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Abstract 

Purpose  String indexes such as the suffix array (sa) and the closely related longest common prefix (lcp) array are fun-
damental objects in bioinformatics and have a wide variety of applications. Despite their importance in practice, few 
scalable parallel algorithms for constructing these are known, and the existing algorithms can be highly non-trivial 
to implement and parallelize.

Methods  In this paper we present caps-sa, a simple and scalable parallel algorithm for constructing these string 
indexes inspired by samplesort and utilizing an LCP-informed mergesort. Due to its design, caps-sa has excellent 
memory-locality and thus incurs fewer cache misses and achieves strong performance on modern multicore systems 
with deep cache hierarchies.

Results  We show that despite its simple design, caps-sa outperforms existing state-of-the-art parallel sa and lcp-array 
construction algorithms on modern hardware. Finally, motivated by applications in modern aligners where the query 
strings have bounded lengths, we introduce the notion of a bounded-context sa and show that caps-sa can easily be 
extended to exploit this structure to obtain further speedups. We make our code publicly available at https://​github.​
com/​jamsh​ed/​CaPS-​SA.
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Introduction
Methods for aligning sequencing reads to reference 
genomes underlie some of the most well-developed and 
widely-used tools in bioinformatics [2]. Modern read-
to-reference aligners typically employ an index over the 
reference text. A classic index for strings is the suffix 
array (sa)  [40], which is an array of indices of the lexi-
cographically sorted suffixes of a string. In alignment, 
the sa index is used by the popular STAR aligner [14] as 
well as in other tools [53, 55]. The sa has also been used 

in short-read error correction [24] and sequence cluster-
ing  [23]. A related object frequently used in conjunction 
with the sa is the Longest Common Prefix (lcp) array, 
which contains the lengths of the longest shared prefixes 
between pairs of successive indices in the sa. For instance, 
the sa can be used in concert with the lcp-array (and 
other auxiliary tables derived from these) in a data struc-
ture called an enhanced suffix array [1] to mimic the func-
tionality of a suffix tree [54], but often more efficiently and 
using less space. An account of the pervasiveness of the sa 
and the lcp-array in computational genomics is best left 
to a dedicated review (see e.g. [51]).

Because of the utility of the sa (and the lcp-array) in 
string indexing, significant work has been dedicated to 
developing practical algorithms for its construction. It is 
well-established that sa and lcp-array construction can 
be performed sequentially in time linear to the size of 
strings. However, as modern genomics pipelines produce 
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ever more data—including more complete reference 
genomes and pangenomes—there has been a concerted 
effort to improve the practical efficiency and reduce the 
runtime of sa and lcp-array construction. A host of effi-
cient serial algorithms have been developed [18, 30, 34, 
35, 38, 42, 44]. Likewise, in an effort to take advantage of 
the increased parallelism of modern computer hardware, 
a number of parallel algorithms have also been proposed; 
e.g. parallel DivSufSort [37], parallel DC3 [36], and parallel 
divide-and-conquer based sa-construction  [28]. External 
memory algorithms [26, 27, 29] have also been a focus of 
recent research because of the memory bottlenecks that 
arise when building the sa and the lcp-array on genomic 
datasets. Besides, algorithms for GPU-settings  [39] and 
distributed-memory  [19, 20] have been developed. We 
refer the interested reader to [5, 6, 48] for a comprehensive 
review. For our purposes, we note that these increasingly 
advanced methods introduce new algorithmic techniques 
to enable parallelism or improve the worst-case time com-
plexity (so that it is sublinear). The trade-off, often, is that 
these more complex algorithms may potentially be more 
difficult to implement, optimize for modern hardware and 
cache layouts, and to maintain.

In this work, we address these issues by introducing 
caps-sa [33], a highly parallel method for constructing 
the sa and the lcp-array. A core principle behind caps-
sa is simplicity. Our approach draws on several existing 
algorithms and techniques, and focuses on their effi-
cient combination for the problem of highly parallel sa 
construction. The algorithm builds upon the parallel 
samplesort algorithm [21], and is easy to implement and 
optimize for modern hardware.

A potential downside of our approach is that it is output-
sensitive and as a result its worst-case time complexity on 
adversarial inputs is quadratic. However, in practice we 
find that the shared-memory implementation of caps-
sa outperforms state-of-the-art methods (specifically 
parallel-divsufsort   [37] and parallel-dc3   [3, 
36]) in terms of runtime and scalability (although not in 
memory for Parallel-divsufsort). For example, caps-
sa can build the sa and the lcp-array for the telomere-
to-telomere human genome assembly (CHM13 v2)  [45] 
in 106  s using 48 GBs of memory with 32 threads on a 
typical shared-memory machine, whereas the leading 
method parallel-dc3 requires 119  s using 116 GBs of 
memory for the sa. Our experimental study demonstrates 
that this superior performance of caps-sa can largely 
be attributed to two causes. First, caps-sa achieves bet-
ter memory-locality (fewer cache misses) than the other 
methods (likely thanks to its straightforward approach), 
and second, real world use cases typically do not manifest 
properties that render the algorithm exhibit its worst-case 
complexity. However, our experimental results include 

performance on an adversarial dataset for the algorithm. 
Overall, our work demonstrates that as parallel resources 
increase combining domain-specific optimizations (i.e. 
lcp-informed merging) with highly-efficient general sort-
ing strategies (i.e. samplesort [21]) can outperform more 
sophisticated but complex algorithms. caps-sa is imple-
mented in C++17 and is available under an open source 
license at https://​github.​com/​jamsh​ed/​CaPS-​SA.

The remainder of this manuscript is organized as fol-
lows. We discuss the preliminary concepts required for 
a formal treatment of the algorithm as well as the most 
relevant prior work and the methods against which we 
compare caps-sa in Sec. 2. Then we discuss caps-sa in 
Sec. 3, and provide an analysis of its asymptotic behavior. 
Sec. 4 describes the experimental study for the proposed 
algorithm, and reports the results. We conclude with dis-
cussion on the potential of the method and prospective 
future directions for building on top of it.

Preliminaries
A string (or text) T = a0a1 . . . an−1 is a finite ordered 
sequence of n symbols drawn from a finite ordered 
alphabet � . � contains a special terminator symbol $ , 
which terminates a string and is the smallest symbol in 
the ordering of � . T  denotes the length n of T  . The half-
open interval [i, j] is a shorthand for the closed interval 
[i . . . j − 1] . Ti denotes the i’th symbol in T  . The substring 
T[i,j) of T  is the sequence of characters of T  in the half-
open interval [i, j] . We call a substring T[i,j) with i = 0 a 
prefix of T  . Likewise, a substring T[i,j) with j = |T | is a 
suffix of T  , denoted by T[i:].

