
RESEARCH Open Access

Robinson-Foulds Supertrees
Mukul S Bansal1,2, J Gordon Burleigh3, Oliver Eulenstein2, David Fernández-Baca2*

Abstract

Background: Supertree methods synthesize collections of small phylogenetic trees with incomplete taxon overlap
into comprehensive trees, or supertrees, that include all taxa found in the input trees. Supertree methods based on
the well established Robinson-Foulds (RF) distance have the potential to build supertrees that retain much
information from the input trees. Specifically, the RF supertree problem seeks a binary supertree that minimizes the
sum of the RF distances from the supertree to the input trees. Thus, an RF supertree is a supertree that is
consistent with the largest number of clusters (or clades) from the input trees.

Results: We introduce efficient, local search based, hill-climbing heuristics for the intrinsically hard RF supertree
problem on rooted trees. These heuristics use novel non-trivial algorithms for the SPR and TBR local search
problems which improve on the time complexity of the best known (naïve) solutions by a factor of Θ(n) and Θ(n2)
respectively (where n is the number of taxa, or leaves, in the supertree). We use an implementation of our new
algorithms to examine the performance of the RF supertree method and compare it to matrix representation with
parsimony (MRP) and the triplet supertree method using four supertree data sets. Not only did our RF heuristic
provide fast estimates of RF supertrees in all data sets, but the RF supertrees also retained more of the information
from the input trees (based on the RF distance) than the other supertree methods.

Conclusions: Our heuristics for the RF supertree problem, based on our new local search algorithms, make it
possible for the first time to estimate large supertrees by directly optimizing the RF distance from rooted input
trees to the supertrees. This provides a new and fast method to build accurate supertrees. RF supertrees may also
be useful for estimating majority-rule(-) supertrees, which are a generalization of majority-rule consensus trees.

Introduction
Supertree methods provide a formal approach for com-
bining small phylogenetic trees with incomplete species
overlap in order to build comprehensive species phylo-
genies, or supertrees, that contain all species found in
the input trees. Supertree analyses have produced the
first family-level phylogeny of flowering plants [1] and
the first phylogeny of nearly all extant mammal species
[2]. They have also enabled phylogenetic analyses using
large-scale genomic data sets in bacteria, across eukar-
yotes, and within plants [3,4] and have helped elucidate
the origin of eukaryotic genomes [5]. Furthermore,
supertrees have been used to examine rates and patterns
of species diversification [1,2], to test hypotheses regard-
ing the structure of ecological communities [6], and to
examine extinction risk in current species [7].

Although supertrees can support large-scale evolution-
ary and ecological analyses, there are still numerous
concerns about the performance of existing supertree
methods (e.g., [8-14]). In general, an effective supertree
method must accurately estimate phylogenies from large
data sets in a reasonable amount of time while retaining
much of the phylogenetic information from the input
trees.
By far the most commonly used supertree method is

matrix representation with parsimony (MRP), which
works by solving the parsimony problem on a binary
matrix representation of the input trees [15,16]. While
the parsimony problem is NP-hard, MRP can take
advantage of fast and effective hill-climbing heuristics
implemented in PAUP* or TNT (e.g., [17-19]). MRP
heuristics often perform well in analyses of both simu-
lated and empirical data sets (e.g., [20-22]); however,
there are numerous criticisms of MRP. For example,
MRP shows evidence of biases based on the shape and
size of input trees [8,11], and MRP supertrees may

* Correspondence: fernande@cs.iastate.edu
2Department of Computer Science, Iowa State University, Ames, IA 50011,
USA

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

© 2010 Bansal et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:fernande@cs.iastate.edu
http://creativecommons.org/licenses/by/2.0

contain relationships that are not supported by any of
the input trees [9,12]. Furthermore, it is unclear if or
why minimizing the parsimony score of a matrix repre-
sentation of input trees is a good optimality criterion or
should produce accurate supertrees.
Since evolutionary biologists rarely, if ever, know the

true relationships for a group of species, it is difficult to
assess the accuracy of supertree, or any phylogenetic,
methods. One approach to evaluate the accuracy of
supertrees is with simulations (e.g., [20,21]). However,
simulations inherently simplify the true processes of
evolution, and it is unclear how well the performance of
a phylogenetic method in simulations corresponds to its
performance with empirical data. Perhaps a more useful
way to define the accuracy of a supertree method is to
quantify the amount of phylogenetic information from
the input trees that is retained in the supertree. Ideally,
we want the supertree to reflect the input tree topolo-
gies as much as possible. This suggests that the super-
tree objective should directly evaluate the similarity of
the supertree to the input trees (e.g., [11,23,24]).
Numerous metrics exist to measure the similarity of

input trees to a supertree, and the Robinson-Foulds (RF)
distance metric [25] is among the most widely used. In
fact, numerous studies have evaluated the performance
of supertree methods, including MRP, by measuring the
RF distance between collections of input trees and the
resulting supertrees (e.g., [11,20,21]). The RF supertree
problem seeks a binary supertree that minimizes the
sum of the RF distances between every rooted input tree
and the supertree. The intuition behind seeking a binary
supertree is that, in this setting, minimizing the RF dis-
tance is equivalent to maximizing the number of clus-
ters (or clades) that are shared by the supertree and the
input trees. Thus, an RF supertree is a supertree that is
consistent with the largest number of clusters from the
input trees. Unfortunately, as with MRP, computing RF
supertrees is NP-hard [26]. In this work, we describe
efficient hill-climbing heuristics to estimate RF super-
trees. These heuristics allow the first large-scale esti-
mates of RF supertrees and comparisons of the accuracy
of RF supertrees to other commonly used supertree
methods.
The RF distance metric between two rooted trees is

defined to be a normalized count of the symmetric dif-
ference between the sets of clusters of the two trees. In
the supertree setting, the input trees will often have
only a strict subset of the taxa present in the supertree.
Thus, a high RF distance between an input tree and a
supertree does not necessarily correspond to conflicting
evolutionary histories; it can also indicate incomplete
phylogenetic information. Consequently, in order to
compute the RF distance between an input tree which
has only a strict subset of the taxa in the supertree, we

first restrict the supertree to only the leaf set of the
input tree. This adapted version of the RF distance is
not a metric, or even a distance measure (mathemati-
cally speaking). However, for convenience, we will refer
to this adapted version of the RF distance metric using
the same name.

Previous work
Supertree methods are a generalization of consensus
methods, in which all the input trees have the same leaf
set. The problem of finding an optimal median tree
under the RF distance in such a consensus setting is
well-studied. In particular, it is known that the majority-
rule consensus of the input trees must be a median tree
[27], and it can be found in polynomial time. On the
other hand, finding the optimum binary median tree, i.
e. an RF supertree, in the consensus setting is NP-hard
[26]. This implies that computing an RF supertree in
general is NP-hard as well.
Our definition of RF distance between two trees where

one has only a strict subset of the taxa in the other, cor-
responds to the distance measure used to define “major-
ity-rule(-) supertrees” by Cotton and Wilkinson [28].
This definition restricts the larger tree to only the leaf
set of the smaller tree before evaluating the RF distance.
Majority-rule(-) supertrees are defined to be the strict
consensus of all the optimal median trees under the RF
distance. These median trees are defined similarly to RF
supertrees, except that RF supertrees must be binary
while the median trees can be non-binary. In general,
majority-rule supertrees [28], in both their (-) and (+)
variants, seek to generalize the majority-rule consensus.
Indeed, majority-rule supertrees have been shown to
have several desirable properties reminiscent of major-
ity-rule consensus trees [29]. Although majority-rule
supertrees and RF supertrees are both based on mini-
mizing RF distance, they represent two different
approaches to supertree construction. In particular, the
RF supertree method seeks a supertree that is consistent
with the largest number of clusters (clades) from the
input trees, while majority-rule supertrees do not.
Nevertheless, as we discuss later, RF supertrees could be
used as a starting point to estimate majority-rule(-)
supertrees.
The RF distance between two trees on the same size n

leaf set, with leaves labeled by integers {1, ..., n}, can be
computed in O(n) time [30]. In fact, an (1 + �)-approxi-
mate value of the RF distance can be computed in sub-
linear time, with high probability [31].
In the case of unrooted trees, the RF distance metric

is sometimes also known as the splits metric (e.g., [32]).
The supertree analysis package Clann [23] provides
heuristics that operate on unrooted trees and attempt to
maximize the number of splits shared between the input

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 2 of 12

trees and the inferred supertree. This method is called
the “maximum splits-fit” method.

