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Abstract

Background: The identification of chromosomal homologous segments (CHS) within and
between genomes is essential for comparative genomics. Various processes including insertion/
deletion and inversion could cause the degeneration of CHSs.

Results: Here we present a Java software CHSMiner that detects CHSs based on shared gene
content alone. It implements fast greedy search algorithm and rigorous statistical validation, and its
friendly graphical interface allows interactive visualization of the results. We tested the software
on both simulated and biological realistic data and compared its performance with similar existing

software and data source.

Conclusion: CHSMiner is characterized by its integrated workflow, fast speed and convenient
usage. It will be useful for both experimentalists and bioinformaticians interested in the structure

and evolution of genomes.

Background

The identification of chromosomal homologous seg-
ments (CHSs) within and between genomes (known as
paralogons and syntenies, respectively) is essential for
comparative genomics. It can not only help evolutionary
biologists to study genome evolution, such as genome
duplication and rearrangement [1,2], but also help exper-
imental biologists to transfer gene function information
from one genome to another. Although extensive gene
mutation, deletion, and insertion have made them not
always obvious from primary sequences, chromosomal
homology can still be revealed by a pair of segments shar-
ing a group of homologous genes [3]. Most existing pro-

grams, including ADHoRe [4], FISH [5] and LineUp [6],
look for CHSs based on the conservation of both gene
content and order (colinearity). While the approach was
sensitive enough for moderate divergence, it has been
pointed out conserved gene order may be too strict for
more ancient divergence [3], as inversion is another dom-
inant force for the degeneration of CHSs. For example, the
whole genome duplication in early vertebrate evolution
can only be inferred by discarding gene order and consid-
ering gene content alone [7]. A pioneering implementa-
tion of this strategy was CloseUp [8], but some limitations
still exist, especially with the rapid increase of genomic
data. First, it used Monte Carlo simulation to estimate the
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statistical significance of identified CHSs, which might no
longer be suitable for whole genome sequence analysis, as
thousands of annotated genes would make it quite time-
consuming. Second, previous tools were mainly devel-
oped for computational biologists, which restricted their
wide use among experimental biologists.

In our recent project to build a paralog/paralogon data-
base EPGD [9], we found it was very necessary to develop
a new software that could overcome those weaknesses.
Here, we publish it as a complete Java package named
CHSMiner. Its core algorithm has been used to construct
our database successfully and several improvements were
added later as well. In short, it can not only fast identify
and evaluate CHSs from whole genome comparison, but
also provide a convenient graphical interface for end users
to visualize the results.

Implementation

Fast greedy search algorithm

CHSMiner defines CHSs based on shared gene content
alone in order to fully exploit potential homology (Figure
1). Two major types of algorithms have been developed
for the purpose in previous studies. One is based on the
idea of bottom-up merging of smaller clusters (e.g.
CloseUp [8]), and the other is based on top-down break-
ing the genomes (e.g. HomologyTeams [10]). We adopted
the first strategy in CHSMiner because it was more widely
used in relevant studies such as revealing ancient genome
duplications [7]. Its procedure is also easier to under-
stand: starting from two homologous genes, each at a dif-
ferent location, it looks for two other homologous genes
that are each located within a prespecified distance from
the former two ones. This process is iterated until no more
additional pairs could be found [2,3]. The only important
parameter that should be predefined is the maximal gap

Figure |

Definition of CHS. In this application, CHS is defined as
two genomic regions that share a set of homologous
(matched) genes, regardless of gene order and orientation. A
limited number of unmatched genes can be allowed between
two adjacent matched genes, but are restricted to be no
more than a predefined constant, i.e. the maximal gap size.
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size (number of unmatched genes) allowed between two
adjacent matched genes (Figure 1). Another advantage of
the algorithm is that the greedy search has a fast computa-
tional speed because only a linear scan along a chromo-
some is needed.