The ordering of � induces a lexicographical ordering 
of all possible strings over � . The Suffix Array (sa) of a 
string T  is an array of the starting indices of all suffixes 
of T  ordered by the suffixes’ lexicographical order. The 
Longest Common Prefix lcp(T1 , T2 ) of two strings T1 and 
T2 is the largest-sized prefix P of both T1 and T2 , such that 
if |P| = k then for all 0 < i < k , T1i = T2i , and T1k  = T2k . 
Given the suffix array SA of a string T  , its LCP-array is 
the array L such that Li = LCP(T[SAi:],T[SAi−1:]). 

1 For 
instance, given the string T = AACTGCGGAT  the sa 
and LCP array are given by following data structure:

Index 0 1 2 3 4 5 6 7 8 9 10

T A A C T G C G G A T $

SA 10 0 1 8 5 2 7 4 6 9 3

LCP array 0 0 1 1 0 1 0 1 1 0 1

The work of an algorithm is the total number of opera-
tions it performs to compute the result. The depth (or 

1  With the special case of L0 = 0.

https://github.com/jamshed/CaPS-SA
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span) of an algorithm is the longest sequence of dependent 
computations in its execution. In pseudo-code, we will use 
(||) as an infix operator to specify the parallel execution 
of statements—so f (x) || g(y) denotes the parallel execu-
tion of f (x) and g(y) . We use O

(

f (n)
)

 with high probabil-
ity (whp) in n to mean O

(

cf (n)
)

 with probability at least 
1− n−c for some constant c ≥ 1.

Prior Work. The sa can be constructed naively in 
O(n2 log n) work for an n-length text. Efficient algorithms 
can operate in O(n) work and O(n) space, which is the the-
oretical optimum, as it is the time and space required to 
record the sa and LCP array themselves. A comprehensive 
discussion of work on sa construction is well beyond the 
scope of this manuscript. As such, we here focus on sev-
eral sequential and parallel algorithms which are of par-
ticular interest due to their speed and wide use.

The state-of-the-art sequential program for sa construc-
tion is divsufsort [18, 42]. Subsequent work has eluci-
dated the algorithm to be an efficient implementation of 
some two-stage algorithms [18, 25].
divsufsort has been parallelized by Labeit et. al. in 

2017 [37]. It has recently been used in several computa-
tional genomics tools, including the CAMMiQ method for 
microbial abundance quantification  [56] and the macle 
tool for computing match complexity [47].

Another well-known algorithm for sa construction is 
the Difference Cover modulo 3 (DC3) method [31], which 
has also been effectively parallelized [36] and has a state-
of-the-art implementation [3].

Relevant String Sorting Methods. String sorting is a well-
studied algorithmic problem. The main difficulty in string 
sorting is that comparing two strings T1 and T2 requires 
O(min(|T1|, |T2|)) comparisons, which renders many tra-
ditional sorting algorithms for atomic objects costly. Of par-
ticular relevance to our work is the problem of merging two 
sorted lists of strings. Farach-Colton used an efficient merge-
routine for building suffix trees in linear time [17] (though 
the space overhead of suffix trees renders them impracti-
cal for most modern applications). Ng and Kakehi analyzed 
an efficient merging strategy of sorted lists of strings with 
associated lcp-information [43]. They show that given ran-
dom strings with uniform distribution of symbols, an lcp-
informed merge-sort algorithm has an expected running 
time of O(n log n) to sort n strings. The same merge proce-
dure was used by Bingmann and Sanders in several sample-
sorting algorithms for sorting collections of strings [8].

Bingmann and Sanders propose two merge-based string 
sorting algorithms of particular interest to us here: Parallel 
Super Scalar String Sample Sort ( pS5 ) and Parallel Multi-
way LCP-Mergesort. pS5 makes use of the merge routine 
in a samplesort framework, much like caps-sa. The algo-
rithms differ in their inputs (a set of strings vs a single 

string) as well as their approach to partitioning the data. 
pS5 uses machine-word-sized pivot keys to create a binary 
search tree which can fit into the cache of each core, then 
divides up the input set of strings evenly across the cores 
and bins them accordingly. As described in Sect. 3.1, caps-
sa divides up the input into evenly sized partitions, then 
samples pivots using a two-step process and places them 
into each partition. Parallel Multiway LCP-Mergesort gen-
eralizes the merge-algorithm to k-way merges [7].

Methods
The proposed algorithm, caps-sa, is based on the sample-
sort [21] algorithm. Samplesort is a popular generalization 
of quicksort that achieves excellent performance on both 
shared-memory and distributed-memory architectures [4, 
49]. Instead of partitioning the input array into two parts 
around a single pivot as in quicksort, it chooses a num-
ber of pivots z1, z2, . . . , zp−1 along with two sentinel piv-
ots z0 = −∞ and zp = +∞ , and partitions the data into 
p partitions such that an input element xi is assigned to 
partition j iff zj−1 < xi ≤ zj . It then sorts each partition 
using another (usually sequential) sorting algorithm (e.g., 
quicksort).

For constructing a suffix array, simply applying sample-
sort is costly since string comparisons in general require 
super-constant time. In more detail, first each suffix needs 
to be assigned to its partition by binary searching over 
the pivots. Secondly, sorting the suffixes in each partition 
may cost substantially more than linearithmic time due to 
string comparisons.

caps-sa addresses these issues using the following 
key idea of jointly leveraging merge sort and LCP-arrays. 
Whenever two suffixes are compared, the comparison is 
always done inside the operation of merging two sorted 
arrays of suffixes. Each sorted array is augmented with its 
lcp-array, and the merge operations avoid repeated com-
parisons of common prefixes among suffixes by exploit-
ing these lcp-arrays. This approach has previously been 
used in general string sorting algorithms  [7, 8, 43] and 
merging-based Burrows Wheeler Transform construc-
tion algorithms  [11, 15, 16]. The partitioning strategy for 
the suffixes is modified to make better use of the merge 
operation and achieve good parallelism. In particular, 
instead of randomly sampling pivots at the beginning of 
the algorithm, caps-sa partitions the suffixes uniformly 
into p subarrays, sorts the subarrays locally, and only 
then selects the pivots using oversampling. Once pivots 
are placed within each partition, the p partitions are fur-
ther subdivided into p− 1 subarrays each, for a total of 
p(p− 1) sub-subarrays. Since each sub-subarray is flanked 
by two pivots, the partition that it should go to is known. 
Each partition is thus a collection of sorted sub-subarrays, 
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which can be merged efficiently. The initial sorting of 
the uniform-sized subarrays is done using merge-sort 
to exploit the merge operation. Thus caps-sa ends up 
exploiting an efficient merging procedure with associated 
lcp-information to reduce expensive comparisons of suf-
fixes, while not having to merge large sub-arrays due to its 
pivoting strategy. We discuss the algorithm in more detail 
in the following sections.

