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Abstract

Background: This paper describes the theory and implementation of a new software tool, called Jane, for the
study of historical associations. This problem arises in parasitology (associations of hosts and parasites), molecular
systematics (associations of orderings and genes), and biogeography (associations of regions and orderings). The
underlying problem is that of reconciling pairs of trees subject to biologically plausible events and costs associated
with these events. Existing software tools for this problem have strengths and limitations, and the new Jane tool
described here provides functionality that complements existing tools.

Results: The Jane software tool uses a polynomial time dynamic programming algorithm in conjunction with a
genetic algorithm to find very good, and often optimal, solutions even for relatively large pairs of trees. The tool
allows the user to provide rich timing information on both the host and parasite trees. In addition the user can
limit host switch distance and specify multiple host switch costs by specifying regions in the host tree and costs
for host switches between pairs of regions. Jane also provides a graphical user interface that allows the user to
interactively experiment with modifications to the solutions found by the program.

Conclusions: Jane is shown to be a useful tool for cophylogenetic reconstruction. Its functionality complements
existing tools and it is therefore likely to be of use to researchers in the areas of parasitology, molecular
systematics, and biogeography.

Background
One widely-used approach to the study of host-parasite
relationships involves reconciling host and parasite phy-
logenetic trees via event-cost methods. In this approach,
each event in the parasite phylogeny is mapped onto the
host tree and a mapping is sought that minimizes the
total cost with respect to a given cost metric. Such map-
pings allow us to examine sets of events that may have
led to the coevolution of the host and parasite phyloge-
nies and are the basis of statistical tests for assessing
congruence.
Specifically, in the cophylogeny reconstruction problem

we are given a host tree H; a parasite tree P; a function
� mapping the leaves or “tips” of P, representing the
extant taxa, to the tips of H; and costs associated with
each of four biologically plausible operations: cospecia-
tion, duplication, host switching, and loss (Figure 1).
Cospeciation occurs when a vertex (speciation event) in

the parasite tree is associated with a vertex (speciation
event) in the host tree. Duplication occurs when a ver-
tex in the parasite tree is associated with an edge in the
host tree. This event implies that the parasite lineage
speciated independently of the host lineage. Host
switching occurs when a duplication event is accompa-
nied by one of the two descendants of the parasite ver-
tex switching to an edge in a different part of the host
tree. Once the parasite vertices are mapped onto the
host tree, loss occurs when the path between a parasite
vertex and its child passes through a host vertex. The
objective is to find a least cost association of the trees
that can be constructed with these four types of events.
We have recently shown that the cophylogeny recon-

struction problem is NP-complete [1,2], and thus poly-
nomial-time algorithms that find optimal solutions are
unlikely to exist. Therefore, heuristics are required to
find good, but not necessarily optimal, solutions.
A number of computational approaches for the cophy-

logeny reconstruction problem have been proposed and
implemented in software. TreeFitter [3] and Component
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[4] were the first two programs for cophylogeny recon-
struction. TreeFitter, according to its documentation,
employs two methods: one provides a lower bound on
the optimal solution but may introduce invalid solutions
due to inconsistent host-switching events [3] while the
other method is not described in detail but reportedly
finds upper bounds on the cost. This software runs only
on a limited number of platforms, some no longer avail-
able. While Component has several useful features, it
does not consider host switching events and such events
are known to be important in coevolution.
The computational intractability of the cophylogeny

reconstruction problem is, in fact, due to host switching
events. If host switching events are not considered then
the problem can be solved optimally in polynomial time
by a simple greedy algorithm.
Host switching events can induce complex timing

relationships between events. Figure 2(a) shows how a
set of host switching events can result in a solution that
is not valid because of an inconsistent sequence of tim-
ing events. Such a set of host switching events is called
strongly incompatible [5]. In other cases, a set of host
switching events may cause timing inconsistencies that
can be resolved by moving the landing sites of one or
more host switches to an earlier time at the expense of
adding extra loss events. Such a set of switching events

