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Abstract

Background: Affinity purification followed by mass spectrometry identification (AP-MS) is an increasingly popular
approach to observe protein-protein interactions (PPI) in vivo. One drawback of AP-MS, however, is that it is prone
to detecting indirect interactions mixed with direct physical interactions. Therefore, the ability to distinguish direct
interactions from indirect ones is of much interest.

Results: We first propose a simple probabilistic model for the interactions captured by AP-MS experiments, under
which the problem of separating direct interactions from indirect ones is formulated. Then, given idealized
quantitative AP-MS data, we study the problem of identifying the most likely set of direct interactions that
produced the observed data. We address this challenging graph theoretical problem by first characterizing
signatures that can identify weakly connected nodes as well as dense regions of the network. The rest of the direct
PPI network is then inferred using a genetic algorithm.
Our algorithm shows good performance on both simulated and biological networks with very high sensitivity and
specificity. Then the algorithm is used to predict direct interactions from a set of AP-MS PPI data from yeast, and
its performance is measured against a high-quality interaction dataset.

Conclusions: As the sensitivity of AP-MS pipeline improves, the fraction of indirect interactions detected will also
increase, thereby making the ability to distinguish them even more desirable. Despite the simplicity of our model
for indirect interactions, our method provides a good performance on the test networks.

Background
Understanding the organization of protein-protein inter-
actions (PPIs) as a complex network is one of the main
pursuits in proteomics today. With the help of high-
throughput experimental techniques, a large amount of
PPI data has recently become available, providing us
with a rough picture of how proteins interact in biologi-
cal systems. However, the interaction data from these
high-throughput experiments suffer from low resolution
as compared to data from low-throughput technologies
such as protein co-crystallization, and to make matters
worse, they are prone to problems including relatively
high error rates and protocol-specific biases. Therefore,
inferring the direct, physical PPI network from high-
throughput data remains a challenge in systems biology.
The leading technologies for identifying PPIs are Yeast

2-Hybrid (Y2H) [1,2] and Affinity Purification followed

by Mass Spectrometry (AP-MS) [3-6]. Due to the ability
to perform in vivo at biologically reasonable expression
levels, as well as the ability to detect protein complexes
with fewer false-positives [6], AP-MS approaches have
become increasingly popular, although their throughput
is lower than Y2 H approaches. In an AP-MS experi-
ment, a protein of interest (the bait) is tagged and
expressed in vivo. The bait is then immuno-precipitated
(IP), together with all of its interacting partners (the
preys), and finally, preys are identified using mass spec-
trometry. For a more detailed overview of the technique,
see [6,7]. Like Y2 H and other high-throughput
experimental methods, however, AP-MS suffers from
experimental noise. A number of approaches have been
proposed to separate true interactions from false-
positives. These approaches mostly focus on reducing
false-positives due to protein misidentification from MS
data [8-10], on detecting contaminants [11], or a combi-
nation of both [7,12-16]. These methods often make use
of the guilty-by-association principle, and quantify the
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confidence level of an interaction by considering alter-
native paths between two protein molecules. In this con-
text, authors say that a true interaction between bait b
and prey p is a true positive if, at some point in the set
of cells considered, there exists a complex that contains
both b and p. We note that as the sensitivity of the AP-
MS methods improves and the stability of the com-
plexes that can be detected decreases, the transience of
detectable interactions will increase, to a point where,
eventually, every protein may be shown to marginally
interact with every other protein.
A key property of AP-MS approaches is that a signifi-

cant number of the co-purified prey proteins are in fact
indirect interaction partners of the bait protein, in the
sense that they do not interact physically and directly
with the bait, but interact with it through a chain of phy-
sical interactions involving other proteins in the complex.
Therefore, it is critical, when interpreting AP-MS-derived
PPI networks, to understand the meaning of the term
“interaction”. Although not designed to identify physical
interactions, AP-MS experiments produce data that may
allow separating direct physical interactions from indirect
ones. This is the problem we consider in this paper: given
the results of a set of AP-MS experiments, filtered for pro-
tein misidentifications and contaminants, how can we
distinguish direct (physical) interactions from indirect
interactions? Note that since the false-positive filtering
methods listed above consider indirect interactions as
true-positives, they cannot be used to address this pro-
blem. Gordân et al. [17] study the related problem of dis-
tinguishing direct vs. indirect interactions between
transcription factors (TF) and DNA. While the objective
of their study is similar to ours, their method makes use
of information specific to TF-DNA interactions (e.g. TF
binding data, motifs from protein binding microarrays),
and thus is not immediately applicable to the problem on
general PPI networks. In fact, to our knowledge, no exist-
ing approach seems directly applicable.
This paper is organized as follows. We first describe

the mathematical modelling of an AP-MS experiment
and introduce an algorithmic formulation of the pro-
blem. We then describe an overview of our method,
which is based on a collection of graph theoretic
approaches that succeeds at inferring a large fraction of
the network nearly exactly, followed by a genetic algo-
rithm that infers the remainder of the network. The
accuracy of the proposed method is assessed using both
biological and simulated PPI networks. Finally, we apply
our algorithm to the prediction of direct interactions
based on a large set of AP-MS PPI data in yeast [18].
Our work opens the way to a number of interesting and
challenging problems, and the results obtained indicate
that useful inferences can be made despite the simplicity
of our modelling.

Results
Because the main contribution of this paper is methodo-
logical, we start by giving an overview of the approach
developed before detailing the results obtained.
Throughout this work, we make the assumption that

appropriate methods have been used to reduce as much
as possible protein misidentifications and contaminants,
in such a way that all interactions detected are either
direct or indirect interactions. Our task is to separate
the former from the latter. To avoid confusion, we note
that false-positives (resp. false-negatives) henceforth
refer to falsely detected (resp. undetected) direct interac-
tions inferred by our algorithm.

Mathematical modelling of AP-MS data
We first describe a simple model of the AP-MS PPI data
that shall be used throughout this paper. Although
admittedly rather simplistic, our model has the benefit
of allowing the formulation of a well-defined computa-
tional problem.
Let Gdirect = (V, Edirect) be an undirected graph whose

nodes V represent the set of proteins, and edges Edirect
represent direct (physical) interactions between the pro-
teins. Let N(b) = {p ÎV : (b, p) ÎEdirect} be the set of
direct interaction partners of protein b. We model the
physical process through which PPIs are identified in an
AP-MS experiment as follows. If a bait protein b is in
contact with a direct interaction partner p ÎN(b), the IP
on b will pull p down, which will then be identified
through mass spectrometry. In addition, if p interacts
with p’ ÎN(p) at the same time as it interacts with b,
protein p’ may also be pulled down by the IP on b,
although the two proteins only indirectly interact. In
general, any protein x that is connected to b by a series
of simultaneous direct interactions may be pulled down
by b. As a result, all interaction partners of b (direct or
indirect) will be identified together. Figure 1 depicts an
example of this effect. In order to distinguish direct phy-
sical interactions from indirect ones, the availability of
quantitative AP-MS data is helpful.
Although quantitative AP-MS remains at its infancy,

prey abundance can be estimated fairly accurately using
approaches such as the peptide count [19], spectral
count [20], sequence coverage [21], and protein abun-
dance index [22]. Combined with increasing accuracy
and sensitivity of mass spectrometers, these methods are
becoming more reliable. Throughout the discussions in
this paper, we assume that this quantitative data is avail-
able to us.
The strength of a physical interaction can be mea-

sured by the energy required to break it. Let A(b, x)
denote the abundance of a prey protein x obtained by
IP on bait b, and let c(p1, p2) denote the number of
pairs of molecules p1 and p2 that interact directly in
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the cells considered. When there are more than two
interaction partners, we let c(p1, p2, ..., pk) denote the
number of copies of complexes simultaneously con-
taining p1, p2, ..., pk. Since protein interactions may be
disrupted by the purification process, we expect A(b,
x) to be correlated with the strength of the interaction
between b and x. Thus, we assume that a direct inter-
action between a pair of individual proteins b and x
survives the purification process with probability