Parallel SA and LCP‑array construction: caps‑sa
Next, we provide a high-level overview of the 
CaPS- SA(T , p) algorithm. The input to the algorithm is 
a string T  and a partition count (or, subproblem count) p , 
and as output it produces the sa and the lcp-array of T  . 
Conceptually, the algorithm executes in four high-level 
steps which we illustrate in Fig. 1. 

Fig. 1  Overview of caps-sa. In the first step of the algorithm the input text T  is partition evenly across p partitions. Then each partition is sorted, 
pivots are sampled using the sampling routine, and located within each partition to create sub-partitions. Subsequently each sub-partition 
is collated. Finally the merge routine is used to complete the suffix and the LCP-array construction
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First, it populates an unsorted sa. Then this initial sa 
is broken into p subarrays of uniform size |T |/p , and 
each subarray is sorted with merge-sort, in parallel. 
Next, p− 1 global pivots are sampled from the sorted 
subarrays together. Then in each sorted subarray, in 
parallel, each pivot is located with a binary search. The 
locations of the p− 1 pivots thus found in each sorted 
subarray break the subarray into p sorted 

 sub-subarrays. Besides, the position of each pivot in 
the final sa is now defined by its location in each of the 
p subarrays. The local ordering of the suffixes in each 
sorted subarray and the global position of the pivots thus 
define p partitions for the final sa, each of which is a col-
lection of p sub-subarrays: one from each of the p sorted 
subarrays. Then for each partition, in parallel, its p sorted 
sub-subarrays are merged recursively into a fully sorted 
partition. Together, these sorted partitions, in order, pro-
duce the final sa and the final lcp-array. The lcp-values 
for pairs that cross partition boundaries are computed at 
the end.

The algorithm is presented as following, and its major 
steps are detailed in the following subsections. Then we 
analyze the asymptotic characteristics of the algorithm.

The merge operation. For efficient suffix comparisons, 
caps-sa utilizes the merge operation. A pair of suffixes 
is compared only when merging two sorted lists of suf-
fixes, with the only exception being the case when the 
algorithm performs a binary search using a pivot suf-
fix. When merging sorted suffixes, merging without any 
extra information about the suffixes in its input lists can 
be costly due to super-constant time string comparisons. 
To avoid comparing repeated prefixes of suffixes, the 
merge procedure in caps-sa utilizes the lcp-arrays of 
the input suffix lists, generated recursively in the merge-
sort procedure.

The Merge(X ,Y , LX , LY ,Z, LZ ,T ) procedure takes 
two sorted arrays X and Y  of suffixes, their respective 
lcp-arrays LX and LY  , and populates the array Z as the 
merged output for X and Y  . Also, the lcp-array of Z is 
produced in LZ . The procedure works exactly like the 
classic merge routine, with the following modifications.

At a given moment, let Xi and Yj be the two suffixes 
being compared, and Zk be the output of the compari-
son. Without loss of generality, say that Xi < Yj is found, 
i.e. Zk = Xi . Let m denote the lcp-length of the the last 
compared pair in each step of the merge. Then after 
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the current step finishes comparing Xi,Yj , we have that 
m = LCP(Xi,Yj) . Xi < Yj implies that TXi+m < TYj+m . 
The next suffixes to compare are Xi+1 and Yj . Let 
lx = LX i+1 = LCP(Xi+1,Xi) . Xi+1 > Xi implies that 
TXi+1+lx > TXi+lx . There are three possible outcomes 
when comparing lx and m (illustrated in Fig. 2):

1.	 lx > m : It implies that TXi+1+m = TXi+m . Combining 
with TXi+m < TYj+m , we get TXi+1+m < TYj+m . It fol-
lows that 

2.	 lx < m : It implies that TXi+lx = TYj+lx . Combining 

with TXi+1+lx > TXi+lx , we get TXi+1+lx > TYj+lx . It 
follows that 

3.	 lx==m : We compute n = m+ LCP(T[Xi+1+m:],

T[Yj+m:]) , and set the following: 

The merge procedure continues this way through X and 
Y  . Finally, when either of X and Y  has been depleted, the 
rest of the entries at the other one are copied to the end 
of Z and LZ.

Zk+1 = Xi+1, LZk+1 = LCP(Zk+1,Zk)

= LCP(Xi+1,Xi) = lx,m = LCP(Xi+1,Yj)= m

Zk+1 = Yj , LZk+1 = LCP(Zk+1,Zk)

= LCP(Yj ,Xi) = m,m = LCP(Xi+1,Yj) = lx

Zk+1 =

{

Xi+1 if TXi+1+n < TYj+n

Yj otherwise

LZk+1 = LCP(Zk+1,Zk ) =

{

LCP(Xi+1,Xi) = lx if Zk+1==Xi+1

LCP(Yj ,Xi) = m otherwise

m = LCP(Xi+1,Yj) = n

Local sorting. caps-sa starts out with some permu-
tation of [0, |T |) , and sorts its p disjoint subarrays, 
each of size |T |/p , in parallel using merge-sort. The 
Merge- Sort(X ,Y , L, L′,T ) procedure takes as input 
an array X of suffixes, and sorts it into Y  . Besides, the 
lcp-array of sorted suffixes is produced in L , using L′ 
as working space. As typical merge-sort implementa-
tion requires linear extra space in each invocation, caps-
sa uses the arrays X and Y  in a back-and-forth manner 
to reuse the extra space in the invocations. For such, Y  
needs to be equal to X before an invocation. The merge 
step in the sort uses the merge-procedure described 
earlier.

Pivot selection. caps-sa deviates from samplesort in its 
pivot selection strategy. In a typical samplesort, pivots are 
to be sampled from the initial array and then partition-
ing would be based on their intervals. Instead, in parallel, 
the Sample- Pivots(SA,T , p) procedure (see Suppl.) in 
caps-sa samples s suffixes from each of the p subarrays, 
where s is the sampling factor. Then these s × p sample 
suffixes are sorted using merge-sort. Subsequently, 
p− 1 evenly-spaced pivots are selected from the sorted 
output to form the pivot set V .