is called weakly incompatible [5]. Figure 2(b) shows a
set of associations with weakly incompatible host
switches and Figure 2(c) shows how these host switches
can be modified to construct a valid mapping.
In seminal work on this problem, Charleston devel-

oped a data structure and algorithm called Jungles that
solves the cophylogeny reconstruction problem opti-
mally [5]. The Jungles approach discards all solutions
with strong incompatibilities and optimally resolves
weak incompatibilities. Jungles are implemented in the
TreeMap software package [6]. While TreeMap is
powerful and feature-rich, the worst-case time complex-
ity of the Jungles algorithm is inherently exponential in
the size of the host and parasite trees. Therefore, Tree-
Map is very useful for relatively small trees but it cannot
be used for larger trees (e.g. pairs of trees with 25 tips
each run for over two days on a commodity personal
computer and eventually exceed available memory).
More recently, Merkle and Middendorf have proposed

a heuristic for the cophylogeny reconstruction problem
[7] and this heuristic has been implemented in the Tar-
zan software tool [8]. Tarzan is very fast (e.g. running in
under one second on trees with 50 tips on a commodity
personal computer) and in some cases can produce
solutions that can be shown to be optimal. In particular,
if Tarzan does not encounter any weak timing

Figure 1 Top: A simple tanglegram with host tree in black at left and parasite tree in gray on right. The associations � between tips is
shown in dotted lines. Bottom: Two possible reconstructions that explain the relationship between H and P with events labeled.
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incompatibilities then, in theory, the solutions are opti-
mal. Unfortunately, Tarzan occasionally reports solu-
tions that are putatively optimal but are in fact incorrect
due to weak or strong timing incompatibilities [9].
When Tarzan finds weak timing incompatibilities, it
uses a heuristic to resolve them and thus cannot guar-
antee that the resulting solutions are optimal. In some
cases, Tarzan encounters strong timing incompatibilities
and reports that it cannot find a solution when solutions
do exist.
In spite of the limitations described above, Tarzan has

some important and unique features. In particular, Tar-
zan allows approximate times to be specified for diver-
gence events in the host and parasite trees, thus
restricting the solution space to mappings that are plau-
sible for known timing of events. Specifically, nodes in
the host and parasite trees can be partitioned into “time
zones” and a node in the parasite tree can only be

mapped to a region in the host tree in the same time
zone. Since accurate timing is notoriously difficult to
establish, Tarzan can allow a node to be associated with
a range of time zones rather than a single time zone.
However, due to the complexity of solving trees with
time zones, Tarzan allows only parasite nodes to have
time zone ranges. Even with this restriction, Merkle and
Middendorf have demonstrated the value of time zone
information by applying Tarzan to several host-parasite
problems in the literature.
In this paper, we describe a new approach to the

cophylogeny reconstruction problem and a software
package called Jane that implements our technique.
(The name “Jane” is used to indicate that this tools is
complementary to Tarzan.) Specifically, Jane uses a
dynamic programming algorithm [1] that finds optimal
solutions in polynomial time for any fixed relative order-
ing, or “timing”, of the vertices in the host tree. Since

Figure 2 (a) Strongly incompatible host switching events. Parasite a on edge (u, w) switches to child b on edge (t, v) implying that v occurs
after u. Similarly, parasite c on edge (v, y) switches to child d on edge (t, u) implying that u occurs before v. This results in an irreconcilable
timing conflict. (b) Weakly incompatible host switching events. Parasite a on edge (t, v) switches to child b on edge (u, w) implying that a
occurs after u and thus after c. Similarly, parasite c on edge (t, u) switches to child d on edge (v, z) implying that c occurs after v and thus after
a. (c) This conflict can be resolved, for example, by moving one of the landing sites of a host switch earlier in time, incurring an additional loss
event at u.
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there are many possible timings of the events in the
host tree, Jane applies a genetic algorithm that maintains
a set (or “population” in the language of genetic algo-
rithms) of timings of the host tree, uses the dynamic
programming algorithm to solve the problem optimally
for each timing in the set in order to determine the cost
for that timing, and then uses the cost as the “goodness”
(or “fitness” in the language of genetic algorithms) of
that timing. Using appropriately selected crossover and
mutation operators, Jane then generates the next set of
timings. The user can select the size of the sets to be
used and the number of iterations (or “generations” in
the language of genetic algorithms). Jane reports the
best solutions discovered by the end of the last iteration.
Experimental results, reported later in this paper,

