
Khan et al. Algorithms for Molecular Biology (2024) 19:16
https://doi.org/10.1186/s13015-024-00263-5

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Algorithms for
Molecular Biology

Fast, parallel, and cache‑friendly suffix array
construction
Jamshed Khan1*, Tobias Rubel1, Erin Molloy1, Laxman Dhulipala1 and Rob Patro1* 

Abstract 

Purpose  String indexes such as the suffix array (sa) and the closely related longest common prefix (lcp) array are fun-
damental objects in bioinformatics and have a wide variety of applications. Despite their importance in practice, few
scalable parallel algorithms for constructing these are known, and the existing algorithms can be highly non-trivial
to implement and parallelize.

Methods  In this paper we present caps-sa, a simple and scalable parallel algorithm for constructing these string
indexes inspired by samplesort and utilizing an LCP-informed mergesort. Due to its design, caps-sa has excellent
memory-locality and thus incurs fewer cache misses and achieves strong performance on modern multicore systems
with deep cache hierarchies.

Results  We show that despite its simple design, caps-sa outperforms existing state-of-the-art parallel sa and lcp-array
construction algorithms on modern hardware. Finally, motivated by applications in modern aligners where the query
strings have bounded lengths, we introduce the notion of a bounded-context sa and show that caps-sa can easily be
extended to exploit this structure to obtain further speedups. We make our code publicly available at https://​github.​
com/​jamsh​ed/​CaPS-​SA.

Keywords  Suffix array, Longest common prefix, Data structures, Indexing, Parallel algorithms

Introduction
Methods for aligning sequencing reads to reference
genomes underlie some of the most well-developed and
widely-used tools in bioinformatics [2]. Modern read-
to-reference aligners typically employ an index over the
reference text. A classic index for strings is the suffix
array (sa) [40], which is an array of indices of the lexi-
cographically sorted suffixes of a string. In alignment,
the sa index is used by the popular STAR aligner [14] as
well as in other tools [53, 55]. The sa has also been used

in short-read error correction [24] and sequence cluster-
ing [23]. A related object frequently used in conjunction
with the sa is the Longest Common Prefix (lcp) array,
which contains the lengths of the longest shared prefixes
between pairs of successive indices in the sa. For instance,
the sa can be used in concert with the lcp-array (and
other auxiliary tables derived from these) in a data struc-
ture called an enhanced suffix array [1] to mimic the func-
tionality of a suffix tree [54], but often more efficiently and
using less space. An account of the pervasiveness of the sa
and the lcp-array in computational genomics is best left
to a dedicated review (see e.g. [51]).

Because of the utility of the sa (and the lcp-array) in
string indexing, significant work has been dedicated to
developing practical algorithms for its construction. It is
well-established that sa and lcp-array construction can
be performed sequentially in time linear to the size of
strings. However, as modern genomics pipelines produce

*Correspondence:
Jamshed Khan
jamshed@cs.umd.edu
Rob Patro
rob@cs.umd.edu
1 Department of Computer Science, University of Maryland, College Park,
MD 20742, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-024-00263-5&domain=pdf
https://github.com/jamshed/CaPS-SA
https://github.com/jamshed/CaPS-SA

Page 2 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

ever more data—including more complete reference
genomes and pangenomes—there has been a concerted
effort to improve the practical efficiency and reduce the
runtime of sa and lcp-array construction. A host of effi-
cient serial algorithms have been developed [18, 30, 34,
35, 38, 42, 44]. Likewise, in an effort to take advantage of
the increased parallelism of modern computer hardware,
a number of parallel algorithms have also been proposed;
e.g. parallel DivSufSort [37], parallel DC3 [36], and parallel
divide-and-conquer based sa-construction [28]. External
memory algorithms [26, 27, 29] have also been a focus of
recent research because of the memory bottlenecks that
arise when building the sa and the lcp-array on genomic
datasets. Besides, algorithms for GPU-settings [39] and
distributed-memory [19, 20] have been developed. We
refer the interested reader to [5, 6, 48] for a comprehensive
review. For our purposes, we note that these increasingly
advanced methods introduce new algorithmic techniques
to enable parallelism or improve the worst-case time com-
plexity (so that it is sublinear). The trade-off, often, is that
these more complex algorithms may potentially be more
difficult to implement, optimize for modern hardware and
cache layouts, and to maintain.

In this work, we address these issues by introducing
caps-sa [33], a highly parallel method for constructing
the sa and the lcp-array. A core principle behind caps-
sa is simplicity. Our approach draws on several existing
algorithms and techniques, and focuses on their effi-
cient combination for the problem of highly parallel sa
construction. The algorithm builds upon the parallel
samplesort algorithm [21], and is easy to implement and
optimize for modern hardware.

A potential downside of our approach is that it is output-
sensitive and as a result its worst-case time complexity on
adversarial inputs is quadratic. However, in practice we
find that the shared-memory implementation of caps-
sa outperforms state-of-the-art methods (specifically
parallel-divsufsort [37] and parallel-dc3 [3,
36]) in terms of runtime and scalability (although not in
memory for Parallel-divsufsort). For example, caps-
sa can build the sa and the lcp-array for the telomere-
to-telomere human genome assembly (CHM13 v2) [45]
in 106 s using 48 GBs of memory with 32 threads on a
typical shared-memory machine, whereas the leading
method parallel-dc3 requires 119 s using 116 GBs of
memory for the sa. Our experimental study demonstrates
that this superior performance of caps-sa can largely
be attributed to two causes. First, caps-sa achieves bet-
ter memory-locality (fewer cache misses) than the other
methods (likely thanks to its straightforward approach),
and second, real world use cases typically do not manifest
properties that render the algorithm exhibit its worst-case
complexity. However, our experimental results include

performance on an adversarial dataset for the algorithm.
Overall, our work demonstrates that as parallel resources
increase combining domain-specific optimizations (i.e.
lcp-informed merging) with highly-efficient general sort-
ing strategies (i.e. samplesort [21]) can outperform more
sophisticated but complex algorithms. caps-sa is imple-
mented in C++17 and is available under an open source
license at https://​github.​com/​jamsh​ed/​CaPS-​SA.

The remainder of this manuscript is organized as fol-
lows. We discuss the preliminary concepts required for
a formal treatment of the algorithm as well as the most
relevant prior work and the methods against which we
compare caps-sa in Sec. 2. Then we discuss caps-sa in
Sec. 3, and provide an analysis of its asymptotic behavior.
Sec. 4 describes the experimental study for the proposed
algorithm, and reports the results. We conclude with dis-
cussion on the potential of the method and prospective
future directions for building on top of it.

Preliminaries
A string (or text) T = a0a1 . . . an−1 is a finite ordered
sequence of n symbols drawn from a finite ordered
alphabet � . � contains a special terminator symbol $ ,
which terminates a string and is the smallest symbol in
the ordering of � . T denotes the length n of T  . The half-
open interval [i, j] is a shorthand for the closed interval
[i . . . j − 1] . Ti denotes the i’th symbol in T  . The substring
T[i,j) of T is the sequence of characters of T in the half-
open interval [i, j] . We call a substring T[i,j) with i = 0 a
prefix of T  . Likewise, a substring T[i,j) with j = |T | is a
suffix of T  , denoted by T[i:].

The ordering of � induces a lexicographical ordering
of all possible strings over � . The Suffix Array (sa) of a
string T is an array of the starting indices of all suffixes
of T ordered by the suffixes’ lexicographical order. The
Longest Common Prefix lcp(T1 , T2 ) of two strings T1 and
T2 is the largest-sized prefix P of both T1 and T2 , such that
if |P| = k then for all 0 < i < k , T1i = T2i , and T1k = T2k .
Given the suffix array SA of a string T  , its LCP-array is
the array L such that Li = LCP(T[SAi:],T[SAi−1:]).

1 For
instance, given the string T = AACTGCGGAT the sa
and LCP array are given by following data structure:

Index 0 1 2 3 4 5 6 7 8 9 10

T A A C T G C G G A T $

SA 10 0 1 8 5 2 7 4 6 9 3

LCP array 0 0 1 1 0 1 0 1 1 0 1

The work of an algorithm is the total number of opera-
tions it performs to compute the result. The depth (or

1  With the special case of L0 = 0.

https://github.com/jamshed/CaPS-SA

Page 3 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

span) of an algorithm is the longest sequence of dependent
computations in its execution. In pseudo-code, we will use
(||) as an infix operator to specify the parallel execution
of statements—so f (x) || g(y) denotes the parallel execu-
tion of f (x) and g(y) . We use O

(

f (n)
)

 with high probabil-
ity (whp) in n to mean O

(

cf (n)
)

 with probability at least
1− n−c for some constant c ≥ 1.

