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Abstract

The increasing throughput of sequencing raises growing needs for methods of sequence analysis
and comparison on a genomic scale, notably, in connection with phylogenetic tree reconstruction.
Such needs are hardly fulfilled by the more traditional measures of sequence similarity and distance,
like string edit and gene rearrangement, due to a mixture of epistemological and computational
problems. Alternative measures, based on the subword composition of sequences, have emerged
in recent years and proved to be both fast and effective in a variety of tested cases. The common
denominator of such measures is an underlying information theoretic notion of relative
compressibility. Their viability depends critically on computational cost. The present paper
describes as a paradigm the extension and efficient implementation of one of the methods in this
class. The method is based on the comparison of the frequencies of all subwords in the two input
sequences, where frequencies are suitably adjusted to take into account the statistical background.

Background

Measuring the information content of finite sequences
has been an intensely sought after and yet elusive goal,
perhaps dating back to von Mises' pursuit of the notion of
randomness [1]. Among prominent attempts at such a
measure, one would find Brillouin's usage of Shannon's
redundancy [2], and Kolmogorov's approach to informa-
tion [3] which Lempel and Ziv specialized [4] to design
practical and elegant data compression methods. Since
every notion of information invokes naturally a germane
one of conditional or mutual information, it becomes nat-
ural to base measures of similarity on the latter and hence
ultimately on some kind of relative compressibility [5].
This angle of approach is eliciting a growing interest in
computational molecular biology (see, e.g., [6-17]), thus
contributing to a long tradition of mutual fascination
[2,18]. The surge may be attributable primarily to the

increasing availability of whole genomes and proteomes,
that makes standard comparison and distance measures,
such as those based on edit distances and gene rearrange-
ment, either computationally unbearable, or scarcely sig-
nificant, or both. In this paper we rely on the existing
literature for significance and concentrate instead on
aspects of computational efficiency. The specific distances
we consider constitute an extension of the method of [13].
In that approach, each organism is represented by a com-
position vector the components of which correspond to the
numbers of various (overlapping) k-peptides, for a fixed k,
in all the translated amino acid sequences from an organ-
ism's genome. The numbers are modified by subtracting a
statistical background to highlight the role of selective
evolution. The subtraction procedure is based on a (k-2)-
th order Markov prediction and therefore the minimum k
is 3. For any fixed value of k, known string algorithms sup-
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port the computation of the distance at the outset in time
linear in the input size. In what follows, we expand on the
approach based on the distribution of k-mers by including
all the values of k in the count. In other words, we con-
sider the vector composition distances involving the col-
lection of all words of any length k up to any arbitrarily
preset maximum length K. As it turns out, this can be done
at no extra cost, hence still in linear time. This is optimal,
since a lower bound for processing a sequence of size L is
trivially Q(L). Some interest, however, also comes from
the fact that the number of k-mers grows exponentially
with k, and the number of all distinct k-mers of length up
to K that actually occur in the input may be quadratic in
the length L of the host sequence when K ~ L. Therefore,
we cannot afford to tally the contribution of each k-mer
individually.

The distances we compute here below may be considered
an extension also of the one in [14], in which phylogeny
reconstruction on a genomic scale was based on the aver-
age length of common substrings. However, the linear
time implementation of our measure is fairly more
involved. The main difficulty is imposed by having to take
predictions into account. In fact, albeit this may be sur-
prising to the neophyte, the bare computation of shared
string counts (e.g., multiply the frequencies with which
each of the possibly ®(L2) shared subword appears in
either sequence and add up all these products), is trivially
done in linear time, based on string data structures and
basic properties that have been well understood for over
thirty years (see, e.g., [19]).