Local Search
We use a heuristic approach for the RF supertree pro-
blem. Local search is the basis of effective heuristics
for many phylogenetic problems. These heuristics
iteratively search through the space of possible super-
trees guided, at each step, by solutions to some local
search problem. More formally, in these heuristics, a
tree graph (see [32,33]) is defined for the given set of
input trees and some fixed tree edit operation. The
node set of this tree graph represents the set of all
supertrees on the given input trees. An edge is drawn
between two nodes exactly if the corresponding trees
can be transformed into each other by one tree edit
operation. In our setting, the cost of a node in the
graph is the RF distance between the supertree repre-
sented by that node and the given input trees. Given
an initial node in the tree graph, the heuristic’s task is
to find a maximal-length path of steepest descent in
the cost of its nodes and to return the last node on
such a path. This path is found by solving the local
search problem at every node along the path. The local
search problem is to find a node with the minimum
cost in the neighborhood of a given node. The neigh-
borhood is defined by some tree edit operation, and
hence, the time complexity of the local search problem
depends on the tree edit operation used.
Two of the most extensively used tree edit operations

for supertrees are rooted Subtree Prune and Regraft
(SPR) [33-35] and rooted Tree Bisection and Reconnec-
tion (TBR) [22,33,34]. The best known (naïve) algo-
rithms for the SPR and TBR local search problems for
the RF supertree problem require O(kn3) and O(kn4)
time respectively, where k is the number of input trees,
and n is the number of leaves in the supertree solution.

Our Contribution
We describe efficient hill-climbing heuristics for the RF
supertree problem. These heuristics are based on novel
non-trivial algorithms that can solve the corresponding
local search problems for both SPR and TBR in O(kn2)
time, yielding speed-ups of Θ(n) and Θ(n2) over the best
known solutions respectively. These new algorithms are
inspired by fast local search algorithms for the gene
duplication problem [36,37]. Note that while the super-
tree itself must be binary, our algorithms work even if
the input trees are not. We also examine the perfor-
mance of the RF supertree method using four published
supertree data sets, and compare its performance with
MRP and the triplet supertree method [38]. We demon-
strate that the new algorithms enable RF supertree ana-
lyses on large data sets and that the RF supertree

method outperforms other supertree methods in finding
supertrees that are most similar to the input trees based
on the RF distance metric.

Basic Notation and Preliminaries
A tree T is a connected acyclic graph, consisting of a
node set V (T) and an edge set E(T). T is rooted if it has
exactly one distinguished node called the root which we
denote by rt(T). Throughout this work, the term tree
refers to a rooted tree. We define ≤T to be the partial
order on V (T) where x ≤T y if y is a node on the path
between rt(T) and x. The set of minima under ≤T is
denoted by L(T) and its elements are called leaves. The
set of all non-root internal nodes of T, denoted by I(T),
is defined to be the set V (T)\(L(T) ∪ {rt(T)}). If {x, y} Î
E(T) and x ≤Ty then we call y the parent of x denoted
by paT (x) and we call x a child of y. The set of all chil-
dren of y is denoted by ChT(y). T is fully binary if every
node has either zero or two children. If two nodes in T
have the same parent, they are called siblings. The least
common ancestor of a non-empty subset L ⊆ V (T),
denoted as lca(L), is the unique smallest upper bound of
L under ≤T. The subtree of T rooted at node y Î V(T),
denoted by Ty, is the tree induced by {x Î V (T): x ≤ y}.
For each node v Î I(T), the cluster T (v) is defined to
be the set of all leaf nodes in Tv; i.e. T (v) = L(Tv). We
denote the set of all clusters of a tree T by ℋ(T). Given
a set L ⊆ L(T), let T’ be the minimal rooted subtree of
T with leaf set L. We define the leaf induced subtree T
[L] of T on leaf set L to be the tree obtained from T’ by
successively removing each non-root node of degree two
and adjoining its two neighbors. The symmetric differ-
ence of two sets A and B, denoted by AΔB, is the set
(A\B) ∪ (B\A). A profile  is a tuple of trees (T1, ...,
Tk).

The RF Supertree Problem

Given a profile , we define a supertree on  to be a

fully binary tree T* where  (*) ()T Tii

k
1 .

Definition 1 (RF Distance). Given a profile  = (T1, ...,
Tk) and a supertree T * on , we define the RF distance as
follows:

1. For any Ti, where 1 ≤ i ≤ k, RF (Ti, T*) = |ℋ(Ti)
Δℋ(T*[L(Ti)])|.
2. RF T RF T Tii

k
(, *) (, *)   1

3. Let  be the set of supertrees on  , then
RF RF TT() min (, *)*   .

Remark: Traditionally, the value of the RF distance, as
computed above, is normalized by multiplying by 1/2.
However, this does not affect the definition or

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 3 of 12

computation of RF supertrees, and therefore, we do not
normalize the RF distance.
Problem 1 (RF Supertree).

Instance: A profile  .
Find: A supertree Topton  such that RF ( , Topt) =
RF ().

Recall that the RF Supertree problem is NP-hard [27].

Local Search Problems
Here we first provide definitions for the re-rooting
operation (denoted RR) and the TBR[22] and SPR[35]
edit operations and then formulate the related local
search problems that were motivated in the
introduction.
Definition 2 (RR operation). Let T be a tree and x Î

V (T). RR(T, x) is defined to be the tree T, if x = rt(T) or
x Î Ch(rt(T)). Otherwise, RR(T, x) is the tree that is
obtained from T by (i) suppressing rt(T), and (ii) subdi-
viding the edge {pa(x), x} by a new root node. We define
the following extension: RR(T) = ∪x Î V(T){RR(T, x)}.
For technical reasons, before we can define the TBR

operation, we need the following definition.
Definition 3 (Planted tree). Given a tree T, the

planted tree F(T) is the tree obtained by adding a root
edge {p, rt(T)}, where p ∉ V (T), to T.
Definition 4 (TBR operation). (See Fig. 1) Let T be a

tree, e = (u, v) Î E(T), where u = pa(v), and X, Y be the
connected components that are obtained by removing
edge e from T where v Î X and u Î Y. We define TBRT

(v, x, y) for x Î X and y Î Y to be the tree that is
obtained from F(T) by first removing edge e, then repla-
cing the component X by RR(X, x), and then adjoining a
new edge f between x’ = rt(RR(X, x)) and Y as follows:

1. Create a new node y’ that subdivides the edge (pa
(y), y).
2. Adjoin the edge f between nodes x’ and y’.
3. Suppress the node u, and rename x’ as v and y’ as u.

4. Contract the root edge.

Notation. We define the following:

1. TBRT (v, x) = ∪y Î Y {TBRT (v, x, y)}
2. TBRT (v) = ∪x Î X TBRT (v, x)
3. TBRT = ∪(u, v) Î E(T) TBRT(v)
Definition 5 (SPR operation). Let T be a tree, e =
(u, v) Î E(T), where u = pa(v), and X, Y be the con-
nected components that are obtained by removing
edge e from T where v Î X and u Î Y. We define
SPRT (v, y), for y Î Y, to be the tree TBRT (v, v, y).
We say that the tree SPRT (v, y) is obtained from T
by a subtree prune and regraft (SPR) operation that
prunes subtree Tv and regrafts it above node y.

