
BioMed CentralAlgorithms for Molecular Biology

ss
Open AcceResearch
On the maximal cliques in c-max-tolerance graphs and their
application in clustering molecular sequences
Katharina A Lehmann1, Michael Kaufmann*1, Stephan Steigele2 and
Kay Nieselt2

Address: 1Parallel Computing, Wilhelm-Schickard-lnstitut, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany and 2Center for
Bioinformatics Tuebingen, Wilhelm-Schickard-lnstitut, University of Tuebingen, Sand 14, D-72076 Tuebingen, Germany

Email: Katharina A Lehmann - lehmannk@informatik.uni-tuebingen.de; Michael Kaufmann* - mk@informatik.uni-tuebingen.de;
Stephan Steigele - steigele@informatik.uni-tuebingen.de; Kay Nieselt - nieselt@informatik.uni-tuebingen.de

* Corresponding author

Abstract
Given a set S of n locally aligned sequences, it is a needed prerequisite to partition it into groups
of very similar sequences to facilitate subsequent computations, such as the generation of a
phylogenetic tree. This article introduces a new method of clustering which partitions S into
subsets such that the overlap of each pair of sequences within a subset is at least a given percentage
c of the lengths of the two sequences. We show that this problem can be reduced to finding all
maximal cliques in a special kind of max-tolerance graph which we call a c-max-tolerance graph.
Previously we have shown that finding all maximal cliques in general max-tolerance graphs can be
done efficiently in O(n3 + out). Here, using a new kind of sweep-line algorithm, we show that the
restriction to c-max-tolerance graphs yields a better runtime of O(n2 log n + out). Furthermore, we
present another algorithm which is much easier to implement, and though theoretically slower than
the first one, is still running in polynomial time. We then experimentally analyze the number and
structure of all maximal cliques in a c-max-tolerance graph, depending on the chosen c-value. We
apply our simple algorithm to artificial and biological data and we show that this implementation is
much faster than the well-known application Cliquer. By introducing a new heuristic that uses the
set of all maximal cliques to partition S, we finally show that the computed partition gives a
reasonable clustering for biological data sets.

1 Introduction
Viewing the subject sequences aligned to a query sequence
that result from a BLAST-based [1] comparison, in many
cases one can identify groups of sequences clustering
around different subintervals of the query sequence.
Often, the decision by eye to which cluster a certain
sequence belongs, is strongly depending on the order in
which the sequences are presented. Fig. 1a) shows a sche-
matic sketch of aligned sequences in random order. The

sequences seem to form two, or maybe three groups. The
same sequences in Fig. 1b) are ordered according to how
many positions they have in common and colors indicate
those sequences that share a large part of their sequence.
The algorithm finds three different clusters of sequences.
A cluster in this sense can be defined as a subset of aligned
sequences that have approximately the same length and
that are aligned to approximately the same subinterval of
the query sequence. As we have argued above, the human

Published: 31 May 2006

Algorithms for Molecular Biology 2006, 1:9 doi:10.1186/1748-7188-1-9

Received: 17 February 2006
Accepted: 31 May 2006

This article is available from: http://www.almob.org/content/1/1/9

© 2006 Lehmann et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16737529
http://www.almob.org/content/1/1/9
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
eye may be fooled by the ordering of the presented
sequences and humans are limited in the number of
sequences they can group into clusters, and thus the auto-
matic and objective computation of a clustering is an
important task.

One kind of clustering can be obtained by using Blast-
Clust from the NCBI-BLAST package [2]. It is a clustering
tool designed especially to cluster protein or DNA
sequences based on pairwise matches returned by the
BLAST algorithm. It uses BLAST scores to assign statistical
significance, matches pairs that reach that level of signifi-
cance, then constructs clusters using a simple, greedy, sin-
gle-linkage clustering method. However, empirically it is
known that BlastClust is very limited with respect to the
size of the input set. Furthermore, in many instances, the
application of this heuristic is also limited by the fact that
one unique clustering does not exist and that in fact many
clusterings are possible and reasonable for different appli-
cations: for example, when annotating putative domains
of a protein sequence, it is important to find common
regions that are shared by large groups of sequences, while
for the computation of phylogenetic trees it is important
to find groups that share the largest possible part of their
sequences.

In any case, under a given constraint, the groups should be
as large as possible. Both constraints can be formulated as
follows: Given two sequences, they are said to tolerate each

other if both overlap at least an absolute amount t, the tol-
erance, or a relative tolerance c% of the length of the other
sequence. This leads naturally to the family of max-toler-
ance graphs [3], where vertices represent intervals, and two

The semi-squares can be ordered according to the height of their hypotenuse at a given x-positionFigure 2
The semi-squares can be ordered according to the height of
their hypotenuse at a given x-position.

1

2

3
4

6

4

2

86420

2 7 10

The left side shows a set of 11 sequences that are aligned to a common reference sequence, but do not have any special order-ing that makes it easy to distinguish clusters of similar sequencesFigure 1
The left side shows a set of 11 sequences that are aligned to a common reference sequence, but do not have any special order-
ing that makes it easy to distinguish clusters of similar sequences. On the right a reasonable ordering is given where colors indi-
cate groups of sequences that have a 60% overlap for each pair of sequences. Note that the given coloring might not be the
only reasonable.

4

1

1 1

7

2

5

3

8

9

1 0

query

6

query

4

1

7

1 0

8

9

2

3

5

6

1 1
Page 2 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
vertices are connected by an edge if the corresponding
sequences tolerate each other. The question for maximal
clusters now reduces to finding maximal cliques in the
max-tolerance graph.

Interestingly, the history of a special max-tolerance graph
with t = 1 is deeply intertwined with the study of the DNA:
Benzer was the first to raise the question, whether the sub-
elements of the DNA are arranged linearly, or not [4]. To
answer this question, sequences of DNA are represented
as vertices, where two vertices are connected by an edge if
the corresponding sequences are overlapping on at least
one position. The resulting graph is an interval graph [5,6].
It could be shown that a graph generated in this way can
only be derived from fragments of a linear sequence if it
has a certain property. Since the overlapping graph
derived from DNA fragments showed this linearity prop-
erty, this was yet another confirmation that the genome of
organisms consists of long, linear DNA molecules. Search-
ing for maximal cliques in interval graphs can be done
efficiently in time linear to the size of the graph. However,
for computing meaningful biological clusters, an absolute
tolerance of t = 1 is not appropriate. For this purpose, it is
necessary to increase the tolerance to a reasonable value
and in addition to use the relative tolerance c of the length
of the sequences. Thus, for c = 0.5 two sequences will tol-
erate each other if both have approximately the same
length and share half of their sequence, or if one is not
longer than twice the length of the other and overlaps the
second completely, and anything in between. We call this
kind of max-tolerance graph with a fixed relative tolerance
c for all sequences a c-max-tolerance graph. The question of
finding maximal groups of sequences that pairwise toler-
ate each other now reduces to the question of finding all
maximal cliques, in the respective c-max-tolerance graph.

For general graphs, the computation of all maximal
cliques is an NP-hard problem, since it can be reduced to
the maximum clique problem which is again a classical
NP-complete graph problem [7]. A well-known and pop-
ular branch-and-bound based software to compute maxi-
mum and maximal cliques in general graphs is Cliquer
[8]. Cliquer's runtime is exponential. It will turn out that
the maximal clique problem for the graphs considered
here is not NP-hard.

Our aim here is now to show that, based on results of gen-
eral max-tolerance graphs, an efficient algorithm can be
applied to find all maximal cliques in a c-max-tolerance
graph. In addition, we show how this set of all maximally
cliques can then be used to find reasonable clusterings for
biological sequences aligned to each other.

Focusing on the biological application of the idea of c-
max-tolerance graphs, our approach is two-fold: First, we

will give a practical algorithm to report all maximal
cliques in polynomial time. This algorithm is conceptu-
ally simple, thus ensuring that it is easy to implement it
correctly and numerically stable. We will also show in the
experimental section that its implementation is very fast
for typical data sizes in biological applications. Second,
based on the general principle of the simple algorithm, we
will present a more involved, output-sensitive algorithm
in O(n2 log n + out), where out denotes the size of the out-
put. This is a considerable improvement compared with
the corresponding bound for general max-tolerance
graphs obtained in [9].

With this two-fold approach we follow the ideas of the
field of algorithm design [10], that stresses the point that
an easy algorithm should always be preferred for an
implementation unless the data is so big that the more
efficient algorithm has to be used.