Methods
Let S be a sequence of length L and consider, for each
word w [1..k] of a given length k in S, the expression [13]:

POlL RN =p (wlL-KD) ¢ ot k) % 0
pO(wl1..k])
0 otherwise

a(w) =

(1)

where p(w [1..k]) is the observed ratio f(w)/(L - |w| + 1)
between the count (possibly, zero) and the number of
possible occurrences of the word w in S, and p°(w [1..k]) is
the Markovian estimate of the probability p defined as

Pl e=1])=p(w[2. k])
p(w[2..k-1])

With easy passages the above can be rewritten as
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X f(w[l. k) f(w[2..k-1]) 1 for
flwll..k-1])f(w[2..k])
a(w)=19 f(w[l.k-1])=21 and f(w[2.k]) 21
0 otherwise

(2)
Where

_ (L-k+2)?
" (L—k+1)(L-k+3)’

so that the difference between the empirical probability of
w and its Markov-based prediction, divided by the latter is
represented by Expression 2 as well. For a given collection
of words (e.g., the set of all k-mers for a fixed k), all a-val-
ues are stored, in some suitable order in a vector, called
the composition vector. For two composition vectors A and
B, the following distance function is considered:

k

D(A,B)=1/2| 1- 22“"17; 72 3)
Z a; X3 bi )

where the a;'s and b;'s are computed by applying Expres-
sion 2 respectively to A and B.

There are |Z|# components in the composition vector of k-
mers, hence the size of these vectors grows exponentially
with k, and so does the direct computation of D. It is clear
that for any value of k the number of k-mers in a sequence
of L characters is O(L). Less obvious but also well known
(cf., e.g., [19]), is the fact that the O(L) bound applies as
well to a notable class of words, defined as follows. A
word is maximal in its host sequence if it is impossible to
extend it by appending one or more characters without
losing some of its occurrences. On the other hand, the
total number of distinct words of any length found in a
sequence of L characters can be ©(L2).

In what follows, we show that it is possible to compute
the measure D for composition vectors consisting of all
(possibly ®(L?)) words in the input sequences in overall
time linear in the total length of the input. Our construc-
tion is supported by the basic structure of a suffix tree,
which we proceed to recapture. In short, a suffix tree is a
trie (i.e., a digital search index) collecting all suffixes of a
string. For a compact representation, all chains of unary
nodes are collapsed into a single arc, so that the resulting
structure is linear in the length of the string. Whereas a
string of L characters may contain @(L2) distinct sub-
strings, the O(L) substrings terminating at branching
nodes of the suffix tree are enough to represent the entire
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vocabulary of the string: for any string w not ending on a
branching node, its shortest extension w' reaching such a
branching node has exactly the same frequency (hence the
same list of occurrences) as w. Hence these words are max-
imal in the sense described earlier. Unlike any straightfor-
ward implementation of this well known property, our
construction must be based on normalized frequencies
rather than bare counts, thereby implicating the A terms
that do vary along every arc. One more level of complica-
tion stems from the fact that our computation needs
access, for any word w, to the normalized frequencies of
extensions of w in the form aw, with a a character of Z,
whereas such words might lack a branching node in the
tree.

Suffix trees and their variants are ubiquitous data struc-
tures of string processing, and multiple algorithms are
available for their construction in linear time and space.
Our implementation is based on the K-truncated suffix
tree [20], a special variant of the suffix tree that collects all
subwords of length up to K instead of all suffixes of the
sequence. This further reduces space and time costs in all
cases where interest is limited to words of bounded
length.

Results and discussion

We now discuss adaptations of our trie for computing the
compositional distance between two sequences according
to Expression 3. It is convenient to subdivide the discus-
sion into two parts, handling first the easier case of
branching nodes, i.e., nodes that correspond to maximal
words.

Maximal Words

As part of the trie construction for either one of the
sequences, each node v is assigned the occurrence count
of word () in that sequence, where (1) denotes the word
spelled out by the labels found on the path from the root
to the node v. As is well known (cf,, e.g., [19]), it is easy to
update this information during each word insertion in the
trie, if the latter is built by direct methods, or to compute
it off-line (by attributing to each node the number of
leaves in the subtree rooted at that node) when the suffix
tree is built by one of the existing linear time construc-
tions.