ˆ( , )p b x , and breaks with probability 1 − ˆ( , )p b x . Then

the amount of protein x obtained from the pull-down
on b would be

A b x b x p b x( , ) ( , ) ( , ).∝ ⋅

Consider now a system of three proteins b, x, x’,
where (b, x) and (x, x’) form direct interactions but b
and x’ do not interact directly. Then,

A b x b x x p b x p x x( , ) ( , , ) ( , ) ( , )′ ∝ ′ ⋅ ⋅ ′ . In general, the

amount of protein x that will be obtained upon pull-
down of b will be proportional to the probability that b
and x remain connected after each edge (u, v) Î Edirect
is broken with probability p̂ (u, v). Our goal is then to

infer Gdirect from the set of observed abundances A(x, y).
In this paper, we make the following simplifying
assumptions:

1. All direct interactions (u, v) ÎEdirect survive with

the uniform probability p̂ , and fail independently

with probability 1 - p̂ .

2. All possible direct interactions take place at the
same time, irrespective of the presence of other
interactions, and with the same frequency.

Although these assumptions are clearly unrealistic,
they provide a useful starting point for separating direct
interactions from indirect ones (see Discussion for pos-
sible relaxation of these assumptions). Despite its simpli-
city, our mathematical modelling of AP-MS does fit
existing biological data reasonably well (see Model vali-
dation). We note that Asthana et al. [23] have proposed
a probabilistic graph model that is similar to ours. How-
ever, their model measures the likelihood of a protein’s
membership in a protein complex, and thus is not
applicable to our problem.

Problem formulation
We are now ready to formulate the algorithmic problem
addressed in this paper. We henceforth consider the
(unknown) direct interaction network Gdirect as a prob-
abilistic graph, where each edge in Gdirect survives the

AP-MS process with probability p̂ , and fails otherwise.

Let Gdirect be a random graph obtained from Gdirect by

Figure 1 Indirect interactions in AP-MS PPI data. In a cell, multiple copies of a bait protein b are expressed, and interact (directly or
indirectly) with other proteins p1, ..., p8 (left); After the pull-down on the bait b, MS detects all prey proteins, including indirect interaction
partners (top right); The direct interaction network should, however, contain only the edges between direct interaction partners (bottom right).
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removing edges in Edirect independently with probability

1 - p̂ . Then, define P u vGdirect
( , ) to be the probability

that vertices u and v remain connected (directly or

indirectly) in Gdirect :

P u v u vGdirect
( , ) = Pr there exists at least one path from to inn Gdirect⎡⎣ ⎤⎦ .

We call PGdirect
the connectivity matrix of Gdirect. See

Figure 2 for an example of a direct interaction network

and its connectivity matrix. Although P u vGdirect
( , ) can

be estimated from Gdirect by straight-forward Monte
Carlo sampling, its exact computation (known as two-
terminal network reliability problem [24,25]) is #P-Com-
plete [24], and so is its approximation within a relative
error of � [26].
A set of AP-MS experiments where all proteins have

been tagged and used as baits yields an approximation
of A(x, y) for all pairs of proteins (x, y), which can be

transformed into an estimate M(x, y) of P x yGdirect
( , )

through appropriate normalization. We are thus inter-
ested in inferring Gdirect from M:
EXACT DIRECT INTERACTION GRAPH FROM

CONNECTIVITY MATRIX (E-DIGCOM)
Given: A connectivity matrix Mn × n

Find: A graph G = (V, E) such that PG(u, v) = M(u, v)
for each u, v ÎV.
In a more realistic setting, the connectivity matrix M

would not be observed precisely, and the E-DIGCOM
problem may not admit a solution. We are thus inter-
ested in an approximate, optimization version of the
problem:
APPROXIMATE DIRECT INTERACTION GRAPH

FROM CONNECTIVITY MATRIX (A-DIGCOM)
Given: A connectivity matrix Mn× n and a tolerance

level 0 ≤ δ ≤ 1.
Find: A graph G = (V, E) such that the number of

pairs (u, v) Î V × V such that |PG(u, v) - M(u, v)| ≤ δ is
maximized.
Note that although the computational complexity of

the DIGCOM problems is currently unknown, the fact
that simply verifying a candidate solution is #P-Com-
plete suggests that the problem may be hard and may
not belong to  - candidate solutions to problems in

NP can, by definition, be verified in polynomial time,
whereas #P is widely believed to require super-polyno-
mial time computations. Related problems include net-
work design problems that have been studied
extensively in the computer networking community. For
example, one related, but different, problem is to choose
a minimal set of edges over a set of nodes so that the
resulting network has at least the prescribed all-pairs

Figure 2 Example of a direct interaction network and its connectivity matrix. An example of a direct interaction network GDirect (left) with

its connectivity matrix PG Direct
(right) calculated with p̂ = 1

2
. Assuming each edge of GDirect survives with probability p̂ , the probability of

connectivity between each pair of protein can be estimated via sampling of the probabilistic network.
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terminal reliability; various algorithms including branch-
and-bound heuristics [27] and genetic algorithms
[28,29] have been proposed.

Algorithm overview
Our algorithm for the A-DIGCOM problem has three
main phases outlined here and detailed in Methods.

Phase I. We start by identifying, based on the con-
nectivity matrix M, vertices from Gdirect with low
degree, together with edges incident to them. As
most PPI networks exhibit the properties of scale-
free networks [30], this resolves the edges incident
to a significant portion of the vertices (~75% in our
networks; see below).
Phase II. At the other end of the spectrum, Gdirect

contains densely clustered regions (cliques or quasi-
cliques), possibly corresponding to protein com-
plexes. We use a heuristic to detect these dense
regions from the connectivity matrix M.
Phase III. To infer the remainder of the network, we
use a genetic algorithm. This highly customized
genetic algorithm makes use of the findings from
the previous two steps in order to dramatically
reduce the dimension of the problem space, and to
guide the mating process between parent candidates
to create good offspring solutions.

In what follows, we highlight the main theoretical
results on which these three phases rely. Details are
given in Methods and proofs in Appendix.
I-a. Finding cut edges
A cut edge in a graph G is an edge (u, v) whose removal
would result in u and v belonging to two distinct con-
nected components (e.g. edge (3,4) in Figure 2). The fol-
lowing theorem allows the identification of all cut edges
based on the connectivity matrix PG.
Theorem 1. A pair of vertices u and v from V forms a

cut edge in G if and only if the following two conditions
hold.

(i) P u v pG( , ) =
(ii) V can be partitioned into V = Vu ∪ Vv , where Vu

= {x Î V : PG(x, u) ≥ PG(x, v)} and Vv = {x Î V : PG
(x, u) <PG(x, v)} , such that ∀s Î Vu and ∀t Î Vv,

P s t P s u p P v tG G G( , ) ( , ) ( , )= ⋅ ⋅ .

