ri[x . . . y] ∈ R .
Additionally, let H [bpr] be the bucket encoding the canon-
ical form of Kpr = Ri[x − 1 . . . y− 1] . Given an arbitrary
non-empty bucket H [b′] , keycomp(H , b′,Kc, bpr , e

′, o′) will
always stop and return true or false.

Proof At the beginning of GetCanDict, H is empty
and thus trivially all k-mers can be reconstructed. Let
us assume that before we insert a new k-mer Kc into
H, all k-mers already in H can be reconstructed. When
inserting Kc , we will either (i) add Kc to the dynamic
buffer B and store a pointer for B[l . . . l + k − 1] = Kc
in H [b].r = l or (ii) add the first and last symbols of Kc
to H[b] together with the bucket H [b].r = bpr of Kc

pr . In
case (i), Kc clearly can be reconstructed as we only need
to access B using H [b].r = l . In case (ii), we immediately
know the first and the last symbols of Kc . Furthermore,
we have the bucket H [bpr] storing the k-mer Kc

pr . By defi-
nition, we know that Kc overlaps by k − 1 symbol one of
the strings {Kpr , K̂pr} from which Kc

pr was obtained (bits
H[b].o and H[b].e tell us which string, Kpr or K̂pr , is the
one that Kc overlaps). Since Kc

pr is already in H, it can be
reconstructed, and thus we can uncover the remaining
k − 2 symbols of Kc . �

Reporting the k‑mers in the compact dictionary
Our framework also implements an algorithm to report
the k-mers of a compact hash table H in uncompressed
form. We refer to this procedure as DumpDict. It works
by following the reference chains to reconstruct the
k-mers and write them into an output file along with their
frequencies, provided the frequency is above some input
threshold τ . “Non-canonical scheme” section explains
how DumpDict works when H follows the non-canon-
ical scheme, and “Canonical scheme” section describes
how it works when H follows the canonical scheme.

Non‑canonical scheme
In the non-canonical version of H, the process is simple:
we scan H left to right until we find the leftmost occu-
pied bucket H[i]. Let Si = bk ′ , . . . , b2, b1 be the refer-
ence chain starting at H [i = b1] , with H [bj].r = bj+1 and
H [bk ′] being the only bucket that does not have a refer-
ence (i.e., Kk ′ is the dynamic buffer B). We also assume
that Si has length |Si| = k ′ ≥ k , meaning that the chain
encodes one or more k-mers together. We take the

Page 18 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

symbol in H [b1].a and store it in the rightmost posi-
tion W[k] of a buffer W [1 . . . k] . Then, we follow the link
H [b1].r = b2 , retrieve the DNA symbol in H [b2] , and add
it to W [k − 1] . We keep applying this idea until we have k
symbols in W. Notice we fill W from right to left because
the DNA symbols we store in H are in the right end of
their k-mers. Once W is full, we are ready to print the k-
mer K1 , the one stored in H [i = b1] . We find its count in
H[i].f, and if it is above τ , we write W and its frequency in
the output file. Then, we follow the reference chain fur-
ther H [bk].r = bk+1 . Since W is full, we have to drop the
rightmost symbol W[k], shift the buffer by one position to
the right and insert the DNA symbol of H [bk+1] in W[1]
to get K2 . We then check its frequency in H[H[i].r] and
decide whether to print it or not using τ . We continue
traversing Si until reaching Kk ′ , or until we encounter a
k-mer that has already been printed. To do this, when a
bucket is visited, we mark it so we do not later try to print
the same k-mer again. After we process all the k-mers in
Si , we move to the next occupied bucket H [i′] , with i′ > i ,
in the scan of H, and start to process the corresponding
reference chain Si′ , unless H [i′] is marked as processed.
In this case, we move to the next occupied bucket and
continue with the same idea until we finish the scan of H.

We need the k-mer reference chains to be as long as
possible to make the writing process more efficient. The
reason is that we need to visit k buckets to reconstruct
the first k-mer in a reference chain Si , but all subsequent
k-mers in Si can be reconstructed by visiting one new
bucket. So, instead of starting the writing process at the
leftmost occupied bucket H[i], we can scan H once and
mark all buckets that are referenced by another k-mer.
Now, all buckets that are not marked are either empty or
contain a k-mer that is not referenced by another k-mer.
We can then start writing k-mers from these unmarked
buckets to maximise the reference chain lengths and
reduce the time needed to print the k-mers.