From inspection of a(w), it is seen that in order to com-
pute probability estimates we actually need access, for any
maximal word w [1..k] = (v, to the occurrence counts of w
[1.k-1], w[2..k] and w [2..k - 1]. This is possible provided
that for every node vthere is (1) a link from vto parent(v),
where parent(v) denotes the branching node on the root-
ward path from v, and (2) a suffix link from vto s(v) = v

such that if (1) = aw with a € X then (v ) = w. At branching

http://www.almob.org/content/3/1/13

nodes, both features are easily accommodated by the data
structure, in fact, the second one is an essential part of any
of its linear-time constructions. As we shall see, the com-
putation of D is not entirely trivial when we take all sub-
words of S into account.

Imagine now that for two input sequences their respective
tries are drawn each with a different color, and then super-
imposed. Only the words occurring in both sequences will
contribute to the numerator in Expression 3. Such words
are found on paths and nodes bearing both colors. On the
other hand, words found on a path with only one color
contribute to only one of the sums appearing in the
denominator of 3. Finally, there are some words not
appearing in one or both sequences that nevertheless con-
tribute to Expression 3. Such words will be called chimeral
words. With reference to one of the sequences, these are k-
mers w such that f(w [1..k]) = 0, but f{w [1..k - 1]) > 1 and
f(w [2..k]) 2 1 in that sequence. The a value of these words
is -1, and the words themselves would represent some of
the possible unit-symbol extensions of paths that exist in
the trie of the host sequence. Thus, for any word w [1..k],
its contribution to the distance is to be accounted for only
when w [1..k - 1] and w [2..k] both exist in the trie, but in
no other case. The collection of these observations lead to
reduce the number of words for which the components of
Expression 2 need to be computed.

The computation of the second ratio of Expression 2 is
easy to handle at branching nodes. To see this, consider
one of the sequences and define the following function on
each node vin the trie associated with it.

1 if |e(v)>1
T(v) =1 fparent(v))) . o) 21 (4)
fEv))

where |e( V)| is the length of the label of the edge entering
node v. This function gives the occurrence count ratio
between a node vand its parent, and is straightforward to
implement. Thus, substituting Expression 4 and A in the
score 2 for each node vwe have

T(s({v)))
AXW for f(w[l.k])=1 5)

0 otherwise

Score(v) =

where s((1)) is the proper longest suffix of w = (v), that is,
the word from the root to the node referenced by the suf-
fix link that goes out from v. The computation of the dis-
tance D simply requires to account separately for the
frequency counts of either "color" in the generalized trie
for the two input sequences. In summary, a procedure is
readily set up for computing in linear time the contribu-
tion of all maximal words to the distance between
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sequences S; and S,. The procedure builds a generalized
suffix tree possibly truncated at some arbitrarily fixed
length K. Each node of the trie contains information such
as frequency, colors, edge length, and an id. The Score
value (respectively, a(w) and b(w)) relative to S, and S, is
computed at each node while D(S;, S,) is globally accu-
mulated as the computation proceeds. This is further
expanded at no extra cost to compute distances based on
all shared maximal words, i.e., the words ending at
branching nodes in the trie.

Non-maximal Words

Recall that for any word w terminating in the middle of an
arg, its shortest extension w' reaching a branching node
has exactly the same frequency as w. We will show now
that it is entirely feasible to include in the count also all
such non-maximal words without stretching the time
complexity to quadratic. Finally, we will show that the
words that do not occur in the sequences, but whose pre-
fixes and suffixes do, can also be handled without penalty.
Combined with the preceding discussion, this will lead to
the following

Main Theorem The distance D resulting from the composition
vectors relative to all words in two sequences can be computed
in time and space linear in the input size.

Proof. The claim will be established by exhibiting the
completion of our construction.