The above theorem immediately provides an efficient
algorithm, requiring time O(|V|2), to test whether a pair
of vertices forms a cut edge. Observe that removing a
cut edge (u, v) from a connected graph allows us to
decompose the graph into two connected components
(subgraphs induced by Vu and Vv, respectively), and the

probability of connectivity between every pair of vertices
in Vu (Vv, resp.) remains the same after removing (u, v).
Therefore, the submatrices that correspond to Vu and
Vv can be treated as independent subproblems, and one
can recursively detect cut edges in the remaining sub-
problems. Note that if the input graph is assumed to be
a tree, such a recursive algorithm would identify the
entire graph exactly. On the other hand, PPI networks
are sparse in general, and contain many cut edges and
degree-1 vertices. As a result, this algorithm allows a
significant simplification of our problem by identifying
all cut edges.
I-b. Finding degree-2 vertices
We now consider the problem of identifying degree-2
vertices from the connectivity matrix M. After degree-1
vertices, which are identified in the previous step, they
constitute the next most frequent vertices in the biologi-
cal networks we studied. While we do not have a full
characterization of these vertices, the following theorem
gives a set of necessary conditions.
Theorem 2. Let s be a degree-2 vertex in G such that

N(s) = {u, v}. Then, the following three conditions must
hold.

(i) Low connectivity: for each t Î V,

P s t p pG( , ) ^ ^< −2
2 .

(ii) Neighborhood: for each t Î V - {s, u, v}, PG (s, t)
< PG (s, u) = PG (s, v).
(iii) “Triangle” inequality: for each t Î V - {s, u, v},
PG (s, t) < max{PG (u, t), PG(v, t)}.

These necessary conditions allow us to rule out ver-
tices that cannot be of degree 2, and give rise to a
O(|V|2) heuristic for predicting degree-2 vertices (see
Algorithm 1 in Methods). In practice, our studies have
shown that vertices satisfying these conditions while
having degree higher than two are extremely rare (see
below).
II. Detecting densely connected regions
We now turn to the problem of finding densely con-
nected regions in the network. These regions may corre-
spond to protein complexes, where tagging any one of
the members of the complex results in the identification
of all other members of the complex with high probabil-
ity. While correctly predicting the physical interactions
within each complex is a difficult task, separating these
dense regions from the remainder of the network is
essential to improving the accuracy of the genetic algo-
rithm (part III).
Based on the connectivity matrix M, our algorithm

identifies (possibly overlapping) clusters of proteins of
size at least k such that, for every pair u, v in each
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cluster, M(u, v) ≥ tk for some threshold tk. For appropri-
ately chosen values of k and tk (see Methods), the set of
clusters found corresponds to cliques in Gdirect with
high accuracy (see below).
The dense regions discovered at this phase provide us

(1) the set of edges within each dense region; and (2)
sparse cuts between disjoint dense regions. The edge set
within each cluster will be used in the initial candidates
for the genetic algorithm, whereas the cuts defined by
the clusters will be used as crossover points during the
crossover operation in the genetic algorithm.
III. Cut-based genetic algorithm
To predict the remaining section of the network, we use
a customized genetic algorithm that aims at finding an
optimal solution to the A-DIGCOM problem. We first
devise a solution to a generalization of the A-DIGCOM
problem, and then show how the results of parts I and
II of the algorithm are used to improve performance.
Genetic algorithms have been shown to be an effective

family of heuristics for a wide variety of optimization
problems [31], including network design under connec-
tivity constraints [28,29]. A genetic algorithm models a
set of candidate solutions as individuals of a population.
From this population, pairs of promising candidate solu-
tions are mated, and their off spring solutions inherit
properties of the parents with some random mutations.
Over generations, this process of natural selection
improves the fitness of the population.
The A-DIGCOM problem is a hard optimization pro-

blem, because (i) the size of the search space is huge -

2 2
n( ) for a graph of size n, and (ii) there is no known

polynomial-time algorithm to evaluate a proposed can-
didate solution (i.e. compute PG from G). For these rea-
sons, a straight-forward genetic algorithm
implementation failed to produce satisfactory results
(data not shown). Instead, we use a more sophisticated
approach by making use of the results obtained in pre-
vious sections in order to reduce the search space and
to guide the mating operations for more effective search.
Details are given in Methods.

Model validation
In order to test our approach, we first sought to validate
our model of AP-MS indirect interactions. To this end,
we used one of the most comprehensive AP-MS-based
networks published to date on yeast, obtained by Kro-
gan et al. [18]. The dataset reports the Mascot score
[32] and the number of peptides detected for each bait-
prey pair (peptide count). The complete set of interac-
tions reported contains 2186 proteins and 5496 interac-
tions (Krogan et al. Table S six); we call the resulting
network GKroganFull. The authors identified a subset of
these interactions as high-confidence, based on their

Mascot scores (Krogan et al. Table S five). We call this
set of high-confidence interactions GKroganHigh; this net-
work consists of 1210 proteins and 2357 interactions.
We expect that GKroganHigh is relatively rich in direct
interactions, whereas the complete set of interactions
GKroganFull consists in part of indirect interactions.
Considering GKroganHigh as a direct interaction net-

work, we simulated Monte Carlo sampling to estimate

PGKroganHigh , using ˆ .p = 0 5 and 50,000 samples, which

yields a 95% confidence interval of size at most 0.007 on

each P u vGKroganHigh
( , ) entry. Next, we normalized the

peptide counts of the interactions in GKroganFull using
protein lengths (See Methods). We then compared

PGKroganHigh to the normalized peptide counts of the inter-

actions in GKroganFull. We expect that a significant frac-
tion of low-confidence interactions in GKroganFull -
GKroganHigh are likely to be indirect interactions. If our
model is correct, their peptide counts should then be

correlated with the corresponding entries in PGKroganHigh .

Indeed, the positive linear correlation between the

predicted connectivity PGKroganHigh and the observed nor-

malized peptide counts is very significant (regression
p-value of 8.17 × 10-11, Student t-test; see Additional
file 1). Furthermore, this correlation is strongest when

ˆ .p ≈ 0 5 , as compared to ˆ .p = 0 3 or 0.7, justifying the

use of this value in our subsequent analyses.

Accuracy of the prediction algorithm
The ideal validation of the accuracy of our algorithm
would involve (i) constructing a connectivity matrix M
using actual quantitative AP-MS data; (ii) predict direct
interactions based on M using our algorithm; and then
(iii) comparing our predictions to experimentally gener-
ated direct interaction data. Yeast 2-Hybrid (Y2H)
experiments are less prone to detect indirect interac-
tions than are AP-MS methods, and several large-scale
efforts have been reported [2,33,34]. Unfortunately, for a
number of technical reasons, the overlap between AP-
MS PPI networks and Y2H networks remains very small
[35]. As a consequence, Y2 H data cannot be used
directly to validate predictions made on AP-MS data.
Instead, we had to rely on partially-synthetic data set,
where an actual network of high-quality Y2 H interac-
tions is assumed to form the direct interaction graph,
and a connectivity matrix is generated from it using
Monte Carlo sampling, under our model. Two sets of
Y2 H interactions were used: (i) GY u is the network
constructed from the gold standard dataset of Yu et al.
[35]. This network consists of 1090 proteins and 1318
interactions with high confidence of direct interactions;
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(ii) GDIP is the core, high-quality, physical interaction
network of yeast, available at DIP database, version
20090126CR [36], consisting of 1406 proteins and 1967
interactions. These biological networks were comple-
mented with two artificial 1000-vertices networks. The
first was generated using the preferential attachment
model (PAM) [30]. For the second, we used the duplica-
tion model (DM) [37], which, in contrast to the PAM,
generates graphs containing several dense clusters. The
resulting artificial “direct” interactions graphs are called
GPAM and GDM and contain 1500 ~ 2000 interactions
each. We then used the Monte Carlo sampling approach
described above to estimate the connectivity matrices