Canonical scheme
The k-mer writing process in the canonical variant of H is
more involved but follows the same idea we described in
“Non-canonical scheme” section. The first k-mer Kc

1 in a
reference chain Si = bk ′ , . . . , b2, b1 is fully reconstructed
by calling W = canspell(b1) (Algorithm 2). Let us assume
this instance of canspell used the leftmost k ≤ j ≤ k ′
buckets bj , . . . , b2, b1 of Si to get Kc

1 . Then, reconstruct-
ing the next k-mer Kc

2 from H [b2] requires determining
which is the symbol of W = Kc

1 that does not belong
to Kc

2 , removing it, and adding the missing DNA sym-
bol from H [bj+1] to W. The reconstruction of Kc

1 from
H [b1] might require visiting more than k buckets as we
call canspell (the reason is in “Implementing our k-mer
retrieval algorithm” section). However, after we get Kc

1 ,

we obtain the subsequent k-mers from bk ′ , . . . , b2 by vis-
iting only one new bucket for each.

Experiments
Implementation details
We implemented2 GetCanDict (“Building the canonical
dictionary” section) and the variant of DumpDict that
processes the canonical compact hash table (“Canoni-
cal scheme” section) in C++. We refer to this software as
Kaarme. We did not implement GetDict and the vari-
ant of DumpDict that deals with the non-canonical hash
table because most genomic analyses only use the canon-
ical dictionary. Our source code implements the function
incval in GetCanDict using compare and swap (CAS)
atomic instructions to record the k-mers of R in paral-
lel in a lock-free manner. To make the procedure more
space efficient, we included a filtering step so GetCan-
Dict can ignore most of the k-mers that do not appear
at least twice. More specifically, we use two Bloom filters
[3] where the first Bloom filter includes all k-mers occur-
ring at least once in the data set, and the second Bloom
filter includes all k-mers occurring at least twice in the
data set. Thus, when first encountering a k-mer, we add
it to the first Bloom filter. If a k-mer is already found in
the first Bloom filter, we add it to the second Bloom filter.
Only k-mers that are found in the second Bloom filter are
added to the hash table of Kaarme. Because Bloom filters
allow false positives, some k-mers with a single occur-
rence can be inserted into the hash table, but these are
easily filtered out in the end when reporting the k-mers.

Competitor tools
We compared our software (Kaarme) against the follow-
ing methods:

1. Plain: a multi-threaded k-mer counter that uses a
generic lock-free hash table implemented by us. The
hash table stores the full k-mer sequences in a two-
bits-per-symbol format, along with the frequencies.

2. Jellyfish [18]: a k-mer counter using a multi-
threaded lock-free hash table.

3. CHTKC [31]: a semi-external k-mer counter. When
the hash table is full, CHTKC stores all subsequent
new k-mers on disk to be processed in a later batch.

4. DSK [26]: a disk-based k-mer counter that partitions
the input and stores the partitions on disk.

5. Gerbil [9]: a k-mer counter with GPU support
designed to efficiently count k-mers for large k.

We implemented Plain as a module within Kaarme.
We use the flag -m to tell our software to either use our

2 https:// github. com/ Denop ia/ kaarme.

https://github.com/Denopia/kaarme

Page 19 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

compact hash table scheme or Plain. Additionally,
Plain and Kaarme require the user to estimate the
number of distinct k-mers in the data set for them to cal-
culate the bloom filter size. We computed the estimate
by running DSK on the datasets to obtain the number
of distinct k-mers. Jellyfish also requires an estimate
of the number of distinct k-mers, so we gave it the value
reported by DSK. CHTKC requires the user to define the
maximum amount of memory it is allowed to use. We

set this value to 15 GB, close to the maximum available
memory of the used machine.

Datasets
We used three read collections for the experiments:

1. ecoli280: 280x coverage PacBio HiFi Escherichia
coli reads (acc: SRR10971019).

2. ecoli100: 100x coverage downsampled version of
ecoli280.

Fig. 5 Memory usage (left column) and runtime (right column) of the tools on the ecoli100 (top row), ecoli280 (middle row) and dmel20
(bottom row) data sets. Missing columns indicate that k‑mers could not be counted using the program

Page 20 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

Fig. 6 Estimated memory usage of the three main data structures of Kaarme during memory peak. SB = secondary buffer, HT = hash table, BF =
bloom filter. Bloom filter size is doubled during filtering but is then halved when the unneeded first filter is deleted

Fig. 7 Memory usage of Kaarme per distinct k‑mer stored in the hash table. (The number of k‑mers in the hash table is close to the number
of reported k‑mers. Few with count = 1 slip through the bloom filter.)