We consider the combined trie for both sequences and
discuss first how the contribution of all words that do
appear in the trie (refer to Expression 2) is computed. As
seen earlier in the discussion, this is easy for words ending
precisely at a node. Let then v be a node reached by an
edge with a label of length I > 1, and let v, ...v;; be the
unary nodes, numbered from vtoward the root, implicitly
found on that edge. Let further u be the branching node
that is the parent of v in the trie, v and f be nodes
respectively reached by the suffix link from v and x4 and
make the simplifying assumption, to be later removed
with no penalty, that there are no branching nodes
between v and f . The contribution of v, v, ..., v, is the
sum of:

e the contribution of v, v, ..., vi,; zero if [ =2

e the contribution of v,

The second component is to be handled in the standard
way. As for the first component, under our assumption,
each T in the ratio of Expression 5 gets the value 1, as does
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the ratio itself. Hence the first component increases the
terms Zaibi, Zaiz and be respectively by:

2 (A krdepin(v) = DX (Nsdepenvy = 1) (6)
k=2-1..0
z (Ardepinpy = 1)° (7)
k=2-1.0
z (Nosdeprnvy =1 (8)
k=2-1..0

where A, and A’, denote the A function as applied to the

first and second sequence, respectively, with varying k. We
now introduce three vectors X, F and S, each of size equal
to the maximum word length K, and with Ith components
(1 <l £K) respectively defined as:

1
XM=Y (A =1)x(n;-1)

i=1

1
i)=Y (A;=1)"
i=1

i=1
S =Y (A -1)?
1

We have then

Y Mooy = DX Wiy ~ 1) = Xldepth(v)] - X[depth(v) -1

1 o

2 (Akrdepenvy = 1)* = Fldepth(v)] - Fldepth(v) - 1]

k=2-1.0

(10)

2 (Aksdepin(v) —1)* = Sldepth(v)] — Sldepth(v) ~ 1]

k=2-1.0
(11)

where depth(v) is the sum of the lengths of the labels on
the path from the root to v. The vectors X, F S can be com-
puted once for all in time O(K) at the beginning of the
execution since they depend only on K, L, = |S,| and L, =
[S1-

We claim now that removing the simplifying assumption

that was made above is doable without penalty. As men-
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tioned, the difficulty lies in the circumstance, that while
every node v with (1) = aw has a suffix link defined to a
node u with (1) = w, the converse is not necessarily true,
i.e., there are nodes not reached by a suffix link for some
or all of the characters of the alphabet. To handle this
potential bottleneck, we introduce dummy unary nodes on
each arc, in such a way that for any node g, with (1) = w,
and a € I, if aw is a word of the input without a proper
locus in the trie, then a dummy node v such that (1) = aw
will be injected into the trie to mark that locus, and a suf-
fix link will be issued from v to 4 With dummy nodes in
place, the restriction in the above construction is levied, in
the sense that if z is the (possibly dummy) node that is the
parent of vin the trie, and v and g are the nodes respec-
tively reached through the suffix link from v and g, then
there are no nodes between v and f . The introduction of
dummy nodes can be carried out in a post-processing of
the trie that takes an overhead proportional to the overall
number of nodes introduced. Consider each of the origi-
nal arcs in the trie in some order. For each arc, following
the suffix links from the terminal nodes identifies a path
containing zero or more nodes, that can be scanned in
time proportional to their number. Each such node
invokes splitting of the arc under consideration by a
dummy node, and the consequent setting of a suffix link
to it. Knowing the length of the original arc label enables
the identification of the split site and the subsequent rela-
beling of arcs. Thus all tasks are trivially accomplished in
constant time. The number of dummy nodes inserted on
account of any original node is bounded by the size of the
alphabet, whence for finite alphabet this expansion of the
trie takes linear time.

Chimeral Words

So far in our discussion, we neglected all cases where a(w)
=-1 (flw [1..k]) = 0 in Case 1 of Expression 2). Such chi-
meral words take the form w = avb, a, b € X~ where av and
vb occur in the input even though w does not. We can han-
dle these words as part of the management of their infix v,
thanks to the following easy property.