demonstrate that Jane finds very good, and often opti-
mal, solutions. While Jane is slower than Tarzan, it is
fast enough to be used for large problems (e.g. optimal
solutions for trees with 35-45 tips have been found in
under one hour on a commodity personal computer).
Moreover, the dynamic programming and genetic algo-
rithm technique employed by Jane allow for a rich set of
features that are not found in existing software packages
for this problem. Among these unique features are:

• Ranges of time zones can be specified for diver-
gence events in both the host and parasite trees.
• Upper bounds can be placed on the host switch
distance, defined as the number of nodes passed
from the takeoff to the landing site of a host switch.
The significance of host switch distance, particularly
for host-specific parasites, has been noted in several
studies [10-12].
• Vertices in the host tree can be partitioned arbitra-
rily into regions and independent switch costs can
be set between each pair of regions. As a special
case, when every node in the host tree is in its own
region this feature allows us to specify all possible
host switch costs independently, for example based
on host switch distance as suggested in [10].
• The graphical user interface allows the user to
interactively modify solutions, with costs updated
automatically, in order to explore the impact of per-
turbations on the computed solutions.

Implementation
A timing of a host tree is an assignment of each internal
vertex in the tree to a distinct relative time. The tips of
the host tree are assumed to occur at the same relative
time (current time). Figure 3(a) shows a host tree with
the internal vertices labelled a, b, c, d, e. Three distinct
timings are shown in Figure 3(b), (c), and 3(d).
Intuitively, a fixed timing for host tree events makes

the problem computationally easier than the general

problem because timing incompatibilities cannot arise in
a fixed timing. For example, in the timing shown in Fig-
ure 3(b), a parasite associated with edge (a, c) can have
a child on edge (b, d) via a host switch occurring
between relative times 2 and 3. However, for the timing
in Figure 3(c), this is not possible since node c occurs
before node b.
Consider a timing and two vertices x and y occurring

at consecutive relative times such that neither x nor y is
the parent of the other. If the relative times of these two
vertices are switched, the resulting timing is said to be a
neighbor of the original timing. For example, in the tim-
ing in Figure 3(c), vertices c and b occur at consecutive
relative times 2 and 3, respectively. Switching the rela-
tive times of these two vertices results in the timing in
Figure 3(d).
Although the cophylogeny reconstruction problem is

NP-complete, the problem can be solved optimally in
polynomial time via dynamic programming, for any
fixed timing in the host tree [1]. (The dynamic program-
ming algorithm does not require that the events in the
parasite tree have a fixed timing.) Unfortunately, the
number of different timings grows exponentially with
the number of tips, so the approach of examining all
timings is not viable in general. However, a meta-heuris-
tic approach can be used where we begin with a random
timing for the host tree. We then solve the reconstruc-
tion problem optimally for this timing and compute the
cost of this solution. Next, a neighbor timing is found
and the problem is solved optimally for this timing. The
policy for selecting neighbor timings and choosing
which ones to keep and which to discard is dictated by
the specific meta-heuristic.
For example, consider this approach with the simple

gradient descent meta-heuristic. This heuristic begins by
choosing an initial timing, τ. The dynamic programming
algorithm is used to find the cost for each neighbor of τ
and the neighbor that results in a least cost solution is
chosen as the new timing τ. The process is repeated
until a local minima is reached.
We experimented with gradient descent, simulated