Notation. We define the following:

1. SPRT (v) = ∪y Î Y{SPRT (v, y)}
2. SPRT = ∪(u, v) Î E(T) SPRT(v)

Note that an SPR operation for a given tree T can be
briefly described through the following four steps: (i)
prune some subtree P from T, (ii) add a root edge to
the remaining tree S, (iii) regraft P into an edge of the
remaining tree S, and (iv) contract the root edge.
We now define the relevant local search problems

based on the TBR and SPR operations.
Problem 2 (TBR-Scoring (TBR-S)). Given instance

〈  , T〉, where  is the profile (T1, ..., Tk) and T is a
supertree on  , find a tree T* Î TBRT such that
RF T RF TT T

(, *) min (,)  TBR .
Problem 3 (TBR-Restricted Scoring (TBR-RS)). Given

instance 〈 , T, v〉, where  is the profile (T1, ..., Tk), T
is a supertree on  , and v is a non-root node in
V(T), find a tree T * Î TBRT (v) such that
RF T RF TT vT

(, *) min (,)()  TBR .
The problems SPR-Scoring (SPR-S) and SPR-

Restricted Scoring (SPR-RS) are defined analogously to
the problems TBR-S and TBR-RS respectively.

Figure 1 TBR Operation. Example depicting a TBR operation which transforms tree S into tree S’ = TBRS(v, x, y).

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 4 of 12

Throughout the remainder of this manuscript, k is the
number of trees in the profile  , T denotes a supertree
on  , and n is the number of leaves in T. The follow-
ing observation follows from Definition 4.
Observation 1. The TBR-S problem on instance 〈  ,

T〉 can be solved by solving the TBR-RS problem |E(T)|
times.
We show how to solve the TBR-S problem on the

instance 〈  , T〉 in O(kn2) time. Since SPRT ⊆ TBRT

this also implies an O(kn2) solution for the SPR-S pro-
blem. This gives a speed-up of Θ(n2) and Θ(n) over the
best known (naïve) algorithms for the TBR-S and SPR-S
problems respectively.
In particular, we first show that any instance of the

TBR-RS problem can be decomposed into an instance of
an SPR-RS problem, and an instance of a Rooting pro-
blem (defined in the next section). We show how to
solve both these problems in O(kn) time, yielding an O
(kn) time solution for the TBR-RS problem. This imme-
diately implies an O(kn2) time algorithm for the TBR-S
problem (see Observation 1).
Note that the size of the set TBRT is Θ(n3). Thus, for

each tree in the input profile the time complexity of
computing and enumerating the RF distances of all trees
in TBRT is Ω(n3). However, to solve the TBR-S problem
one only needs to find a tree with the minimum RF dis-
tance. This lets us solve the TBR-S problem in time that
is sub-linear in the size of TBRT. In fact, after the initial
O(kn2) preprocessing step, our algorithm can output the
RF distance of any tree in TBRT in O(1) time.

Structural Properties
Throughout this section, we limit our attention to one
tree S from the profile  . We show how to solve the
TBR-RS problem for the instance 〈(S), T, v〉 for some
non-root node v Î V (T) in O(n) time. Based on this
solution, it is straightforward to solve the TBR-RS pro-
blem on the instance 〈  , T, v〉 with-in O(kn) time as
well. For clarity, we will also assume that L(S) = L(T).
In general, if L(S) ⊂ L(T) then we can simply set T to
be T [L(S)]. This takes O(n) time and, consequently,
does not affect the time complexity of our algorithm.
Our algorithm makes use of the LCA mapping from S

to T. This mapping is defined as follows.
Definition 6 (LCA Mapping). Given two trees T’ and

T such that L(T’) ⊆ L(T), the LCA mapping ℳT’, T: V
(T’) ® V(T) is the mapping ℳT’, T (u) = lcaT (L(Tu)).
Notation. We define a boolean function fT: I(S) ® {0, 1}

such that fT (u) = 1 if there exists a node v Î I(T) such
that S (u) = T (v), and fT (u) = 0 otherwise. Thus, fT (u)
= 1 if and only if the cluster S (u) exists in the tree T as
well. Additionally, we define ℱT = {u Î I(S): fT (u) = 0};
that is, ℱT is the set of all nodes u Î I(S) such that the
cluster S (u) does not exist in the tree T.

The following lemma associates the value RF(S, T)
with the cardinality of the set ℱT.
Lemma 1. RF(S, T) = |I(T)| - |I(S)| + 2·|ℱT |.
Proof. Let T denote the set {u Î I(S): fT (u) = 1}. By

the definition of RF (S, T), we must have RF(S, T) = |I
(T)| + |I(S)| - 2·|T |. And hence, since |T | + |ℱT | =
I(S), we get RF(S, T) = |I(T)| - |I(S)| + 2·|ℱT |. □
Lemma 2. For any u Î I(S), fT (u) = 1 if and only if

| S (u)| = | T (ℳS, T (u))|.
Proof. If | S (u)| = | T (ℳS, T(u))| then we must have
S (u) = T (ℳS, T (u)) and, consequently, fT (u) = 1. In
the other direction, if | S (u)| ≠ | T (ℳS, T (u))|, then
we must have S (u) ⊂ T (ℳS , T (u)) and, conse-
quently, fT (u) = 0. □
The LCA mapping from S to T can be computed in O

(n) time [39], and consequently, by Lemmas 1 and 2, we
can compute the RF distance between S and T in O(n)
time as well (other O(n)-time algorithms for calculating
the RF distance are presented in [30,31]). Moreover,
Lemma 1 implies that in order to find a tree T* Î TBRT

(v) such that RF T RF TT vT
(, *) min (,)()  TBR , it is

sufficient to find a tree T* Î TBRT (v) for which
| | min | |* () T T v TT

  TBR .
Remark: An implicit assumption here is that the leaves

of both trees are labeled by integers {1, ..., n}. If the leaf
labels are arbitrary, then we require an additional O(kn
log n)-time preprocessing step to relabel the leaves of
the trees in the given profile. Note, however, that this
additional step does not add to the overall time com-
plexity of solving the TBR-S or SPR-S problems.
We now show that the TBR-RS problem can be solved

by solving two smaller problems separately and combin-
ing their solutions.
As before, we limit our attention to one tree S from

the profile  . Given the TBR-RS instance 〈(S), T, v〉, we
define a bipartition {X, X } of I(S), where X = {u Î I(S):
ℳS, T(u) Î V (Tv)}.
Lemma 3. If u Î X, then fT’(u) = fT (u) for all T ’ Î

TBRT (v, v). If u Î X and y denotes the sibling of v, then
fT’(u) = fT (u), where T’ = TBRT(v, x, y) for any x Î V
(Tv).
Proof. Consider the case when u Î X. Let T’ be any

tree in TBRT(v, v) and let node y Î V (T) be such that
T’ = TBR(v, v, y). Thus, for any node w Î V (Tv), the
subtrees Tv and Tv must be identical. Since u Î X, we
must have ℳS , T (u) Î Tv and, consequently,
 


T T

S T S Tu u , ,() () . Lemma 2 now implies that fT’ (u) =
fT (u).
Now consider the case when u Î X . Node y denotes

the sibling of v in tree T and let T’ = TBR(v, x, y), for
some x Î V (Tv). Thus, for any node w Î V(T)\V(Tv),
we must have LT(w) = LT’ (w). Moreover, the leaf sets
of the two subtrees rooted at the children of w in T
must be identical to the leaf sets of the two subtrees

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 5 of 12

rooted at the children of w in T’: This implies that if
ℳS, T(u) = w, then ℳS, T’ (u) = w as well. By Lemma 2
we must therefore have fT’ (u) = fT (u). □
Lemma 3 implies that a tree in TBRT (v) with smallest