Formal statistical evaluation

Statistical test is necessary to reduce the false positive seg-
ments identified by the search algorithm. A null model
commonly used for this purpose is based on randomiza-
tion of gene order in the original genome [7]. If the CHS
identified is impossible to form in the random genome,
we can confirm gene associations within the segment. Pre-
vious programmes simulate the null model through per-
muting the genome repeatedly, but it is a time-consuming
procedure. Fortunately, Hoberman et al. [11] have pre-
sented a mathematical treatment for max-gap gene clus-
ters. On the basis of their conclusion, CHSMiner performs
analytical test that can greatly reduce the computational
burden. Specifically, we consider a set of m marked genes
forms a cluster with maximal g insertions allowed
between two adjacent genes. First, if we assume every fam-
ily contains only one gene, the exact probability of observ-
ing the cluster in a random genome of n genes is [11]

(n-m+1-(m-1)g / 2)(g+1)™ 1
n

P(n,m, g) =

m

Next, we consider the general case that a family contains
more than one gene. We denote F = {f}, f,, ... f,,}, where f;
is the number of genes of the same family with gene j in
the cluster. Then the probability above can be corrected as:

Qnm g F)=pPnm [ | £;

j=1

Finally, we multiply the probabilities that the cluster is
observed in both genomes for comparison, each with
parameters (n,, F,) and (n,, F,):

Q(ny, m, g F1)Q(ny, m, g F)

The value reflects the probability that a given CHS with
maximal gap size g or smaller is observed in two inde-
pendently and randomly ordered genomes. When the size
of the CHS m is fixed, the smaller the maximal gap size is,
the harder it can be observed. Therefore, the value can be
treated as the p-value for the CHS. As a lot of CHSs should
be assessed in whole genome comparison, we recom-
mend an extra multiple test correction (e.g. Bonferroni
correction) to the raw p-values in order to control false
positive results.
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Java package and GUI for visualization

CHSMiner is characterized by its graphical interface (Fig-
ure 2A) and several convenient features for end users
include:

i. Automatic data download from Ensembl database [12]
for well assembled genomes.

ii. Interactive operations and flexible parameter settings.

iii. Visual display of CHSs from an individual one to the
whole genome pattern (Figure 2B, C).

iv. Useful graphic functions. The image can be saved as
vector graph format for further edit.

The application was entirely written in Java and distrib-
uted as an executable jar package. It could run on any plat-
form supporting Java Runtime Environment (1.5 or
higher). Full source code and documents are also pro-
vided at our web site, and users can access them under
GNU General Public License v2.0.

Results and discussion

Comparison on simulated data

We used simulated data to compare CHSMiner with sim-
ilar existing software as we can easily observe their per-
formance by adjusting the extent of degeneration. We
adopted the methods developed by Hampson et al. [8] to
simulate two artificial chromosomes that contained a pre-
defined CHS (see Methods). The fraction of conserved
genes between the CHS was specified as 30%, which was
approximate to biological realistic parameters [8].
Another two parameters were changed to adjust the noise
against the CHS recognition: (1) background similarity R,
and (2) the number of inversions F. Background similarity
reflects extensive duplications and transpositions of indi-
vidual genes [13]. In this analysis, R = 0.2 and 0.3 were
chosen and F was varied between 1 and 10° to rearrange
the gene order sufficiently. We compared CHSMiner with
three other typical programmes for CHS detection, i.e.
LineUp [6], CloseUp [8] and HomologyTeams [10] (Table
1). They were run on the simulated data set with the same
parameter settings (see Methods). Both sensitivity and
specificity were calculated for the results to evaluate the
performance of the four programmes (Figure 3).

It is clear that the sensitivity of the algorithm based on
colinearity will become gradually poor with the increase
of inversions, whereas the algorithms based on gene con-
tent alone are quite robust to the disorders. Homolo-
gyTeams has the advantage of finding nonnested regions
[14], but its gain of sensitivity is not evident until inver-
sions are extremely frequent (>103). In addition, as statis-
tical validation is not implemented in HomologyTeams,
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its specificity will become quite lower when the back-
ground similarity is increased. CHSMiner and CloseUp
can always have similar and satisfactory sensitivity and
specificity for different R and F, suggesting that the analyt-
ical method of CHSMiner works as well as Monte Carlo
simulation on empirical data. Nonetheless, CHSMiner is
much faster than CloseUp. On a single Pentium processor
CloseUp required more than one hour to run the simu-
lated data set (1000 permutations for each CHS to get a
reliable assessment), whereas CHSMiner took less than
one minute. According to our experience, time is an
important factor in genome comparison as we usually
need to adjust parameters for the program. Thus, our tool
greatly improves the efficiency and usability.