Prior Work. The sa can be constructed naively in
O(n2 log n) work for an n-length text. Efficient algorithms
can operate in O(n) work and O(n) space, which is the the-
oretical optimum, as it is the time and space required to
record the sa and LCP array themselves. A comprehensive
discussion of work on sa construction is well beyond the
scope of this manuscript. As such, we here focus on sev-
eral sequential and parallel algorithms which are of par-
ticular interest due to their speed and wide use.

The state-of-the-art sequential program for sa construc-
tion is divsufsort [18, 42]. Subsequent work has eluci-
dated the algorithm to be an efficient implementation of
some two-stage algorithms [18, 25].
divsufsort has been parallelized by Labeit et. al. in

2017 [37]. It has recently been used in several computa-
tional genomics tools, including the CAMMiQ method for
microbial abundance quantification [56] and the macle
tool for computing match complexity [47].

Another well-known algorithm for sa construction is
the Difference Cover modulo 3 (DC3) method [31], which
has also been effectively parallelized [36] and has a state-
of-the-art implementation [3].

Relevant String Sorting Methods. String sorting is a well-
studied algorithmic problem. The main difficulty in string
sorting is that comparing two strings T1 and T2 requires
O(min(|T1|, |T2|)) comparisons, which renders many tra-
ditional sorting algorithms for atomic objects costly. Of par-
ticular relevance to our work is the problem of merging two
sorted lists of strings. Farach-Colton used an efficient merge-
routine for building suffix trees in linear time [17] (though
the space overhead of suffix trees renders them impracti-
cal for most modern applications). Ng and Kakehi analyzed
an efficient merging strategy of sorted lists of strings with
associated lcp-information [43]. They show that given ran-
dom strings with uniform distribution of symbols, an lcp-
informed merge-sort algorithm has an expected running
time of O(n log n) to sort n strings. The same merge proce-
dure was used by Bingmann and Sanders in several sample-
sorting algorithms for sorting collections of strings [8].

Bingmann and Sanders propose two merge-based string
sorting algorithms of particular interest to us here: Parallel
Super Scalar String Sample Sort ( pS5 ) and Parallel Multi-
way LCP-Mergesort. pS5 makes use of the merge routine
in a samplesort framework, much like caps-sa. The algo-
rithms differ in their inputs (a set of strings vs a single

string) as well as their approach to partitioning the data.
pS5 uses machine-word-sized pivot keys to create a binary
search tree which can fit into the cache of each core, then
divides up the input set of strings evenly across the cores
and bins them accordingly. As described in Sect. 3.1, caps-
sa divides up the input into evenly sized partitions, then
samples pivots using a two-step process and places them
into each partition. Parallel Multiway LCP-Mergesort gen-
eralizes the merge-algorithm to k-way merges [7].

Methods
The proposed algorithm, caps-sa, is based on the sample-
sort [21] algorithm. Samplesort is a popular generalization
of quicksort that achieves excellent performance on both
shared-memory and distributed-memory architectures [4,
49]. Instead of partitioning the input array into two parts
around a single pivot as in quicksort, it chooses a num-
ber of pivots z1, z2, . . . , zp−1 along with two sentinel piv-
ots z0 = −∞ and zp = +∞ , and partitions the data into
p partitions such that an input element xi is assigned to
partition j iff zj−1 < xi ≤ zj . It then sorts each partition
using another (usually sequential) sorting algorithm (e.g.,
quicksort).

For constructing a suffix array, simply applying sample-
sort is costly since string comparisons in general require
super-constant time. In more detail, first each suffix needs
to be assigned to its partition by binary searching over
the pivots. Secondly, sorting the suffixes in each partition
may cost substantially more than linearithmic time due to
string comparisons.

caps-sa addresses these issues using the following
key idea of jointly leveraging merge sort and LCP-arrays.
Whenever two suffixes are compared, the comparison is
always done inside the operation of merging two sorted
arrays of suffixes. Each sorted array is augmented with its
lcp-array, and the merge operations avoid repeated com-
parisons of common prefixes among suffixes by exploit-
ing these lcp-arrays. This approach has previously been
used in general string sorting algorithms [7, 8, 43] and
merging-based Burrows Wheeler Transform construc-
tion algorithms [11, 15, 16]. The partitioning strategy for
the suffixes is modified to make better use of the merge
operation and achieve good parallelism. In particular,
instead of randomly sampling pivots at the beginning of
the algorithm, caps-sa partitions the suffixes uniformly
into p subarrays, sorts the subarrays locally, and only
then selects the pivots using oversampling. Once pivots
are placed within each partition, the p partitions are fur-
ther subdivided into p− 1 subarrays each, for a total of
p(p− 1) sub-subarrays. Since each sub-subarray is flanked
by two pivots, the partition that it should go to is known.
Each partition is thus a collection of sorted sub-subarrays,

Page 4 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

which can be merged efficiently. The initial sorting of
the uniform-sized subarrays is done using merge-sort
to exploit the merge operation. Thus caps-sa ends up
exploiting an efficient merging procedure with associated
lcp-information to reduce expensive comparisons of suf-
fixes, while not having to merge large sub-arrays due to its
pivoting strategy. We discuss the algorithm in more detail
in the following sections.

Parallel SA and LCP‑array construction: caps‑sa
Next, we provide a high-level overview of the
CaPS- SA(T , p) algorithm. The input to the algorithm is
a string T and a partition count (or, subproblem count) p ,
and as output it produces the sa and the lcp-array of T  .
Conceptually, the algorithm executes in four high-level
steps which we illustrate in Fig. 1.

Fig. 1  Overview of caps-sa. In the first step of the algorithm the input text T is partition evenly across p partitions. Then each partition is sorted,
pivots are sampled using the sampling routine, and located within each partition to create sub-partitions. Subsequently each sub-partition
is collated. Finally the merge routine is used to complete the suffix and the LCP-array construction

Page 5 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

First, it populates an unsorted sa. Then this initial sa
is broken into p subarrays of uniform size |T |/p , and
each subarray is sorted with merge-sort, in parallel.
Next, p− 1 global pivots are sampled from the sorted
subarrays together. Then in each sorted subarray, in
parallel, each pivot is located with a binary search. The
locations of the p− 1 pivots thus found in each sorted
subarray break the subarray into p sorted

 sub-subarrays. Besides, the position of each pivot in
the final sa is now defined by its location in each of the
p subarrays. The local ordering of the suffixes in each
sorted subarray and the global position of the pivots thus
define p partitions for the final sa, each of which is a col-
lection of p sub-subarrays: one from each of the p sorted
subarrays. Then for each partition, in parallel, its p sorted
sub-subarrays are merged recursively into a fully sorted
partition. Together, these sorted partitions, in order, pro-
duce the final sa and the final lcp-array. The lcp-values
for pairs that cross partition boundaries are computed at
the end.

The algorithm is presented as following, and its major
steps are detailed in the following subsections. Then we
analyze the asymptotic characteristics of the algorithm.

The merge operation. For efficient suffix comparisons,
caps-sa utilizes the merge operation. A pair of suffixes
is compared only when merging two sorted lists of suf-
fixes, with the only exception being the case when the
algorithm performs a binary search using a pivot suf-
fix. When merging sorted suffixes, merging without any
extra information about the suffixes in its input lists can
be costly due to super-constant time string comparisons.
To avoid comparing repeated prefixes of suffixes, the
merge procedure in caps-sa utilizes the lcp-arrays of
the input suffix lists, generated recursively in the merge-
sort procedure.

The Merge(X ,Y , LX , LY ,Z, LZ ,T) procedure takes
two sorted arrays X and Y of suffixes, their respective
lcp-arrays LX and LY  , and populates the array Z as the
merged output for X and Y  . Also, the lcp-array of Z is
produced in LZ . The procedure works exactly like the
classic merge routine, with the following modifications.