Page 21 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

3. dmel20: a downsampled 20x coverage PacBio HiFi
Drosophila melanogaster reads (acc: SRR10238607).

We obtained the reads from the SRA3 database. See the
associated accession codes in the list above.

Experimental setup
We used Kaarme and the competitors to count k-mers in
the three data sets. The values of k we used were 51, 101,
151, 201, 251, and 301. The tools used up to 8 threads and
reported canonical k-mers with frequency ≥ 2 . Mem-
ory usage was measured using time -v. This was also
used to measure k-mer counting times of DSK, CHTKC,
Jellyfish, and Gerbil. For Plain and Kaarme an

Fig. 8 Kaarme has three phases: bloom filtering (F), counting (C), and dumping (D). This plot shows how much time each phase takes
with the three different data sets

Fig. 9 The average number of buckets visited when decompressing a k‑mer in the canonical dictionary built on the ecoli100 data set

3 https:// www. ncbi. nlm. nih. gov/ sra.

https://www.ncbi.nlm.nih.gov/sra

Page 22 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

internal timer was used. The run time and memory usage
is shown in Fig. 5. Missing results indicate that a tool
could not count the k-mers with the available amount of
memory.

To illustrate the difference in memory usage for differ-
ent values of k, statistics of Kaarme memory usage per
distinct k-mer in the hash table can be seen in Fig. 7. To
show how much time each procedure of Kaarme takes,
in Fig. 8, the run times are split into three different parts:
Bloom filtering, counting, and dumping. Figure 6 shows
the estimated memory usages of the main Kaarme data
structures. Note that the Bloom filter size includes both
Bloom filters, which is halved by deleting the first bloom
filter before we proceed to the k-mer counting step.

Finally, we measured the average number of buck-
ets visited when decompressing a k-mer in the canoni-
cal dictionary built on the ecoli100 data set. We
first constructed the canonical dictionary Dc

k ,R . Then,
k-mers on the occupied entries of the hash table were
decompressed, and the number of visited buckets dur-
ing decompression was recorded. The average lengths of
these k-mer decompression chain lengths are shown in
Fig. 9.

The experiments were run on a laptop with 16 GB of
RAM, Intel� CoreTM i5-8250U CPU @ 1.60GHz × 8 pro-
cessor, and a 64-bit Linux-based OS.

Results and discussion
First, we compare Kaarme to Plain. Figure 5 shows
that Kaarme uses significantly less memory than Plain.
On ecoli100 with k = 51 , the space usage of Kaarme
is about 70% of the space usage of Plain (362MB vs
529MB), and the difference grows as the value of k
increases. On ecoli280, the difference is even more
significant with larger values of k. On dmel20 with
k = 51 , Kaarme also uses about 40% less memory than
Plain, and Kaarme could run with k up to 301 while
Plain ran out of RAM already when k was set to 151.
However, the reduced space usage does not come com-
pletely without a cost. The runtime of Kaarme is longer
compared to Plain (for example, 151 s vs 122 s with
k = 51 on ecoli100).

In all the datasets, the space usage of Kaarme was
dominated by the hash table and Bloom filters, while the
secondary buffer took on average less than 11% of the
total space usage (see Fig. 6). We remark that our hash
table’s compact encoding uses a constant number of bits
per k-mer (regardless of k), and that our experiments
showed that the secondary buffer contributes little to the
memory peak. Therefore, we expect the space usage per
distinct k-mer to grow very slowly with Kaarme, and to
grow linearly with k for Plain. This is indeed the case as
shown in Fig. 7. On the other hand, Fig. 8 shows that the

running time of Kaarme is dominated by the counting
phase, especially when k grows.

We see in Fig. 5 that, when compared to other k-mer
counters, Kaarme uses the least amount of memory in
all other experiments except on dmel20, where Ger-
bil is more memory efficient with k < 300 . However,
Kaarme is slower than the other k-mer counters with
the exception of Jellyfish on some data sets where its
memory usage is close to the total RAM available on the
machine.

We remark that Kaarme only implements compact in-
memory hash tables that are suitable for k-mers, while
our competitors are full-fledged counters that combine
hash tables with other techniques. Thus, a comparison
of Kaarme against these tools is not completely fair. This
observation is particularly true for Gerbil, CHTKC, and
DSK that rely on disk to reduce RAM usage.
Gerbil, DSK, and CHTKC control the amount of main

memory they use, so they can count the k-mers in all the
data sets without running out of RAM. CHTKC and DSK
used RAM up to the set limit of 15GB but made exhaus-
tive use of disk when it was deemed necessary. Because of
the disk usage, the comparison between all the programs
is not strictly fair. Still, the space usage of Kaarme was
usually the smallest, excluding lower k experiments on
dmel20, indicating that Kaarme is the most memory
frugal.