The result of the algorithm can then be used to cluster the
data in an automated and objective fashion. We are facing
two problems here: First, the number of maximal cliques
is strongly depending on the chosen c-value. Second, for
many instances most of the sequences are elements of
more than one maximal clique. Thus, we will give a heu-
ristic based on the set of all maximal cliques that is able to
find a reasonable clustering. We illustrate the algorithm
using artificial as well as three different biological exam-
ples. The first of the biological data sets is an example of a
repeat analysis, where a transposon from the nematode
Pristionchus pacificus is compared with reads of BAC clone
data covering about half of the genome of that organism.
The second and third example are proteins that are com-
pared with the UniProt database [11]. The article is struc-
tured as follows: in Section 2 we give a short review on
results that are essential for the understanding of the two
algorithms together with required definitions. Section 3
presents the first, simpler algorithm, followed by the
description of the algorithm with a new, lower runtime
complexity for c-max-tolerance graphs in Section 4. Sec-
tion 5 gives some results on experiments and Section 6
summarizes and discusses our results.

2 Mathematical background
In this section we will define the formal basis and repeat
some earlier derived results that are essential for the
understanding of the rest of the article.

Let S denote a set of n intervals Ii = [xi, yi], 1 ≤ i ≤ n, xi,
y∈ �, xi <yi, where xi denotes the coordinate of the left
endpoint and yi denotes the coordinate of the right end-
point. The length |Ii| of an interval is defined as yi - xi. Let
Ii = [xi, yi] and Ij = [xj, yj] be two intervals. Their overlap
length |Ii � Ij| is given by:
Page 3 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
|Ii � Ij| = min{yi, yj} - max{xi, xj}.

A c-max-tolerance graph G = (V, E) is associated with a tol-
erance parameter 0 ≤ c ≤ 1 and it is then given by V = {v1,
...,vn} representing the set of intervals and

E = {{vi, vj}||Ii � Ij| ≥ c · max{|Ii|, |Ij|}} (1)

for 1 ≤ i,j ≤ n. Pairs of intervals satisfying this condition are
said to tolerate each other. More generally, interval Ii toler-
ates interval Ij if |Ii � Ij| > c · |Ii|.

In a general max-tolerance graph each interval Ii is associ-
ated with a tolerance 0 ≤ ti ≤ |Ii| and here, two intervals are
said to tolerate each other, if |Ii � Ij| ≥ max{ti, tj}.

Given a graph G = (V, E), a clique is a subset C ⊆ V of pair-
wise-connected vertices. A clique C is called a maximal
clique if there is no other clique C' ⊃ C. A clique is a maxi-
mum clique if its cardinality is of largest possible size.

The following lemma has been derived for general max-
tolerance graphs and applies also to c-max-tolerance
graphs [9]:

Lemma 1 The number of maximal cliques in (c-)max-toler-
ance graphs is O(n3).

This result has been derived by a fundamental equiva-
lence, for which we will need the following definitions:
Let S = {[x1, y1], [x2, y2],..., [xn, yn]} be a set of intervals and
let 0 <c ≤ 1.0 denote the same relative tolerance for all
intervals. Let T(S) denote a set of triangles Δi = {Ai, Bi, Ci},
Ai, Bi, Ci ∈ (� × �) with the following coordinates:

Ai = (xi, |Ii| - <Fences>Q|Ii| * (1 - c)<Fences>N) (2)

Bi = (xi + <Fences>Q|Ii| * (1 - c)<Fences>N, |Ii| -
<Fences>Q|Ii| * (1 - c)<Fences>N) (3)

Ci = (xi, |Ii|) (4)

Thus, these triangles look like squares of length
<Fences>Q|Ii| * (1 - c)<Fences>N, located at (xi,
<Fences>Q|Ii| * (1 - c)<Fences>N), cut in half by the diag-
onal from their upper left to their lower right corner.
Therefore, we will call these triangles semi-squares. The
next lemma states the following equivalence:

Lemma 2 The c-max-tolerance graph of (S,c) is equivalent to
the intersection graph of T(S).

The lemma states that an edge between two intervals is
drawn if and only if their corresponding semi-squares
intersect. The formal proof is given in [9] but we want to

motivate it here: an edge between two intervals A and B is
drawn if they tolerate each other. It follows, that A can tol-
erate B if B does not start right of <Fences>Q|A| (1 -
c)<Fences>N; otherwise |A � B <c · |A|. Note that the y-
coordinate of a semi-square corresponding to an interval
is equal to <Fences>Q|A| (1 - c)<Fences>N and that the
semi-square ends at xA + <Fences>Q|A| (1 - c)<Fences>N.
On the other hand, any overlap with A cannot be longer
than |A|, and this only in the case where B fully overlaps
A. If B starts at xA + 1, their overlap can be of length at most
|A| - 1, etc. The semi-square illustrates exactly this: The y-
coordinate of the hypotenuse of any semi-square at posi-
tion x gives a bound on the length of an overlap the corre-
sponding interval can have with any other interval starting
at x. Thus, two semi-squares will intersect if and only if the
corresponding intervals tolerate each other: Let A be the
longer interval, i.e., it determines the minimal length of
the intersection, denoted by the y-coordinate of the basis
of its corresponding semi-square. This semi-square can
only be intersected by those semi-squares whose basis are
below that of A and have a hypotenuse that is not lower
than the basis of A at least at some point within the inter-
val of A. Fig. 3 shows a set of intervals and their corre-
sponding set of semi-squares.

The semi-squares can be ordered according to three differ-
ent criteria: either by their left sides xi, or their y-coordi-
nate of their basis at |Ii| - <Fences>Q|Ii| * (1 - c)<Fences>N
or by their hypotenuse. Hypotenuses can be easily ordered
according to their height at a given x-position by noting
that the slope is -1 for all of them. Thus, for every x-coor-
dinate with x between xi and xi + <Fences>Q|Ii| * (1 -
c)<Fences>N, the following equation is valid:

const = yi - (x - xi) (5)

where yi is the endpoint of the corresponding interval Ii.
Thus, for a given x-position the height of the hypotenuse
of each active semi-square is determined by yi + xi - x (s.
Fig. 2).

Since x is the same for all active semi-squares we can order
the semi-squares by yi + xi. An important observation is
that the order by the y-coordinate of the basis of the semi-
squares or by their hypotenuse is not the same in general.

A very general tool in geometric algorithms is that of a
sweep-line [12]: Here, so called events are ordered and then
processed in this order, thus, we process the events in a
sweep, where the invariant is that all events up until a cer-
tain point in the ordered list are already processed and
that the events after this point still have to be processed.
In geometrical problems such as finding the intersection
points of a set of lines, an event is typically something as
Page 4 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
the begin or birth of a geometric structure and the end or
death of it.

3 Simple algorithm for computing all maximal
cliques in c-max-tolerance graphs
The sweep-line algorithm presented in this section is
based on the semi-square intersection graph correspond-

A set of intervals A-E together with its corresponding semi-square representationFigure 3
A set of intervals A-E together with its corresponding semi-square representation. This example for c = 0.5 also shows that
not all candidate cliques are maximal with respect to the set of active semi-squares: When D is born, there are two maximal
cliques in the y-structure: {A, B} and {B, C}. D is intersecting with A and B. Thus, there will be one candidate clique {A, B, D}, built
from clique {A, B}, and {A, D}, built from {B, C}. The latter candidate clique is thus not maximal with respect to all active cliques
and should not be inserted into Q.

0 2 4 6 8 10 12 14

2

4

6

8

10
A

A

B

D

C

E

C

B

E

12

16

D

Page 5 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
ing to a given c-max-tolerance graph. We will show that
the theoretical runtime is a bit higher than the one given
in the following section, but this algorithm is very easy to
implement and it will lay the conceptual basis for the
more involved algorithm presented in the next section.
We will show in Section 5 that the implementation based
on this simpler algorithm is nonetheless very fast, it will
compute all maximal cliques in real data sets within a few
seconds. The virtual sweep is done along the x-axis, han-
dling two kinds of events: The birth of semi-squares and
their death, i.e., start and end of a semi-square, respec-
tively. As long as the sweep handles events with an x-posi-
tion within the basis of a semi-square X, X is said to be
active. The so-called y-structure Q holds all maximal
cliques of active members at any time and every maximal
clique is contained only once (y-structure invariant), where
maximality refers only to the set of active semi-squares
and not necessarily to the set of all semi-squares. In the
first step all x-events are sorted non-decreasingly accord-
ing to their x-position. If there are death and birth events
at the same x-position, the birth events are first inserted
into the sorted list. Then, the events are extracted from the
sorted list which enables the virtual x-axis sweep.