P P PG G GYu DIP PAM
, , , and PGDM

. These will form the input

to our inference algorithm, whose output will then be
compared to the corresponding direct interaction graph.
It is important to note that these input matrices are not
perfectly accurate and may contain sampling errors.
However, it is easy to bound the size of the errors with
high probability and use it as a tolerance level within
our algorithm. We also note that the results presented
in this section only aim at evaluating the performance
of the inference algorithm on input data that was gener-
ated exactly according to our probabilistic model. As
such, the error rates reported may be considered as
lower bounds for those on actual biological data. An
assumption-free evaluation in provided later in this
section.
Identification of weakly connected vertices
Theorem 1 provides an efficient algorithm that guaran-
tees the identification of all cut edges, provided that the
given connectivity matrix is precise. We say that a ver-
tex v is a 1-cut vertex if all edges incident on v are cut
edges. By applying Theorem 1 recursively to detect cut
edges and decomposing the graph into two connected
components, we can detect and remove all 1-cut vertices
from the input connectivity matrix.
Table 1 (i) reports the number of 1-cut vertices that

are detected by the recursive algorithm from Theorem
1. In both the Yu and the DIP network, 1-cut vertices
constitute approximately 50% of the network, and iden-
tifying them allows a significant reduction in the pro-
blem size. We note that the inaccuracies in the input

connectivity matrices could, in principle, have intro-
duced errors in the detection of cut edges. However,
this rare event was never observed on any of our
networks.
Algorithm 1 (see Methods) guarantees to efficiently

identify all degree-2 vertices (again, provided that the
connectivity matrix is known), but may also incorrectly
flag some higher-degree vertices. As seen in Table 1 (ii),
nearly all degree-2 vertices were identified, with a low
false-discovery rate ranging from 6 to 9%. Moreover, the
false-positives incorrectly detected as degree-2 vertices
indeed had small degrees, and their predicted neighbors
were mostly correct (but incomplete) predictions. Flag-
ging degree-2 vertices reduces the problem size further
by 15 to 36%.
After repeatedly detecting and removing 1-cut vertices

and degree-2 vertices from the problem space, the edges
adjacent to approximately 70% of the vertices are
detected with very low error rate. The remaining ver-
tices only constitute approximately 30% of the original
network. We call this remaining subset the hard core of
the connectivity matrix. Because it is more densely con-
nected than the rest of the network, the topology of
hard core is more difficult to reconstruct.
Running our algorithm on the PAM simulated data

yields similar resolution and error rate as on the Y2 H
networks. However, our DM network is found to be less
amenable to these strategies, leaving 55% of vertices
unresolved and resulting in an error rate approximately
twice that seen for other networks. This is simply due
to the fact that networks generated by the duplication
model do not contain as many 1-cut vertices or degree
2 vertices when compared to other networks, including
the biological Y2 H networks.
Identification of dense regions
Our dense region detection algorithm aims at identify-
ing all edges that belong to a k-clique in GDirect, for a
given value of k. We report the accuracy of the algo-
rithm in Table 2. As expected, our algorithm achieves
extremely high sensitivity for clique edges. However, the
false-discovery rate is quite high, especially for smaller
values of k (e.g. k = 5). This is due to the fact that dis-
tinguishing a 5-clique from, say, a quasi-clique of size 7

Table 1 Performance of detecting weakly connected vertices

(i) 1-cut vertices (ii) Degree 2 vertices

Network Total real pred. FDR(%) FNR(%) real pred. FDR(%) FNR(%) Remaining

Yu 1090 552 552 0 0 195 207 7.7 2.05 331

DIP 1406 656 656 0 0 309 326 5.82 0.64 424

PAM 1000 457 457 0 0 351 363 3.58 0.28 180

DM 1000 323 323 0 0 117 126 11.9 5.12 551

Number of vertices detected as (i) 1-cut vertices, and (ii) degree 2 vertices in the real network and the predicted network. False discovery (FDR) and false
negative (FNR) ratios are given in percentage. Remaining: the number of vertices remaining after identifying 1-cut vertices and degree 2 vertices.
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is extremely difficult, causing false-positive predictions.
We note however that these erroneous predictions are
mostly inconsequential, as the intra-cluster topology of
each dense region shall only be used in generating the
initial candidate solutions for the genetic algorithm.
Cut-based genetic algorithm
The various parameters of the genetic algorithm (popu-
lation size, mate selection probability, mutation rate,
etc.) were optimized for the running time and accuracy
of the solution based on GYu. Although our genetic
algorithm could in principle be used on any connectivity
matrix, running it on the full matrix of > 1000 proteins
is impossible: the search space is huge, and the amount
of time required to evaluate the fitness of a given candi-
date solution is too large. However, as discussed pre-
viously, applying first the 1-cut and degree-2 vertex
detection algorithms significantly reduces the problem
size and makes it accessible to our genetic algorithm.
Table 3 (i) reports the accuracy of the genetic algorithm
predictions on the hard core of each connectivity
matrix. We note that since the network to be inferred is
relatively highly connected, the problem is significantly
more difficult than the identification of 1-cuts and
degree-2 vertices. Indeed, the false-discovery and false-
negative rates range from 35% to 55% for most datasets.
For a comparison, an algorithm that would pick edges
randomly would achieve 98.75% false-discovery and
false-negative rates. Combining the three phases of the
algorithm, the overall error rate obtained on each data

set ranges from 10 to 20% false-discovery and false-
negative rates, except for the DM data set, which fares
considerably worse, for the reasons explained earlier.
To the best of our knowledge, there has been no

other efforts to solve the DIGCOM problems (neither
exact, nor approximate version). We thus compared
our approach to a simple hill climbing search algo-
rithm on the Yu et al. data set (see Methods). We let
this algorithm run over several days (as opposed to
few hours spent using our approach), with multiple
restarts, and discovered that it provides very poor sen-
sitivity and specificity (see Table 4 for the best results
obtained). This is not surprising since the hill climbing
method is highly dependent on the initial solution (in
this case, a spanning tree chosen randomly based on
the connectivity matrix) and the search space is simply
too large to exhaustively search for the a good initial
solution. We also tested the hill-climbing approach in
the same setting as the genetic algorithm, i.e. combin-
ing it with the 1-cut edges and degree-2 vertices detec-
tion algorithms. Here, the modified hill-climbing
approach showed a better sensitivity and specificity
than the pure hill-climbing approach, but still per-
formed much worse than our genetic algorithm (Table
4). Furthermore, the improvement over the pure hill-
climbing approach was mostly due to the high sensitiv-
ity and specificity of our algorithm for detecting
weakly connected vertices.
To provide an idea of the running times, Table 5 gives

the empirical data from our experiments. The first two
phases (detecting weaking connected vertices and

Table 2 Performance of quasi-clique predictions

Network k = 7 k = 6 k = 5

real pred. FD(%) FN(%) real pred. FD(%) FN(%) real pred. FD(%) FN(%)

Yu 42 54 22.22 0 66 104 36.53 0 146 308 55.19 5.48

DIP 0 42 100 0 86 112 26.79 4.65 184 266 35.34 6.52

PAM 0 31 100 0 0 45 100 0 0 96 100 0

DM 254 346 28.32 2.36 194 267 29.21 2.57 488 718 34.96 4.30

Number of edges that belong to maximal cliques of size k. Real: actual number of edges that belong to maximal cliques of size k; pred: predicted number of
maximal k-clique edges; FD(false discovery ratio): percentage of false-positives in the predicted set; FN(false negative ratio): percentage of false-negatives in the
real set.

Table 3 Performance of genetic algorithm and overall
algorithm

Network (i) reduced network (ii) overall network

real pred. FDR
(%)

FNR
(%)

real pred. FDR
(%)

FNR
(%)

Yu 563 552 43.65 44.76 1318 1390 14.96 10.31

DIP 931 890 35.50 38.34 1967 2041 17.34 14.23

PAM 473 421 49.88 55.39 1538 1462 16.14 20.28

DM 1138 1295 43.39 35.58 1869 1804 32.81 35.15

(i) Performance of the genetic algorithm on the reduced network obtained
from removing 1-cut vertices and degree-2 vertices. (ii) Overall performance
of the combined prediction pipeline on the complete connectivity matrix. Real
and predicted describe the number of edges in the real and predicted
networks, respectively.