These pivots define the ranges of the samplesort parti-
tions, and are used to split each of the subarrays in the 
next collation step. We show in Theorem  1 that with a 
sufficient sampling factor s , the size of each partition is 
within a constant factor of |T |/p with high probability, 
which ensures a balanced load for processing each parti-
tion in the last step of the algorithm.

Collating partitions. Having finalized the pivot set 
V  , the algorithm locates each pivot suffix v ∈ V  in each 
sorted subarray. Each subarray is searched for the p− 1 
pivots in parallel.

Consider a pivot v ∈ V  and some sorted subarray A . 
The position of v in A is the last index where v can be 
inserted without breaking the sorted order of A . This 

Fig. 2  Figure illustrating the cases that can occur on the (k + 1)’th step of the merge routine, which determines Zk+1 . Cases 1 and 2 require O(1) 
work and simply compare the LCP-lengths of the previous step and LCP(Xi+1, Xi) , which are already available. Step 3 requires work proportional 
to O(LCP(Xi+1, Yj)−m) , since Xi+1, Yj already share a prefix of size m
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index is computed using a binary search for the suf-
fix v in A . During a binary search suffixes are com-
pared without any associated LCP array, contrary to 
the merge procedure. As a practical speedup, we skip 
some repeated character comparisons between v and 
the suffixes in A using the simple accelerant idea [22].

After placing each pivot v into A , the index i of v in 
A implies that all the suffixes in A[0:i) are ≤ v . Hence 
the sum Cv of these indices of v across all the p sorted 
subarrays provides the total suffix count in the sa 
that are not lexicographically larger than v—the index 
of v in the final sa is Cv − 1 . Along with the sentinel 
pivot positions C0 = 0 and Cp = |T | , these p− 1 piv-
ots divide the final sa into p partitions. Consider two 
successive pivots vj−1 and vj . In each sorted subarray 
A , all the suffixes k such that T[vj−1:] < T[k:] ≤ T[vj :] will 
be present in the index-range [Cj−1,Cj) of the final sa. 
That is, all the suffixes between the locations for vj−1 
and vj belong to the (j − 1)’th partition.

Thus the pivot locations in a sorted subarray A 
break A into p sub-subarrays, where the j’th sub-
subarray is known to be present in the j’th partition 
of the final sa. After the binary searches, caps-sa 
moves these sub-subarrays in parallel to collate all 
sub-subarrays for the same partition. The lcp-arrays 
of these sub-subarrays are also collated together. The 
Collate- Partitions(SA, SA′, L, L′,V ,T , p) procedure 
(see Suppl.) describes it in more detail.

Merging partitions. Having grouped together 
the corresponding sub-subarrays for every parti-
tion, caps-sa merges together the sorted sub-sub-
arrays in each partition, in parallel. A partition 
consists of p sorted collections of suffixes, with 
all of the collections stored contiguously. The 
Merge- Partition(X ,Y , n,R, LX , LY ,T ) procedure 
takes this collection X  of p sorted sub-subarrays, and 
produces the merged output in the same contigu-
ous region of memory Y  recursively. LX is the collec-
tion of the lcp-arrays of the sorted groups in X  , and 
the merged lcp-array is produced in LY  . The sorted 
groups in X  (and LX ) are delineated by R.

The merge-partition procedure is same as the 
merge-sort procedure, except for that it is more gen-
eral—the sorted units where merge-sort bottoms out 
are single suffixes, whereas merge-partition bot-
toms out earlier at sorted groups of suffixes. As noted 
earlier, merge-partition also uses the space in X  and 
Y  back-and-forth to reuse the extra spaces required.

Asymptotics
In this section, we analyze the computational complex-
ity of the CaPS- SA(T , p) algorithm executed on a text 
T  with length n = |T | , given a subproblem-count p.

Work analysis
We start by analyzing the overall work of the algorithm 
and providing self-contained proofs on the total work 
due to symbol comparisons made by our algorithm.

Local sorting. This step executes the clas-
sic merge-sort on each subarray. For a subar-
ray A with m suffixes, this amounts to a total work of 
T (m) = 2T (m/2)+O(m)+ C(A) , where C(A) denotes 
the number of symbol comparisons made in the execu-
tion in the third case of the merge procedure. We analyze 
the total amortized cost of these C(A) values across all the 
recursion-trees of all the subarrays in Theorem  3. Omit-
ting C(A) from T (m) , each local sort has n/p log n/p work.

Pivot selection. With a sampling factor s , there are 
s × p pivots sampled in total across all the subarrays. 
caps-sa sorts these pivots with merge-sort and picks 
the p− 1 equidistant pivots from these as the global 
pivots. The merge-sort amounts to a total work of 
O(sp log sp+

∑

Lpi) , where Lp is the output lcp-array of 
the sort. This holds from Theorem 3.

Collating partitions. The collation step first locates 
each of the p− 1 pivots in each of the sorted subarrays 
using binary search. The length of a pivot suffix is O(n) , 
and the sorted subarrays are of size n/p . The work of 
each binary search is O(n+ log n/p) in practice ( n = |T | ) 
with the simple-accelerant  [22] strategy. For adversarial 
inputs however, the work can still be O(n log n/p) in the 
worst-case. Then the suffix indices are moved into their 
appropriate final partitions. This step simply reorders the 
elements across the sorted subarrays, and thus requires 
O(n) total work.

Merging partitions. The merge-partition procedure 
works similar to the merge-sort procedure, except for 
that the recursion bottoms out at a sorted group of suf-
fixes, instead of at a single suffix. Unlike the merge-sort 
instances however, each of which operate on n/p-sized 
subarrays, the merge-partition instances may work on 
various sizes of partitions. Theorem 1 provides a bound 
on the partition sizes.

Theorem  1  With a sampling factor s , every parti-
tion has size at most cn/p for some constant c with high 
probability.
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Proof  The algorithm samples s pivots from each subar-
ray, for a total of sp samples.

It then picks p− 1 evenly spaced pivots (every s’th sam-
ple) from the sorted samples to use as global pivots.

Consider the final location of these sp samples in the 
final suffix array.