For every birth event, every maximal clique C in the y-
structure is checked, whether some of the semi-squares are
intersecting with the newborn semi-square X. We have to
differentiate the following cases:

1. The handling is straightforward if X intersects with all
semi-squares in the clique. Then, X can just be added to
the clique.

2. For every clique where at least one but not all semi-
squares are intersecting X, a candidate clique is built with
all intersecting semi-squares together with the newborn
semi-square. This operation is called the splitting of a
clique. It is important to note that not all candidate cliques
are really maximal, as is illustrated in Fig. 3. To maintain
the y-structure invariant, it is important to insert only
cliques that are maximal with respect to the set of active
semi-squares. Thus, the following cases have to be
checked:

(a) Can any other active interval be added to the candi-
date clique? Then it is not a maximal clique within the set
of active semi-squares and must not be added to Q.

(b) After all cliques C in Q have been checked and all can-
didate cliques built: Is there already a clique in Q that is
identical to the candidate clique? Then it must not be
added to Q. Are there two or more candidate cliques that
are identical? Only one of them can be added to the y-
structure.

3. If after these steps none of the cliques in Q contain the
newborn interval X, it is the first element of a new clique
which is added to Q.

If the event signals the death of a semi-square, it has to be
deleted from every clique C it is an element of. If any of
these cliques has been increased by the addition of a semi-
square since the last deletion of a semi-square, it is a max-
imal clique and has to be printed out before the semi-
square is deleted. Else, the semi-square is just deleted from
C, without printing out the clique. A deletion can yield a
reduced clique that is not unique anymore, or that is only
a subset of some other clique in Q. Thus, for every clique
in which some semi-square has been deleted, one has to
verify its uniqueness and extensibility, and it will be
deleted from Q if it is not unique or if it is extendable.
Note that after checking these two properties, the y-struc-
ture invariance holds, because the y-structure just holds all
maximal cliques of active semi-squares. Thus, not every
maximal clique in the y-structure is a maximal clique with
respect to the whole set of semi-squares.

The y-structure suffices to guarantee the correctness of this
algorithm, because it guarantees that all maximal cliques
of active semi-squares are kept in Q. Since a semi-square X
is only non-active if it has not yet begun or if the rest of its
corresponding interval is not long enough for any new
semi-square to overlap it enough, it cannot be an element
of a clique when it is non-active. For its active time, the y-
structure guarantees that all its maximal cliques are con-
tained in Q. This algorithm is thus correct because the y-
structure invariance is maintained in all steps. The pseu-
docode is sketched in Fig. 4.

Runtime analysis
There are exactly 2n x-events that are sorted in O(n log n).
For every birth of a semi-square X we have to check all
cliques in Q whether they contain at least one semi-square
that is intersecting with X. In the worst case, the y-structure
can hold up to O(n3) cliques (see Lemma 1) with O(n)
elements each. For the further analysis we will denote the
maximal number of cliques in the y-structure by |Q|.
Checking whether X can be added to a clique or building
a candidate clique can thus be done in O(n * |Q|) for all
cliques in Q. Since every newborn semi-square can either
be added to a clique, split it, or not intersect any of its ele-
ments, there can be at most O(|Q|) candidate cliques with
size O(n). For each of them we have to check whether it is
extendable by one of the active semi-squares and whether
there is a second candidate clique that is equal to that one.
To check for equality we have to match each candidate
clique with each other candidate clique which takes
O(|Q|2 * n2) in the naive approach. To check for extensi-
bility we have to test each active semi-square whether it
can extend the candidate clique. This can be done in
Page 6 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
O(|Q| * n), naively. This results in a theoretical runtime of
O(|Q|2 * n2) per birth. For death events, the clique has to
be printed if it is a maximal clique. Altogether the size of
out is equal to the number of symbols to print all maximal
cliques. Since there are at most n elements per clique, the
size of out is O(n4). Furthermore, the deletion of a semi-
square in a clique can result in a clique that is no longer
maximal with respect to all active semi-squares or that is
equal to another clique in the y-structure. Thus, we have
to check for equality and extensibility again. The clique
will be deleted from the y-structure if its size is 0, if it is
equal to some other clique in the y-structure, or if it is
extendable by one of the other active semi-squares. Also
this step requires a runtime of O(|Q|2 * n2). The theoreti-
cal runtime for the whole algorithm is thus given by
O(|Q|2 * n3 + out), which is in the worst case O(n9).

We will now present some small improvements in the
data structure that help to reduce the work for most real
data sets. First, as a fast look-up we will compute the adja-
cency matrix adj for the intersection of all pairs of semi-
squares in O(n2).

As we noted before, each semi-square can be characterized
by yi + xi, the diagonal on which the hypotenuse lies. A
clique C is now represented by two ordered lists: H(C), a

list of lists of semi-squares for each diagonal on which at
least one semi-square has its hypotenuse, and B(C) a list
of lists of semi-squares for each y-coordinate on which at
least one basis of any semi-square in the clique is posi-
tioned. A clique at a given x-position is now an assembly
of ordered hypotenuses and bases as depicted in Fig. 5. A
new semi-square X can intersect the set of bases and
hypotenuses in the following ways:

1. X intersects none of the bases and none of the hypote-
nuses. Since the bases are ordered, this only occurs if the
upper point of X is lower than the lowest basis, or if the
basis of X is higher than the highest hypotenuse. This can
be calculated in O(1) because B(C) and H(C) are sorted.
This results in a runtime of O(|Q|) for all cliques per birth
event.

2. X intersects either all bases and/or all hypotenuses. This
is the case if X's basis is lower than the lowest basis in C
and X's upper point is higher than the highest basis, and/
or X's basis is lower than the lowest hypotenuse and its
upper point is higher than C's highest hypotenuse. Both
can be checked in O(1). If this is the case, X has just to be

Clique {2, 3,4} at x = 2 has a global ordering of B(2), B(3), B(4), H(2), H(3), H(4) and a global ordering of B(2), B(3), H(2), H(3), B(4), H(4) at x = 4Figure 5
Clique {2, 3,4} at x = 2 has a global ordering of B(2), B(3),
B(4), H(2), H(3), H(4) and a global ordering of B(2), B(3),
H(2), H(3), B(4), H(4) at x = 4. When an interval is added to
the y-structure it can either intersect all of the bases of a
clique, or only a part of the bases, and/or all of the hypote-
nuses, or just a part of them. If it intersects all bases and/or
hypotenuses, it can simply be added to that clique, if it only
intersects a part of the bases and/or hypotenuses, it will split
the clique.

2

1

3 5

6

4

2

86420

8

4

Algorithm for computing all maximal cliquesFigure 4
Algorithm for computing all maximal cliques.

Build a list Lx containing all x-events;
Sort Lx;
Build adjacency matrix adj ;
Build empty list Q;
foreach event e : Lx do

if e is birth of semi-square X then
foreach Clique C in Q do

if X can be added to C then
C.add(X);

else
if X splits C then

Build candidate clique C ′;
end

end
end
foreach Candidate clique C ′ do

if C ′ is unique ∧ not extendable then
Q.add(C ′);

end
end
if X has not been added to any clique of Q then

Q.add(X);
end

else
foreach Clique C in Q do

if X is ∈ C then
if C has been extended since last deletion then

print C;
end
delete X from C; if C is not unique ∨ C is extendable then

delete C from Q;
end

end
end

end
end
Page 7 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
added to C. To insert X's basis and hypotenuse at the cor-
rect place, a binary search with X's height of the basis and
the height of its hypotenuse is accomplished in O(log n)
for every clique it is added to, i.e. with a runtime of at
most O(|Q| log n) per birth event.

3. X neither intersects all bases nor all hypotenuses, but at
least one basis or hypotenuse in C. In this case, X will split
the clique. It is easiest to just run through both lists, B(C)
and H(C), and look in adj which semi-squares of C and X
are intersecting. By running through the ordered lists, we
can just add all intersecting semi-squares in the same
order to the new candidate clique, maintaining the correct
sorting. Each clique has at most n elements, look-up of
adjacency is done in O(1) and adding to the list is also
done in O(1) per intersecting semi-square. Last, X has to
be inserted into the candidate clique, again in O(log n).
Thus, generating a candidate clique can be done in O(n),
resulting in |Q| * n for all cliques per birth event. To find
out whether this candidate clique C' is maximal we use
the following trick which is quite fast: Given the semi-
square Xs representing the shortest interval, calculate the
set of all active semi-squares that are not in C' but do inter-
sect Xs. This set Z can be determined in O(n) by checking
X's row in adj. Then we have to examine the extensibility
of C' for only those semi-squares in Z. This takes O(n2),
resulting in O(|Q| * n2) for every birth event. The check for
equality is also quite cheap, because Q can again be
ordered by for example the height of the lowest basis in a
clique. This equality search for any other clique in the y-
structure with the same height of the lowest basis can be
done by a binary search in O(|Q| log |Q|). Since all cliques
are ordered, a check on equality can be done in O(n),
resulting in O(|Q| * n). Inserting the clique in the correct
place in Q can again be done in O(|Q| log |Q|).