annealing, and genetic algorithms and found that a
genetic algorithm approach consistently outperformed
the others. In the genetic algorithm approach, we begin
with an initial set of random timings for the host tree
where the set has some given size S. For each timing,
we solve the reconstruction problem optimally via
dynamic programming to compute the cost for that tim-
ing. Next, two timings are chosen from the set at ran-
dom, with repetition allowed, with probability weighted
exponentially with fitness. Let τ1 and τ2 denote a specific
chosen pair of timings. A crossover operator takes the
two timings τ1 and τ2 and constructs a new timing, τnew,
with elements from each of the two input timings. This
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process is performed until a new set of size S is con-
structed. The new set now replaces the previous set and
the process is repeated until some stop condition is met.
In our case the stop condition is a user-specified num-
ber of iterations.
We implemented and evaluated a number of different

crossover operators. The most effective operator in our
experiments, and thus the one implemented in Jane, is
described next using an illustrative example.
Two timings, τ1 and τ2 are selected at random from

the current set as described above. A subtree, T, of the
host tree is selected at random as shown in the example
in Figure 4.
The selected subtree T is removed from one of the

timings, τ1, as shown in the upper left of Figure 5, while
only the subtree T is kept in the other timing, τ2, as
shown in the lower left of Figure 5.

Now, we construct a new timing τnew by selecting rela-
tive times for each of its internal nodes. This is per-
formed by constructing three lists, one for the nodes
not in T ordered by their times in τ1, one for the nodes
in T ordered by their times in τ2, and one initially
empty list for the new timing τnew as shown in Table 1.
The first time in τnew which needs a node assigned is

time 1. To decide which node to select for this time, we
examine the first nodes in the lists for τ1 and τ2. The
candidates are a and f, but since node f ’s parent, c, has
not been assigned a time yet, we cannot consider it.
Node a is therefore assigned to time 1 by default. This
process is repeated and nodes b and c are placed in
times 2 and 3. Table 2 shows the table at this point.
Now, d and f are candidates for time 4. In general, the

algorithm chooses the candidate whose time is closest
to the time under consideration. Since d is at time 5 in

Figure 3 (a) A host tree with three different timings shown in (b), (c), and (d). The numbers underneath each timing indicate the relative
time of each vertex in that timing. The timings in (c) and (d) differ only in the relative times of nodes b and c, two nodes that occur at
consecutive relative times but such that neither is the parent of the other. Thus, these two timings are said to be neighbors.
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τ1 and f is at time 3 in τ2, they are equally close to time
4 and thus one is chosen at random. For this example, f
is chosen for time 4.
Next, d and h are considered for time 5 in τnew. Since

d has time 5 and h has time 6, d is chosen. Continuing
in this fashion, the resulting timing for τnew is con-
structed and shown in Table 3 with the timing in the
tree shown on the right side of Figure 5.
This crossover operator was empirically found to pre-

serve beneficial host switches and maintain a higher
diversity of different solutions than other tested cross-
over operators. In order to introduce additional varia-
tion into the sets, some fraction of timings are selected
for random mutation, where a mutation involves swap-
ping the order of two nodes that occur at consecutive
times and do not have a parent-child relationship. There
are several parameters in this genetic algorithm includ-
ing those in the probability function for selecting tim-
ings for crossover and the mutation rate.

Results
Jane is implemented in Java and comes in a platform-
independent jar file. The implementation is multi-
threaded to take advantage of multi-core systems. The
dynamic programming step used to evaluate a timing in
the genetic algorithm is the primary contributor to
Jane’s running time. Since the genetic algorithm main-
tains a set of timings to be evaluated, multi-threading
allows for near-linear speedup on multi-core systems.