Comparison on human-mouse synteny map

In order to show its performance on real biological data,
we used CHSMiner to construct the synteny map for
human and mouse. We downloaded homolog informa-
tion from Ensembl database [12] and run the program
with different maximal gap size. Each synteny detected
was evaluated by corrected p-value (Bonferroni method)
and only those smaller than 0.05 were preserved. The
results were compared with the synteny map provided by
Ensembl (release 47), which was generated from primary
DNA sequence alignments [15].

We find our result is highly consistent with Ensembl map
when the maximal gap size is equal to one gene (Table 2).
There are 18753 orthologs present in Ensembl map,
where 85% (15866) are found in our result. There are
3518 orthologs absent in Ensembl map, where 87%
(3071) are not found in our result either. Furthermore,
CHSMiner took only less than one minute to accomplish
the analysis. Thus, our software has adequate power in
both accuracy and efficiency to carry on large genome
comparison.

When we increase the maximal gap size to five genes, the
coverage of detected syntenies will become larger (Table
2). Not only nearly all orthologs present in Ensembl map
(18135 in 18753, 97%), but also an amount of ones
absent in it (1209 in 3518, 34%) can now be discovered.
The result does not change too much when the gap size is
increased more (up to 30, data not shown). Since a strict
statistical criterion has been applied for filtering, the
newly obtained CHSs are less likely to be false positives.
The reasonable interpretation is that those degraded CHSs
can not be recognized from the primary sequence by the
strategy of Ensembl. Therefore, CHSMiner is more flexible
and can reveal more complete CHSs by selecting proper
parameters.
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Graphical display of CHS. (A) CHSMiner organizes all identified CHSs as a table. It can generate two types of images for
them. (B) Visualization of individual selected CHS, where homologous genes linked in the CHS are matched and labelled. (C)
Visualization of a whole chromosomal pattern, where all homologous regions in a given chromosome are marked. The image is
interactive and users can zoom in on a specific region.
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Performance comparison on simulated data. The extent of noise was controlled by the background similarity R and the
number of inversions F. For each combination of R and F, 10 samples were simulated. Both sensitivity and specificity were cal-
culated for the result of each sample (see Methods). The data point and error bar represent the mean value and the standard

error of every percentage.

Conclusion

CHSMiner is designed to identify chromosomal homolo-
gous segments based on gene content alone, which ena-
bles it to discover highly degenerated homology.
Compared with previous tools, it has at least three signif-
icant advantages: (1) it has comprised search algorithm,
statistical validation and result display in a uniform plat-
form; (2) it has improved both accuracy and efficiency;
(3) its graphical and interactive interface allows it easy to

Table I: Summary of the four programmes for comparison

use. We hope it will be helpful for biologists who are
interested in the structure and evolution of genomes.

Methods

CHS simulation

First, two artificial chromosomes were created, each con-
taining 1000 genes. The background similarity was simu-
lated by assigning a gene to be the homolog of some other
gene with probability R, regardless of their locations. Then

Programme CHS definition Search algorithm Statistical evaluation
CHSMiner Gene content Bottom-up Analytical calculation
LineUp Gene colinearity Bottom-up Monte Carlo simulation
CloseUp Gene content Bottom-up Monte Carlo simulation
HomologyTeams Gene content Top-down Not available
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Table 2: Number of orthologs covered by Ensembl synteny map and CHSMiner result

CHSMiner result (by maximal gap size)

One gene Five genes Total
Present Absent Present Absent
Ensembl synteny map Present 15866 2887 18135 618 18753
Absent 447 3071 1209 2309 3518
Total 16313 5958 19344 2927

the middle 20% of the two chromosomes were specified
as a known CHS. Within the region, a gene in one chro-
mosome would have a corresponding homolog in the
other chromosome with probability 0.3. Finally, the
inversions were simulated by exchanging two randomly
chosen neighbouring gene pairs.

Software comparison

All the four software packages were tested on the simu-
lated data set with the same parameter settings, i.e. the gap
size should be less than 20 genes and each CHS should
have at least 3 matched genes. LineUp was run with inver-
sions forbidden. If statistical test was available, each CHS
detected was further assessed by corrected p-value (Bonfer-
roni method) and only those smaller than 0.05 were pre-
served. The sensitivity was calculated as P/TP, where TP
was the number of genes in the predefined CHS (TP =
200) and P was the number detected among them. The
specificity was calculated as N/TN, where TN was the
number of genes not in the predefined CHS (TN = 800)
and N was the number remaining undetected in TN.
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