Again, the deletion of a semi-square will result in an
addend of out to the runtime, and we have to check for
equality and extensibility. Thus, our theoretical runtime is
O(|Q| * n3+ out) which in the worst case is given by O(n6).
Note that for real data sets this theoretical runtime will
not be reached: First of all, intervals have very different
lengths and therefore not all of them will be active at the
same time. Second, most of the time the set Z of candi-
dates for the extensibility test is very small. The same is
true for the set of cliques with the same height of their
lowest basis. Since the test for extensibility and unique-
ness are the most expensive steps in the algorithm, this
shows why the implementation can be so fast in real data
sets, as will be demonstrated in section 5. But first we will
give a more elaborated algorithm that shows that the runt-
ime complexity of finding all maximal cliques in c-max-
tolerance graphs is considerably lower than the corre-
sponding runtime in max-tolerance graphs.

4 An efficient output-sensitive algorithm to
determine all maximal cliques in c-max-
tolerance graphs
4.1 Introductory discussion
We shortly recall the O(n3 + out) algorithm from [9]. In
this algorithm, it has been shown that each maximal
clique is uniquely described by the 3 parameters t, h and v
denoting the hypotenuse t of the lowest semi-square, the
highest base h of any semi-square and the rightmost verti-
cal side v. The drawback of the algorithm given in [9] is
that it needs O(n3) time even if there are only very few
maximal cliques. In the case of c-max-tolerance graphs we
can now present a considerably improved output-sensi-
tive algorithm.

Our description consists of two steps: First we will give an
algorithm that computes all candidates for maximal
cliques with one fixed parameter, say a given lowest hypot-
enuse t. We show that all maximal cliques with fixed
parameter t can be determined in time O(n log n + out)
where out is the size of the output.

The problem is, however, that these maximal cliques
could still be extendable by a semi-square with an even
lower hypotenuse t'. Thus, such a maximal clique with
fixed parameter t is only a candidate that has to be checked
for extensibility before printing it out. In the second step,
we will show how to avoid the computation of candidates
that do not represent maximal cliques such that our final
algorithm will truly be output-sensitive.

4.2 Maximal cliques regarding parameter t
Let t be the hypotenuse of the lowest semi-square in the
cliques, and let r (t) denote the whole square defined by
the diagonal t. Note that it makes sense to use t in the two
different but related contexts. Using the same notation as
in [9], P(t) denotes the set of semi-squares that include the
left endpoint of t, Q(t) is the set of semi-squares that
include t's right endpoint, and R (t) denotes the set of
semi-squares that intersect t but include none of its end-
points. Ps(t), Qs(t), and Rs(t) denote the set of the full
squares corresponding to the set of semi-squares P(t), Q(t)
and R (t), while more importantly, we will consider the
sets Pr(t), Qr(t) and Rr(t) which denote the set of rectangles
given by the intersection of r (t) with each single element
of Ps(t), Qs(t) and Rs(t).

Note that the left upper corner of r (t) is also the left upper
corner for the rectangles in Pr(t), while the right lower cor-
ners are the same as that of the corresponding semi-
squares in P(t). Similar facts hold for rectangles in Qr(t)
and Rr(t).

The following observation provides the idea to how to
determine the maximal cliques with lowest semi-square r
Page 8 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
(t): Each point x ∈ r (t) is overlapped by a set of rectangles
from Pr(t) ∫ Qr(t) ∫ Rr(t). The crucial observation is that
their corresponding semi-squares are also pairwise inter-
secting, so x ∈ r (t) denotes a clique of semi-squares. This
is important, because we state here that in the restriction
to r (t) we have an equivalence between the intersection of
the rectangles and the intersection of the semi-squares.
Thus, the question to finding maximal cliques in the c-
max-tolerance graph is now reduced to finding an area
where a maximal set of rectangles intersects.

The points intersected by the same set of rectangles form
simple orthogonal connected polygons p. Each such poly-
gon p is also characterized by the cardinality of this set
which we call cover (p). Polygonal regions p' adjacent to p
have either an additional intersection by another rectan-
gle or one intersection missing. So the cover-variables of
adjacent polygons differ by exactly 1 (see Fig. 6). If all
adjacent polygons have a lower cover-parameter than
cover (p), p denotes a maximal clique. We call p locally max-
imal in this case.

Lemma 3 Locally maximal polygons in r (t) exactly determine
the maximal cliques with lowest hypotenuse t.

The algorithm
We perform a left-to-right sweep. As the underlying data
structure we keep the list L of all polygons which are cur-
rently intersected by the sweepline as well as a distinct list
LM of all locally maximal polygons. We start our sweep at
the left side of r (t) initializing list L by the polygons
defined by all rectangles of Pr(t) in increasing order of
their lower boundaries. LM is initialized with the topmost
polygon representing the intersection of all rectangles in
Pr(t). Two basic events occur while sweeping from left to
right:

1. A rectangle from Pr(t) ends

2. A rectangle from Qr(t) or Rr(t) is added.

1. Let s be the rectangle from Pr(t) with the right lower cor-
ner c that ends. Since s intersects all polygons from c up to
the upper boundary or r (t), the removal of s decreases the
cover-variables by one for all polygons above c, the two
polygons adjacent to c have to join, and the maximal pol-
ygons above c have to be output. The join-operation can
be done by updating list L after locating the two polygons
by binary search for c. The output operation can be per-
formed easily by scanning list LM from the top until the y-
coordinate of c has been reached.

Note that there will not arise any new local maxima, and
all previous maxima remain. One important speciality is
that the maxima we just output should not be output even
they still represent maxima. We call them false maxima,
we remove them from the list LM and insert them in a list
LF ordered by their y-coordinates. Note that false maxima
have to be reinserted into list LM again as soon as they are
covered by a new rectangle from either Qr(t) or Rr(t). This
might happen as described in the next case:

2. A rectangle s from Qr(t) ∫ Rr(t) starts to be intersected
by the sweepline. We discuss the case that s ∈ Qr(t), the
other case is symmetrical.

Let c be the left upper corner of rectangle s. s adds a new
intersection to all polygons below c, the polygon contain-
ing c is split into two and the cover-variables of all of them
increase by one. Note that a new locally maximal polygon
might arise below c. All false maxima below c become
'true' maxima again. They are deleted from LF and inserted
again into LM. The operation can be performed by locating
the polygon to be split by binary search in L, scanning the
list LF until the y-coordinate of c is reached, and inserting
all false maxima back into LM.

Analysis: At each event we have to perform a binary search
for corner c. A direct implementation includes the inser-
tion and deletion of maxima and false maxima into the

Computing the maximal cliques regarding the hypotenuse t by intersection r (t) with Pr(t),Qr(t) and Rr(t)Figure 6
Computing the maximal cliques regarding the hypotenuse t
by intersection r (t) with Pr(t),Qr(t) and Rr(t). In the example,
we have two rectangles from Pr(t), two from Rr(t) and one
from Q(t). The numbers denote the cover-values of the cor-
responding polygons.

1

0

2 3

4

3

2 3 2

43
3

2

22
2

1

R(t)
Page 9 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
corresponding lists in time O(log n). Finally it leads to a
runtime of O(n log n + C(t) log n + out), where C(t)
denotes the number of maximal cliques with lowest
hypotenuse t.

Next we will show how to improve the efficiency of the
algorithm to O(n log n + out): Instead of two separated
lists LM and LF we keep only one doubly linked list LD of
interleaved blocks containing false maximals and 'true'
maximals ordered by y-coordinates. A block denotes a
maximal sequence of maxima of one or the other kind.
We keep also the blocks internally connected.

Each block is created by a certain event and it will be
removed eventually. We count only the number of block
creations, which naturally links the number of block
removals, and show that only O(n + C(t)) blocks will be
created.

One possible event is the creation/removal of a polygon
adjacent to corner c of a single maximum in the list LD.
Possibly one new block is created by splitting an old block
into two. After having located the position of the block,
corresponding to the y-coordinate of c, by binary search,
this can be done in constant time. Clearly there are at
most O(n) such events.