Table 4 Comparison of our method to simple hill-
climbing approach

Network Real Predicted FDR
(%)

FNR
(%)

(i) Hill-climbing 1318 2108 86.67 78.68

(ii) Hill-climbing + weakly conn.
nodes

1318 1517 43.57 35.05

(iii) Our approach (GA) 1318 1390 14.96 10.31

Comparison of our method to simple hill-climbing approach. (i) accuracy of
the hill-climbing approach used over the complete network; (ii) accuracy of
the hill-climbing approach after fixing the weakly connected nodes using our
algorithm; (iii) accuracy of our combined pipeline using the genetic algorithm.
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recognizing dense regions) were run within seconds
while the genetic algorithm was run for a fixed amount
of time, and the top scoring candidates where chosen as
shown in Table 3.

Inferring direct interactions from AP-MS experimental
data
In order to apply our algorithm to biological data from
AP-MS experiments, we used the raw data reported by
Krogan et al. [18] for the 2186 putative interactions of
GKroganFull. We only considered the subnetwork of
tagged proteins, and further focussed our efforts on the
analysis of 77 proteins that are well separated in the
tag-induced subnetwork. Quantitative abundance esti-
mates were derived from the peptide counts reported
for each prey, and an experimentally derived connectiv-
ity matrix M was obtained after normalization (see
Methods). Our full prediction algorithm was then run
on the estimated connectivity matrix, resulting in a
direct interaction graph prediction we call GKim that
consists of 164 interactions (See Additional File 2). The
network GKim was compared to GKroganHigh, the set of
high-confidence interactions reported by Krogan et al.,

and to GKroganHigh
Top , a subset of GKroganHigh consisting of

the 164 (to compare against GKim) most confident inter-
actions they reported.
Both GKroganFull and GKroganHigh overlap GKim quite

substantially. These three sets of predictions were then
compared against a set of high-quality binary interac-
tions from GYu. In Y2 H experiments, the interaction
partners are separately screened using a genetic readout.
Therefore, interactions from GY u are believed to be
direct, and thus used to test against the predictions
from AP-MS data. On the other hand, these interactions
may reflect only a subset of all direct interactions
among the 77 proteins.
As shown in Figure 3, our results show that the high-

confidence AP-MS data GKroganHigh exhibited very little
overlap with the direct binary interaction set GYu. 72.6%
of interactions in GKroganHigh is disjoint from GY u, and
25% of GYu remains undetected by GKroganHigh. Further-
more, even the top scoring set of interactions

GKroganHigh
Top showed high discrepancy ratios against GYu.

In contrast, GKim produced by our algorithm coincide
with GYu with better sensitivity and specificity. Given
the crudeness of the method in translating the AP-MS
data into a connectivity matrix, our algorithm has thus
performed relatively well in predicting direct interac-
tions from real AP-MS data.

Discussion and conclusion
The approaches for determining bait-prey abundance
remain in their infancy, and to date, no large-scale PPI
networks have this type of quantitative data. As these
approaches gain in accuracy, so will the results of our
approach. Furthermore, as the sensitivity of AP-MS
pipelines improves, the fraction of indirect interactions
detected will also increase, thereby making the ability to
distinguish them even more critical. In this paper, we
lay the bases of modelling the indirect interactions in
AP-MS experiments. We formulate the DIGCOM pro-
blem, which aims at distinguishing direct interactions
from indirect ones, and provide a set of theoretical and
heuristic approaches that are shown to be highly accu-
rate on both biological PPI networks and simulated net-
works. Despite the unrealistic assumptions that should
eventually be relaxed, our results show that the pre-
dicted set of interactions fits the experimental data rea-
sonably well. In addition, applying our algorithms to a
large-scale AP-MS data set from Krogan et al. results in
predictions that overlap Y2H data approximately 35%
more often than the equivalent number of top-scoring
interactions reported by these authors.
The DIGCOM problems raise a number of challen-

ging, yet fascinating computational and mathematical
problems to investigate. Is the solution to the exact
DIGCOM problem, if it exists, always unique? We sus-
pect it is. What is the computational complexity of the
exact and approximate DIGCOM problems?
We believe they are NP-hard, and possibly not even in

NP. Are there types of graph substructures, other than
those discussed here, that can be unambiguously
inferred from PG? Are there special properties of PPI
networks, other than the power-law degree distribution,

Table 5 Running times of the algorithm

Network (i) 1-cut & degree 2 vertices (secs) (ii) Quasi-clique predictions (iii) Genetic algorithm

Yu 0:00:29 0:31:02 15:00:00

DIP 0:00:41 0:48:14 15:00:00

PAM 0:00:19 0:29:49 15:00:00

DM 0:00:24 1:18:03 15:00:00

Running times of our method on the model networks for each phase of the algorithm: (i) detecting 1-cut vertices and degree two vertices; (ii) predicting quasi-
clique clusters; and (iii) running the genetic algorithm. We are reporting the average run time over three runs on each network. The implementation was tested
on a Powermac G5 2 Ghz with 4 GB of RAM. Note that the genetic algorithm was run for a fixed amount of time, and the top scoring candidates achieved the
quality as shown in Table 3. The times are shown in hh.mm.ss format.
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of which an algorithm can take advantage to make more
accurate predictions and/or provide approximation or
probabilistic guarantees?
The modelling and algorithm proposed here is only a

first step toward an accurate detection of direct interac-
tions from AP-MS data. Several generalizations and
improvements are worth investigating. First, the abun-
dance of an interaction is not constant and needs to be
modelled more accurately. Second, the strength of all
physical interactions is non-uniform, and some interac-
tions may be more prone to disruption by the affinity
purification process than others. Given sufficient quanti-
tative AP-MS data, one may study a generalization of
the DIGCOM problem that aims at identifying not only
the set of direct interactions, but also their individual
strengths and abundances. While modelling these
aspects is in theory possible, the amount and quality of
experimental data required is currently unavailable, and
the computational complexity of the resulting problems
is likely to be daunting.
Perhaps a more significant limitation of our model is

that all direct interactions are assumed to occur simulta-
neously, though it is clear that certain interactions are
either mutually exclusive, or restricted to specific sub-
cellular compartments or conditions. We are currently
investigating approaches to decompose the observed
network into a family of simultaneously occurring inter-
actions in such a way that the observed interaction
abundances are the sum of the direct and indirect inter-
actions over all cell compartments and conditions. How-
ever, it is clear that complementary experimental data,
such as comprehensive protein localization assays or cell
cycle expression data, would be required to reduce the
space of possible solutions in a biologically meaningful
manner.

An additional assumption that may need to be relaxed
is the independence of the edge failures, which may not
hold in cases where the loss of an interaction between
two proteins causes a significant destabilization of the
larger complex they belong to. Unfortunately, in the
presence of strong dependencies between edge failures,
it becomes almost impossible to distinguish direct from
indirect interactions. Nonetheless, it may be possible to
at least identify complexes where such dependencies
hold, by studying subsets of proteins for which the AP-
MS data differs significantly from our model.
In conclusion, this paper opens the door to a number

of fascinating modelling and algorithmic questions that
will lead to important implications in systems biology.
Any improvements in tackling these questions would
take us one step further towards this goal.

Methods
In this section, we describe the algorithmic details of
our approach to the DIGCOM problem.