Concluding remarks
We have presented Kaarme, a space-efficient hash
table to count large k-mers in memory. We showed that
Kaarme uses up to five times less space than a regu-
lar hash table for counting k-mers while being at most
1.5 times slower. When compared to k-mer counters,
Kaarme uses the least amount of memory when k is
large.

We note that both DSK and CHTKC make use of hash
tables in their implementation. Thus, the adaption of
Kaarme as a submodule in these tools could allow them
to either use less memory or count larger k-mer sets in
memory. However, Kaarme takes advantage of the fact
that most of the k-mers overlap by k − 1 symbols with
a previous k-mer in the input collection. Depending on
how DSK partitions the k-mers, the input data set could
become more fragmented with a much larger amount
of k-mers without predecessors, causing the secondary
buffer B to grow significantly. The same could be true
for CHTKC, which writes the excess k-mers into disk for
the next iteration.

The reconstruction of k-mers in the canonical dic-
tionary of Kaarme can be exponential, but our experi-
ments suggest that, on average, the time complexity

Page 23 of 23Díaz‑Domínguez et al. Algorithms for Molecular Biology (2024) 19:14

seems to be close to linear. Therefore, Kaarme is a
practical, space-efficient hash table for large k-mers.

Acknowledgements
Supported by Academy of Finland (Grants 323233 and 339070) and by Basal
Funds FB0001, Chile (first author).

Author contributions
LS and DD wrote most of the text up to “Preliminaries” section. LS created
Fig. 1 and DD created Figs. 2, 3, and 4. ML implemented the idea, performed
the experiments, and created the figures for the experiments. LS and ML
described the experimental part, results and discussion, and conclusion. All
the authors reviewed the manuscript.

Funding
Open Access funding provided by University of Helsinki (including Helsinki
University Central Hospital). Open access is funded by the Helsinki University
Library. Also supported by Academy of Finland (Grants 323233 and 339070)
and by Basal Funds FB0001, Chile (first author).

Availability of data and materials
The datasets for the experiments were obtained from public repositories,
while the source code is publicly available on GitHub. See the corresponding
links in “Our contribution” section (Experiments).

Declarations

Competing interests
The authors declare no competing interests.

Received: 19 October 2023 Accepted: 2 March 2024

References
 1. Baeza‑Yates RA. String searching algorithms revisited. In: Proceedings of

the 1st workshop on algorithms and data structures (WADS); 1989. p.
75–96.

 2. Bankevich A, Bzikadze AV, Kolmogorov M, et al. Multiplex de Bruijn graphs
enable genome assembly from long, high‑fidelity reads. Nat Biotechnol.
2022;40:1075–81.

 3. Bloom BH. Space/time trade‑offs in hash coding with allowable errors.
Commun ACM. 1970;13(7):422–6.

 4. Bowe A, Onodera T, Sadakane K, Shibuya T. Succinct de Bruijn graphs.
In: Proceedings of the 12th international workshop on algorithms in
bioinformatics (WABI); 2012. p. 225–35.

 5. Břinda K, Baym M, Kucherov G. Simplitigs as an efficient and scalable
representation of de Bruijn graphs. Genome Biol. 2021;22(96):1.

 6. Campagna D, Romualdi C, Vitulo N, Del Favero M, Lexa M, Cannata N,
Valle G. RAP: a new computer program for de novo identification of
repeated sequences in whole genomes. Bioinformatics. 2005;21(5):582–8.

 7. Chaisson M, Pevzner P, Tang H. Fragment assembly with short reads.
Bioinformatics. 2004;20(13):2067–74.

 8. Deorowicz S, Kokot M, Grabowski S, Debudaj‑Grabysz A. KMC 2: fast and
resource‑frugal k‑mer counting. Bioinformatics. 2015;31(10):1569–76.

 9. Erbert M, Rechner S, Müller‑Hannemann M. Gerbil: a fast and memory‑
efficient k‑mer counter with GPU‑support. Algorithms Mol Biol.
2017;12(1):9.

 10. Holley G, Melsted P. Bifrost: highly parallel construction and indexing of
colored and compacted de Bruijn graphs. Genome Biol. 2020;21(249):1.