All other events consist of browsing through the lists of
blocks starting from the upper or lower boundary of rec-
tangle r (t), output the contents and join adjacent blocks
until reaching the polygon with y-coordinate of corner c.
Hence in these events, each operation creates one or two
new blocks, but might remove k blocks in time O(k).

In total, we are using only time O(n log n) time.

Lemma 4 Determining the maximal cliques with lowest
parameter t takes time O(n log n + out).

4.3 Avoiding false maximal cliques when computing
candidates for hypotenuse t
In the previous subsection, we have described the efficient
computation of all maximal cliques having a specific tri-
angle t as their lowest element. To provide truly output-
sensitive algorithms we have to notice that some of those
cliques, say M, might not be maximal overall, since there
might be a triangle s(t') with hypotenuse t' such that M' =
M ∫ s(t') is also a clique. Clearly t' is lower than t. Note
that M' will be found when computing the maximal
cliques with lowest element t'.

So, when considering t we have to avoid those cliques,
which are not truly maximal.

4.3.1 The intersection staircase
The first idea is to compute for rectangle r (t) the intersec-
tion of r (t) with all r (t') where t' does not belong to P(t)
∫ Q(t) ∫ R (t). Clearly, polygons in r (t') � r (t) might
represent cliques which are maximal in r (t') but are false
maximal in r (t) since t' has not been considered there. To
neglect the area where such rectangles r (t') intersect r (t)
seems to be a good first step, although it will turn out that
this is not sufficient. The union of those intersections is
determined by a set of maximal rectangles, which form a
kind of a staircase pattern above the diagonal of r (t)
which we call the intersection staircase. The intersection
staircase will be represented by a list of the right upper
endpoints with decreasing y-coordinates and increasing x-
coordinates.

The computation of the intersection staircase can be done
using a list of the rectangles r (t') decreasingly ordered
according to the y-coordinate of their upper boundaries.
For each rectangle r (t') we check if it intersects the diago-
nal of r (t) and does not belong to P(t) ∫ Q(t) ∫ R (t). If
the right boundary of the last element of the actual inter-
section staircase is also intersected by the upper boundary
of r (t') or if the last element of the intersection staircase
ends above r (t'), r (t') is appended to the list of the inter-
section staircase.

Clearly, the intersection staircase can be computed in time
O(n log n). Unfortunately, this is not sufficient, since
there might be rectangles r (t") ∈ Pr(t) ∫ Qr(t) ∫ Rr(t)
which intersect r (t') but not the diagonal t' of r (t'), hence
they have not been taken into account. Clearly, the inter-
section of r (t") with r (t) � r (t') has to be considered if it
infers new cliques which have not been found when
processing r (t'). Hence the intersection staircase which
defines the forbidden area when processing r (t) has to be
refined and its area will decrease (see Fig. 7).

4.3.2 Refinement of the staircase
We keep the intersection staircase as an ordered list of
right upper corners of the corresponding rectangles r (t').
First we describe how rectangles from P(t) influence the
intersection staircase.

We consider all the rectangles of P(t) and how they inter-
sect the staircase. On this behalf, we sort the lower left cor-
ners ai of the rectangles pi according to the difference
between y- and x-coordinates and process the rectangles in
this ordering. Clearly, all those corners lie to the left of the
left boundary of r (t). Assume that we have already proc-
essed the corners a1,..., ai-1 as well as the topmost j steps of
the staircase with j ≥ 0. Let s(tj) be the actual step defined
by rectangle r (tj) to be considered. We consider pi. If pi is
below of the diagonal of r (tj), it can be neglected since it
has been considered while processing r (tj). Otherwise, if
Page 10 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
the lower boundary intersects step s(tj), the upper part of
s(tj) is cut off, and we proceed to Pi+1. If the lower bound-
ary is even lower than the whole step, s(tj) is completely
cut off, and we proceed to s(tj+1). In this case, we recon-
sider pi (see Fig. 8).

Clearly, since there are at most n points pi and steps s(tj),
the whole process takes O(n log n).

Analogously, we can refine the intersection staircase by
considering the rectangles in Q(t), which have not been
considered in the staircase-defining rectangles r (t').

For rectangles in R (t), the refinement is slightly different,
so we will consider this in more detail:

The intersection staircase now separates the area repre-
senting cliques that have not been computed before from
those which either have been computed before or which
have not been assigned yet. Hence we only move the inter-
section staircase downwards!

The intersection staircase consists of a list of points c1,...,ck
which are not necessarily corners of rectangles, but at least
they can uniquely be assigned to rectangles r (t')  Pr(t) ∫
Qr(t) ∈ Rr(t). Assume that these points are ordered with
decreasing y-coordinates. We denote the corresponding
diagonals t1,...,tk analogously.

First we state an important observation:

Lemma 5 Only rectangles r (t') which are part of the intersec-
tion staircase have maximal diagonals. Hence the non-maxi-
mal r (t') that is not in P(t) ∫ Q(t) ∫ R (t) does not need to
be considered.

The elements of Rr(t) are similarly ordered according to
the difference between y- and x-coordinate of their left
lower corner. The idea is that when comparing a rectangle
r (t') from the staircase with an element s from Rr(t) then
the staircase should not be changed if s intersects t'. Oth-
erwise, the intersection of s must be cut off from the stair-
case.

More formally, we start with the topmost step of the stair-
case and let t' be the corresponding diagonal. Let smax be
the first element in the ordered list from Rr(t). If the left
lower corner is below t', then smax has been considered
already in the computation of the maximal cliques regard-
ing t'. Hence it can be disregarded and it does not change
the staircase. We can delete smax from the list and let the
next element be smax.

The basic intersection staircase shown in grey must be refined since there are rectangles like Pi ∈ Pr(t) and r ∈ Rr(t) which have not been considered before in the runs for t' and which reduce the basic intersection staircase such that a lower staircase shown in darkgrey remainsFigure 8
The basic intersection staircase shown in grey must be
refined since there are rectangles like Pi ∈ Pr(t) and r ∈ Rr(t)
which have not been considered before in the runs for t' and
which reduce the basic intersection staircase such that a
lower staircase shown in darkgrey remains. Hence for the
computation of the maximal cliques regarding t we have to
reduce the area of the upper half only by the refined stair-
case.

R(t)
t

pi

r

The grey area denotes the basic intersection staircase, which describes the maximal cliques which potentially must not be considered since they have been considered already during the computation of the maximal cliques for hypotenuses like t' lower than tFigure 7
The grey area denotes the basic intersection staircase, which
describes the maximal cliques which potentially must not be
considered since they have been considered already during
the computation of the maximal cliques for hypotenuses like
t' lower than t. In the example, we have three diagonals t'
lower than t whose rectangles r (t') intersect t.

R(t)
t

t’
Page 11 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
If the left lower corner of smax is above t', we compute the
intersection of smax with the actual step of the staircase,
and remove it either completely or only partially depend-
ing on the size of the intersection. In the first case, we pro-
ceed to the next lower step of the staircase while in the
second case, we remove smax from the list and get a new
smax.

In all cases, the operation can be done in O(1) time, and
in total we have only O(n) operations. This concludes the
description how we effectively restrict the area of r (t) to
be considered for computation of just those maximal
cliques which have not been computed before.

Hence we can summarize the whole section by

Theorem 1 In time O(n2 log n + out) we can determine all
maximal cliques in c-max-tolerance graphs.

Note that the naive bound of O(n4) for out can be
improved to O(n3) by writing down only the differences
between subsequent maximal cliques. This is supported
by the above methods to determine the maximal cliques
in a plane sweep approach.

5 Experiments
This section shows some results on using our implemen-
tation for finding all maximal cliques in artificial and bio-
logical data sets.

Runtime on artificial and biological datasets
In this section we want to demonstrate how fast the
implementation of our simple algorithm is. We compare
the runtime to that of Cliquer [8]. For the test we use both
artificial as well as biological data sets. The artificial data-
sets were generated in the following way: For a given inter-
val of some maximal length �max we computed all possible
sub-intervals within this interval. From this set of possible
sub-intervals, a given percentage number of sub-intervals
was chosen uniformly at random for the further evalua-
tions. Note that the number of possible sub-intervals in an
interval with length � is roughly �2, and thus the number
of maximal cliques is O(�6). We chose two values for �max,
namely 20 and 100. Then, the overall runtime to calculate
all maximal cliques was determined for all constraints
within 0.05 ≤ c ≤ 0.95 in steps of 0.05. For Cliquer we
could only use an interval of length �max = 20 and a ran-
domly chosen set of 30% of all possible sub-intervals. For
other test sets Cliquer had runtimes longer than many
hours or even days. For �max = 20 and c = 0.05 Cliquer took
nearly three hours to compute all maximal cliques, for c =
0.1 it took nearly one hour to compute all maximal
cliques, for c = 0.15, c = 0.2, c = 0.25 it took approximately
8, 4, and 1 minutes, respectively. For all c ≥ 0.3 it took
under a minute to compute all maximal cliques and it

took below 0.01 seconds for all c ≥ 0.5. Our implementa-
tion needed no more than 50 ms for any of the c-values.