Every s’th of them marks the boundary of a partition.
Thus, a partition has size d ≥ cn/p only if fewer than s 

of the samples fall into these d suffixes.
Otherwise, at least one sample would be picked as a 

final pivot and would thus break this partition.
Let SA be the final suffix array, and Xi be a random vari-

able indicating whether SAi is one of the sp samples.
Then Pr[Xi = 1] = sp/n.
Thus the random variable denoting the num-

ber of samples picked from a region of size cn/p is 
X =

∑cn/p
i=1 Xi . By linearity of expectation, we get 

E[X] =
∑cn/p

i=1
E[Xi] = cn/pPr[Xi = 1] = cn/p · sp/n = cs   . 

Applying the Chernoff bound we have:

With s = 32 ln n and letting c′ = c(1− 1/c)2,

Since the event of a partition having size ≥ cn/p implies 
the event X < s , we get:

Pr[a given partition has size ≥ cn/p] ≤ Pr[X < s] ≤ 1/n16c
′.

⇒ Pr[at least one partition has size ≥ cn/p] ≤
∑p

i=1 1/n
16c′

= p/n16c
′ (by union-bound).

⇒ Pr[no partition has size ≥ cn/p] ≥ 1− p/n16c
′.

Since p is at most O(n) , no partition has size ≥ cn/p 
whp. 	�  �

Thus each partition has size at most cn/p for some 
constant c whp. Merging a partition A with m sorted 
subgroups has work T (m) = 2T (m/2)+O(m)+ C(A) , 
where C(A) is the number of symbol comparisons made 
in merge. Omitting C(A) from T (m) , this solves to 
O(cn/p log p) = O(n/p log p) whp.

Total symbol comparisons. A subproblem in the algo-
rithm is some subarray of the sa that can be processed 

(1)

Pr[X < s] ≤ Pr[X ≤ s] = Pr[X ≤
1

c
E[X]]

= Pr[X ≤ (1− (1−
1

c
))E[X]]

≤ exp(−1/2(1− 1/c)2E[X])

= exp(−1/2(1− 1/c)2cs)

Pr[X < s] ≤ exp
(

− 1/2(1− 1/c)2c · 32 ln n
)

= exp
(

ln(n−16c(1−1/c)2)
)

= 1/n16c
′

independently of the other subarrays in a given step. Let 
X be some subproblem in either of the two steps: local-
sorting and partition-merging. For the local-sorting 
case, sorting X with merge-sort consists of log n/p 
recursion-levels. For the partition-merging case, the 
merge-partition procedure for X executes in log p 
recursion-levels. We label the bottom-most level as level 
0, and count the levels upwards in the recursion-tree.

Let x ∈ X be a suffix. At any given level i, x is present 
in exactly one merge-sort (or merge-partition) 
instance executing on X . Let x′i be the suffix that imme-
diately precedes x in the output of that merge-sort (or 
merge-partition) instance, and let Li(x) = LCP(x, x′i) . 
If x is the first suffix in the output, then x′i is the empty 
suffix. We prove the following.

Theorem  2  In merge-sort and merge-partition, 
Li(x) ≤ Li+1(x) for a suffix x at each recursion level 
i ∈ [0, d − 1) , where d is the depth of the recursion-tree.

Proof  Let x be present in the merge-sort (or merge-
partition) instance M at level i + 1 , and say M spawns 
the two instances Ml and Mr . Ml and Mr are at level i , 
and x is present in exactly one of them. Let it be Ml.

Now, x′i+1 is either x′i i.e. the same suffix preceding x 
in Ml , or some other suffix y from Mr . If x′i+1 = xi , then 
Li+1(x) = Li(x) , and the claim holds.

In the other case, the output array of M has the 
following form: [. . . , x′i, . . . , y, x, . . .] . Suppose that 
the claim is false, i.e. Li(x) > Li+1(x) . Which is, 
LCP(x, x′i) > LCP(x, y) . LCP(x, y) < LCP(x, x′i) implies 
that x′i and y share the same prefix of length l = LCP(x, y) , 
and mismatch first at index l . Let cx, cx′i , and cy be the l
’th symbol in x , x′i , and y resp. As y > x′i in the output, 
cy > cx′i

 . Besides, since x and y first mismatch at the l ’th 
symbol and x > y , cx > cy . Thus cx > cx′i

 . LCP(x, x′i) > l 
implies that the l ’th symbols in x and x′i are the same, i.e. 
cx = cx′i

 . Thus we get cx > cx′i
 and cx = cx′i

 , resulting in a 

contradiction. Hence, LCP(x, y) ≤ LCP(x, x′i) . 	�  �

Theorem  3 provides a bound on the number of total 
comparisons made across all the merge-sort and 
merge-partition instances in the algorithm execution.

Theorem  3  The total number of symbol compari-
sons made across all the merge-sort and merge-
partition instances in caps-sa for an n-length text 
is O(n log n+

∑n−1
i=1 Li

)

 whp, where L is the output 
lcp-array.
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Proof  Symbol comparisons occur only as part of the 
merge procedure in both merge-sort and merge-par-
tition. Given two sorted lists of suffixes X and Y  along 
with their lcp-arrays, the Merge(X ,Y , LX , LY ,Z, LZ ,T ) 
procedure iterates through the Xi ’s and Yj ’s and fills in 
the Zk ’s in the sorted order, along with their lcp-values 
in LZk . Without loss of generality, suppose that Xi < Yj is 
found at some iteration. Then the next iteration compares 
Xi+1 and Y  . Let lx = LCP(Xi+1,Xi) and m = LCP(Xi,Yj) , 
lcp of the last compared pair. Symbols from the suf-
fixes Xi+1 and Yj will only be compared iff lx = m holds. 
In this case, we compute n = LCP(Xi+1,Yj) with exactly 
n−m+ 1 symbol comparisons. The +1 term is due to 
the first mismatching symbol pair. m is set to n for the 
next iteration. We argue that before the new m = n value 
is assigned as the lcp-value in the output lcp-array LZ in 
some future iteration, it remains unchanged.

In the next iteration, if case (1), i.e. lx > m holds, then m 
remains unchanged. If case (2), i.e. lx < m holds, then m is 
assigned at output LZk+1 . In the event of case (3), either lx 
or m is assigned to LZk+1 , and these are equal in this case. 
If X has been depleted during the merge while Y  still has 
remaining elements, the current m is assigned as the lcp-
value for the first of the remaining elements from Y .

Thus, whenever symbol comparisons are done in case 
(3) of merge, it results in a new value m′ ≥ m for the vari-
able m . m = m′ persists until m′ has been assigned as the 
lcp-value for some merged output. Thus the number of 
matching symbol comparisons made in case (3) accumu-
lates in the lcp-values at the output.