RF distance can be obtained by optimizing the rooting for
the pruned subtree, and optimizing the regraft location
separately. This allows us to obtain a tree in TBRT (v) with
smallest RF distance by evaluating only O(n) trees. Con-
trast this with the naïve approach to finding a tree in
TBRT (v) with smallest total distance, which is to evaluate
all trees obtained by rerooting the pruned subtree in all
possible ways, and, for each rerooting, regrafting the sub-
tree in all possible locations. Since there are O(n) ways to
reroot the pruned subtree, and O(n) ways to regraft, this
would require evaluating O(n2) trees. It is interesting to
note that this ability to decompose the TBR-RS problem
into two simpler problems is not unique to the context of
RF supertrees alone. For example, it has been observed
that a similar decomposition can be achieved in the con-
text of the gene duplication problem [37].
Thus, to solve the TBR-RS problem, we must find (i) a

rerooting T’ of the subtree Tv for which ℱT’ is mini-
mized, and (ii) a regraft location y for Tv which mini-
mizes |ℱSPR(v, y)|. Observe that the problem in part (ii)
is simply the SPR-RS problem on the input instance
〈(S), T, v〉. For part (i), consider the following problem
statement.
Problem 4 (Rooting). Given instance 〈 , T, v〉, where
 is the profile (T1, ..., Tk), T is a supertree on  , and
v is a non-root node in V (T), find a node x Î V (Tv) for
which RF ( , TBRT (v, x, y)) is minimum, where y
denotes the sibling of v in T.
Note that the problem in part (i) is the Rooting pro-

blem on the input instance 〈(S), T, v〉. We show how to
solve both the Rooting and the SPR-RS problems in O
(n) time on instance 〈(S), T, v〉. As seen above, based on
Lemma 3, this immediately implies that the TBR-RS
problem for a profile consisting of a single tree can be
solved in O(n) time. To solve the TBR-RS problem on
instance 〈  , T, v〉, we simply solve the Rooting and
SPR-RS problems separately on the input instance 〈 ,
T, v〉, which takes O(kn) time (see Theorems 3 and 4).
We thus have the following two theorems.
Theorem 1. The TBR-RS problem can be solved in O

(kn) time.
Theorem 2. The TBR-S problem can be solved in O

(kn2) time.

Solving the Rooting Problem
To solve the Rooting problem on instance 〈(S), T, v〉, we
rely on an efficient algorithm for computing the value of
fT’ (u) for any T’ Î RR(Tv) and any u Î I(S). This algo-
rithm relies on the following five lemmas. Let a denote

the node ℳS, T (u), y denote the sibling of v in T, and
T’ = TBRT(v, x, y) for x Î V (Tv). Depending on a and
fT (u) there are five possible cases: (i) a ∉ V (Tv), (ii) a =
rt(Tv) and fT (u) = 1, (iii) a = rt(Tv) and fT (u) = 0, (iv) a
Î V (Tv)\rt(Tv) and fT (u) = 1, and (v) a Î V (Tv)\rt(Tv)
and fT (u) = 0. Lemmas 4 through 8 characterize the
value fT’ (u) for each of these five cases respectively.
Lemma 4. If a ∉ V (Tv), then fT’ (u) = fT (u) for any x

Î V (Tv).
Proof. Follows directly from Lemma 3. □
Lemma 5. If a = rt(Tv) and fT (u) = 1, then fT’ (u) = 1

for all x Î V (Tv).
Proof. Since we have a = rt(Tv) and fT (u) = 1, by

Lemma 2 we must have L(Su) = L(Tv). Thus, for any x
Î V (Tv), ℳS, T’ (u) must be the root of the subtree RR
(Tv, x). The lemma follows. □
Lemma 6. Let L denote the set L(Tv)\L(Su), and let

b lcaTv
 (L). If a = rt(Tv) and fT (u) = 0, then,

1. for x Tv
 b, fT’ (u) = 0, and,

2. for x Tv
 b, fT’ (u) = 1 if and only if |L| = |L(Tb)|.

Proof. Since a = rt(Tv) and fT (u) = 0, by Lemma 2 we
must have L(Su) ≠ L(Tv). We analyze each part of the
lemma separately.

1. x Tv
 b: For this case to be valid, we must have

b Tv
 rt(Tv). Therefore, let  b paTv

(b). For any T’
in this case, b’ = paT’ (b). Moreover, L(Tb) ∩ L(Su) ≠
∅. Therefore, we must have b <T’ ℳS, T’ (u) Hence,
  () ()

, ()S Tu uS T


 in this case, and, consequently,
Lemma 2 implies that fT’ (u) = 0.
2. x Tv

 b: We divide our analysis into two cases:
(a) |L| = |L(Tb)|: In this case we must have b ≠
rt(Tv). Therefore, let b’ denote the parent of b in
tree Tv. Now consider the tree T’. The set L(Tb)
must be identical to L(Su). Hence, fT’ (u) = 1 in
this case.
(b) |L| ≠ |L(Tb)|: We claim that there does not
exist any edge (pa(w), w) Î E(Tv) such that L(Tw)
is either L(Su) or L. Let us suppose, for the sake
of contradiction, that such an edge exists. If L
(Tw) = L(Su) then we must have a = w, which is a
contradiction since a = rt(Tv). If L(Tw) = g L then
we must have b = w, and, consequently, |L| ≠ |L
(Tb)|, which is, again, a contradiction. Thus, such
an edge (pa(w), w) Î E(Tv) cannot exist. Hence,
we must have fT’ (u) = 0 for every x Î V (Tv) in
this case.

The lemma follows. □
Lemma 7. If a Î V (Tv)\rt(Tv) and fT(u) = 1, then fT’

(u) = 0 if and only if x < Tv a.

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 6 of 12

Proof. By Lemma 2 we must have L(Su) = L(Ta). We
have two cases:

1. x Tv
 a: In this case we must have ℳS, T’ (u) = a,

and L(Ta) = L(Ta). Thus, L(Su) = L(Ta) and
hence, fT’ (u) = 1.
2. x Tv

 a: In this case, ℳS, T’ (u) must be the root
of the subtree RR(Tv, x). Since L(RR(Tv, x)) = L(Tv),
and L(Su) ≠ L(Tv), Lemma 2 implies that fT’ (u) = 0.

The lemma follows. □
Lemma 8. If a Î V (Tv)\rt(Tv) and fT (u) = 0, then fT’

(u) = 0 for all x Î V (Tv).
Proof. By Lemma 2 we must have L(Su) ≠ L(Ta). We

have two possible cases:

1. x Tv
 a: In this case we must have ℳS, T’ (u) = a,

and L(Ta) = L(Ta). Thus, L(Su) ≠ L(Ta) and
hence, fT’ (u) = 0
2. x Tv

 a: In this case, ℳS, T’ (u) must be the root
of the subtree RR(Tv, x). Since L(RR(Tv, x)) = L(Tv),
and L(Su) ≠ L(Tv), Lemma 2 implies that fT’ (u) = 0.

The lemma follows.
The Algorithm. For any x Î V (Tv) let A(x) denote

the cardinality of the set
{u Î I(S): fT (u) = 0, but fT’ (u) = 1}, and B(x) the car-

dinality of the set
{u Î I(S): fT (u) = 1, but fT’ (u) = 0}, where T’ = TBRT

(v, x, y).
By definition, to solve the Rooting problem we must

find a node x Î V (Tv) for which |A(x)| - |B(x)| is maxi-
mized. Our algorithm computes, at each node x Î V
(Tv), the values A(x) and B(x).
In a preprocessing step, our algorithm computes the

mapping ℳS, T as well as the size of each cluster in S
and T, and creates and initializes (to 0) two counters a
(x) and b(x) at each node x Î V (Tv). This takes O(n)
time. When the algorithm terminates, the values a(x)
and b(x) at any x Î V (Tv) will be the values a(x) and b
(x).
Recall that, given u Î I(S), a denotes the node ℳS, T

(u). Thus, any given u Î I(S) must satisfy the precondi-
tion (given in terms of a) of exactly one of the the Lem-
mas 4 through 8. Moreover, the precondition of each of
these lemmas can be checked in O(1) time.
The algorithm then traverses through S and considers

each node u Î I(S). There are three cases:

1. If u satisfies the preconditions of Lemmas 4, 5, or
8 then we must have fT’ (u) = fT (u). Consequently,
we do nothing in this case.
2. If u satisfies the precondition of Lemma 7, then
we increment the value of b(x) at each node x Î V

(Ta)\{a} (where a is as in the statement of Lemma
7). To do this efficiently we can simply increment a
counter at node a such that, after all u Î I(S) have
been considered, a single pre-order traversal of Tv

can be used to compute the correct values of b(x) at
each x Î V (Tv).
3. If u satisfies the precondition of Lemma 6, then we
proceed as follows: Let a and L be as in the statement
of Lemma 6. According to the Lemma, if we can find
a node b Î V (Tv) such that b lcaTv