A second experiment was made on a much larger data set
where the interval had a length of �max = 100. We used
10%, 20%, 30%, 40% and 50% of the total set of possible
sub-intervals chosen uniformly at random. Again, Cliquer
could not compute the maximal cliques for any of the
data sets in any reasonable time. The results for the runt-
imes of our algorithm for these data sets are visualized in
Fig. 9. Note that the data sets contained 1000, 2000, 3000,
4000 and 5000 intervals, respectively. We see that in all
cases and for all chosen constraint values c, the runtimes
were below 30 seconds. Even for the largest data set with
5000 sub-intervals the computation of the full statistics
needed less than 4 minutes.

It is an interesting observation that the runtime seems to
follow the number of cliques in the set, in contrast to the
runtime of the Cliquer that is mainly determined by how
interwoven the cliques are. The runtime of our algorithm
thus indicates that for these random data sets the runtime
is bound by out. Biological data sets are very different in
structure from random data sets, which is caused by the
clusteredness of their sequences. Since genes are often
composites of different functional domains, aligned
sequences have a high probability to center around those
domains and build groups of 'similar' sequences with
respect to the position and length of their alignment to
the query.

For the test of our algorithm on biological sequences three
BLAST-derived data sets were chosen as follows: From a
bacterial artificial chromosome (BAC) and fosmid library
of the genome of Pristionchus pacificus [13] that contains
78690 sequences, we reconstructed a genetic element that
we characterized as a transposon from the maT family (S.
Steigele, unpublished). Experimental hybridisation assays
proved that this transposon is highly repetitive in the Pris-
tionchus pacificus genome (A. Breit, unpublished). A
BLASTN search (E-value < 10-6) of this transposon against
all sequences of the BAC and fosmid library was con-
ducted, resulting in 126 hits below the E-value threshold.
We refer to this data set by PpmaT. Furthermore, two
multi-domain proteins, both containing repeated
domains, were subject to BLASTP searches (E-value < 10-

6) versus the UniProt database [11]. The protein SH3 and
multiple ankyrin repeat domains protein 1, short Shank1,
contains 7 ANK repeats, 1 PDZ domain, 1 SAM domain
and 1 SH3 domain. The BLAST search resulted in 86 hits
below the E-value threshold. We refer to this data set by
Shank1.

The protein Cadherin EGF LAG seven-pass G-type recep-
tor 2, short Celsr2, is a receptor that may have an impor-
Page 12 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
tant role in cell-cell signaling during nervous system
formation. It belongs to the G-protein coupled receptor 2
family, LN-TM7 subfamily, and contains 4 cadherin
domains, 7 EGF-like domains, 1 GPS domain, 1 laminin
EGF-like domain, 2 laminin G-like domains and 1 trans-
membrane receptor domain. The BLAST search resulted in
249 hits below the E-value threshold. We refer to this data
set by Celsr2. Fig. 10 shows the times needed to compute
all maximal cliques for the given data sets for all c between
0.05 and 0.95 in steps of 0.05. Generally we observe in all
three cases that the runtime within one data set is almost
independent of the constraint value c, differing only by a
factor of about 2 across each curve. For all cases runtime
was well below one second, while Cliquer needed for
some of the c-values many hours and even longer. We
have therefore again not presented Cliquer's runtime
results for these data sets. The computation of the full
curves needed less than one second.

For the same data sets, Fig. 11a) shows the number of
cliques found at these constraint values and Fig 11b)
shows the average number of cliques a sequence is mem-
ber of. In comparison to the artificially derived data sets,
runtime in these cases seems to be more dependent on the
input size than on the number of maximal cliques. Fur-
thermore, there is also no obvious dependency between
the chosen c-value and the number of maximal cliques.
We also observe for quite a large range of constraint values
c on average a sequence is contained in up to 30% of all

maximal cliques. Even for large c-values (c > 0.6) on aver-
age a sequence is contained in up to 10% of the maximal
cliques.

Computing a partition of S from maximal cliques
Since the membership of a sequence is almost never
unambiguous, a heuristic is needed in order to partition
the set of sequences into meaningful clusters. The set of all
maximal cliques for a given constraint c guarantees us that
every two members of a maximal clique will at least share
a part of their sequence of length (|Ii| * c). Let Ic(Ci)
denote that part of the query sequence that is overlapped
by all sequences in clique Ci, i.e.,

Ic(Ci) = [max {xj|Ij ∈ Ci}, min {yj|Ij ∈ Ci}] (6)

It is an important observation that this common part of
the sequence does not have to overlap each sequence in Ci
by c* 100%, as is shown in Fig. 12. If now a sequence X is
a member of many maximal cliques, it should be assigned
to that clique Ci whose shared sequence part Ic(Ci) over-
laps X best, i.e. is maximal.

The other problem is that the number and structure of
maximal cliques is of course depending on the chosen
constraint value c. There are two opposing situations that
make it hard to find the best c-value: The first is sketched
in Fig 13a) where three different clusters of sequences are
visible, but they will only be found if c is larger than 0.6.

a) The runtimes shown in this figure are based on artificial data setsFigure 9
a) The runtimes shown in this figure are based on artificial data sets. Here, the maximal length is 100 and from all possible
intervals a random set is chosen, ranging from 10% to 50% of all possible intervals. The time needed to compute all maximal
cliques for all constraints from 0.05 to 0.95 is given in ms. b) gives the number of maximal cliques found in the data sets.

b)a)
Page 13 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
In Fig. 13b) there is only one cluster, but if c is larger than
0.6 then two maximal cliques will emerge.

Thus, we have two contradicting goals: To get a higher spe-
cificity of the maximal cliques it is good to use a large c-
value. But if it is too large it will split 'good' cliques into
too many parts. Our aim was to find a heuristic that is
based on a c-value that is small enough as not to split
'good' clusters but can find subsets of the maximal cliques
that are more specific than the whole clique.

For this, the following heuristic is used:

1. Add all maximal cliques to a list L.

2. For all cliques C in L compute the shared overlap inter-
val IC, i.e., the maximal interval that is overlapped by all
of the intervals in the clique.

3. For every interval I that is in more than one clique, com-
pute the overlap between IC and I and multiply this value
with the number of intervals in this clique.

4. Assign every interval I to that clique where the product
of overlap with IC and number of intervals in that clique is
maximal.

This basic variant yields good results but it can be
improved by the following procedure: For every pair A, B
of cliques compute the intersection A � B. If there are
many intervals in this intersection set, e.g., |A � B| > 3,
and only a few intervals that are not, the intersection of
the two cliques represents intervals that are very similar to
each other. These intervals would be in one clique if the c-
value would have been more restrictive, i.e., larger. But
due to the low c-value, there are other intervals to the left
and right of the intervals in the intersection set that inter-
act with the intervals in A � B but not with each other. As
discussed above, a low c-value has the advantage of keep-
ing good clusters together, and thus c should not be too
high in the beginning. However, the effect of a larger c-
value can be mimicked by adding those intersection sets
to the list L in the first step of the above described mecha-

a) The number of maximal cliques found and b) the average number of maximal cliques a sequence is contained in are highly sensitive on the chosen c-value as can be seen for three biological data setsFigure 11
a) The number of maximal cliques found and b) the average number of maximal cliques a sequence is contained in are highly
sensitive on the chosen c-value as can be seen for three biological data sets.

0

10

20

30

40

50

60

70

80

90

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

#
m

a
x.

cl
iq

u
e

s

C

S hank1
C elsr1
P pmaT

0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a
vg

.
#

cl
iq

u
e

s
a

se
q

u
e

n
ce

is
in

C

S hank1
C elsr2
P pmaT

a) b)

All maximal cliques in three different biological data sets were computedFigure 10
All maximal cliques in three different biological data sets
were computed. The time needed by our algorithm is given
in ms in dependence of the chosen constraint value c.