Identification of weakly connected vertices
The algorithm to identify 1-cut vertices is trivial given
Theorem 1: recursively find edges satisfying conditions
in Theorem 1, and decompose the input matrix into
two independent subproblems. On the other hand, the
conditions in Theorem 2 yields Algorithm 1, which pre-
dicts the set of degree 2 vertices as well as the edges
adjacent to them. It is easy to see that the algorithm to
identify 1-cut vertices runs in time O(|V|4) and Algo-
rithm 1 runs in time O(|V|2).
Note that the identification algorithm for 1-cut ver-

tices allows us to remove these vertices, i.e., the corre-
sponding rows and columns in the input matrix. This is
possible due to the fact that removing a cut edge does

Figure 3 Inferring direct interactions from actual AP-MS dataset. Overlap between the Y2 H interaction network of Yu et al. and various AP-
MS-based networks: (a) High-confidence set of interactions from Krogan et al. (b) Set of 164 highest scoring interactions from Krogan et al. (c)
Set of 164 interactions predicted as direct interactions by our algorithms, based on the AP-MS data from Krogan et al.
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not change the connectivity between any two nodes on
the same side of the cut. On the other hand, we cannot
simply remove degree-2 vertices without affecting the
remaining entries in the matrix. Therefore, as shown in
Algorithm 1, degree-2 vertices and their incident edges
will be marked as such in the solution, but are not
removed from the input matrix.

Predict degree-2 vertices
Input: Probability matrix M and vertex set V
Output: Degree 2 vertices V 2 and their incident

edges E2

foreach vertex s ÎV do
if s satisfies conditions in Theorem 2 then
V 2 ¬ V 2 ∪ {s};
u, v ¬ the two vertices with Ms, u = Ms, v =

max{Ms, t : ∀t Î V - {s}};
E2 ¬ E2 ∪ {(s, u), (s, v)};

end
end
Return V 2 and E2

Algorithm 1: Prediction of degree 2 vertices

Detect dense clusters in the network
Input: Probability matrix M, and minimum cluster

size k
Output: Set of possible k-cliques in Gdirect.
t ¬ CliqueConn(k) (the connectivity between two

vertices in an m-clique; see Appendix)
Gt ¬ (V, Et), where Et = {(u, v): u, v ÎV and

M(u, v) ≥ t}
foreach connected component S ⊆ V do
Find cliques of size k in S

end
Return cliques discovered.

Algorithm 2: Detecting dense clusters in the
network

Identification of densely connected regions
Densely connected regions are identified using a clique-
cover algorithm (see Algorithm 2). We note that the
algorithm guarantees to identify all cliques of size k’ ≥ k
contained within Gdirect. However, sets of vertices that
do not form a k-clique may also be reported, provided
that they are sufficiently connected among themselves,
possibly via vertices outside the set. However, for suffi-
ciently large values of k, we found this to be a very rare
occurrence. While finding cliques in a graph is a com-
putationally intensive task in general, the construction
of Gt for large values of k creates few small connected
components and leaves the remaining vertices isolated.

Therefore, in practice, Algorithm 2 can be implemented
to run in a reasonable amount of time.

Cut-based genetic algorithm
The genetic algorithm aims at solving a generalization of
the A-DIGCOM. First, we allow each edge (u, v) in the
network to survive with a non-uniform probability

ˆ( , )p u v , instead of one probability p̂ over all edges. Sec-

ondly, we assume that we are given two sets of edges
EYES and ENO that indicate the set of edges that are
guaranteed to be in the solution, and guaranteed not to
be in the solution, respectively. This will later allow us
to factor in the outcome of the previous sections. There-
fore, the edges whose presence remains to be deter-

mined are E E EMAYBE YES NO= È .

Encoding of candidate solutions
To represent a candidate solution, we first create a hash
table that maps each putative edge in EMAYBE to an inte-
ger. Each candidate is then encoded as a list of integers
(edges). Edges in EYES, which are part of all solutions,
are not explicitly listed, in order to save space. Since the
networks we consider are sparse (|E| = O(|V|)), such an
encoding technique significantly reduces the space
requirements.
Initial population
The initial population of candidates is generated using a
preferential attachment model [30] using the following
observations: (i) The average connectivity of vertex u,

avgCon u
V

M u v
v V u

( )
| |

( , )
{ }

= ∈ −∑1 is strongly positively

correlated with the degree of u in Gdirect; (ii) the age of
a vertex, measured by when the vertex was introduced
to the graph, is positively correlated with the degree of
the vertex. Therefore, during the generation of each
candidate, we choose the next vertex to be added with
probability proportional to its average connectivity. This
results in a candidate solution where the degree of most
vertices is likely to be close to the their true degree in
Gdirect. Furthermore, in order to create candidates that
are clustered similarly to the true direct interaction
graph, we include the set of edges predicted by Algo-
rithm 2 to each initial candidate.
Fitness function
The fitness of a candidate solution G, fitness(G) is
obtained by first estimating the probability matrix PG
using 500 Monte Carlo samples, and then counting the
number of vertex pairs (u, v) whose estimated connec-
tivity PG(u, v) is within the tolerance level δ, i.e., M(u, v)
± δ (See below for choosing the tolerance level δ ).
Crossover
The crossover operation needs to hybridize two parent
candidates to produce off springs preserving the good
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properties of the parents. This operation will be guided
by a randomly chosen balanced cut V = V1 ∪ V2. Let G1

and G2 denote the two parent networks and let E1(Gi)
and E2(Gi) denote the edges of Gi such that both end-
points lie in V1 and V2, respectively. Furthermore, let
E1,2(Gi) denote the edges of Gi that crosses from V1 and
V2. Mating G1 and G2 results in two children G’ = (V,
E’), and G’’ = (V, E’’) such that:

′ =
′′ =

E E G E G E G E G

E E G E G E
1 1 2 2 1 2 1 1 2 2

2 1 1 2 1

( ) ( ) ( ( ) ( ))

( ) ( ) (
, ,

,

È È Ç

È È 22 1 1 2 2( ) ( )),G E GÇ

While choosing a random cut as the crossover point is
a reasonable strategy to construct a new pair of off-
springs, our studies have shown that a planned strategy
in choosing the crossover points results in better perfor-
mance and less chance of premature convergence. In
particular, if the crossover point is chosen at a dense
cut in the parent networks, then the connectivity among
vertices within each partition would be deteriorated sig-
nificantly. This results in offsprings with much poorer
fitness than their parents. On the other hand, if the par-
ents are hybridized at a sparse cut, the connectivity
among vertices within each partition are more localized.
Therefore, crossover operations are best done by select-
ing sparse balanced cuts (|V1| ≈ |V2|). Finding sparse
balanced cuts is a well-studied problem in combinatorial
optimization, for which various approximation algo-
rithms exist [38,39]. However, these algorithms assume
that the graph itself, not the connectivity matrix M, is
given as input. We therefore use a simple heuristic that
avoids cutting through the dense regions of the network.
To generate these sparse cuts, we contract each dense
region identified in Algorithm 2 to a single vertex, and
then generate weighted (by the number of vertices in
each dense region) balanced partitioning of the vertices
at random.
Mutation
In order to introduce variability to the population of
candidates, a small number of edges (5 ~ 10%) are ran-
domly inserted or deleted. Moreover, observe that the
child network constructed as above may not remain
connected. Aside from the random mutation, therefore,
we employ a simple local search that greedily adds
edges to keep the network connected.
Genetic algorithm parameter selection
The various parameters of the genetic algorithm were
selected based on the resulting performance on the Yu
et al. data set. Two main parameters that affect the per-
formance significantly are the population size and the
selection criteria. For selection criteria, we tested several
different selection criteria by setting the probability of
choosing a candidate as a parent. The best compromise
between running time and accuracy was obtained using

a population size of 500, and selection probability for a
parent proportional to fitness(ci) - minFit, where minFit
is the fitness of the worst candidate in the population
(data not shown).