At a given moment, let Xi and Yj be the two suffixes
being compared, and Zk be the output of the compari-
son. Without loss of generality, say that Xi < Yj is found,
i.e. Zk = Xi . Let m denote the lcp-length of the the last
compared pair in each step of the merge. Then after

Page 6 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

the current step finishes comparing Xi,Yj , we have that
m = LCP(Xi,Yj) . Xi < Yj implies that TXi+m < TYj+m .
The next suffixes to compare are Xi+1 and Yj . Let
lx = LX i+1 = LCP(Xi+1,Xi) . Xi+1 > Xi implies that
TXi+1+lx > TXi+lx . There are three possible outcomes
when comparing lx and m (illustrated in Fig. 2):

1.	 lx > m : It implies that TXi+1+m = TXi+m . Combining
with TXi+m < TYj+m , we get TXi+1+m < TYj+m . It fol-
lows that

2.	 lx < m : It implies that TXi+lx = TYj+lx . Combining

with TXi+1+lx > TXi+lx , we get TXi+1+lx > TYj+lx . It
follows that

3.	 lx==m : We compute n = m+ LCP(T[Xi+1+m:],

T[Yj+m:]) , and set the following:

The merge procedure continues this way through X and
Y  . Finally, when either of X and Y has been depleted, the
rest of the entries at the other one are copied to the end
of Z and LZ.

Zk+1 = Xi+1, LZk+1 = LCP(Zk+1,Zk)

= LCP(Xi+1,Xi) = lx,m = LCP(Xi+1,Yj)= m

Zk+1 = Yj , LZk+1 = LCP(Zk+1,Zk)

= LCP(Yj ,Xi) = m,m = LCP(Xi+1,Yj) = lx

Zk+1 =

{

Xi+1 if TXi+1+n < TYj+n

Yj otherwise

LZk+1 = LCP(Zk+1,Zk) =

{

LCP(Xi+1,Xi) = lx if Zk+1==Xi+1

LCP(Yj ,Xi) = m otherwise

m = LCP(Xi+1,Yj) = n

Local sorting. caps-sa starts out with some permu-
tation of [0, |T |) , and sorts its p disjoint subarrays,
each of size |T |/p , in parallel using merge-sort. The
Merge- Sort(X ,Y , L, L′,T) procedure takes as input
an array X of suffixes, and sorts it into Y  . Besides, the
lcp-array of sorted suffixes is produced in L , using L′
as working space. As typical merge-sort implementa-
tion requires linear extra space in each invocation, caps-
sa uses the arrays X and Y in a back-and-forth manner
to reuse the extra space in the invocations. For such, Y
needs to be equal to X before an invocation. The merge
step in the sort uses the merge-procedure described
earlier.

Pivot selection. caps-sa deviates from samplesort in its
pivot selection strategy. In a typical samplesort, pivots are
to be sampled from the initial array and then partition-
ing would be based on their intervals. Instead, in parallel,
the Sample- Pivots(SA,T , p) procedure (see Suppl.) in
caps-sa samples s suffixes from each of the p subarrays,
where s is the sampling factor. Then these s × p sample
suffixes are sorted using merge-sort. Subsequently,
p− 1 evenly-spaced pivots are selected from the sorted
output to form the pivot set V .

These pivots define the ranges of the samplesort parti-
tions, and are used to split each of the subarrays in the
next collation step. We show in Theorem 1 that with a
sufficient sampling factor s , the size of each partition is
within a constant factor of |T |/p with high probability,
which ensures a balanced load for processing each parti-
tion in the last step of the algorithm.

Collating partitions. Having finalized the pivot set
V  , the algorithm locates each pivot suffix v ∈ V in each
sorted subarray. Each subarray is searched for the p− 1
pivots in parallel.

Consider a pivot v ∈ V and some sorted subarray A .
The position of v in A is the last index where v can be
inserted without breaking the sorted order of A . This

Fig. 2  Figure illustrating the cases that can occur on the (k + 1)’th step of the merge routine, which determines Zk+1 . Cases 1 and 2 require O(1)
work and simply compare the LCP-lengths of the previous step and LCP(Xi+1, Xi) , which are already available. Step 3 requires work proportional
to O(LCP(Xi+1, Yj)−m) , since Xi+1, Yj already share a prefix of size m

Page 7 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

index is computed using a binary search for the suf-
fix v in A . During a binary search suffixes are com-
pared without any associated LCP array, contrary to
the merge procedure. As a practical speedup, we skip
some repeated character comparisons between v and
the suffixes in A using the simple accelerant idea [22].

After placing each pivot v into A , the index i of v in
A implies that all the suffixes in A[0:i) are ≤ v . Hence
the sum Cv of these indices of v across all the p sorted
subarrays provides the total suffix count in the sa
that are not lexicographically larger than v—the index
of v in the final sa is Cv − 1 . Along with the sentinel
pivot positions C0 = 0 and Cp = |T | , these p− 1 piv-
ots divide the final sa into p partitions. Consider two
successive pivots vj−1 and vj . In each sorted subarray
A , all the suffixes k such that T[vj−1:] < T[k:] ≤ T[vj :] will
be present in the index-range [Cj−1,Cj) of the final sa.
That is, all the suffixes between the locations for vj−1
and vj belong to the (j − 1)’th partition.

Thus the pivot locations in a sorted subarray A
break A into p sub-subarrays, where the j’th sub-
subarray is known to be present in the j’th partition
of the final sa. After the binary searches, caps-sa
moves these sub-subarrays in parallel to collate all
sub-subarrays for the same partition. The lcp-arrays
of these sub-subarrays are also collated together. The
Collate- Partitions(SA, SA′, L, L′,V ,T , p) procedure
(see Suppl.) describes it in more detail.

Merging partitions. Having grouped together
the corresponding sub-subarrays for every parti-
tion, caps-sa merges together the sorted sub-sub-
arrays in each partition, in parallel. A partition
consists of p sorted collections of suffixes, with
all of the collections stored contiguously. The
Merge- Partition(X ,Y , n,R, LX , LY ,T) procedure
takes this collection X of p sorted sub-subarrays, and
produces the merged output in the same contigu-
ous region of memory Y recursively. LX is the collec-
tion of the lcp-arrays of the sorted groups in X  , and
the merged lcp-array is produced in LY  . The sorted
groups in X (and LX ) are delineated by R.

The merge-partition procedure is same as the
merge-sort procedure, except for that it is more gen-
eral—the sorted units where merge-sort bottoms out
are single suffixes, whereas merge-partition bot-
toms out earlier at sorted groups of suffixes. As noted
earlier, merge-partition also uses the space in X and
Y back-and-forth to reuse the extra spaces required.

Asymptotics
In this section, we analyze the computational complex-
ity of the CaPS- SA(T , p) algorithm executed on a text
T with length n = |T | , given a subproblem-count p.

Work analysis
We start by analyzing the overall work of the algorithm
and providing self-contained proofs on the total work
due to symbol comparisons made by our algorithm.

Local sorting. This step executes the clas-
sic merge-sort on each subarray. For a subar-
ray A with m suffixes, this amounts to a total work of
T (m) = 2T (m/2)+O(m)+ C(A) , where C(A) denotes
the number of symbol comparisons made in the execu-
tion in the third case of the merge procedure. We analyze
the total amortized cost of these C(A) values across all the
recursion-trees of all the subarrays in Theorem 3. Omit-
ting C(A) from T (m) , each local sort has n/p log n/p work.

Pivot selection. With a sampling factor s , there are
s × p pivots sampled in total across all the subarrays.
caps-sa sorts these pivots with merge-sort and picks
the p− 1 equidistant pivots from these as the global
pivots. The merge-sort amounts to a total work of
O(sp log sp+

∑

Lpi) , where Lp is the output lcp-array of
the sort. This holds from Theorem 3.

Collating partitions. The collation step first locates
each of the p− 1 pivots in each of the sorted subarrays
using binary search. The length of a pivot suffix is O(n) ,
and the sorted subarrays are of size n/p . The work of
each binary search is O(n+ log n/p) in practice ( n = |T | )
with the simple-accelerant [22] strategy. For adversarial
inputs however, the work can still be O(n log n/p) in the
worst-case. Then the suffix indices are moved into their
appropriate final partitions. This step simply reorders the
elements across the sorted subarrays, and thus requires
O(n) total work.

Merging partitions. The merge-partition procedure
works similar to the merge-sort procedure, except for
that the recursion bottoms out at a sorted group of suf-
fixes, instead of at a single suffix. Unlike the merge-sort
instances however, each of which operate on n/p-sized
subarrays, the merge-partition instances may work on
various sizes of partitions. Theorem 1 provides a bound
on the partition sizes.

Theorem 1  With a sampling factor s , every parti-
tion has size at most cn/p for some constant c with high
probability.

Page 8 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

Proof  The algorithm samples s pivots from each subar-
ray, for a total of sp samples.

It then picks p− 1 evenly spaced pivots (every s’th sam-
ple) from the sorted samples to use as global pivots.

Consider the final location of these sp samples in the
final suffix array.