 (L) and |L(Tb)|
= |L|, then we increment the value of a(x) at each
node x Î V (Tb); otherwise, if such a b does not exist,
we do nothing. As before, to do this efficiently, we
only increment a single counter at node b such that,
after all u Î I(S) have been considered, a pre-order
traversal of Tv suffices to compute the correct values
of a(x) at each x Î V (Tv). In order to prove the O(n)
run-time for this algorithm we will now explain how
to precompute such a corresponding node b (if it
exists), for each u Î I(S) satisfying the precondition
of Lemma 6, within O(n) time. Note that any edge in
a tree bi-partitions its leaf set. Construct the tree S’ =
S [L(Tv)]. Observe that, given any candidate u, the
corresponding node b exists if and only if the parti-
tion of L(S’) induced by the edge (u, pa(u)) E(S’), is
also induced by some edge, e, in the tree Tv If such
an e exists, then b must be that node on e which is
farther away from the root, i.e. the edge e must be the
edge (b, pa(b)) in Tv This edge e (or its absence) can
be precomputed, for all candidate u, as follows: Com-
pute the strict consensus of the unrooted variants of
the trees S’ and Tv. Every edge in this strict consensus
corresponds to an edge in S’ and an edge in Tv that
induce the same bi-partitions in the two trees.

Thus, for all candidate u that lie on such an edge, the
corresponding node b can be inferred in O(1) time (by
using the association between the edges of the strict
consensus and the edges of S’ and Tv), and for all candi-
date u that do not lie on such an edge, we know that
the corresponding node b does not exist. This strict
consensus of the unrooted variants of S’ and Tv can be
precomputed with-in O(n) time by using the algorithm
of Day [30].
Hence, the Rooting problem for a profile consisting of

a single tree can be solved in O(n) time; yielding the fol-
lowing theorem.
Theorem 3. The Rooting problem can be solved in O

(kn) time.

Solving the SPR-RS Problem
We will show how to solve the SPR-RS problem on
instance 〈(S), T, v〉 in O(n) time. Consider the tree R =
SPRT (v, rt(T)) Observe that, since SPRR(v) = SPRS(v),

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 7 of 12

solving the SPR-RS problem on instance 〈(S), T, v〉 is
equivalent to solving it on the instance 〈(S), R, v〉. Thus,
in the remainder of this section, we will work with tree
R instead of tree S. The following four lemmas let us
efficiently infer, for any u Î I(S), whether fT’ (u) = 1 or
fT’ (u) = 0, for any given T’ Î SPRR(v).
For brevity, let a denote the node ℳS, R(u), and let Q

denote the set V (R)\(V (Rv) ∪ {rt(R)}). Let T’ = SPRR(v,
x), for any x Î Q.
Depending on a and fR(u) there are four possible

cases: (i) a Î V (Rv), (ii) a Î Q and fR(u) = 1, (iii) a Î Q
and fR(u) = 0, and (iv) a = rt(R). Lemmas 9 through 12
characterize the value fT’ (u) for each of these four cases
respectively. □
Lemma 9. If a Î V (Rv), then fT’ (u) = fR(u) for any

x Î Q.
Proof. Observe that TBRR(v, v) = SPRR(v). Lemma 3

now immediately completes the proof. □
Lemma 10. If a Î Q and fR(u) = 1, then,

1. fT’ (u) = 0, for x <R a, and
2. fT’ (u) = 1, otherwise.

Proof. Since fR(u) = 1, Lemma 2 implies that | S (u)| =
| R (a)|. Let T’ = SPRR(v, x); we now have two cases.

1. x <R a: In this case ℳS, T’ (u) = a, and, since | S
(u)| < | R (a)| < |  T (a)|, we must have fT’ (u) = 0
(by Lemma 2).
2. x ≮R a: In this case ℳS, T’ (u) = a, and since | S
(u)| = | R (a)| = |  T (a)|, we must have fT’ (u) = 1
(by Lemma 2).

The lemma follows. □
Lemma 11. If a Î Q and fR(u) = 0, then fT’ (u) = 0 for

any x Î Q.
Proof. Since fR(u) = 0, Lemma 2 implies that | S (u)| ≠

| R (a)|. Thus, by the definition of LCA mapping, | S
(u)| < | R (a)|. Let T’ = SPRR(v, x); we now have two
cases.

1. x <R a: In this case ℳS, T’ (u) = a, and, since | S
(u)| < | R (a)| < |  T (a)|, we must have fT’ (u) = 0
(by Lemma 2).
2. x ≮R a: In this case ℳS, T’ (u) = a, and since | S
(u)| < | R (a)| = |  T (a)|, we must have fT’ (u) = 0
(by Lemma 2).

The lemma follows. □
For the next lemma, let S’ be the tree obtained from S

by suppressing all nodes s for which ℳS, R(s) Î Rv.
Lemma 12. If a = rt(R) and b = ℳS’, R(u), then, fT’ (u) =

1 if and only if x <R b and |L(Rb)| + |L(Rv)| = |L(Su)|.

Proof. First, observe that, since a = rt(R), the mapping
ℳS’, R(u) is well defined. Second, since b = ℳS’, R(u), we
must have L(Su) ⊆ L(Rb), which implies that L(Su) ⊆
L(Rv) ⊆ L(Rb). We now have the following three cases:

1. x ≮R b: In this case we must have ℳS, T’ (u) =
lcaT’ (x, b). By Lemma 2 we know that fT’ (u) = 1
only if | S (u)| = |  T (ℳS, T’ (u))|. However, since
we have L(Su) ⊆ L(Rv) ⊆ L(Rb), and x ≮R b, we
must have | S (u)| < |  T (ℳS, T’ (u))|; and hence, fT’
(u) = 0.
2. x <R b and |L(Rb)| + |L(Rv)| ≠ |L(Su)|: In this
case we must have ℳS, T’ (u) = b. Since |L(Rb)| + |
L(Rv)| ≠ |L(Su)|, we must have L(Su) ⊂ L(Rv) ∪ L

(Rb), which implies that | S (u)| < |  T (ℳS, T’ (u))|.
Thus, by Lemma 2, we must have fT’ (u) = 0.
3. x <R b and |L(Rb)| + |L(Rv)| = |L(Su)|: In this
case we must have ℳS, T’ (u) = b. Moreover, since |
L(Rb)| + |L(Rv)| = |L(Su)|, we must have | S (u)| =
|  T (ℳS, T’ (u))|. Thus, by Lemma 2, we must have
fT’ (u) = 1.

The lemma follows. □
The Algorithm. Note that SPRT (v) = SPRR(v) = ∪x Î Q

SPRR(v, x). For any x Î Q, let A(x) = |{u Î I(S): fR(u) = 0,
but fT’ (u) = 1}|, and B(x) = |{u Î I(S): fR(u) = 1, but fT’
(u) = 0}|, where T’ = SPRR(v, x). By definition, to solve
the SPR-RS problem on instance 〈(S), T, v〉 we must find
a node x Î Q for which |A(x)| - |B(x)| is maximized. Our
algorithm computes, at each node x Î Q, the values A(x)
and B(x).
In a preprocessing step, our algorithm first constructs

the tree R computes the mapping ℳS, R as well as the
size of each cluster in S and R, and creates and initia-
lizes (to 0) two counters a(x) and b(x) at each node x Î
Q. This takes a total of O(n) time. When the algorithm
terminates, the values a(x) and b(x), at any x Î Q will
be the values A(x) and B(x).
Recall that, given u Î I(S), a denotes the node ℳS,

R(u). Thus, any given u Î I(S) must satisfy the pre-
condition (given in terms of a) of exactly one of the
the Lemmas 9 through 12. Moreover, the precondi-
tion of each of these lemmas can be checked in O(1)
time.
The algorithm then traverses through S and considers

each node u Î I(S). There are three cases:

1. If u satisfies the preconditions of Lemmas 9 or 11
then we must have fT’ (u) = fR(u) Consequently, we
do nothing in this case.
2. If u satisfies the precondition of Lemma 10, then
we increment the value of b(x) at each node x Î V
(Ta)\{a} (where a is as in the statement of Lemma

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 8 of 12

10). This can be done efficiently as shown in part (2)
of the algorithm for the Rooting problem.
3. If u satisfies the precondition of Lemma 6, and if |
L(Rb)| + |L(Rv)| = |L(Su)|, then we increment the
value of a(x) at each node x Î V (Tb)\{b} (where a
and b are as in the statement of Lemma 6).