 11. Idury RM, Waterman MS. A new algorithm for DNA sequence assembly. J
Comput Biol. 1995;2(2):291–306.

 12. Karp RM, Rabin MO. Efficient randomized pattern‑matching algorithms.
IBM J Res Dev. 1987;31(2):249–60.

 13. Kelley DR, Schatz MC, Salzberg SL. Quake: quality‑aware detection and
correction of sequencing errors. Genome Biol. 2010;11:R116.

 14. Khan J, Patro R. Cuttlefish: fast, parallel and low‑memory compaction of
de Bruijn graphs from large‑scale genome collections. Bioinformatics.
2021;37(Supplement–1):i177‑86.

 15. Lefebvre A, Lecroq T, Dauchel H, Alexandre J. FORRepeats: detects
repeats on entire chromosomes and between genomes. Bioinformatics.
2003;19(3):319–26.

 16. Li Y, Yan X. MSPKmerCounter: a fast and memory efficient approach for k
‑mer counting; 2015. arXiv: 1505. 06550.

 17. Manekar SC, Sathe SR. A benchmark study of k‑mer counting methods
for high‑throughput sequencing. GigaScience. 2018;7(12):giy125.

 18. Marçais G, Kingsford C. A fast, lock‑free approach for efficient parallel
counting of occurrences of k‑mers. Bioinformatics. 2011;27(6):764–70.

 19. Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build
the compacted de Bruijn graph from many complete genomes. Bioinfor‑
matics. 2016;33(24):4024–32.

 20. Pajuste F‑D, Kaplinski L, Möls M, Puurand T, Lepamets M, Remm M. FastGT:
an alignment‑free method for calling common SNVs directly from raw
sequencing reads. Sci Rep. 2017;7:2537.

 21. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA
fragment assembly. Proc Natl Acad Sci. 2001;98(17):9748–53.

 22. Pibiri GE. Sparse and skew hashing of k‑mers. Bioinformatics.
2022;38(Supplement‑1):i185–94.

 23. Pibiri GE, Shibuya Y, Limasset A. Locality‑preserving minimal perfect hash‑
ing of k‑mers. Bioinformatics. 2023;39(Supplement–1):i534–43.

 24. Rahman A, Medvedev P. Representation of k‑mer sets using spectrum‑
preserving string sets. J Comput Biol. 2021;28(4):1.

 25. Rautiainen M, Marschall T. MBG: minimizer‑based sparse de Bruijn Graph
construction. Bioinformatics. 2021;37(16):2476–8.

 26. Rizk G, Lavenier D, Chikhi R. DSK: k‑mer counting with very low memory
usage. Bioinformatics. 2013;29(5):652–3.

 27. Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 29th ACM SIGMOD inter‑
national conference on management of data (SIGMOD); 2003. p. 76–85.

 28. Schmidt S, Alanko JN. Eulertigs: minimum plain text representation
of k‑mer sets without repetitions in linear time. Algorithms Mol Biol.
2023;18(5):1.

 29. Shibuya Y, Belazzougui KG. Space‑efficient representation of genomic
k‑mer count tables. Algorithms Mol Biol. 2022;17(5):1.

 30. Uricaru R, Rizk G, Lacroix V, Quillery E, Plantard O, Chikhi R, Lemaitre C,
Peterlongo P. Reference‑free detection of isolated SNPs. Nucl Acids Res.
2015;43(2): e11.

 31. Wang JS, Chen LD, Wang G. CHTKC: a robust and efficient k‑mer count‑
ing algorithm based on a lock‑free chaining hash table. Brief Bioinform.
2020;22(3):05.

 32. Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence clas‑
sification using exact alignments. Genome Biol. 2014;15:R46.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://arxiv.org/abs/1505.06550

	Space-efficient computation of k-mer dictionaries for large values of k
	Abstract
	Introduction
	Related work
	Preliminaries
	De Bruijn graphs
	String fingerprints and rolling hashing

	Our contribution
	Definitions
	Dictionary of k-mers
	Our compact hash table
	Building the dictionary
	Connection with de Bruijn graphs
	Space and time complexity
	Improving the time complexity

	Dictionary of canonical k-mers
	Our canonical compact hash table
	Reconstructing a k-mer from our canonical encoding
	Implementing our k-mer retrieval algorithm
	Analysis of our k-mer retrieval algorithm
	Building the canonical dictionary
	Correctness of our canonical encoding

	Reporting the k-mers in the compact dictionary
	Non-canonical scheme
	Canonical scheme

	Experiments
	Implementation details
	Competitor tools
	Datasets
	Experimental setup

	Results and discussion
	Concluding remarks
	Acknowledgements
	References