Every s’th of them marks the boundary of a partition.
Thus, a partition has size d ≥ cn/p only if fewer than s

of the samples fall into these d suffixes.
Otherwise, at least one sample would be picked as a

final pivot and would thus break this partition.
Let SA be the final suffix array, and Xi be a random vari-

able indicating whether SAi is one of the sp samples.
Then Pr[Xi = 1] = sp/n.
Thus the random variable denoting the num-

ber of samples picked from a region of size cn/p is
X =

∑cn/p
i=1 Xi . By linearity of expectation, we get

E[X] =
∑cn/p

i=1
E[Xi] = cn/pPr[Xi = 1] = cn/p · sp/n = cs   .

Applying the Chernoff bound we have:

With s = 32 ln n and letting c′ = c(1− 1/c)2,

Since the event of a partition having size ≥ cn/p implies
the event X < s , we get:

Pr[a given partition has size ≥ cn/p] ≤ Pr[X < s] ≤ 1/n16c
′.

⇒ Pr[at least one partition has size ≥ cn/p] ≤
∑p

i=1 1/n
16c′

= p/n16c
′ (by union-bound).

⇒ Pr[no partition has size ≥ cn/p] ≥ 1− p/n16c
′.

Since p is at most O(n) , no partition has size ≥ cn/p
whp. 	� �

Thus each partition has size at most cn/p for some
constant c whp. Merging a partition A with m sorted
subgroups has work T (m) = 2T (m/2)+O(m)+ C(A) ,
where C(A) is the number of symbol comparisons made
in merge. Omitting C(A) from T (m) , this solves to
O(cn/p log p) = O(n/p log p) whp.

Total symbol comparisons. A subproblem in the algo-
rithm is some subarray of the sa that can be processed

(1)

Pr[X < s] ≤ Pr[X ≤ s] = Pr[X ≤
1

c
E[X]]

= Pr[X ≤ (1− (1−
1

c
))E[X]]

≤ exp(−1/2(1− 1/c)2E[X])

= exp(−1/2(1− 1/c)2cs)

Pr[X < s] ≤ exp
(

− 1/2(1− 1/c)2c · 32 ln n
)

= exp
(

ln(n−16c(1−1/c)2)
)

= 1/n16c
′

independently of the other subarrays in a given step. Let
X be some subproblem in either of the two steps: local-
sorting and partition-merging. For the local-sorting
case, sorting X with merge-sort consists of log n/p
recursion-levels. For the partition-merging case, the
merge-partition procedure for X executes in log p
recursion-levels. We label the bottom-most level as level
0, and count the levels upwards in the recursion-tree.

Let x ∈ X be a suffix. At any given level i, x is present
in exactly one merge-sort (or merge-partition)
instance executing on X . Let x′i be the suffix that imme-
diately precedes x in the output of that merge-sort (or
merge-partition) instance, and let Li(x) = LCP(x, x′i) .
If x is the first suffix in the output, then x′i is the empty
suffix. We prove the following.

Theorem 2  In merge-sort and merge-partition,
Li(x) ≤ Li+1(x) for a suffix x at each recursion level
i ∈ [0, d − 1) , where d is the depth of the recursion-tree.

Proof  Let x be present in the merge-sort (or merge-
partition) instance M at level i + 1 , and say M spawns
the two instances Ml and Mr . Ml and Mr are at level i ,
and x is present in exactly one of them. Let it be Ml.

Now, x′i+1 is either x′i i.e. the same suffix preceding x
in Ml , or some other suffix y from Mr . If x′i+1 = xi , then
Li+1(x) = Li(x) , and the claim holds.

In the other case, the output array of M has the
following form: [. . . , x′i, . . . , y, x, . . .] . Suppose that
the claim is false, i.e. Li(x) > Li+1(x) . Which is,
LCP(x, x′i) > LCP(x, y) . LCP(x, y) < LCP(x, x′i) implies
that x′i and y share the same prefix of length l = LCP(x, y) ,
and mismatch first at index l . Let cx, cx′i , and cy be the l
’th symbol in x , x′i , and y resp. As y > x′i in the output,
cy > cx′i

 . Besides, since x and y first mismatch at the l ’th
symbol and x > y , cx > cy . Thus cx > cx′i

 . LCP(x, x′i) > l
implies that the l ’th symbols in x and x′i are the same, i.e.
cx = cx′i

 . Thus we get cx > cx′i
 and cx = cx′i

 , resulting in a

contradiction. Hence, LCP(x, y) ≤ LCP(x, x′i) . 	� �

Theorem 3 provides a bound on the number of total
comparisons made across all the merge-sort and
merge-partition instances in the algorithm execution.

Theorem 3  The total number of symbol compari-
sons made across all the merge-sort and merge-
partition instances in caps-sa for an n-length text
is O(n log n+

∑n−1
i=1 Li

)

 whp, where L is the output
lcp-array.

Page 9 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

Proof  Symbol comparisons occur only as part of the
merge procedure in both merge-sort and merge-par-
tition. Given two sorted lists of suffixes X and Y along
with their lcp-arrays, the Merge(X ,Y , LX , LY ,Z, LZ ,T)
procedure iterates through the Xi ’s and Yj ’s and fills in
the Zk ’s in the sorted order, along with their lcp-values
in LZk . Without loss of generality, suppose that Xi < Yj is
found at some iteration. Then the next iteration compares
Xi+1 and Y  . Let lx = LCP(Xi+1,Xi) and m = LCP(Xi,Yj) ,
lcp of the last compared pair. Symbols from the suf-
fixes Xi+1 and Yj will only be compared iff lx = m holds.
In this case, we compute n = LCP(Xi+1,Yj) with exactly
n−m+ 1 symbol comparisons. The +1 term is due to
the first mismatching symbol pair. m is set to n for the
next iteration. We argue that before the new m = n value
is assigned as the lcp-value in the output lcp-array LZ in
some future iteration, it remains unchanged.

In the next iteration, if case (1), i.e. lx > m holds, then m
remains unchanged. If case (2), i.e. lx < m holds, then m is
assigned at output LZk+1 . In the event of case (3), either lx
or m is assigned to LZk+1 , and these are equal in this case.
If X has been depleted during the merge while Y still has
remaining elements, the current m is assigned as the lcp-
value for the first of the remaining elements from Y .

Thus, whenever symbol comparisons are done in case
(3) of merge, it results in a new value m′ ≥ m for the vari-
able m . m = m′ persists until m′ has been assigned as the
lcp-value for some merged output. Thus the number of
matching symbol comparisons made in case (3) accumu-
lates in the lcp-values at the output.

All the lcp-values start out with 0 at merge-sort.
Theorem 2 states that the lcp-value associated to a given
suffix can never decrease while winding up the recursion-
trees of merge-sort and merge-partition. Thus the
sum

∑n−1
i=1 Li of the final lcp-values in the sa is the total

number of matching symbol comparisons made across all
the merge-sort and merge-partition executions.

The extra mismatching comparison in case (3) of
merge costs O(1) . In the worst case, this case occurs
in each iteration of merge. Omitting the match-
ing symbol comparisons, a merge-sort or a merge-
partition instance working on m elements incurs
T (m) = 2T (m/2)+O(m) mismatches in the worst case.
This solves to p×O(n/p log n/p) and p×O(n/p log p)
whp for the p merge-sorts and merge-partitions,
resp. Thus O(n log n) mismatching symbol comparisons
are made whp. 	� �

Total work. Locally sorting the p subarrays cost
p×O(n/p log n/p) = O(n log n/p) work without the
symbol comparisons. Omitting the symbol comparisons

in sorting the sampled pivots, the pivot selection step
has O(sp log sp) work. In the collation step, there
are p(p− 1) binary searches, costing O(p2n log n/p)
work in the worst-case, and O(p2

(

n+ log n/p)
)

 in
practice. Merging the p partitions separately cost
p×O(n/p log p) = O(n log p) whp without the symbol
comparisons.

The total number of symbol comparisons in
the local-sort and the partitions-merge steps is
O(n log n+

∑n−1
i=1 Li) whp as per Theorem 3, where

L is the output lcp-array. In sorting the sampled suf-
fixes, the number of symbol comparisons done is also
bounded by this 2. Thus the total work for the algorithm
is O(n log n+

∑n−1
i=1 Li) whp. 3

Working space
The working space of the algorithm is the total space
required by all the merge procedure instances at any
given recursive-level of merge-sort or merge-parti-
tion. The merge procedure produces two merged out-
put for some given input, the sorted suffixes and their
LCPs, and thus has 2× 2|T | input and output entries in
total at any level. So the working space for the algorithm
is 4n entries, which is O(n log n) bits. Our implemen-
tation of the algorithm requires 4w|T | bytes of work-
ing space, where w ∈ {4, 8} is the numerical size used to
store sa and lcp values. We discuss an external-memory
scheme to reduce the working space in Sec. 5.