Jane can be run interactively through a graphical user
interface shown in Figure 6 or directly from the com-
mand line. The latter option is convenient for running
large numbers of tests under the control of a script.
Jane has a number of user-definable parameters

including event costs, host switch distance bound, and
the number of iterations and the set size in the genetic
solver. These parameters are all exposed to the user in
the graphical user interface. Guidance in choosing the
number of sets and set size, based on systematic experi-
ments, is available on the Jane website [13].
Other parameters that are less likely to be of interest

to the user include those for the rate at which timings
are mutated in the genetic algorithm, among others.
These parameters are not exposed in the graphical user
interface but can be set in the command-line version of
Jane. Values of these parameters were systematically
evaluated and the best values found are used as defaults.
Jane can import its files in either Tarzan or a Nexus-

based format. A file must specify the host and parasite
trees and the tip associations. Optionally, the file can
specify time zones or time zone ranges as well as
regions (groups of nodes in the host tree) and the host
switch costs between each pair of regions. Jane reports
both the best solution found and a set of distinct tim-
ings that admit this solution. The user can select such a
timing, see a graphical representation of the solution,
and modify the solution by clicking on a parasite asso-
ciation on the host tree and moving it elsewhere on the
host. When the parasite node is selected, Jane displays
alternate association sites using three colors: yellow indi-
cates that there is no increase in cost in moving the
solution to this location, red indicates an increase in
cost, and green indicates a decrease in cost. (Since only
reports the best solutions found, green choices will not
arise initially, but may arise after the user has first made
some choices that increase the cost.)
Experimental Results
We have examined the results found by Tarzan and Jane
on six problem instances from the literature. The host
and parasite trees in these problems ranged from 8 to
44 tips. In some problem instances, the host and para-
site trees had different number of tips. For example, in
some cases multiple parasite tips mapped to the same
host tip while in other cases some host tips had no asso-
ciated parasite tips. TreeMap was not used in these
experiments because the exponential time and space
that it requires precluded its use for most of the pro-
blem instances.

• Problem 1 is for pocket gophers and their chewing
lice parasites [5,14]. The host tree has 8 tips and the
parasite tree has 10 tips.

Figure 4 The host tree with a randomly selected subtree.
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• Problem 2 is for seabird hosts (albatrosses, petrels,
and penguins) and their ischnocrean lice [15]. The
host tree has 11 tips and the parasite tree 14 tips,
with some hosts tips associated with several lice.
• Problem 3 is for Ficus hosts and their Ceratosolen
pollinators [16,17]. Each of these two trees has 16
tips.
• Problem 4 is for caryophyllaceous hosts and anther
smut fungi parasites [18]. The host tree has 20 tips
and the parasite tree has 24 tips.
• Problem 5 is for finch hosts (family Estrildae) and
their African brood parasites (Vidua) [7,19]. The
host tree has 33 tips and the parasite tree has 21
tips, with some host tips having no associated
parasites.

• Problem 6 is for host plants (Leguminosae) and
phytophagous insects (Psylloidae) on the Canary
Islands [7,20]. The host tree has 36 tips and the
parasite tree has 44 tips.

The event costs used here were 0 for cospeciation, 1
for duplication, 1 for host switching, and 2 for loss.
(These costs are with respect to Charleston’s cost
scheme [5]. Tarzan uses a slightly different scheme and
the appropriate conversion [7] was performed for cor-
rect comparisons with Tarzan.)
Jane permits the user to set the number of iterations

(or “generations” in the language of genetic algorithms),
G, and the size, S, for each set (or “population” in the
language of genetic algorithms). The number of

Figure 5 At left, two selected timings, τ1 and τ2. The subtree T is removed from τ1 while only T is kept in τ2, as indicated by grayed edges
and vertices. The new timing τnew is shown on the right.

Table 1 Initial listing of nodes.

τ1 τ2 τnew
node time node time node time

a 1 f 3 1

b 2 h 6 2

c 3 i 8 3

d 5 4

g 7 5

e 8 6

7

8

9

Table 2 Assignments from τ1 made such that the first
node in τ2 can be assigned.