Restricting the solution space
While our genetic algorithm offers a plausible method
for the A-DIGCOM problem, one can reduce the size of
the solution space, which typically results in faster con-
vergence to better solutions, using the results in Theo-
rem 1 and 2. First, recall that finding all cut edges
decomposes the problem into independent subproblems
on 2-edge-connected components. Second, the identifi-
cation of degree-2 vertices defines two sets of edges
EYES and ENO that constitute all putative edges incident
to the identified degree-2 vertices. In other words, EMAY

BE forms the subgraph of G induced by the set V 3+ of
vertices with degree ≥ 3. Furthermore, observe that the
edges in EY ES form parallel paths between vertices in V
3+. A classical result in network reliability (see Fact 2 in
Appendix) suggests that these parallel paths can be
merged into a single meta-edge whose reliability can be
efficiently computed. To be more formal, let  (u, v) =
{P1(u, v), P2(u, v), ..., Pk(u, v)} be the set of paths
between u and v in EY ES. These paths can then be
replaced by a single edge (u, v) with its survival prob-

ability ˆ( , ) ˆ
...

| ( , )|p u v pi k
P u vi= − −( )=1 11Π . By merging

every set of parallel paths, we obtain a compact network
over V3+ that efficiently encodes the edges in EY ES.
Since our genetic algorithm handles the case where the
edge survival probability is non-uniform, this compact
encoding results in substantial gains in running time for
estimating the fitness of the candidates, as well as in
time and space requirements for handling large popula-
tion sizes. In our applications, this allows us to remove
approximately 70 ~ 75% of the original set of vertices.

Randomized hill-climbing algorithm
For performance comparisons, we tested our algorithm
against a simple randomized hill-climbing approach. In
this approach, we start with a randomly chosen span-
ning tree G1 of the vertex set V. At the ith iteration, we

first sample the connectivity probability P
Gi of Gi, using

the Monte Carlo simulation. Then, we randomly pick a
vertex pair u, v with probability proportional to

D u v

D i j
i j V

( , )

( , )
,

,∀ ∈∑
where D u v M u v P u v

Gi( , ) | ( , ) ( , ) |= − . If the selected

pair u, v are connected by an edge in Gi, but M(u, v)
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> P
Gi (u, v), then we remove (u, v) from Gi. On the

other hand, if u and v are not connected by an edge,

but M(u, v) < P
Gi (u, v), then we add (u, v) to Gi. We

repeat this local optimization heuristic while making
sure the candidate solution remains connected.

Choosing a tolerance level δ and handling numerical
errors
In order to deal with numerical errors from Monte
Carlo sampling, we use a well-defined tolerance level δ
as additive errors. Note that the sampling process for
estimating the probability matrix PG is a binomial pro-
cess, which, by the central limit theorem, is closely
approximated by a normal distribution. The confidence
interval is largest when the estimated probability is
equal to 0.5, in which case we obtain a confidence inter-
val of

ˆ ˆ ,/p p
z

n
± = ± − 1 2

2

where p̂ denotes the fraction of samples where the

two vertices are connected after n samples, and z1 - a/2

is the z-value for desired level of confidence. Using this
formula, we can conclude:

1. When n = 20000 (computation of our input
matrix M from test networks), we obtain a 95% con-
fidence interval of size at most 2·δ = 2·0.007 = 0.014.
2. When n = 500 (computation of the connectivity
matrix for each candidate solution in our genetic
algorithm), the 95% confidence interval is of size at
most 2·δ = 2·0.04 = 0.08.

With the chosen tolerance level δ, we modify our
algorithm as appropriate each time we compare two
connectivity probabilities. For example, in Theorem 1,

the first condition PG(u, v) = p̂ is modified to

P u v p pG( , ) ,^ ^∈ − +⎡
⎣⎢

⎤
⎦⎥

δ δ ; and in Theorem 2, we modify

the first condition P s t p pG( , ) ^ ^< −2
2 to

P s t p pG( , ) ^ ^< − +2
2

δ .

Generation of scale-free networks
In order to generate artificial scale-free networks, we
used two generation models: the preferential attach-
ment model, and the duplication model. In the prefer-
ential attachment model, we evaluated the degree
distribution of the two biological networks (GY u and

GDIP ) and used the Barabási-Albert algorithm to con-
struct a scale-free network with attachment factor 1.5
(each iteration adds a new vertex with 1 ~ 2 edges
attached to existing vertices). In the duplication model,
at each iteration, we randomly pick a vertex to dupli-
cate with probability proportional to its degree and
randomly drop the duplicated edges with probability at
0.5 in order to t the degree distributions and sparsity
of biological networks.

Calculation of connectivity matrix from peptide counts
The peptide count of a prey protein in an AP-MS
experiment is the number of different peptides that have
been observed by MS for that protein. We note that the
peptide counts are biased towards preys with longer
protein sequences, and to rectify this propensity, we
normalized the abundance data by the protein sequence
lengths to obtain the abundance ratios R(i, j). In order
to turn the normalized abundance ratios into the con-
nectivity matrix for our probabilistic graph model, we
used a simple logistic function

ˆ ( , ) ,
,

M i j

e

R i j
=

+
−

( )−
1

1




where the parameters a, b are chosen so that the

computed distribution of p̂ fits the simulated connec-

tivity distribution of GY u, using a c2 test (a = 2.8921, b
= -0.6318). In the cases where R(i, j) differ from R(j, i),
we choose the average of the two entries to symmetrize
the matrix.

Appendix
We start with two basic results that will prove useful
when proving more complex theorems. Let G1 = (V1,
E1) and G2 = (V2, E2) be two graphs. Then the following
are true.
Fact 1. (Series composition) Suppose V1 ∩ V2 = {c},

and a new graph G is constructed by joining G1 and G2

at c. Then, for any s Î V1 - {c} and for any

t V c P s t P s c P c tG G G∈ − = ⋅2 1 2
{ }, ( , ) ( , ) ( , ) .

Fact 2. (Parallel composition) Suppose V1 ∩ V2 = {s, t},
and a new graph G is constructed by joining G1 and G2

at s and t (possibly leading to parallel edges between s
and t). Then,

P s t P s t P s t P s t P s tG G G G G( , ) ( , ) ( , ) ( , ) ( , )= + − ⋅
1 2 1 2

.

Proof of Theorem 1
Proof. Necessity is trivial. For sufficiency, suppose the
conditions (i) and (ii) hold, and (u, v) is not a cut edge.
Then, to keep the graph connected, there must be an
edge (s, t) ≠ (u, v) joining Vu and Vv. Since (s, t) is an
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edge, p s t p( , ) ^≥ . However, by assumption, we have

p s t p s u p v tp p( , ) ( , ) ( , )^ ^= ⋅ <⋅ , which is a

contradiction. □

Proofs of Theorem 2
Proof. We prove each condition separately.
Condition (i) Low connectivity
Since s has degree 2, it becomes disconnected from the

rest of the graph with probability ( )^1 2− p . Thus,

P s t p p pG( , ) ( )^ ^ ^≤ − − = −1 1 22 2 . The equality can only

hold if PG(s, u) = PG(s, v) = 1, which is impossible.
Condition (ii) Neighborhood
We first show PG(s, u) = PG(s, v). Let PE -{(s, u)}(s, u)
denote the connectivity of s and u when edge (s, u) is
removed from E. Then, we have:

P s u p P s u p P s uG E s u E s u( , ) ( , ) ( , ) ( )
^ ^

{( , )} {( , )}= + − ⋅

=

− − by Fact  2

pp p P v u p P v uE s u s v E s u s v
^ ^ ^

{( , ),( , )} {( , ),( , )}( , ) ( , ) (+ ⋅ − ⋅− −
2

by Faact 1

2

)

( , ) ( ,
^ ^ ^

{( , ),( , )} {( , ),( , )}= + ⋅ − ⋅− −p p P u v p P uE s u s v E s u s v vv

p P s v p P s v

P s v

E s v E s v

G

)

( , ) ( , )

( , )

^ ^

{( , )} {( , )}= + − ⋅

=
− −

Next, we show that for any t Î V - {s, u, v}, PG(s, t)
<PG(s, u). For a subgraph H ⊆ G, let p(H) denote the
probability of observing H from a probabilistic graph G.
We can write this probability as

p H p p
E H

E G E H( ) ( )
^ ^| ( )|

| ( )| | ( )|= ⋅ − −1

Thus, for any two subgraphs Hi, Hj ⊆ G, such that |E
(Hi)| = |E(Hj)|, p(Hi) = p(Hj). Let ℋ(s, t) be the set of
subgraphs of G where s and t are connected. We can
then write the probabilities PG(s, t) and PG(s, u) as the
sum of the probabilities of these subgraphs.