Parallelization
Our implementation fully parallelizes the work across
the different partitions. Within a partition, we perform
recursive calls to merge-sort in parallel, but perform
the merge procedure serially. We show the following
theorem about the depth of our algorithm:

Theorem 4  The overall depth of the algorithm is
O
(

(n/p) log n
)

 whp.

Proof  The dominant factor in the merge algorithm is
the depth of the merge routine, which simply performs
a linear number of comparisons in the input size. The
depth of a comparison is O(1) in cases 1 and 2 of Fig. 2,
and requires a string comparison in the final case.

2 
O(sp log sp+

∑sp

i=1 Lpi) comparisons are performed, where Lp is the lcp-
array of the sorted samples.
3  The worst-case work is O(n2) due to the second factor. The first factor
does not change.

Page 10 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

The string comparison can be parallelized work-effi-
ciently (i.e., in the same work as a serial character-by-
character comparison) by using a simple prefix-doubling
strategy. In more detail, the comparison algorithm works
in rounds comparing 2i characters in the i’th round until
a mismatch occurs. Clearly for strings of length O(n) only
O(log n) rounds are required, and thus the overall work is
asymptotically the same as the serial algorithm, and the
depth is O(log n) . Thus, for merging two sorted arrays
in the algorithm, each of size k , we require a depth of
O(k log n).

Putting these facts together, for a single call to the
merge-sort routine, we have a recurrence of the form
D(k) = D(k/2)+O(k log n) , which is root dominated
and solves to O(k log n) . Since our algorithm is parallel-
ized across different partitions, and by Theorem 1 each
partition has size at most O(n/p) , the overall depth of the
algorithm is O((n/p) log n) whp. 	� �

We note that the depth is not poly-logarithmic, as in
the classic parallel merge-sort. However, the amount
of parallelism generated by our algorithm is more than
enough to keep the processors all busy in practice.
Indeed, we note that many samplesort implementations
use a similar strategy in practice and use a serial sort
within each partition, and thus also do not have poly-
logarithmic depth in practice. In our implementation, we
exploit parallelism using the parallel primitives and the
work-stealing scheduler from ParlayLib [10].

Optimizations
We applied a number of optimizations into the imple-
mentation of the algorithm that provide practical
speedups. We make use of vectorization support using
AVX instructions from modern processors to speed up
the computation of the LCP(X ,Y) routine used in the
merge-procedure and in the binary searches in locating
pivots.

In the proposed merge-sort and the merge-parti-
tion procedures in the algorithm, we have nested par-
allelism for their recursive invocations. This is applied in
the implementation up-to some fixed granularity, due to
the associated overhead of scheduling small tasks.

In the binary searches for the sampled pivots in each
sorted subarray, instead of searching for the appropri-
ate position of an entire pivot suffix, we look for a fixed-
length prefix of the pivot. This helps reduce the total
work associated to locating the pivots, with an associ-
ated trade-off with the final partition sizes. With suf-
ficiently large prefix lengths, the partition sizes do not
get significantly affected in our observation.

Results
We performed a number of experiments to character-
ize the performance of the caps-sa algorithm and its
implementation. We evaluated its performance com-
pared to the available implementations of two leading
methods for sa construction: parallel-divsufsort
[37] and parallel-dc3 [3]. We assessed its ability to
construct sa and lcp-arrays on a number of genomic
datasets.

Next, we evaluated the parallel scaling of the algo-
rithm. Then we explore the idea of Bounded-context
suffix arrays, and the performance of caps-sa for vari-
ous prefix-context lengths.

A varied collection of datasets has been used in the
experiments. Table 1 delineates the pertinent charac-
teristics of the datasets. We follow [51] by removing
N-repeats, which occur when the sequence underlying
a region of the assembly cannot be resolved. We also
un-mask soft-masked regions of the genomes. We
verified the correctness of the implementation
by cross-checking its output against from that of
parallel-divsufsort.

Computation system. The experiments have been per-
formed on a server having 4 Intel(R) Xeon(R) Platinum
8160 processors with 192 cores in total and 1.5 TB of
2.66 GHz DDR4 RAM. The system is run with Ubuntu
22.04.2 LTS (GNU/Linux 6.2.0–33-generic x86_64).
The sa and lcp-array construction times and the maxi-
mum memory usages of the tools were measured with
the GNU time command.

Dataset characteristics
Table 1 provides some pertinent characteristics of the
datasets used. The GRCh38 dataset is the Human Build
38 patch release 13 version of the human genome refer-
ence from the Genome Reference Consortium,4 which
is a chromosome-level assembly of the full genome. The

Table 1  Dataset statistics: number of bases, mean LCP, and
standard deviation (rounded to nearest whole number) of the
final lcp-array

Dataset Size Mean LCP Std. Dev. of LCP

Human (GRCh38) 2,945,849,068 3814 72,697

Human (T2T) 3,117,292,071 2519 61,987

CdBG (Human reads) 3,993,272,308 18 6

Great white shark 4,286,311,195 489 8925

Axolotl 28,203,219,824 50 160

Bacteria (1K) 3,919,109,158 10,897 28,463

4  https://​www.​ncbi.​nlm.​nih.​gov/​grc.

https://www.ncbi.nlm.nih.gov/grc

Page 11 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

T2T dataset is the latest T2T CHM13v2.0 Telomere-
to-Telomere assembly of the CHM13 cell line with
chromosome Y from NA24385, from the T2T consor-
tium, which is a complete genome-level assembly of
the genome [45]. Together, these two human datasets
represent what we imagine may be a typical use-case
for genome construction in the context of a tool like
STAR [14]. Though largely similar, the CHM13 assem-
bly has resolved telomeric and centromeric regions, and
more complete coverage, specifically in highly-repeti-
tive regions. Thus, we expect it represents a more chal-
lenging problem instance for suffix array construction.

The CdBG (Compacted de Bruijn Graph) dataset is the
collection of the maximal unitigs extracted from the de
Bruijn graph (with k-mer size 27) of the human sequenc-
ing read set NIST HG004 (SRA3440461—95) [57] by
cuttlefish 2 [32]. This dataset represents a potential
use-case where one may wish to build an index for the
sequence stored in the CdBG data structure. The abil-
ity to index the CdBG (i.e. contigs-based indexing) has
proven useful in many contexts [12], and the sa can pro-
vide one possible index for providing efficient lookup
over the sequence contained in the CdBG.

The great white shark dataset is the genome reference
of Carcharodon carcharias [41] and the axolotl dataset
is the genome reference sequence of Ambystoma mexi-
canum [52]. These represent large problem instances,
where one may wish to build the sa on large reference
genomes.

The bacteria (1K) dataset is a collection of 1000
genomes sampled randomly from 661,405 bacterial
genomes [9], from the European Nucleotide Archive.
Almost all the genomes in this dataset are Salmonella
enterica—this represents a pathological dataset for caps-
sa, being extremely repetitive.

SA and LCP‑array construction
We evaluate the performance of caps-sa in construct-
ing the sa and the lcp-array of a number of genomic

datasets, compared to the sa construction performance
of: 1. parallel-divsufsort [37] and 2. parallel-dc3
[3]. Table 2 contains the results of the benchmarking. As
the state-of-the-art sequential benchmark, we note the
performance of the divsufsort implementation from
libdivsufsort [42].

We note that caps-sa executes significantly faster
than the other parallel algorithms in all the instances
except for the pathological dataset of 1K similar bacteria,
whereas parallel-divsufsort uses the least amount of
memory. Interestingly for the smaller datasets caps-sa
does not require much more memory than parallel-
divsufsort, despite constructing both the sa and lcp.
Memory usage could be improved by bit-packing the
indexes, or through the extension to an external memory
algorithm.

Appendix Table 4 provides sequential timing results
for the methods, i.e. with 1 thread, to compare their total
amount of work. We note that caps-sa tends to do more
work than the other parallel methods—which is expected
as the other methods have O(n log n) work [36, 37],
whereas caps-sa has an additional O(

∑n−1
i=1 Li) output-

dependent factor, and benefits from better parallelization
with more workers.

Parallel scaling
In order to assess how sensitive runtime is to paral-
lelism we evaluated caps-sa against parallel-dc3
and parallel-divsufsort as the number of threads
increased. We report the results in Fig. 3, which illus-
trated that caps-sa exploits parallelism better—
becoming the fastest method as the thread count
becomes high despite doing more work asymptotically.

On the GRCh38 and T2T datasets, all the parallel
methods become faster than divsufsort at around
the same number of threads, after which caps-sa
becomes the fastest.