Again, to do this efficiently, we increment a counter at
node b, and perform a subsequent pre-order traversal.
Note also that the mapping ℳS’, R can be computed in
O(n) time in the preprocessing step, and hence the node
b can be inferred in O(1) time. The condition |L(Rb)| +
|L(Rv)| = |L(Su)| is also verifiable in O(1) time.
Hence, the SPR-RS problem for a profile consisting of

a single tree can be solved in O(n) time; yielding the fol-
lowing theorem.
Theorem 4. The SPR-RS problem can be solved in O

(kn) time.
Remark. To improve the performance of local search

heuristics in phylogeny construction, the starting tree
for the first local search step is often constructed using
a greedy ‘stepwise addition’ procedure. This greedy pro-
cedure builds a starting species tree step-by-step by add-
ing one taxon at a time at its locally optimal position. In
the context of RF supertrees, our algorithm for the
SPR-RS problem also yields a Θ(n) speed-up over naïve
algorithms for this greedy procedure.

Experimental Evaluation
In order to evaluate the performance of the RF super-
tree method, we implemented an RF heuristic based on
the SPR local search algorithm. We focused on the SPR
local search because it is faster and simpler to imple-
ment than TBR, and in analyses of MRF and triplet
supertrees, the performance of SPR and TBR was very
similar [22,38]. We compared the performance of the
RF supertree heuristic to MRP and the triplet supertree
method (which seeks a supertree with the most shared
triplets with the collection of input trees) using pub-
lished supertree data sets from sea birds [40], marsupials
[41], placental mammals [42], and legumes [43]. The
published data sets contain between 7 and 726 input
trees and between 112 and 571 total taxa (Table 1).
There are a number of ways to implement any local

search algorithm. Preliminary analyses of the RF heuris-
tic based on the SPR local search indicated that, as with
other phylogenetic methods, the starting tree can affect
the estimate of the final supertree. Occasionally the SPR
searches got caught in local optima with relatively high
RF-distance scores. To ameliorate this potential pro-
blem, we implemented a ratchet search heuristic for RF
supertrees based on the parsimony ratchet [44]. In gen-
eral, a ratchet search performs a number of iterations –
in our case 25 – that consist of two local SPR searches:

one in which the characters (input trees) are equally
weighted, and another in which the set of the characters
are re-weighted. We re-weighted the characters by ran-
domly removing approximately two-thirds of the input
trees. The goal of re-weighting the characters is to alter
the tree space to avoid getting caught in a globally sub-
optimal part of the tree space. At the end of each itera-
tion, the best tree is taken as the starting point of the
next iteration. For each data set, we started RF ratchet
searches from 20 random sequence addition starting
trees, and we also ran three replicates starting from an
optimal MRP supertree. All RF supertree analyses were
performed on an 3 GHz Intel Pentium 4 based desktop
computer with 1 GB of main memory. The RF-ratchet
runs took between 5 seconds (for the Sea Birds data set)
and 90 minutes (for the legume dataset) when starting
from a random sequence addition tree. RF-ratchet runs
starting from optimal MRP trees were at least twice as
fast because they required fewer search steps.
For our MRP analyses, we also tried two heuristic

search methods, both implemented using PAUP* [18].
First, we performed 20 replicates of TBR branch swap-
ping from trees built with random addition sequence

Table 1 Experimental Results

Data Set Supertree Method RF-Distance Parsimony Score

Marsupial (272 RF-Ratchet 1514 2528

taxa; 158 trees) RF-MRP 1502 2513

MRP-TBR 1514 2509

MRP-Ratchet 1514 2509

Triplet 1604 2569

Sea Birds (121 RF-Ratchet 61 223

taxa; 7 trees) RF-MRP 61 223

MRP-TBR 63 221

MRP-Ratchet 63 221

Triplet 61 223

Placental RF-Ratchet 5686 8926

Mammals (116 RF-MRP 5690 8890

taxa; 726 trees) MRP-TBR 5694 8878

MRP-Ratchet 5694 8878

Triplet 6032 9064

Legumes (571 RF-Ratchet 1556 965

taxa; 22 trees) RF-MRP 1534 882

MRP-TBR 1554 856

MRP-Ratchet 1552 854

Triplet N/A N/A

Experimental results comparing the performance of the RF supertree method
to MRP and triplet supertree methods. We used five different supertree
analyses: RF supertrees using our SPR local search algorithm with a ratchet
starting from either random addition sequence trees (RF-ratchet) or MRP trees
(RF-MRP), MRP with TBR branch swapping with (MRP-ratchet) and without
(MRP-TBR) a ratchet search, and triplet supertrees with a TBR local search
(Triplet). We measured the RF distance to the collection of input trees (RF-
distance) and the parsimony score of a best found supertree based on the
matrix representation of the input trees. The best RF distance and parsimony
scores are in bold.

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 9 of 12

starting trees. Next, we performed 20 replicates of a par-
simony ratchet search with TBR branch swapping. Based
on the results of trial analyses, each ratchet search con-
sisted of 25 iterations, each reweighting 15% of the char-
acters. The PAUP* command block for the parsimony
ratchet searches was generated using PAUPRat [45]. For
each data set, we performed 20 replicates of a TBR local
search heuristic starting with random addition sequence
trees. Triplet supertrees were constructed using the pro-
gram from Lin et al. [38]. We were unable to perform
ratchet searches with the existing triplet supertree soft-
ware, and also, due to memory limitations, we were
unable to perform triplet supertree analyses on the
legume data set.
Our analyses demonstrate the effectiveness of our

local search heuristics for the RF supertree problem. In
all four data sets, RF-ratchet searches found the super-
trees with the lowest total RF distance to the input trees
(Table 1). MRP also generally performs well, finding
supertrees with RF distances between 0.14% (placental
mammals) and 3.3% (sea birds) higher than the best
score found by the RF supertree heuristics (Table 1).
The triplet supertree method performs as well as the RF
supertree method on the small sea bird data set; how-
ever, the triplet supertrees for the marsupial and placen-
tal mammal data sets have a much higher RF distance
to the input trees than either the RF or MRP supertrees
(Table 1). For all the data sets, the MRP supertrees had
the lowest (best) parsimony score based on a binary
matrix representation of the input trees (Table 1). Thus,
not surprisingly, it appears that optimizing based on the
parsimony score or the triplet distance to the input
trees does not optimize the similarity of the supertrees
to the input trees based on the RF distance metric (see
also [11,13]).
All of the data sets used in this analysis are from pub-

lished studies that used MRP. Therefore, it is not surpris-
ing that MRP performed well (but see [46]). Still, our
results demonstrate that MRP leaves some room for
improvement. If the goal is to find the supertrees that are
most similar to the collection of input trees, the RF
searches ultimately provide better estimates than MRP
(Table 1).
Interestingly, while the MRP trees tend to have rela-

tively low RF-distance scores, in some cases, such as
the legume data set, trees with low RF-distance scores
have high parsimony scores (Table 1). Thus, parsimony
scores are not necessarily indicative of RF score, and
MRP and RF supertree optimality criteria are certainly
not equivalent. Still, MRP trees appear to be useful as
starting points for RF supertree heuristics. Indeed, in
three of the four data sets, the best RF trees were
found in ratchet searches beginning from MRP trees
(Table 1).