τ1 τ2 τnew
node time node time node time

a 1 f 3 a 1

b 2 h 6 b 2

c 3 i 8 c 3

d 5 4

g 7 5

e 8 6

7

8

9
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invocations of the dynamic programming algorithm is
equal to the product of G and S. Since the dynamic pro-
gramming step dominates the running time, it is desir-
able to keep this product as low as possible. We have
performed extensive experimental studies to determine
good choices for the values of these parameters and the
results of these studies are summarized on the Jane
website [13]. In brief, we have found that for the small
to medium-sized trees in our examples, a good choice is
to have G ≈ 2S and use approximately 1000 runs of the
dynamic programming solver. Solving for G and S
under these assumptions, we chose G = 45 sets of size S
= 23.
Jane incorporates randomness in several places: the

selection of the set in the initial iteration, the random
choice of timings and subtrees used in the crossover
step, and random mutations of timings. Therefore, the
best solutions found by Jane can potentially vary from
run to run. To test the sensitivity to this randomness in
the algorithm, we ran Jane 30 times for each problem
(each run comprising 45 sets of set size 23).
The results of these computational experiments are

summarized in Table 4. For Jane, the columns “Min”,
“Max”, and “Mean” represent the minimum, maximum,
and mean costs of the best solutions found over the 30
independent runs. Tarzan is entirely deterministic so the
“Min” column there represents the best solution found
by Tarzan. The results show that for the smaller trees in
Problems 1 through 4, the randomness inherent in the
genetic algorithm had no impact on the best solution
found by Jane. However, for the larger trees in Problems
5 and 6, the randomness in the algorithm contributed to
modest variability in the best solutions.
It should be noted that when Tarzan succeeds in find-

ing a valid result, these results are, in theory, optimal.
Thus, both Jane and Tarzan found optimal solutions in
every case, with the exception of Problems 4 and 6. In
the case of Problem 4, Tarzan reported solutions that
used a host switching event that is not permitted in

either Jane or TreeMap whereas in Problem 6 Tarzan
reported a solution that was incorrect due to strong
timing incompatibilities [9]. (Tarzan permits a parasite p
to switch from host edge e to host edge e’ at any time.
TreeMap and Jane require that host switches occur con-
temporaneously with a duplication event.)
In addition, we examined several instances of the

cophylogeny problems in the literature where solutions
were reported using tools such as TreeMap and TreeFit-
ter. We then analyzed those instances using Jane (with
the same number of iterations and set size as in the
experiments above) to see how the solutions compared.
For example, we considered the results described by
Hughes et al. [21] on the cophylogeny problem for max-
imum parsimony phylogenetic trees of pelecaniform
birds and Pectinopygus lice. In that study, TreeMap and
TreeFitter were used to find least cost solutions for
these trees with 18 tips each. Using default cost settings,
the optimal solutions found by both TreeMap and Tree-
Fitter incurred 11 cospeciations, 0 duplications, 3 loss
events, and 6 host switches. In contrast, using Tree-
Map’s default cost settings, Jane found 19 optimal solu-
tions all using 12 cospeciations, 0 duplications, 5 loss
events, and 5 host switches. Under the TreeMap default
cost settings, TreeMap’s solution had cost 21 while
Jane’s solutions had cost 20. Using the default cost set-
tings from TreeFitter, Jane found solutions with 11
cospeciations, 0 duplications, 2 loss events, and 6 host
switches.
As a second example, we examined the case of petrel