Table 2  Time- and memory-performance results for constructing sas (and lcp-array in case of caps-sa) with 32 threads

divsufsort is shown as a serial benchmark. Time is reported in seconds, and the memory usages are reported in GBs in parentheses. Best performances among the
parallel algorithms in each instance are highlighted. parallel-dc3 could not be run on Axolotl because we could not modify the PBBS code-base to accommodate the
large numerical size

Dataset Divsufsort Parallel-divsufsort Parallel-dc3 Caps-sa

Human (GRCh38) 556 (25) 273 (32) 113 (110) 93 (45)

Human (T2T) 575 (26) 279 (34) 119 (116) 106 (48)

CdBG (Human reads) 722 (33) 379 (44) 149 (172) 114 (61)

Great white shark 771 (36) 410 (48) 176 (186) 121 (64)

Axolotl 10489 (236) 3424 (311) – 1341 (848)

Bacteria (1K) 726 (33) 437 (43) 164 (172) 259 (60)

Page 12 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

Cache performance
The samplesort-based design of caps-sa optimizes
cache-performance. In order to evaluate the empirical
cache behavior of caps-sa as compared to other algo-
rithms for sa construction, we profiled the programs on
the GRCh38 and the T2T reference genomes. Because
cache-behavior can degenerate as parallelism increases,
we evaluate it across 1, 32, and 64 threads. The results
in Table 3 show that caps-sa outperforms other par-
allel sa indexing programs by large margins. All meas-
urements were taken with the Linux perf command.

Bounded‑context SA Construction
By virtue of organizing all suffixes of the underlying
text T  , the suffix array provides the powerful ability to
efficiently search for query patterns of any length in
the text. While this capability arises naturally from the
definition of the sa, such flexibility is rarely needed in
the sa’s most common applications in genomics. Spe-
cifically, when used to efficiently find seed sequences
from a genomic read, the maximum length of the query
is often very short. Many modern aligners use seed
lengths in the range of 15–31, and even with the maxi-
mum mappable prefix concept used by STAR [14], the
query length is bounded above by the error-free prefix
length of the remainder of the read (rarely more than
∼ 100 nucleotides).

As such, indices that can provide efficient lookup and
locate queries for patterns less than some maximum
length, say k , are often very useful in this context. For
example, the k-BWT data structure [13, 46, 50] builds
a transform of the text that organizes character occur-
rences by their bounded context (in this case, their right
context of length k ). This allows the index to be built
efficiently, since rotations of the text need not have
their relative orders resolved beyond their initial length
k contexts, while simultaneously allowing efficient and
correct query for any pattern length ≤ k.

Here, we experiment with an analogous version of the
sa—the bounded-context SA . Specifically, the bounded-
context sa of order k resolves the lexicographic order of
all suffixes of the text up to (and including) their prefixes
of length k . If a pair of suffixes share a prefix of length
≥ k , then they may appear in an arbitrary relative order
within the bounded-context sa of order k . Without any
meaningful modifications to the query algorithms, this
variant of the sa allows locating all occurrences of que-
ries of any length ≤ k in the text. Such a variant of the
sa is very straightforward to construct using caps-sa, as
we simply declare equal any suffixes that are equal up to
(or beyond) their length k prefixes. At the same time, this
variant can be more efficient to construct using our algo-
rithm, as the context length k places a strict upper bound
on the number of comparisons we must perform when

Fig. 3  Runtimes of caps-sa, parallel-divsufsort, and parallel-dc3 as thread count increases from 4 to 128 for GRCh38, T2T, and CdBG. divsufsort
runtime is in red

Table 3  Cache-miss rates (in %) for compared methods on GRCh38 and T2T datasets with respect to number of threads

Reported numbers are the minimum of 3 runs to obviate operating system jitter. Lower is better, and the best result is highlighted

Method Human (GRCh38) Human (T2T)

1 thr 32 thr 64 thr 1 thr 32 thr 64 thr

caps-sa 24 32 37 43 53 60
parallel-divsufsort 59 60 61 60 61 62

parallel-dc3 72 68 68 72 68 68

divsufsort 51 - - 52 - -

Page 13 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

attempting to determine the relative order of a pair of
suffixes. Specifically, it follows directly from Theorem 3
that caps-sa performs at most O

(

n log n+ nk
)

 character
comparisons, in the worst case, when constructing the
context-bounded sa of order k.

In Fig. 4, we report the timing requirements to con-
struct the context-bounded sa of varying orders of
powers of 2 , from 64 to 65, 536 , over the Bacteria (1K)
dataset. As expected, the bounded-context sas can be
constructed substantially faster than the full-context sa.

Conclusion
In this manuscript, we introduced a new method, caps-
sa, for parallel sa and lcp-array construction. caps-sa
displays very good cache performance (i.e. very low cache
miss rate), and scales well to many threads. As a result,
caps-sa is able to outperform existing state-of-the-art
parallel sa construction algorithms like parallel-divs-
ufsort and parallel-dc3 on genomic datasets. At the
same time, caps-sa is substantially simpler than existing
state-of-the-art algorithms. This simplicity eases imple-
mentation, and leads to many opportunities for further
future improvements. Likewise, caps-sa provides the
lcp-array directly as a byproduct of sa construction, and
does not require a separate algorithm to produce this
useful auxiliary data structure. We hope that will prove
to be useful in utilities where parallel sa construction
is a core subproblem, and also hope that the relatively
straightforward algorithm will benefit from further opti-
mizations, enhancements, and alternative implementa-
tions within the community.

As caps-sa scales well with the level of available paral-
lelism, and performs well for large references, we expect
that it will provide a useful option for tools that seek to
build the sa in parallel environments. In addition to the
time taken to construct the sa or the LCP-array, another
consideration is the memory (specifically the RAM)
required for construction. One approach to improve the
memory-scalability of sa construction algorithms is to
develop external-memory construction algorithms. For
example, pSAscan [28] is a state-of-the-art external-
memory algorithm for sa construction. Such approaches
make use of external-memory (i.e. disk) and algorithms
that access and construct the sa in a structured way are
likely amenable to external-memory variants.

We note that, though we have not explored it in this
manuscript, caps-sa is highly-amenable to external
memory implementation. This is because the initial par-
titioning generates many small subproblems that can be
solved independently — i.e. some subproblem can be
paged into RAM while others remain on disk. Pivot sam-
pling from the subproblems can be done through a simi-
lar paging process. Likewise, after pivot selection, many
approximately equal-sized partitions will be created, and
these sub-problems, which target specific output inter-
vals of the final suffix array, can be solved independently
and in parallel with the relevant data for only a working
subset of partitions paged into RAM with the remaining
partitions residing on disk. Further, given a sufficiently
fine-grained partitioning, the algorithm can likely pro-
vide tight controls on the required working memory. As
more RAM use is allowed, a larger number of partitions
will be allowed in RAM at once, and our algorithm will
be able to better make use of available parallelism. On
the other hand, as the maximum allowed RAM usage is
restricted, fewer partitions will be present in memory at
once, potentially limiting parallelism, but adhering to the
requested RAM constraints. In practice, we believe that,
so long as a sufficiently fine-grained partitioning is used,
external-memory variants of our algorithm will still be
able to efficiently make use of many threads while still
substantially reducing the required working memory. We
leave the efficient implementation of an external-mem-
ory variant of caps-sa to future work.

Appendix
Methods

Pseudo-codes for the procedures absent in the main
text, sample-pivots, collate-partitions, and com-
pute-boundary-lcps are provided in the following.

Fig. 4  Runtimes of caps-sa as context size increases on the bacteria
(1K) dataset. Small context sizes greatly diminish the running time
of the algorithm, but runtime is less sensitive for larger context sizes.
The full-context runtime is shown as the red horizontal line

Page 14 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

Results
See Table 4

Page 15 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16 	

Acknowledgements
J.K. acknowledges Harihara Subrahmaniam Muralidharan for his inputs into
the proofs.

Author contributions
This work was conceived by J.K. and R.P. This work was supervised by E.M.,
L.D., and R.P. The manuscript was prepared by all authors. Experiments were
designed, prepared, and carried out by T.R. and J.K., with input from L.D. and
R.P. The implementation of CaPS-SA was primarily developed by J.K., with
contributions from T.R. and R.P. The analysis of the algorithm was performed
by J.K. and L.D. All authors read and approved the final manuscript.

Funding
This work is supported by the NIH under Grant award Numbers R01HG009937
and by NSF awards CCF-1,750,472 and CNS-176,368 to RP, and by NSF SaTC-
2,317,194 to LD.