Our program for computing RF supertrees is freely
available (for Windows, Linux, and Mac OS X) at
http://genome.cs.iastate.edu/CBL/RFsupertrees

Discussion and Conclusion
There is a growing interest in using supertrees for large-
scale evolutionary and ecological analyses. Yet there are
many concerns about the performance of existing super-
tree methods, and the great majority of published super-
tree analyses have relied on only MRP [47]. Since the
goal of a supertree analysis is to synthesize the phyloge-
netic data from a collection of input trees, it makes
sense that an effective supertree method should directly
seek the supertree that is most similar to the input
trees. Our new algorithms make it possible, for the first
time, to estimate large supertrees by directly optimizing
the RF distance from the supertree to the input trees.
There are numerous alternate metrics to compare

phylogenetic trees besides the RF distance, and any of
these can be used for supertree methods (see, for exam-
ple, [11]). Triplet distance supertrees [11,48], quartet-fit
and quartet joining supertrees [11,24], maximum splits-
fit supertrees [11], and most similar supertrees [49] are
all, like RF supertrees, estimated by comparing input
trees to the supertree using tree distance measures. All
of these methods may provide different, and perhaps
equally valid, perspectives on supertree accuracy. Based
on our experimental analyses using the RF and triplet
supertree method, optimizing the supertree based on
different distance measures can result in very different
supertrees (Table 1). In the future, it will be important
to characterize and compare the performance of these
methods in more detail (see, for example, [11,50]).
The results also suggest several future directions for

research. Although heuristics guided by local search pro-
blems, especially SPR and TBR, have been very effective
for many intrinsically difficult phylogenetic inference
problems, our experiments indicate that the tree space
for RF supertrees is complex. The ratchet approach and
also starting from MRP trees appears to improve the per-
formance in the four examples we tested (Table 1). How-
ever, more work is needed to identify the most efficient
ways to implement our fast local search heuristics. Also,
the use of alternative supertrees methods (other than
MRP) to generate starting trees might result in a better
global strategy to compute RF supertrees and this should
be investigated further. We note that the ideas presented
in [51] can be directly used to perform efficient NNI-
based local searches for the RF supertree problem. In
particular, we can show that heuristic searches for the RF
supertree problem, which perform a total of p local
search steps based on 1, 2, or 3-NNI neighborhoods (see
[51]), can all be executed in O(kn(n + p)) time; yielding
speed-ups of Θ(min{n, p}), Θ(n·min{n, p}) and Θ(n2·min

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 10 of 12

http://genome.cs.iastate.edu/CBL/RFsupertrees

{n, p}) for heuristic searches that are based on naïve algo-
rithms for 1, 2 and 3-NNI local searches respectively. It
would also be interesting to see if heuristics based on
TBR perform significantly better than those based on
SPR in inferring RF supertrees.
In some cases it might be desirable to remove the

restriction that the supertree be binary. In the consensus
setting, such a median tree can be obtained within poly-
nomial time [27]; however, finding a median RF tree in
the supertree setting is NP-hard [52]. One simple way to
estimate a non-binary median tree could be to first com-
pute an RF supertree and then to iteratively (and perhaps
greedily) contract those edges in the supertree that result
in a reduction in the total RF distance. Thus, our algo-
rithms may even be useful for roughly estimating major-
ity-rule(-) supertrees [28], which are essentially the strict
consensus of all optimal, not necessarily binary, median
RF trees, and have several desirable properties [29].
These majority-rule(-) supertrees are also the strict con-
sensus of all maximum-likelihood supertrees [53]. Also,
there are several alternate forms of the RF distance
metric that could be incorporated into our local search
algorithms. For example, in order to account for biases
associated with the different sizes of input trees, we
could normalize the RF distance for each input tree,
dividing the observed RF distance by the maximum pos-
sible RF distance based on the tree size. Similarly, we
could incorporate either branch length data or phyloge-
netic support scores (bootstrap values or posterior prob-
abilities) from the input trees into the RF distance in
order to give more weight to partitions that are strongly
supported or separated by long branches (e.g., [25,54]).
Our current implementation essentially treats all branch
lengths as one and all partitions as equal. The addition of
branch length or support data may further improve the
accuracy of the RF supertree method.

Acknowledgements
We thank Harris Lin for providing software for the triplet supertree analyses.
This work was supported in part by NESCent and by NSF grants DEB-
0334832 and DEB-0829674. MSB was supported in part by a postdoctoral
fellowship from the Edmond J. Safra Bioinformatics program at Tel-Aviv
university.

Author details
1The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv
69978, Israel. 2Department of Computer Science, Iowa State University, Ames,
IA 50011, USA. 3Department of Biology, University of Florida, Gainesville, FL
32611, USA.

Authors’ contributions
MSB was responsible for algorithm design and program implementation,
contributed to the experimental evaluation, and wrote major parts of the
manuscript. JGB performed the experimental evaluation and the analysis of
the results, and contributed to the writing of the manuscript. OE and DFB
supervised the project and contributed to the writing of the manuscript. All
authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 27 June 2009 Accepted: 24 February 2010
Published: 24 February 2010

References
1. Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V:

Darwin’s abominable mystery: Insights from a supertree of the
angiosperms. Proceedings of the National Academy of Sciences of the United
States of America 2004, 101(7):1904-1909.

2. Bininda-Emonds ORP, Cardillo M, Jones KE, Macphee RDE, Beck RMD,
Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A: The delayed rise of
present-day mammals. Nature 2007, 446(7135):507-512.

3. Daubin V, Gouy M, Perriere G: A Phylogenomic Approach to Bacterial
Phylogeny: Evidence of a Core of Genes Sharing a Common History.
Genome Res 2002, 12(7):1080-1090.

4. Burleigh JG, Driskell AC, Sanderson MJ: Supertree bootstrapping methods
for assessing phylogenetic variation among genes in genome-scale data
sets. Systematic Biology 2006, 55:426-440.

5. Pisani D, Cotton JA, McInerney JO: Supertrees disentangle the chimerical
origin of eukaryotic genomes. Mol Biol Evol 2007, 24(8):1752-1760.

6. Webb CO, Ackerly DD, McPeek M, Donoghue MJ: Phylogenies and
community ecology. Ann Rev Ecol Syst 2002, 33:475-505.

7. Davies TJ, Fritz SA, Grenyer R, Orme CDL, Bielby J, Bininda-Emonds ORP,
Cardillo M, Jones KE, Gittleman JL, Mace GM, Purvis A: Phylogenetic trees
and the future of mammalian biodiversity. Proceedings of the National
Academy of Sciences 2008, 105(Supplement 1):11556-11563.

8. Purvis A: A modification to Baum and Ragan’s method for combining
phylogenetic trees. Systematic Biology 1995, 44:251-255.

9. Pisani D, Wilkinson M: Matrix Representation with Parsimony, Taxonomic
Congruence, and Total Evidence. Systematic Biology 2002, 51:151-155.

10. Bininda-Emonds ORP, Gittleman JL, Steel MA: The (super) tree of life:
procedures, problems, and prospects. Annual Review of Ecology and
Systematics 2002, 33:265-289.

11. Wilkinson M, Cotton JA, Creevey C, Eulenstein O, Harris SR, Lapointe FJ,
Levasseur C, McInerney JO, Pisani D, Thorley JL: The shape of supertrees
to come: Tree shape related properties of fourteen supertree methods.
Syst Biol 2005, 54:419-432.

12. Goloboff PA: Minority rule supertrees? MRP, Compatibility, and Minimum
Flip may display the least frequent groups. Cladistics 2005, 21(3):282-294.

13. Wilkinson M, Cotton JA, Lapointe FJ, Pisani D: Properties of Supertree
Methods in the Consensus Setting. Syst Biol 2007, 56(2):330-337.

14. Day WH, McMorris F, Wilkinson M: Explosions and hot spots in supertree
methods. Journal of Theoretical Biology 2008, 253(2):345-348.

15. Baum BR: Combining Trees as a Way of Combining Data Sets for
Phylogenetic Inference, and the Desirability of Combining Gene Trees.
Taxon 1992, 41:3-10.

16. Ragan MA: Phylogenetic inference based on matrix representation of
trees. Molecular Phylogenetics and Evolution 1992, 1:53-58.