All the lcp-values start out with 0 at merge-sort. 
Theorem 2 states that the lcp-value associated to a given 
suffix can never decrease while winding up the recursion-
trees of merge-sort and merge-partition. Thus the 
sum 

∑n−1
i=1 Li of the final lcp-values in the sa is the total 

number of matching symbol comparisons made across all 
the merge-sort and merge-partition executions.

The extra mismatching comparison in case (3) of 
merge costs O(1) . In the worst case, this case occurs 
in each iteration of merge. Omitting the match-
ing symbol comparisons, a merge-sort or a merge-
partition instance working on m elements incurs 
T (m) = 2T (m/2)+O(m) mismatches in the worst case. 
This solves to p×O(n/p log n/p) and p×O(n/p log p) 
whp for the p merge-sorts and merge-partitions, 
resp. Thus O(n log n) mismatching symbol comparisons 
are made whp. 	�  �

Total work. Locally sorting the p subarrays cost 
p×O(n/p log n/p) = O(n log n/p) work without the 
symbol comparisons. Omitting the symbol comparisons 

in sorting the sampled pivots, the pivot selection step 
has O(sp log sp) work. In the collation step, there 
are p(p− 1) binary searches, costing O(p2n log n/p) 
work in the worst-case, and O(p2

(

n+ log n/p)
)

 in 
practice. Merging the p partitions separately cost 
p×O(n/p log p) = O(n log p) whp without the symbol 
comparisons.

The total number of symbol comparisons in 
the local-sort and the partitions-merge steps is 
O(n log n+

∑n−1
i=1 Li) whp as per Theorem  3, where 

L is the output lcp-array. In sorting the sampled suf-
fixes, the number of symbol comparisons done is also 
bounded by this 2. Thus the total work for the algorithm 
is O(n log n+

∑n−1
i=1 Li) whp. 3

Working space
The working space of the algorithm is the total space 
required by all the merge procedure instances at any 
given recursive-level of merge-sort or merge-parti-
tion. The merge procedure produces two merged out-
put for some given input, the sorted suffixes and their 
LCPs, and thus has 2× 2|T | input and output entries in 
total at any level. So the working space for the algorithm 
is 4n entries, which is O(n log n) bits. Our implemen-
tation of the algorithm requires 4w|T | bytes of work-
ing space, where w ∈ {4, 8} is the numerical size used to 
store sa and lcp values. We discuss an external-memory 
scheme to reduce the working space in Sec. 5.

Parallelization
Our implementation fully parallelizes the work across 
the different partitions. Within a partition, we perform 
recursive calls to merge-sort in parallel, but perform 
the merge procedure serially. We show the following 
theorem about the depth of our algorithm:

Theorem  4  The overall depth of the algorithm is 
O
(

(n/p) log n
)

 whp.

Proof  The dominant factor in the merge algorithm is 
the depth of the merge routine, which simply performs 
a linear number of comparisons in the input size. The 
depth of a comparison is O(1) in cases 1 and 2 of Fig. 2, 
and requires a string comparison in the final case.

2 
O(sp log sp+

∑sp

i=1 Lpi) comparisons are performed, where Lp is the lcp-
array of the sorted samples.
3  The worst-case work is O(n2) due to the second factor. The first factor 
does not change.
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The string comparison can be parallelized work-effi-
ciently (i.e., in the same work as a serial character-by-
character comparison) by using a simple prefix-doubling 
strategy. In more detail, the comparison algorithm works 
in rounds comparing 2i characters in the i’th round until 
a mismatch occurs. Clearly for strings of length O(n) only 
O(log n) rounds are required, and thus the overall work is 
asymptotically the same as the serial algorithm, and the 
depth is O(log n) . Thus, for merging two sorted arrays 
in the algorithm, each of size k , we require a depth of 
O(k log n).

Putting these facts together, for a single call to the 
merge-sort routine, we have a recurrence of the form 
D(k) = D(k/2)+O(k log n) , which is root dominated 
and solves to O(k log n) . Since our algorithm is parallel-
ized across different partitions, and by Theorem  1 each 
partition has size at most O(n/p) , the overall depth of the 
algorithm is O((n/p) log n) whp. 	�  �

We note that the depth is not poly-logarithmic, as in 
the classic parallel merge-sort. However, the amount 
of parallelism generated by our algorithm is more than 
enough to keep the processors all busy in practice. 
Indeed, we note that many samplesort implementations 
use a similar strategy in practice and use a serial sort 
within each partition, and thus also do not have poly-
logarithmic depth in practice. In our implementation, we 
exploit parallelism using the parallel primitives and the 
work-stealing scheduler from ParlayLib [10].

Optimizations
We applied a number of optimizations into the imple-
mentation of the algorithm that provide practical 
speedups. We make use of vectorization support using 
AVX instructions from modern processors to speed up 
the computation of the LCP(X ,Y ) routine used in the 
merge-procedure and in the binary searches in locating 
pivots.

In the proposed merge-sort and the merge-parti-
tion procedures in the algorithm, we have nested par-
allelism for their recursive invocations. This is applied in 
the implementation up-to some fixed granularity, due to 
the associated overhead of scheduling small tasks.

In the binary searches for the sampled pivots in each 
sorted subarray, instead of searching for the appropri-
ate position of an entire pivot suffix, we look for a fixed-
length prefix of the pivot. This helps reduce the total 
work associated to locating the pivots, with an associ-
ated trade-off with the final partition sizes. With suf-
ficiently large prefix lengths, the partition sizes do not 
get significantly affected in our observation.

Results
We performed a number of experiments to character-
ize the performance of the caps-sa algorithm and its 
implementation. We evaluated its performance com-
pared to the available implementations of two leading 
methods for sa construction: parallel-divsufsort 
[37] and parallel-dc3 [3]. We assessed its ability to 
construct sa and lcp-arrays on a number of genomic 
datasets.

Next, we evaluated the parallel scaling of the algo-
rithm. Then we explore the idea of Bounded-context 
suffix arrays, and the performance of caps-sa for vari-
ous prefix-context lengths.

A varied collection of datasets has been used in the 
experiments. Table  1 delineates the pertinent charac-
teristics of the datasets. We follow [51] by removing 
N-repeats, which occur when the sequence underlying 
a region of the assembly cannot be resolved. We also 
un-mask soft-masked regions of the genomes. We 
verified the correctness of the implementation 
by cross-checking its output against from that of 
parallel-divsufsort.