Code availability
The implementation is available under an open-source license at https://​
github.​com/​jamsh​ed/​CaPS-​SA.

Data availability
All the datasets used in this manuscript are publicly available, and have been
cited appropriately.

Declarations

Competing interests
L.D. is a visiting researcher at Google Research. R.P. is a co-founder of Ocean
Genomics Inc.

Received: 8 November 2023 Accepted: 21 March 2024

References
	1.	 Abouelhoda MI, Kurtz S, Ohlebusch Enno. Replacing suffix trees with

enhanced suffix arrays. J Discrete Algorithm. 2004;2(1):53–86.
	2.	 Alser M, Rotman J, Deshpande D, Taraszka K, Shi H, Baykal PI, Yang HT, Xue

V, Knyazev S, Singer BD, Balliu B, Koslicki D, Skums P, Zelikovsky A, Alkan C,
Mutlu O, Mangul S. Technology dictates algorithms: recent developments
in read alignment. Genome Biol. 2021;22(1):249. https://​doi.​org/​10.​1186/​
s13059-​021-​02443-7.

	3.	 Daniel A, Guy E. Blelloch, Laxman Dhulipala, Magdalen Dobson, and
Yihan Sun. The problem-based benchmark suite (PBBS), v2. In Proceed-
ings of the 27th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’22, page 445-447, New York, NY, USA, 2022.
Association for Computing Machinery. https://​doi.​org/​10.​1145/​35032​21.​
35084​22.

	4.	 Axtmann M, Witt S, Ferizovic D, Sanders P, Samplesort In-Place Paral-
lel Super Scalar, (IPSSSSo). In 25th Annual European Symposium on
Algorithms (ESA,. volume 87 of Leibniz International Proceedings in

Informatics (LIPIcs), p. 9:1–9:14. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik. 2017;2017. https://​doi.​org/​10.​4230/​LIPIcs.​ESA.​2017.9.

	5.	 Timo B. Scalable string and suffix sorting: Algorithms, techniques, and
tools. arXiv preprint arXiv:​1808.​00963, 2018.

	6.	 Timo B, Patrick D, Johannes F, Florian K, Enno O, Peter S. Scalable text
index construction, pages 252–284. Springer Nature Switzerland. Cham-
https://​doi.​org/​10.​1007/​978-3-​031-​21534-6_​14.

	7.	 Bingmann T, Eberle A, Sanders P. Engineering parallel string sorting.
Algorithmica. 2017;77:235–86.

	8.	 Timo B and Peter S. Parallel string sample sort. In Algorithms–ESA 2013:
21st Annual European Symposium, Sophia Antipolis, France, September
2-4, 2013. Proceedings 21, p. 169–180. Springer, 2013.

	9.	 Blackwell G A, Hunt M, Malone KM, Lima L, Horesh G, Alako BTF, Thomson
NR, Iqbal Z. Exploring bacterial diversity via a curated and searchable
snapshot of archived DNA sequences. PLOS Biol. 2021;19(11):1–16.
https://​doi.​org/​10.​1371/​journ​al.​pbio.​30014​21.

	10.	 Blelloch GE, Anderson D, Dhulipala L. Parlaylib-a toolkit for parallel
algorithms on shared-memory multicore machines. In Proceedings of the
32nd ACM Symposium on Parallelism in Algorithms and Architectures, p.
507–509. 2020.

	11.	 Bonizzoni P, Vedova GD, Pirola Y, Previtali M, Rizzi R. Computing the
multi-string bwt and lcp array in external memory. Theor Computer Sci.
2021;862:42–58. https://​doi.​org/​10.​1016/j.​tcs.​2020.​11.​041.

	12.	 Rayan C, Jan H, Paul M. Data structures to represent a set of k-long DNA
sequences. ACM Comput Surv. 2021;2021. https://​doi.​org/​10.​1145/​34459​
67.

	13.	 Shane CJ, Petri M, Puglisi SJ. Revisiting bounded context block-sorting
transformations. Softw Pract Exper. 2012;42(8):1037–54.

	14.	 Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P,
Chaisson M, Gingeras Thomas R. STAR: ultrafast universal RNA-seq aligner.
Bioinformatics. 2013;29(1):15–21.

	15.	 Egidi L, Louza FA, Manzini G, Telles GP. External memory bwt and lcp
computation for sequence collections with applications. Algorithm Mol
Biol. 2019;14(1):6. https://​doi.​org/​10.​1186/​s13015-​019-​0140-0.

	16.	 Lavinia E, Giovanni M. Lightweight bwt and lcp merging via the gap
algorithm. In: Fici Gabriele, Sciortino Marinella, Venturini Rossano, editors.
String Processing and Information Retrieval. Berlin: Springer International
Publishing; 2017.

	17.	 Farach M. Optimal suffix tree construction with large alphabets. Ann
Sympos Foundations Computer Sci Pages. 1997. https://​doi.​org/​10.​1109/​
SFCS.​1997.​646102.

	18.	 Fischer J, Kurpicz F. Dismantling divsufsort. In Prague Stringology Confer-
ence 2017, p. 62, 2017.

	19.	 Johannes F, Florian K. Lightweight distributed suffix array construction.
Soc Indust Appl Mathemat. 2019. https://​doi.​org/​10.​1137/1.​97816​11975​
499.3.

	20.	 Flick P, Aluru S. Parallel distributed memory construction of suffix and
longest common prefix arrays. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’15, New York, NY, USA, 2015. Association for Computing
Machinery. https://​doi.​org/​10.​1145/​28075​91.​28076​09.

	21.	 Donald FW, McKellar AC. Samplesort: a sampling approach to minimal
storage tree sorting. J ACM. 1970;17(3):496–507.

Table 4  Time- and memory-performance results for constructing sas (and lcp-arrays in case of caps-sa) sequentially, i.e. with 1 thread

divsufsort is shown as the optimal serial benchmark. Time is reported in minutes, and the memory usages are reported in GBs in parentheses

Dataset Divsufsort Parallel-divsufsort Parallel-dc3 Caps-sa

Human (GRCh38) 9 (25) 29 (32) 36 (110) 35 (45)

Human (T2T) 10 (26) 32 (34) 38 (115) 34 (48)

CdBG (Human reads) 12 (33) 36 (44) 48 (172) 39 (61)

Great white shark 13 (36) 43 (47) 51 (185) 43 (65)

Bacteria (1K) 726 (33) 3300 (43) 3075 (172) 5294 (60)

https://github.com/jamshed/CaPS-SA
https://github.com/jamshed/CaPS-SA
https://doi.org/10.1186/s13059-021-02443-7
https://doi.org/10.1186/s13059-021-02443-7
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.1145/3503221.3508422
https://doi.org/10.4230/LIPIcs.ESA.2017.9
http://arxiv.org/abs/1808.00963
https://doi.org/10.1007/978-3-031-21534-6_14
https://doi.org/10.1371/journal.pbio.3001421
https://doi.org/10.1016/j.tcs.2020.11.041
https://doi.org/10.1145/3445967
https://doi.org/10.1145/3445967
https://doi.org/10.1186/s13015-019-0140-0
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1137/1.9781611975499.3
https://doi.org/10.1145/2807591.2807609

Page 16 of 16Khan et al. Algorithms for Molecular Biology (2024) 19:16

	22.	 Gusfield D. Algorithms on strings, trees, and sequences: computer sci-
ence and computational biology. 1997. https://​doi.​org/​10.​1017/​CBO97​
80511​574931.

	23.	 Hazelhurst S, Lipták Z. KABOOM! a new suffix array based algorithm for
clustering expression data. Bioinformatics. 2011;27(24):3348–55.

	24.	 Ilie L, Fazayeli F, Ilie S. HiTEC: accurate error correction in high-throughput
sequencing data. Bioinformatics. 2011;27(3):295–302.

	25.	 Itoh H, Tanaka H. An efficient method for in memory construction of
suffix arrays. In 6th International Symposium on String Processing and
Information Retrieval. 5th International Workshop on Groupware (Cat. No.
PR00268), p. 81–88. IEEE, 1999.

	26.	 Kärkkäinen J, Kempa D. Engineering a lightweight external memory suffix
array construction algorithm. Math Computer Sci. 2017;11:137–49.

	27.	 Kärkkäinen J, Kempa D. Engineering external memory LCP array
construction: Parallel, in-place and large alphabet. In 16th International
Symposium on Experimental Algorithms (SEA 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2017.

	28.	 Juha K, Dominik K, Puglisi SJ. Parallel external memory suffix sorting. In:
Cicalese Ferdinando, Porat Ely, Vaccaro Ugo, editors. Combinatorial pat-
tern matching. Berlin: Springer International Publishing; 2015.