Property 1 For any a € 2, if v does not end at a branching
node then neither av does.

This means that if v ends in the middle of an arc no work
is needed: there cannot be any vb such that av and vb occur
in the input while w does not! Hence v must end at a
branching node, call it v, and we are left with two cases,
depending on whether av ends at a dummy or at an origi-
nal branching node. In the first case, let ¢ be the character

http://www.almob.org/content/3/1/13

following av on this path. We just need to add to the score
the (-1) contribution of the branch of v whose label
begins by b. As is easily seen, every branch of v except the
one whose label begins by ¢ similarly contribute at a rate
of -1 each, whence subtracting one from the fan out of v
is all is needed to take into account all chimeral words
induced by av and vb for some b € X. Finally, let av termi-
nate at a branching node u. Clearly, every branch of u is
replicated in a branch of vwhose label begins by the same
character. The only chimeral words can originate from
branches of v that are not replicas of corresponding ones
for u. The bare count of such excess branches yields the
contribution of all chimeral words implicated by av and
some vb.

This concludes the computation of the distance based on
all words common to two sequences of total length L in
optimal O(L) time and space.

Discussion

The various versions of the procedure have been imple-
mented in combination with the PHYLIP's Neighbor-
Joining package [21] and a web server has been predis-
posed for it at http://bcb.dei.unipd.it. An environment
has been set up to carry out coordinated runs of experi-
ments within each of the three main modes of operation
described earlier. The first mode corresponds thus to dis-
tances involving only those common words of fixed
length % that are found exactly at this depth on the frontier
of the truncated trie. For any fixed K > 3, the second set
builds trees based on distances that include all words of
length 3 <k < K ending at branching nodes in the trun-
cated trie or at leaves of this trie that coincide with branch-
ing nodes of the full one. These latter words are interesting
in that each one of them represents the longest extension
of one of its own prefixes having the same occurrence
count as that prefix (on a long edge, this makes the ratio
f(( parent(v)))/f((v)) = 1). Finally, the third mode builds
trees derived from all subword distances for various max-
imum lengths. This set exposes the relationship of fixed-
length versus all-subwords distances, as well as the influ-
ence of adding all subwords to the branching-node words.
It thus enables one to study the influence on the inferred
evolutionary trees of the distance computations based on
different selections of word length and vocabulary com-
position. The analytical results obtained by any of these
three methods are automatically given in input to Neigh-
bor-Joining for tree construction and drawing.

By way of illustration, we report here classifications
obtained for small sets consisting of 10 organisms under
the three main settings, that correspond respectively to
distances taking into account the composition of (1) only
k-mers for a fixed value of k, (2) maximal k-mers for all
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Phylogenetic trees derived for small samples under various compositional distances.

values of k up to a fixed maximum value K, and (3) all k-
mers of length k up to a fixed maximum value K.

Figure 1 shows results obtained with a set of "distant" spe-
cies, which would be presumed to be strongly separable

and in fact they were. The dataset consists of:

2 Eukaryotes Schizosaccharomyces pombe (fSchpo) and
Saccharomyces cerevisiae (gYeast)

4 Archea of which

e 2 Furyarchaeota: Pyrococcus furiosus (dPyrfu) and Pyro-
coccus hori-koshii (ePyrho)

e 2 Crenarchaeota: Sulfolobus solfataricus (hSulso) and
Sulfolobus tokodaii (iSulto)

4 Bacteria of which

e 3 Proteobacteria: Escherichia coli O157:H7 EDL933
(aEcoliE), Escherichia coli K12 (bEcoliK) and Shigella
exneri 2a str. 301 (cShifl)

¢ 1 Thermotogae: Thermotoga maritima (jThema)