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t
i
m
e[
m
s
]

C

Shank1
Celsr2
PpmaT
Page 14 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
nism and to allow the intervals to assign them to any set
in L be it a clique or an intersection set.

The given heuristic guarantees that every two intervals in
a set tolerate each other, because it is built on the maximal
cliques of tolerating intervals. The decision of member-
ship has been built on a composite of the overlap with the
shared sequence and the size of the set to reduce the
number of sets globally. The size of a set is of course vola-
tile because not all of its designated members will finally
be assigned to it. But in each case the overlap with the
shared sequence of any set will never decrease if another
member is deleted from the set, so the heuristic is stable
in this respect.

We have already indicated at the beginning of this article
(s. Fig. 1), that many partitions of a set S of sequences
seem to be reasonable by regarding only their begin and
ends. In order to facilitate a manual revision of the calcu-

lated partition of each set of sequences these sets are dis-
played in the order of the diagonal of their smallest
member, i.e., the sum of its x-position and its length.

The results of this heuristic applied to the three biological
data sets are given in Fig. 14a–c. The colorization helps to
identify the members of one clique. When comparing the
cliques with the annotation of the input query sequence
individual domains as well as combination of several
domains were retrieved and corresponded almost per-
fectly to the annotated domains of the input protein
sequence.

6 Discussion
BLAST is a very common algorithm in bioinformatics
used for annotation of an unknown sequence or for sam-
pling sequences from a database sharing homologous
regions with the input sequence. One goal of BLAST is to
identify regions of conserved DNA or protein sequence.
Another goal is to detect groups of sequences that are
highly similar with respect to the position and the length
of conservation with the query sequence. For a given
query sequence, BLAST returns the hits ordered statistical
significance of each hit. When viewed, this ordering does
not necessarily represent a clustering with respect to
length of the hits and position in the query sequence.
Thus, extraction of possible clusterings of the sequences is
not always straightforward. One goal of this article was
therefore to provide a method that allows an automatic
clustering of sequences returned from a BLAST run, such
that the user can decide whether to maximize the lengths
of the common region of the sequences within a cluster or
whether to maximize the size of the clusters.

a) There are three distinguishable clusters: {1, 2, 3}, {4, 5, 6}, {7, 8, 9} but as long as c is below 4/11 there is only one maximal clique embracing all intervalsFigure 13
a) There are three distinguishable clusters: {1, 2, 3}, {4, 5, 6}, {7, 8, 9} but as long as c is below 4/11 there is only one maximal
clique embracing all intervals. Not until c is larger than 3/5, the wanted three sets will emerge as maximal cliques. b) Here, the
situation is different. Intuitively, only one set embracing all intervals should emerge. But this homogenous set will be split into
two maximal cliques when c is greater than 3/5: one contains interval 5 and one interval 6.

a) b)
a) b)

With a constraint of 0.6 intervals 1, 2, 3 build a cliqueFigure 12
With a constraint of 0.6 intervals 1, 2, 3 build a clique. The
common overlap of all 3 intervals is [4-10], which is only 3/7
of interval 3.

1

2

3

0 2 4 6 8 10 12 14
Page 15 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
In this article we have shown that finding groups from
BLAST reports can be reduced to computing maximal
cliques in so-called c-max-tolerance graphs. We have pre-
sented two algorithms that allow the enumeration of all
maximal cliques in c-max-tolerance graphs in polynomial
time. The first algorithm has an easy implementation to
compute all maximal cliques in c-max-tolerance graphs,
but it has a theoretical runtime of O(n6). The second algo-
rithm is technically very elaborate, and shows that enu-
meration of all maximal cliques in c-max-tolerance graphs
can be computed in a runtime of O(n2 log n + out), where
out denotes the size of the output. The algorithm improves
a result found for general max-tolerance graphs, for which
the computation of all maximal cliques has a runtime of
O(n3) [9].

Though our simple algorithm in theory has a higher runt-
ime than the more technical one, when applied to real
data, runtimes were nonetheless impressive. Comparison
with the popular application Cliquer [8], another exact
algorithm to compute all maximal cliques in general
graphs, showed that for many instances of our test cases,
Cliquer could not report results within hours, while our
algorithm finished most computations within millisec-
onds.

The maximal cliques represent a clustering of the
sequences detected with BLAST. Thus with the help of this
clique-finding algorithm, clusters can now be quickly and
automatically identified even from very large BLAST
reports. The result of the clustering can then be further

The partitions found by the heuristic described in the text, for a constraint value of c = 0.65Figure 14
The partitions found by the heuristic described in the text, for a constraint value of c = 0.65. a) Shankl, b) Celsr2, c) PpmaT.
Members of the same clique are colored equally.