Computation system. The experiments have been per-
formed on a server having 4 Intel(R) Xeon(R) Platinum 
8160 processors with 192 cores in total and 1.5 TB of 
2.66 GHz DDR4 RAM. The system is run with Ubuntu 
22.04.2 LTS (GNU/Linux 6.2.0–33-generic x86_64). 
The sa and lcp-array construction times and the maxi-
mum memory usages of the tools were measured with 
the GNU time command.

Dataset characteristics
Table  1 provides some pertinent characteristics of the 
datasets used. The GRCh38 dataset is the Human Build 
38 patch release 13 version of the human genome refer-
ence from the Genome Reference Consortium,4 which 
is a chromosome-level assembly of the full genome. The 

Table 1  Dataset statistics: number of bases, mean LCP, and 
standard deviation (rounded to nearest whole number) of the 
final lcp-array

Dataset Size Mean LCP Std. Dev. of LCP

Human (GRCh38) 2,945,849,068 3814 72,697

Human (T2T) 3,117,292,071 2519 61,987

CdBG (Human reads) 3,993,272,308 18 6

Great white shark 4,286,311,195 489 8925

Axolotl 28,203,219,824 50 160

Bacteria (1K) 3,919,109,158 10,897 28,463

4  https://​www.​ncbi.​nlm.​nih.​gov/​grc.

https://www.ncbi.nlm.nih.gov/grc
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T2T dataset is the latest T2T CHM13v2.0 Telomere-
to-Telomere assembly of the CHM13 cell line with 
chromosome Y from NA24385, from the T2T consor-
tium, which is a complete genome-level assembly of 
the genome  [45]. Together, these two human datasets 
represent what we imagine may be a typical use-case 
for genome construction in the context of a tool like 
STAR [14]. Though largely similar, the CHM13 assem-
bly has resolved telomeric and centromeric regions, and 
more complete coverage, specifically in highly-repeti-
tive regions. Thus, we expect it represents a more chal-
lenging problem instance for suffix array construction.

The CdBG (Compacted de Bruijn Graph) dataset is the 
collection of the maximal unitigs extracted from the de 
Bruijn graph (with k-mer size 27) of the human sequenc-
ing read set NIST HG004 (SRA3440461—95)  [57] by 
cuttlefish 2  [32]. This dataset represents a potential 
use-case where one may wish to build an index for the 
sequence stored in the CdBG data structure. The abil-
ity to index the CdBG (i.e. contigs-based indexing) has 
proven useful in many contexts [12], and the sa can pro-
vide one possible index for providing efficient lookup 
over the sequence contained in the CdBG.

The great white shark dataset is the genome reference 
of Carcharodon carcharias  [41] and the axolotl dataset 
is the genome reference sequence of Ambystoma mexi-
canum  [52]. These represent large problem instances, 
where one may wish to build the sa on large reference 
genomes.

The bacteria (1K) dataset is a collection of 1000 
genomes sampled randomly from 661,405 bacterial 
genomes  [9], from the European Nucleotide Archive. 
Almost all the genomes in this dataset are Salmonella 
enterica—this represents a pathological dataset for caps-
sa, being extremely repetitive.

SA and LCP‑array construction
We evaluate the performance of caps-sa in construct-
ing the sa and the lcp-array of a number of genomic 

datasets, compared to the sa construction performance 
of: 1. parallel-divsufsort [37] and 2. parallel-dc3 
[3]. Table 2 contains the results of the benchmarking. As 
the state-of-the-art sequential benchmark, we note the 
performance of the divsufsort implementation from 
libdivsufsort [42].

We note that caps-sa executes significantly faster 
than the other parallel algorithms in all the instances 
except for the pathological dataset of 1K similar bacteria, 
whereas parallel-divsufsort uses the least amount of 
memory. Interestingly for the smaller datasets caps-sa 
does not require much more memory than parallel-
divsufsort, despite constructing both the sa and lcp. 
Memory usage could be improved by bit-packing the 
indexes, or through the extension to an external memory 
algorithm.

Appendix Table  4 provides sequential timing results 
for the methods, i.e. with 1 thread, to compare their total 
amount of work. We note that caps-sa tends to do more 
work than the other parallel methods—which is expected 
as the other methods have O(n log n) work  [36, 37], 
whereas caps-sa has an additional O(

∑n−1
i=1 Li) output-

dependent factor, and benefits from better parallelization 
with more workers.

Parallel scaling
In order to assess how sensitive runtime is to paral-
lelism we evaluated caps-sa against parallel-dc3 
and parallel-divsufsort as the number of threads 
increased. We report the results in Fig. 3, which illus-
trated that caps-sa exploits parallelism better—
becoming the fastest method as the thread count 
becomes high despite doing more work asymptotically.

On the GRCh38 and T2T datasets, all the parallel 
methods become faster than divsufsort at around 
the same number of threads, after which caps-sa 
becomes the fastest.

Table 2  Time- and memory-performance results for constructing sas (and lcp-array in case of caps-sa) with 32 threads

divsufsort is shown as a serial benchmark. Time is reported in seconds, and the memory usages are reported in GBs in parentheses. Best performances among the 
parallel algorithms in each instance are highlighted. parallel-dc3 could not be run on Axolotl because we could not modify the PBBS code-base to accommodate the 
large numerical size

Dataset Divsufsort Parallel-divsufsort Parallel-dc3 Caps-sa

Human (GRCh38) 556 (25) 273 (32) 113 (110) 93 (45)

Human (T2T) 575 (26) 279 (34) 119 (116) 106 (48)

CdBG (Human reads) 722 (33) 379 (44) 149 (172) 114 (61)

Great white shark 771 (36) 410 (48) 176 (186) 121 (64)

Axolotl 10489 (236) 3424 (311) – 1341 (848)

Bacteria (1K) 726 (33) 437 (43) 164 (172) 259 (60)
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Cache performance
The samplesort-based design of caps-sa optimizes 
cache-performance. In order to evaluate the empirical 
cache behavior of caps-sa as compared to other algo-
rithms for sa construction, we profiled the programs on 
the GRCh38 and the T2T reference genomes. Because 
cache-behavior can degenerate as parallelism increases, 
we evaluate it across 1, 32, and 64 threads. The results 
in Table  3 show that caps-sa outperforms other par-
allel sa indexing programs by large margins. All meas-
urements were taken with the Linux perf command.