The distance computations based on all k-mers is found to
produce unreliable trees as soon as K > 7. At low level taxa,
trees based on fixed-length k-mers and maximal k-mers
are consistent, as they both correctly group together
Eukaryotes, Proteobacteria, Euryarcheota and Crenarchae-
ota. However, at higher level taxa the distance based on
maximal k-mers seems to be more stable. In fact, it groups
Euryarcheota and Crenarchaeota in all cases, whereas with
fixed-length k-mers this holds only for K < 9. All methods
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Phylogenetic trees derived for small samples under various compositional distances. With a sample of "closer"
species, some differences appear in the tree already for small values of k (top row): all fixed k-mers with k = 5, same as for k =
6 or 7 (left); maximal k-mers up to a maximum K =5 (center); and all k-mers up to a maximum K =5, same as for k = 6 or 7
(right). This is repeated with K = |5 in the second row, with K = 45 in the third row except for the middle entry setat K= 6
and K = 7, respectively, since trees then stabilize for higher K.
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fail grouping Thermotogae with Proteobacteria, a defi-
ciency that might be attributable to the absence of other
organisms from the dataset.

Continuing with our illustration, we consider a sample of
"similar" organisms, composed of:

7 Firmicutes of which

e Clostridium acetobutylicum ATCC824 (Cloab) and
Clostridium perfringens (Clope)

e Streptococcus agalactiae NEM316 (StragN) and Strepto-
coccus agalactiae 2603 V/R (StragV)

¢ Bacillus subtilis (Bacsu) and Bacillus anthracis str. Ames
(Bacan)

¢ Thermoanaerobacter tengcongensis (Thete)

1 Fuso Fusobacterium nucleatum ATCC 25586 (Fusnu)
1 Thermatogae Thermotoga maritima (Thema)

1 Aquificae Aquifex aeolicus (Aquae)

Some of the corresponding trees are displayed in Figure 2.
The distance based on fixed length k-mers behaves poorly
even in the low taxa for K> 7 as it fails to group Cloab and
Clope, Thema and Aquae, and so on. The trees based on
maximal words remain stable both in high and low taxa
as K increases, even though for K > 6 it fails to group Cloab
and Clope. The trees based on all words diverge for K > 7.
To summarize this and few other limited experiences, the
distance based on fixed length k-mers seems to perform
well for moderate values of k. For larger values of k, how-
ever, it seems to loose stability with "distant" organisms,
and resolution with "close" ones. Somewhat surprisingly,
the trees based on all k-mers also appear to be unstable
with increasing K. On the other hand, the distance based
on maximal words seems to produce consistent and stable
trees. We stress that the purpose of our examples is only to
illustrate the potential use and versatility of the tool. A
thorough analysis of large data sets such as those that are
becoming increasingly available falls well beyond the
scope of the present paper.

Conclusion

We presented fast and efficient tools for distance compu-
tations based on subword compositions as defined in
[13]. This can be regarded as filling in part the gap
between the rigid word length used in [13] and the
shared-word length averaging of [14]. Our tools are also
easily adapted to incorporate and subsume both of those
approaches, thereby enabling the researcher to conduct a
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wide range of hypothesis testing on phylogeny and spe-
cies relationships. The speedup achieved by such tools
brings computations previously taking hours down to a
couple of seconds. Our algorithms expand the roster of
words that may partake in a distance measure, so as to
include words of virtually unbounded length, thereby
opening the way for the massive analysis of the future. By
dithering with the three main modes of operation of our
algorithm and the parameters k and K, it is possible to fine
tune the selectivity and sensitivity of the method. The
identification of the settings that are best suited to sepa-
rate and classify each particular collection might be, per
se, highly informative. Our tools can be deployed in the
framework of phylogenetic tree reconstruction, but also in
a much broader and growing spectrum of applications
calling for subword analysis on a genomic scale.

Note

A preliminary version of this paper formed the subject of
a Keynote delivered at the IEEE Information Theory Work-
shop held in Porto, Portugal, on May 5-8, 2008.
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