P s t p H

P s u p H

G

H s t

i

G

H s u

j

i

j

( , ) ( )

( , ) ( )

( , )

( , )

=

=

∈

∈

∑
∑




Observe that these two sets of subgraphs may overlap:

  
  

( , ) ( , , ) ( , , )
( , ) ( , , ) ( , , )
s t s t u s t u
s u s t u s t u

=
=

È
È

where ℋ(s, t, u) is the set of subgraphs such that s, t,

and u are all connected, while ( , )s t u is the set of

subgraphs where s, t belong to the same connected
component that doesn’t contain u. Thus, we now focus

on ( , )s t u and ( , , )s t u . The subgraphs in

( , , )s t u can be partitioned as follows, depending on

which component v belongs to:

(i) {s, u, v}, {t}: s, u, v belong to the same component,
and t belongs to another component.
(ii) {s, u}, {v}, {t}: s, u belong to the same component,
and each of v and t belongs to distinct components.
(iii) {s, u}, {v, t}: s, u belong to the same component,
and v, t belong to another component.

It is easy to see that the cases (i) and (ii) are none-
mpty, since (s, u), (s, v) Î E(G).

Finally, consider the set of subgraphs in ( , )s t u . Let

H be a subgraph in this set. Since s and u belong to dis-
tinct components, (s, u) ∉ E(H), and thus (s, v) Î E(H)
in order to have s and t connected. We then make the
following operation on H to construct H’: (1) remove (s,
v) from H, and (2) insert (s, u). Then, H’ now has s and
u in the same component, and v and t in another com-
ponent - and therefore, H’ belongs the case (iii) of

( , , )s t u . Furthermore, note that H and H’ have the

same number of edges. Therefore, there is a mapping

from subgraphs in ( , )s t u to subgraphs in case (iii) of

( , , )s t u with equal number of edges. Since the cases

(i) and (ii) are nonempty, it follows that PG(s, t) <PG(s,
u).
Condition (iii) “Triangle” inequality
Given the probabilistic graph G, we partition the sub-
graphs of G into four cases depending on the existence
of the two edges (s, u) and (s, v).

• (s, u), (s, v) Î E: occurs with probability p̂2 .

• (s, u) Î E, (s, v) ∉ E: occurs with probability

ˆ( ˆ)p p1 − .

• (s, u) ∉ E, (s, v) Î E: occurs with

probability ˆ( ˆ)p p1 − .

• (s, u), (s, v) ∉ E: occurs with probability( )^1 2− p .

We can thus rewrite the probability PG(s, t) as follows.

P s t p p P u t p p P v t p PG G s G s G( , ) ( ) ( , ) ( ) ( , )
^ ^ ^ ^ ^

{ } { }= ⋅ − ⋅ + ⋅ − ⋅ + ⋅− −1 1
2

−−{ }( , )s u v t or (1)
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where PG - {s}(u or v, t) denotes the probability that u
or v is connected to t in the graph G - {s}. We write PG
(u, t) and PG(v, t) similarly:

P u t p P u t p P u v tG G s G s( , ) ( ) ( , ) ( , )
^ ^

{ } { }= − ⋅ + ⋅− −1
2 2

 or (2)

P v t p P v t p P u v tG G s G s( , ) ( ) ( , ) ( , )
^ ^

{ } { }  or = − ⋅ + ⋅− −1
2 2 (3)

Subtracting (1) from (2), and (1) from (3) gives:

P u t P s t p P u t p p P v t

P

G G G s G s

G

( , ) ( , ) ( ) ( , ) ( ) ( , )

(

^ ^ ^

{ } { }− = − ⋅ − − ⋅− −1 1

vv t P s t p P v t p p P u tG G s G s, ) ( , ) ( ) ( , ) ( ) ( , )
^ ^ ^

{ } { }− = − ⋅ − − ⋅− −1 1

If P u t P v tpG s G S− −> ⋅{ } { }( , ) ( , )^ , it follows that PG(u, t) >

PG(s, t). Otherwise, P u t P v tpG s G s− −≤ ⋅{ } { }( , ) ( , )^ implies

ˆ ( , ) ( , ){ } { }p P v t P v tG s G s⋅ <− − , and it follows that PG(v, t)

>PG(s, t). □

Connectivity in an n-clique
Here we construct a formula to compute the connectivity of
an n-clique Kn, defined as CliqueConn(n) in Algorithm 2.
First, we recall a classical result in graph enumeration.

Lemma 1
[40,41]Let gn denote the number of connected simple
graphs over n labeled vertices. We can count this number
by the recurrence.


n

n n i

i
i

n

if n

n
i

n

i
otherw

=

=

⎛

⎝
⎜

⎞

⎠
⎟ ⋅

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

− ⋅( ) −( )
=

−∑
1 1

2
1

22 2

1

1
iise

⎧

⎨
⎪⎪

⎩
⎪
⎪

Now we show the formula for the case when p̂ = 1
2
,

which is the value we used for our analyses. The for-

mula for other values of p̂ can be formulated using a

similar proof.
Lemma 2

CliqueConn n

n

i i

n n i
i

n

( ) =
−

⎛

⎝
⎜

⎞

⎠
⎟

( )− −( )=
∑ 2

2 2 22



Proof. We write the probability as follows.

CliqueConn n n
n

( ) = + + … +

( )
  2 3

22

where si denotes the number of subgraphs of Kn of
size i where two given vertices u and v are connected.

To compute si, there are
n

i −
⎛

⎝
⎜

⎞

⎠
⎟2
ways to pick i - 2 ver-

tices (in addition to u and v) for the connected compo-
nents, and gi ways to keep them all connected, and

finally, 2
2

n i−⎛

⎝
⎜

⎞

⎠
⎟ ways to assign edges among the remain-

ing vertices. So we have

 i i

n in

i
=

−
⎛

⎝
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⎠
⎟ ⋅ ⋅
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2

2 2 ,

and finally, we have

CliqueConn n
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i i
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i
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

□

Additional material

Additional file 1: ModelValidation. Correlation plot of the connectivity
from PGKroganHigh

PGKrogan High and normalized peptide counts from
Krogan et al. Each data point corresponds to an interaction in G

KroganFull
-

GKrogranHigh, many of which are expected to be indirect. x-axis:
Connectivity entry in PGKroganHigh

PGKrogan High, using ˆ .p = 0 5 . y-axis:
Peptide count, normalized by protein lengths. The resulting linear
regression showed a strong correlation (regression p-value 8.17 × 10-11,
Student t-test), suggesting that many interactions in GKroganFull -
GKrogranHigh are indirect and are the result of direct interactions in
GKroganHigh.

Additional file 2: PredictedInteractions. Set of direct interactions
among 77 yeast proteins, predicted by our algorithm. The connectivity
matrix is generated from normalized peptide counts, and then our
algorithm is run to predict the direct interactions.
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