aa_21h1

aa_31h1

aa_32h1

aa_38h1

aa_42h1

aa_44h1

aa_55h1

aa_57h1

aa_61h1

aa_63h1

aa_72h1

aa_73h1

aa_78h1

aa_82h1

aa_83h1

aa_30h1

aa_33h1

aa_35h1

aa_36h1

aa_37h1

aa_47h1

aa_69h1

aa_84h1

aa_9h1

aa_23h1

aa_28h1

aa_43h1

aa_50h1

aa_51h1

aa_59h1

aa_66h1

aa_70h1

aa_71h1

aa_74h1

aa_76h1

aa_77h1

aa_79h1

aa_80h1

aa_81h1

aa_86h1

aa_2h1

aa_22h1

aa_67h1

aa_54h1

aa_18h1

aa_26h1

aa_52h1

aa_17h1

aa_53h1

aa_58h1

aa_25h1

aa_15h1

aa_19h1

aa_29h1

aa_75h1

aa_60h1

aa_68h1

aa_85h1

aa_20h1

aa_34h1

aa_6h1

aa_7h1

aa_8h1

aa_10h1

aa_11h1

aa_12h1

aa_13h1

aa_14h1

aa_16h1

aa_24h1

aa_27h1

aa_39h1

aa_41h1

aa_45h1

aa_48h1

aa_49h1

aa_62h1

aa_46h1

aa_40h1

aa_64h1

aa_56h1

aa_65h1

aa_5h1

aa_4h1

aa_3h1

query

aa_1h1

aa_166

aa_214

aa_237

aa_239

aa_152

aa_172

aa_211

aa_191

aa_192

aa_206

aa_218

aa_226

aa_184

aa_193

aa_196

aa_201

aa_202

aa_203

aa_219

aa_247

aa_182

aa_205

aa_185

aa_161

aa_47

aa_157

aa_188

aa_208

aa_145

aa_179

aa_38

aa_39

aa_42

aa_43

aa_51

aa_52

aa_53

aa_54

aa_55

aa_56

aa_57

aa_58

aa_59

aa_60

aa_61

aa_62

aa_63

aa_64

aa_65

aa_66

aa_67

aa_68

aa_69

aa_70

aa_71

aa_73

aa_74

aa_75

aa_76

aa_77

aa_78

aa_79

aa_80

aa_81

aa_82

aa_83

aa_84

aa_85

aa_87

aa_88

aa_89

aa_90

aa_91

aa_92

aa_93

aa_94

aa_95

aa_96

aa_98

aa_99

aa_101

aa_103

aa_104

aa_105

aa_107

aa_108

aa_109

aa_111

aa_112

aa_113

aa_114

aa_115

aa_116

aa_117

aa_118

aa_120

aa_121

aa_122

aa_123

aa_124

aa_125

aa_127

aa_128

aa_130

aa_131

aa_132

aa_133

aa_134

aa_135

aa_136

aa_137

aa_138

aa_139

aa_141

aa_142

aa_143

aa_144

aa_147

aa_148

aa_149

aa_150

aa_158

aa_162

aa_168

aa_171

aa_173

aa_186

aa_194

aa_199

aa_200

aa_204

aa_223

aa_110

aa_163

aa_170

aa_240

aa_215

aa_216

aa_217

aa_220

aa_221

aa_222

aa_228

aa_230

aa_231

aa_232

aa_233

aa_235

aa_236

aa_238

aa_246

aa_9

aa_11

aa_22

aa_23

aa_34

aa_102

aa_126

aa_146

aa_151

aa_153

aa_155

aa_156

aa_160

aa_183

aa_207

aa_248

aa_28

aa_97

aa_167

aa_176

aa_242

aa_178

aa_180

aa_209

aa_241

aa_181

aa_187

aa_195

aa_212

aa_213

aa_224

aa_225

aa_229

aa_234

aa_243

aa_244

aa_245

aa_249

aa_8

aa_210

aa_27

aa_29

aa_30

aa_31

aa_32

aa_33

aa_35

aa_36

aa_37

aa_40

aa_48

aa_50

aa_72

aa_86

aa_100

aa_106

aa_140

aa_154

aa_164

aa_165

aa_169

aa_175

aa_177

aa_189

aa_190

aa_197

aa_198

aa_45

aa_46

aa_49

aa_10

aa_12

aa_13

aa_14

aa_15

aa_16

aa_17

aa_18

aa_19

aa_20

aa_21

aa_24

aa_25

aa_26

aa_41

aa_44

aa_119

aa_129

aa_159

aa_174

query

aa_1

aa_2

aa_3

aa_4

aa_5

aa_6

aa_7

aa_227

aa_77h1

aa_80h1

aa_85h1

aa_66h1

aa_60h1

aa_79h1

aa_56h1

aa_58h1

aa_59h1

aa_54h1

aa_11h1

aa_12h1

aa_14h1

aa_16h1

aa_19h1

aa_21h1

aa_24h1

aa_27h1

aa_28h1

aa_29h1

aa_30h1

aa_31h1

aa_32h1

aa_33h1

aa_34h1

aa_35h1

aa_36h1

aa_37h1

aa_38h1

aa_39h1

aa_40h1

aa_41h1

aa_42h1

aa_44h1

aa_45h1

aa_46h1

aa_48h1

aa_50h1

aa_51h1

aa_68h1

aa_72h1

aa_87h1

aa_76h1

aa_67h1

aa_61h1

aa_75h1

aa_78h1

aa_84h1

aa_88h1

aa_89h1

aa_71h1

aa_73h1

aa_1h1

aa_25h1

aa_64h1

aa_69h1

aa_49h1

aa_52h1

aa_57h1

aa_62h1

aa_63h1

aa_65h1

aa_70h1

aa_22h1

aa_43h1

aa_47h1

aa_2h1

aa_3h1

aa_4h1

aa_5h1

aa_6h1

aa_7h1

aa_8h1

aa_9h1

aa_10h1

aa_13h1

aa_15h1

aa_17h1

aa_18h1

aa_20h1

aa_23h1

aa_26h1

aa_55h1

aa_74h1

aa_81h1

aa_82h1

aa_83h1

aa_96h1

aa_100h1

aa_102h1

aa_114h1

aa_116h1

aa_119h1

aa_53h1

aa_90h1

aa_86h1

query

a) b) c)
Page 16 of 17
(page number not for citation purposes)

Algorithms for Molecular Biology 2006, 1:9 http://www.almob.org/content/1/1/9
processed for example for phylogenetic reconstructions of
the sequences in the clusters. At this point one might dis-
cuss the biological usefulness to compute all maximal
cliques. As we have seen from the biological data sets used
for our experiments, it is very common to have largely
interlinked sequences, i.e., where one unique clustering
and/or maximal clique does not exist. This is for example
a common feature in the case of multidomain proteins,
where the query protein contains say k domains, and
BLAST reported subject proteins will show a variety of
combinations of these k domains. A goal of applying the
maximal cliques search algorithm is to cluster individual
domains as well as all possible combinations of domains.
The examples in figure 14 illustrate the result of these clus-
terings. Here one also clearly sees that other reasonable
partitions are possible.

Another application for this algorithm is the prediction of
gene boundaries within a genomic sequence. For this,
mapping of cDNA/ESTs to a genome sequence is used.
The goal of this strategy is to predict the gene boundaries
and/or its exon/intron structure using cDNA/ESTs. Apply-
ing our simple maximal clique algorithm to a large test
case (with more than 2800 intervals), for which a human
genomic locus was compared against the EST database
from the NCBI, yielded results within a few seconds with
a perfect clustering of EST loci (data not shown).

The use of the c-value is an important parameter for bio-
logical applications. Again we think of the situation of
reconstructing phylogenetic trees from sequences
reported from a BLAST run. Here different c parameters
can be used to either optimize the length of the overlaps
or the size of the maximal cliques. A model where the fac-
tor c is not a tolerance relative to the length but a fixed
constant independent of the length might be of some bio-
logical relevance. An extension towards such a model or
even a mixture seems plausible.

Examples from biological data sets indicated that most of
the sequences are contained in several cliques. Again, it is
not straightforward to deduce a disjoint clustering of the
sequences from the maximal cliques. We have described a
heuristic that computes a partitioning of sequences from
the set of all maximal cliques in a c-max-tolerance graph.
This heuristic when applied to protein sequences contain-
ing several domains partitions the set of all maximal
cliques into clusters, where the sequences within the clus-
ters reflect the domain structure of the input sequence.

After cliques and clusters have been computed post-
processing such as visualization of the groups or integra-
tion into pipelines that need clustered sequence data is
now very easy and automizable. And therefore we hope

that the algorithms described here have further impact for
the bioinformatics community.

Availability
The implementation of the first algorithm is available on
request from the first author.

Authors' contributions
KAL implemented the simple version of the maximal
cliques algorithm and performed the test runs. MK and
KAL developed the efficient algorithm, proved its polyno-
mial complexity and wrote most of the manuscript. SS
retrieved the biological data and participated in the dis-
cussions. KN developed the project idea and participated
in the manuscript preparation. All authors read and
approved the final manuscript.

Acknowledgements
The second author would like to thank Markus Geyer for helpful discus-
sions about the output-sensitive algorithm. This work has been supported
by the DFG Grant Ka812-13/l 'Evolutionstheorien für natürliche und tech-
nische Netzwerke'. SS and KN were supported by the Deutsche Forsc-
hungsgemeinschaft, AZ BIZ 1/1-3.

References
1. Altschul S, Gish W, Miller W, Myers E, Lipman D: Basic Local

Alignment Search Tool. J Mol Biol 1990, 215:403-410.
2. NCBI-Blast [http://www.ncbi.nlm.nih.gov/BLAST/]
3. Golumbic MC, Trenk AN: Tolerance Graphs Cambridge University

Press; 2004.
4. Benzer S: On the Topology of the Genetic Fine Structure.

PNAS 1959, 45:1607-1620.
5. Fulkerson D, Gross O: Incidence matrices and interval graphs.

Pacific J Math 1965, 15:835-855.
6. Booth K, Lueker G: Testing for the consecutive ones property,

interval graphs, and planarity using PQ-tree algorithms. J
Comput Sys Sci 1976, 13:335-379.

7. Garey MR, Johnson DS: Computers and Intractability WH Freeman and
Company; 1979.

8. Niskanen S, Östergård PR: Cliquer User's Guide, Version 1.0.
Tech. Rep. Technical Report T48, Communications Laboratory, Helsinki
University of Technology, Espoo, Finland 2003.

9. Kaufmann M, Kratochvíl J, Lehmann KA, Subramanian AR: Max-Tol-
erance Graphs as Intersection Graphs: Cliques, Cycles, and
Recognition. Proceedings of the Seventeenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA '06) 2006.

10. Kleinberg J, Tardos É: Algorithm Design Addison-Wesley; 2006.
11. Bairoch A, Apweiler R, Wu C, Barker W, Boeckmann B, Ferro S,

Gasteiger E, Huang H, Lopez R, Magrane M, Martin M, Natale D,
O'donovan C, Redaschi N, Yeh L: The Universal Protein
Resource (UniProt). Nucleic Acids Research 2005, 33(Database
Issue):D154-D159.

12. de Berg M, van Kreveld M, Overmars M, Schwarzkopf O: Computa-
tional Geometry Springer Verlag, Heidelberg; 1991.

13. Srinivasan J, Sinz W, Jesse T, Wiggers-Perebolte L, Jansen K, Buntjer
J, van der Meulen M, Sommer R: An integrated physical and
genetic map of the nematode Pristionchus paciflcus. Mol
Genet Genomics 2003:715-22.
Page 17 of 17
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2231712
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16590553
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15608167
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12884007

	Abstract
	1 Introduction
	2 Mathematical background
	3 Simple algorithm for computing all maximal cliques in c-max-tolerance graphs
	Runtime analysis

	4 An efficient output-sensitive algorithm to determine all maximal cliques in c-max- tolerance graphs
	4.1 Introductory discussion
	4.2 Maximal cliques regarding parameter t
	The algorithm

	4.3 Avoiding false maximal cliques when computing candidates for hypotenuse t
	4.3.1 The intersection staircase
	4.3.2 Refinement of the staircase

	5 Experiments
	Runtime on artificial and biological datasets
	Computing a partition of S from maximal cliques

	6 Discussion
	Availability
	Authors' contributions
	Acknowledgements
	References