	29.	 Kärkkäinen J, Kempa D, Puglisi SJ, Zhukova B. Engineering external
memory induced suffix sorting. In 2017 Proceedings of the Ninteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), p.
98–108. SIAM, 2017.

	30.	 Kärkkäinen J, Sanders P. Simple linear work suffix array construction. In
Automata, Languages and Programming: 30th International Colloquium,
ICALP 2003 Eindhoven, The Netherlands, June 30–July 4, 2003 Proceed-
ings. Springer. 30, p. 943–955, 2003.

	31.	 Kärkkäinen J, Sanders P, Burkhardt S. Linear work suffix array construction.
J ACM (JACM). 2006;53(6):918–36.

	32.	 Khan J, Kokot M, Deorowicz S, Patro R. Scalable, ultra-fast, and low-
memory construction of compacted de bruijn graphs with Cut-
tlefish 2. Genome Biol. 2022;23(1):190. https://​doi.​org/​10.​1186/​
s13059-​022-​02743-6.

	33.	 Khan J, Rubel T, Dhulipala L, Molloy E, Patro R. Fast, parallel, and cache-
friendly suffix array construction. In Djamal Belazzougui and Aïda
Ouangraoua, editors, 23rd International Workshop on Algorithms in Bio-
informatics (WABI 2023), volume 273 of Leibniz International Proceedings
in Informatics (LIPIcs), p. 16:1–16:21, Dagstuhl, Germany, 2023. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik. https://​doi.​org/​10.​4230/​LIPIcs.​
WABI.​2023.​16.

	34.	 Kim DK, Sim JS, Park H, Park K. Linear-time construction of suffix arrays.
In combinatorial pattern matching: 14th Annual Symposium, CPM 2003
Morelia, Michoacán, Mexico, June 25–27, 2003 Proceedings. Springer. 14,
p. 186–199, 2003.

	35.	 Ko P, Aluru S. Space efficient linear time construction of suffix arrays. In
Combinatorial Pattern Matching: 14th Annual Symposium, CPM 2003
Morelia, Michoacán, Mexico, June 25–27, 2003 Proceedings.Springer.
2003 p. 200–210

	36.	 Kulla F, Sanders P. Scalable parallel suffix array construction. Parallel Com-
put. 2007;33(9):605–12.

	37.	 Labeit J, Shun J, Blelloch GE. Parallel lightweight wavelet tree, suffix array
and fm-index construction. J Discrete Algorithm. 2017;43:2–17.

	38.	 Li Z, Li J, Huo H. Optimal in-place suffix sorting. In String Processing and
Information Retrieval: 25th International Symposium, SPIRE 2018, Lima,
Peru, October 9-11, 2018, Proceedings, p. 268–284. Springer, 2018.

	39.	 Liao G, Ma L, Zang G, Tang L. Parallel DC3 algorithm for suffix array con-
struction on many-core accelerators. In 2015 15th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, p. 1155–1158, 2015.
https://​doi.​org/​10.​1109/​CCGrid.​2015.​56.

	40.	 Manber U, Myers G. Suffix arrays: a new method for on-line string
searches siam. J Comput. 1993;22(5):935–48.

	41.	 Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q, Bitar Pavinski P, Vincent
RP, Komissarov A, Rayko M, Kliver S, Stanhope BJ, Winkler C, O’Brien SJ,
Antunes A, Jorgensen S, Shivji MS. White shark genome reveals ancient
elasmobranch adaptations associated with wound healing and the main-
tenance of genome stability. Proc Natl Acad Sci. 2019;116(10):4446–55.
https://​doi.​org/​10.​1073/​pnas.​18197​78116.

	42.	 Mori Y. divsufsort. https://​github.​com/y-​256/​libdi​vsufs​ort. 2015. (Accessed
on 1 May 2023).

	43.	 Ng W, Kakehi K. Merging string sequences by longest common prefixes.
IPSJ Digital Courier. 2008;4:69–78.

	44.	 Nong G, Zhang S, Chan WH. Two efficient algorithms for linear time suffix
array construction. IEEE Trans comput. 2010;60(10):1471–84.

	45.	 Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger
MR, Altemose N, Uralsky L, Gershman A. et al. The complete sequence of
a human genome. Science. 2022;376(6588):44–53.

	46.	 Petri M, Navarro G, Culpepper JS, Puglisi SJ. Backwards search in context
bound text transformations. In 2011 First International Conference on
Data Compression, communications and processing, 2011. p. 82–91. IEEE

	47.	 Pirogov A, Pfaffelhuber P, Börsch-Haubold A, Haubold B. High-complexity
regions in mammalian genomes are enriched for developmental genes.
Bioinformatics. 2019;35(11):1813–9.

	48.	 Puglisi SJ, Smyth WF, Turpin AH. A taxonomy of suffix array construction
algorithms. Acm Comput Surveys (CSUR). 2007;39(2):4es.

	49.	 Sanders P, Winkel S. Super scalar sample sort. In Algorithms–ESA 2004:
12th Annual European Symposium, Bergen, Norway, September 14-17,
2004. Proceedings 12, p. 784–796. Springer, 2004.

	50.	 Schindler M. A fast block-sorting algorithm for lossless data compression.
In Proceedings DCC ’97. Data Compression Conference. 1997. p. 469
https://​doi.​org/​10.​1109/​DCC.​1997.​582137.

	51.	 Shrestha AMS, Frith MC, Horton P. A bioinformatician’s guide to the
forefront of suffix array construction algorithms. Brief Bioinform.
2014;15(2):138–54.

	52.	 Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss
RS. A chromosome-scale assembly of the axolotl genome. Genome Res.
2019;29(2):317–24.

	53.	 Vyverman M, De Baets B, Fack V, Dawyndt P. essaMEM: finding maximal
exact matches using enhanced sparse suffix arrays. Bioinformatics.
2013;29(6):802–4.

	54.	 Weiner P. Linear pattern matching algorithms. In 14th Annual Symposium
on Switching and Automata Theory (swat 1973), 1973. p. 1–11.https://​doi.​
org/​10.​1109/​SWAT.​1973.​13.

	55.	 Ye Y, Choi JH, Tang H. RAPSearch: a fast protein similarity search tool for
short reads. BMC Bioinform. 2011;12(1):159.

	56.	 Zhu K, Schäffer AA, Robinson W, Xu J, Ruppin E, Ergun AF, Ye Y, Sahinalp
SC. Strain level microbial detection and quantification with applications
to single cell metagenomics. Nature Commun. 2022;13(1):6430.

	57.	 Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, Weng Z, Liu Y,
Mason CE, Alexander N, Henaff E, McIntyre ABR., Chandramohan D, Chen
F, Jaeger E, Moshrefi A, Pham K, Stedman W, Liang T, Saghbini M, Dzakula
Z, Hastie A, Cao H, Deikus G, Schadt E, Sebra R, Bashir A, Truty RM, Chang
CC, Gulbahce N, Zhao K, Ghosh S, Hyland F, Yutao F, Chaisson M, Xiao C,
Trow J, Sherry ST, Zaranek AW, Ball M, Bobe J, Estep P, Church GM, Marks
P, Sofia KP, Grace XYZ, Michael SL, Heather SO, Patrice AM, Kristina G, Ying
S, Karoline Bjarnesdatter R, Marc S. Extensive sequencing of seven human
genomes to characterize benchmark reference materials. Sci Data.
2016;3(1): 160025. https://​doi.​org/​10.​1038/​sdata.​2016.​25.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1017/CBO9780511574931
https://doi.org/10.1186/s13059-022-02743-6
https://doi.org/10.1186/s13059-022-02743-6
https://doi.org/10.4230/LIPIcs.WABI.2023.16
https://doi.org/10.4230/LIPIcs.WABI.2023.16
https://doi.org/10.1109/CCGrid.2015.56
https://doi.org/10.1073/pnas.1819778116
https://github.com/y-256/libdivsufsort
https://doi.org/10.1109/DCC.1997.582137
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1038/sdata.2016.25

	Fast, parallel, and cache-friendly suffix array construction
	Abstract
	Purpose
	Methods
	Results

	Introduction
	Preliminaries
	Methods
	Parallel SA and LCP-array construction: caps-sa
	Asymptotics
	Work analysis

	Working space
	Parallelization
	Optimizations

	Results
	Dataset characteristics
	SA and LCP-array construction
	Parallel scaling
	Cache performance
	Bounded-context SA Construction

	Conclusion
	Appendix
	Results
	Acknowledgements
	References