lice on the genus Halipeurus studied by Page et al. [22].
In this study, TreeMap was used to reconcile a parasite
tree with 14 tips and a host tree with 13 tips (two para-
sites were associated with one host). Using its default
cost settings, TreeMap reported a solution with 6 cospe-
ciations, 4 duplications, 15 losses, and 2 host switches
for a total cost of 25. All of Jane’s solutions under these
cost settings used 6 cospeciations, 1 duplication, 3
losses, and 6 host switches for a total cost of 23. While
in theory TreeMap can find optimal solutions, Page et
al. had to constrain the number of host switches to 3 in
order to solve the problem in a reasonable amount of
time and memory. For this reason, TreeMap did not
discover the lower cost solutions found by Jane. While
the running time of TreeMap was not reported for
these experiments, Jane found its solutions in approxi-
mately two minutes. In general, Jane runs significantly
faster than TreeMap and somewhat slower than Tarzan.
The dominant component in Jane’s running time is the
dynamic programming (DP) solver which runs in time
O(n7) where n is the total number of tips in the host
and parasite trees. For example, for randomly generated
host-parasite instances with 20 tips for each tree, the
average running time of the DP was under 0.25 seconds

Table 3 Final assignment for all nodes in the new
individual.

τ1 τ2 τnew
node time node time node time

a 1 f 3 a 1

b 2 h 6 b 2

c 3 i 8 c 3

d 5 f 4

g 7 d 5

e 8 h 6

g 7

i 8

e 9
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and for 50 tips, the average running time of the DP was
under 11 seconds on a 2.66 GHz Core 2 Duo iMac. For
problems of this size, we found experimentally that the
genetic algorithm requires approximately 1000 invoca-
tions of the DP to find optimal or near-optimal solu-
tions. These results demonstrate that Jane is able to find
very good, and often optimal, solutions within reason-
able computation time.

Conclusions
We have described the new Jane tool for the cophylo-
geny reconstruction problem. In contrast to TreeMap,
Jane can solve much larger problem instances. In con-
trast to Tarzan, Jane always finds correct solutions. Jane
also offers some features that are not found in existing
software tools. For example, Jane allows the user to spe-
cify the maximum permitted host switch distance,

where host switch distance is defined as the length of
the path from the takeoff to the landing site of the
switch in the host tree [10-12]. Additionally, the user
may set different host switch costs for different regions
of the host tree and set ranges of times in both the host
and parasite trees. Jane offers a new graphical user inter-
face that allows the user to explore solutions by interac-
tively modifying them and seeing the impact on the
solution cost. Finally, Jane supports an alternate com-
mand-line interface that allows for convenient imple-
mentation of large experiments under the control of
scripting programs.
Existing software tools for the cophylogeny recon-

struction problem use different algorithmic techniques
and thus potentially produce different solutions. The
practitioner may, therefore, find it valuable to use multi-
ple tools to obtain a larger diversity of different results

Figure 6 The Jane graphical user interface with a selected solution shown in the inset window.
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[21]. Moreover, each tool has some unique and impor-
tant features.

Availability and Requirements
Jane is implemented in Java with the Swing toolkit and
runs on any machine with Java 1.5 or higher. The
source code and documentation are freely available from
the Jane website [13] and are distributed under the
FreeBSD licensing agreement.
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Table 4 Summary of experiments on six host-parasite
problem instances.

Tarzan Jane
Problem Tips Min Time Min Max Mean Mean Time

1 18 11 < 1 sec 11 11 11.0 11.4 sec

2 25 20 < 1 sec 20 20 20.0 40.6 sec

3 32 20 < 1 sec 20 20 20.0 44.0 sec

4 44 50+ < 1 sec 51 51 51.0 743.9 sec

5 54 44 < 1 sec 44 47 44.1 2166.8 sec

6 80 98* < 1 sec 99 105 101.13 4473.6 sec

Key: The second column indicates the sum of the number of tips in the host
and parasite trees. The columns labeled “Min” indicate the best solutions
found. Since Jane uses randomness, the columns “Max” and “Mean” indicate
the worst and average optimal solutions found over 30 independent runs. The
Tarzan solution marked with + used a type of host switch not permitted in
Jane and the solution marked with an asterisk was incorrect due to strong
timing incompatibilities. All experiments were performed on a commodity
iMac Intel Core 2 Duo computer with clock speed of 2.66 GHz and 4 GB
memory.
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