17. Goloboff PA: Analyzing Large Data Sets in Reasonable Times: Solutions
for Composite Optima. Cladistics 1999, 15(4):415-428.

18. Swofford DL: PAUP*: Phylogenetic analysis using parsimony (*and other
methods), Version 4.0b10. 2002.

19. Roshan U, Moret BME, Warnow T, Williams TL: Rec-I-DCM3: A Fast
Algorithmic Technique for Reconstructing Large Phylogenetic Trees. CSB
2004, 98-109.

20. Bininda-Emonds O, Sanderson M: Assessment of the accuracy of matrix
representation with parsimony analysis supertree construction.
Systematic Biology 2001, 50:565-579.

21. Eulenstein O, Chen D, Burleigh JG, Fernández-Baca D, Sanderson MJ:
Performance of Flip Supertree Construction with a Heuristic Algorithm.
Systematic Biology 2003, 53:299-308.

22. Chen D, Eulenstein O, Fernández-Baca D, Burleigh JG: Improved Heuristics
for Minimum-Flip Supertree Construction. Evolutionary Bioinformatics 2006,
2.

23. Creevey CJ, McInerney JO: Clann: investigating phylogenetic information
through supertree analyses. Bioinformatics 2005, 21(3):390-392.

24. Wilkinson M, Cotton JA: Supertree Methods for Building the Tree of Life:
Divide-and-Conquer Approaches to Large Phylogenetic Problems.

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 11 of 12

http://www.ncbi.nlm.nih.gov/pubmed/14766971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14766971?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17392779?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12097345?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16861207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16861207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16861207?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17504772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11943097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11943097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16012108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16012108?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17464887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17464887?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18472112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18472112?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1342924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1342924?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12504223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12504223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12116654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12116654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15374874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15374874?dopt=Abstract

Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich
Taxa CRC PressHodkinson TR, Parnell JAN 2007, 61-76.

25. Robinson DF, Foulds LR: Comparison of phylogenetic trees. Mathematical
Biosciences 1981, 53(1-2):131-147.

26. McMorris FR, Steel MA: The complexity of the median procedure for
binary trees. Proceedings of the International Federation of Classification
Societies 1993.

27. Barthélemy JP, McMorris FR: The median procedure for n-trees. Journal of
Classification 1986, 3:329-334.

28. Cotton JA, Wilkinson M: Majority-Rule Supertrees. Systematic Biology 2007,
56:445-452.

29. Dong J, Fernández-Baca D: Properties of Majority-Rule Supertrees. Syst Biol
2009, 58(3):360-367.

30. Day WHE: Optimal algorithms for comparing trees with labeled leaves.
Journal of Classification 1985, 2:7-28.

31. Pattengale ND, Gottlieb EJ, Moret BME: Efficiently Computing the
Robinson-Foulds Metric. Journal of Computational Biology 2007,
14(6):724-735, [PMID: 17691890].

32. Semple C, Steel M: Phylogenetics Oxford University Press 2003.
33. Allen BL, Steel M: Subtree transfer operations and their induced metrics

on evolutionary trees. Annals of Combinatorics 2001, 5:1-13.
34. Swofford DL, Olsen GJ, Waddel PJ, Hillis DM: Phylogenetic inference.

Molecular Systematics Sunderland, Mass: Sinauer AssocHillis DM, Moritz C,
Mable BK 1996, 407-509.

35. Bordewich M, Semple C: On the computational complexity of the rooted
subtree prune and regraft distance. Annals of Combinatorics 2004,
8:409-423.

36. Bansal MS, Burleigh JG, Eulenstein O, Wehe A: Heuristics for the Gene-
Duplication Problem: A Θ(n) Speed-Up for the Local Search. RECOMB,
Volume 4453 of Lecture Notes in Computer Science SpringerSpeed TP, Huang
H 2007, 238-252.

37. Bansal MS, Eulenstein O: An Ω(n2/log n) Speed-Up of TBR Heuristics for
the Gene-Duplication Problem. IEEE/ACM Transactions on Computational
Biology and Bioinformatics 2008, 5(4):514-524.

38. Lin H, Burleigh JG, Eulenstein O: Triplet supertree heuristics for the tree of
life. BMC Bioinformatics 2009, 10(Suppl 1):S8.

39. Bender MA, Farach-Colton M: The LCA Problem Revisited. LATIN, Volume
1776 of Lecture Notes in Computer Science SpringerGonnet GH, Panario D,
Viola A 2000, 88-94.

40. Kennedy M, Page R: Seabird supertrees: combining partial estimates of
procellariiform phylogeny. The Auk 2002, 119:88-108.

41. Cardillo M, Bininda-Emonds ORP, Boakes E, Purvis A: A species-level
phylogenetic supertree of marsupials. Journal of Zoology 2004, 264:11-31.

42. Beck R, Bininda-Emonds O, Cardillo M, Liu FG, Purvis A: A higher-level MRP
supertree of placental mammals. BMC Evolutionary Biology 2006, 6:93.

43. Wojciechowski M, Sanderson M, Steele K, Liston A: Molecular phylogeny of
the “Temperate Herbaceous Tribes” of Papilionoid legumes: a supertree
approach. Advances in Legume Systematics Kew: Royal Botanic
GardensHerendeen P, Bruneau A 2000, 9:277-298.

44. Nixon KC: The parsimony ratchet: a new method for rapid parsimony
analysis. Cladistics 1999, 15:407-414.

45. Sikes DS, Lewis PO: PAUPRat: PAUP* implementation of the parsimony
ratchet. 2001.

46. Wilkinson M, Pisani D, Cotton JA, Corfe I: Measuring Support and Finding
Unsupported Relationships in Supertrees. Syst Biol 2005, 54(5):823-831.

47. Bininda-Emonds OR (Ed): Phylogenetic supertrees Springer Verlag 2004.
48. Snir S, Rao S: Using Max Cut to Enhance Rooted Trees Consistency. IEEE/

ACM Trans. Comput. Biology Bioinform 2006, 3(4):323-333.
49. Creevey CJ, Fitzpatrick DA, Gayle K Philip RJK, O’Connell MJ, Pentony MM,

Travers SA, Wilkinson M, McInerney JO: Does a tree-like phylogeny only
exist at the tips in the prokaryotes?. Proc Biol Sci 2004,
271(1557):2551-2558.

50. Thorley JL, Wilkinson M: A View of Supertree Methods. Bioconsensus,
Volume 61 of DIMACS: Series in Discrete Mathematics and Theoretic Computer
Science, Providence, Rhode Island, USA: American Mathematical Society 2003,
185-193.

51. Bansal MS, Eulenstein O, Wehe A: The Gene-Duplication Problem: Near-
Linear Time Algorithms for NNI-Based Local Searches. IEEE/ACM
Transactions on Computational Biology and Bioinformatics 2009, 6(2):221-231.

52. Bryant D: Building trees, hunting for trees, and comparing trees: Theory
and methods in phylogenetic analysis. PhD thesis Dept. of Mathematics,
University of Canterbury 1997.

53. Steel M, Rodrigo A: Maximum likelihood supertrees. Syst. Biol 2008,
57:243-250.

54. Kuhner MK, Felsenstein J: A simulation comparison of phylogeny
algorithms under equal and unequal evolutionary rates [published
erratum appears in Mol Biol Evol 1995 May;12(3):525]. Mol Biol Evol 1994,
11(3):459-468.

doi:10.1186/1748-7188-5-18
Cite this article as: Bansal et al.: Robinson-Foulds Supertrees. Algorithms
for Molecular Biology 2010 5:18.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Bansal et al. Algorithms for Molecular Biology 2010, 5:18
http://www.almob.org/content/5/1/18

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/17558966?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17691890?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19208181?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17101039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17101039?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16243766?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15615680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15615680?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18398769?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8015439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8015439?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8015439?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Introduction
	Previous work
	Local Search
	Our Contribution

	Basic Notation and Preliminaries
	The RF Supertree Problem
	Local Search Problems

	Structural Properties
	Solving the Rooting Problem
	Solving the SPR-RS Problem
	Experimental Evaluation
	Discussion and Conclusion
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