Bounded‑context SA Construction
By virtue of organizing all suffixes of the underlying 
text T  , the suffix array provides the powerful ability to 
efficiently search for query patterns of any length in 
the text. While this capability arises naturally from the 
definition of the sa, such flexibility is rarely needed in 
the sa’s most common applications in genomics. Spe-
cifically, when used to efficiently find seed sequences 
from a genomic read, the maximum length of the query 
is often very short. Many modern aligners use seed 
lengths in the range of 15–31, and even with the maxi-
mum mappable prefix concept used by STAR [14], the 
query length is bounded above by the error-free prefix 
length of the remainder of the read (rarely more than 
∼ 100 nucleotides).

As such, indices that can provide efficient lookup and 
locate queries for patterns less than some maximum 
length, say k , are often very useful in this context. For 
example, the k-BWT data structure [13, 46, 50] builds 
a transform of the text that organizes character occur-
rences by their bounded context (in this case, their right 
context of length k ). This allows the index to be built 
efficiently, since rotations of the text need not have 
their relative orders resolved beyond their initial length 
k contexts, while simultaneously allowing efficient and 
correct query for any pattern length ≤ k.

Here, we experiment with an analogous version of the 
sa—the bounded-context SA . Specifically, the bounded-
context sa of order k resolves the lexicographic order of 
all suffixes of the text up to (and including) their prefixes 
of length k . If a pair of suffixes share a prefix of length 
≥ k , then they may appear in an arbitrary relative order 
within the bounded-context sa of order k . Without any 
meaningful modifications to the query algorithms, this 
variant of the sa allows locating all occurrences of que-
ries of any length ≤ k in the text. Such a variant of the 
sa is very straightforward to construct using caps-sa, as 
we simply declare equal any suffixes that are equal up to 
(or beyond) their length k prefixes. At the same time, this 
variant can be more efficient to construct using our algo-
rithm, as the context length k places a strict upper bound 
on the number of comparisons we must perform when 

Fig. 3  Runtimes of caps-sa, parallel-divsufsort, and parallel-dc3 as thread count increases from 4 to 128 for GRCh38, T2T, and CdBG. divsufsort 
runtime is in red

Table 3  Cache-miss rates (in %) for compared methods on GRCh38 and T2T datasets with respect to number of threads

Reported numbers are the minimum of 3 runs to obviate operating system jitter. Lower is better, and the best result is highlighted

Method Human (GRCh38) Human (T2T)

1 thr 32 thr 64 thr 1 thr 32 thr 64 thr

caps-sa 24 32 37 43 53 60
parallel-divsufsort 59 60 61 60 61 62

parallel-dc3 72 68 68 72 68 68

divsufsort 51 - - 52 - -
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attempting to determine the relative order of a pair of 
suffixes. Specifically, it follows directly from Theorem  3 
that caps-sa performs at most O

(

n log n+ nk
)

 character 
comparisons, in the worst case, when constructing the 
context-bounded sa of order k.

In Fig.  4, we report the timing requirements to con-
struct the context-bounded sa of varying orders of 
powers of 2 , from 64 to 65, 536 , over the Bacteria (1K) 
dataset. As expected, the bounded-context sas can be 
constructed substantially faster than the full-context sa.

Conclusion
In this manuscript, we introduced a new method, caps-
sa, for parallel sa and lcp-array construction. caps-sa 
displays very good cache performance (i.e. very low cache 
miss rate), and scales well to many threads. As a result, 
caps-sa is able to outperform existing state-of-the-art 
parallel sa construction algorithms like parallel-divs-
ufsort and parallel-dc3 on genomic datasets. At the 
same time, caps-sa is substantially simpler than existing 
state-of-the-art algorithms. This simplicity eases imple-
mentation, and leads to many opportunities for further 
future improvements. Likewise, caps-sa provides the 
lcp-array directly as a byproduct of sa construction, and 
does not require a separate algorithm to produce this 
useful auxiliary data structure. We hope that will prove 
to be useful in utilities where parallel sa construction 
is a core subproblem, and also hope that the relatively 
straightforward algorithm will benefit from further opti-
mizations, enhancements, and alternative implementa-
tions within the community.

As caps-sa scales well with the level of available paral-
lelism, and performs well for large references, we expect 
that it will provide a useful option for tools that seek to 
build the sa in parallel environments. In addition to the 
time taken to construct the sa or the LCP-array, another 
consideration is the memory (specifically the RAM) 
required for construction. One approach to improve the 
memory-scalability of sa construction algorithms is to 
develop external-memory construction algorithms. For 
example, pSAscan [28] is a state-of-the-art external-
memory algorithm for sa construction. Such approaches 
make use of external-memory (i.e. disk) and algorithms 
that access and construct the sa in a structured way are 
likely amenable to external-memory variants.

We note that, though we have not explored it in this 
manuscript, caps-sa is highly-amenable to external 
memory implementation. This is because the initial par-
titioning generates many small subproblems that can be 
solved independently — i.e. some subproblem can be 
paged into RAM while others remain on disk. Pivot sam-
pling from the subproblems can be done through a simi-
lar paging process. Likewise, after pivot selection, many 
approximately equal-sized partitions will be created, and 
these sub-problems, which target specific output inter-
vals of the final suffix array, can be solved independently 
and in parallel with the relevant data for only a working 
subset of partitions paged into RAM with the remaining 
partitions residing on disk. Further, given a sufficiently 
fine-grained partitioning, the algorithm can likely pro-
vide tight controls on the required working memory. As 
more RAM use is allowed, a larger number of partitions 
will be allowed in RAM at once, and our algorithm will 
be able to better make use of available parallelism. On 
the other hand, as the maximum allowed RAM usage is 
restricted, fewer partitions will be present in memory at 
once, potentially limiting parallelism, but adhering to the 
requested RAM constraints. In practice, we believe that, 
so long as a sufficiently fine-grained partitioning is used, 
external-memory variants of our algorithm will still be 
able to efficiently make use of many threads while still 
substantially reducing the required working memory. We 
leave the efficient implementation of an external-mem-
ory variant of caps-sa to future work.

Appendix
Methods

Pseudo-codes for the procedures absent in the main 
text, sample-pivots, collate-partitions, and com-
pute-boundary-lcps are provided in the following. 

Fig. 4  Runtimes of caps-sa as context size increases on the bacteria 
(1K) dataset. Small context sizes greatly diminish the running time 
of the algorithm, but runtime is less sensitive for larger context sizes. 
The full-context runtime is shown as the red horizontal line



Page 14 of 16Khan et al. Algorithms for Molecular Biology           (2024) 19:16 

Results
See Table 4
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