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Abstract

Background: Algorithms of sequence alignment are the key instruments for computer-assisted studies of
biopolymers. Obviously, it is important to take into account the “quality” of the obtained alignments, i.e. how
closely the algorithms manage to restore the “gold standard” alignment (GS-alignment), which superimposes
positions originating from the same position in the common ancestor of the compared sequences. As an
approximation of the GS-alignment, a 3D-alignment is commonly used not quite reasonably. Among the currently
used algorithms of a pair-wise alignment, the best quality is achieved by using the algorithm of optimal alignment
based on affine penalties for deletions (the Smith-Waterman algorithm). Nevertheless, the expedience of using local
or global versions of the algorithm has not been studied.

Results: Using model series of amino acid sequence pairs, we studied the relative “quality” of results produced by
local and global alignments versus (1) the relative length of similar parts of the sequences (their “cores”) and their

nonhomologous parts, and (2) relative positions of the core regions in the compared sequences. We obtained
numerical values of the average quality (measured as accuracy and confidence) of the global alignment method
and the local alignment method for evolutionary distances between homologous sequence parts from 30 to 240
PAM and for the core length making from 10% to 70% of the total length of the sequences for all possible
positions of homologous sequence parts relative to the centers of the sequences.

Conclusion: We revealed criteria allowing to specify conditions of preferred applicability for the local and the
global alignment algorithms depending on positions and relative lengths of the cores and nonhomologous parts
of the sequences to be aligned. It was demonstrated that when the core part of one sequence was positioned
above the core of the other sequence, the global algorithm was more stable at longer evolutionary distances and
larger nonhomologous parts than the local algorithm. On the contrary, when the cores were positioned
asymmetrically, the local algorithm was more stable at longer evolutionary distances and larger nonhomologous
parts than the global algorithm. This opens a possibility for creation of a combined method allowing generation of

more accurate alignments.

1. Background

Pair-wise alignment of amino acid sequences is the main
method of comparative protein analysis. Among the
most popular algorithms based on comparison of pro-
tein primary structures the Needleman-Wunch algo-
rithm [1], the Smith-Waterman algorithm [2], BLAST
[3], and FASTA [4] should be noted. On the basis of
paper [1] the algorithm [5] was created for comparing
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sequences with intermittent similarities. The improved
version [6] makes use of multiple parameter sets in
computation of an optimal alignment of the two
sequences. A number of algorithms (Walquist et al. [7],
Litvinov et al. [8], etc.) also take into account specific
features of protein primary structures. However, it is
important to know how closely algorithmic alignments
produced through optimization of any chosen target
function reflect an evolution-based alignment of the
appropriate amino acid sequences, e.g. the one, which
juxtaposes the positions in the compared proteins
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originating from the same position in their common
predecessor.

The “quality” of the alignment algorithms, i.e. mutual
concordance of algorithmic and GS alignments, was
analyzed from different points of view; in most cases,
alignments based on intercomparison of three-dimen-
sional structures were used as the GS alignments. It was
premised on the fact that 3D structures of proteins are
much more conservative than their amino acid
sequences [9].

In other words, sequences corresponding to a certain
fold are greatly confluent: the same structure corre-
sponds to somewhat dissimilar or even totally dissimilar
sequences. There are also a number of counter-exam-
ples, when similar sequences correspond to totally dif-
ferent 3D structures, but such examples are much less
common [10]. Vingron and Argos [11] demonstrated
that there was a relationship between conservatism of
the optimal global alignment region in a set of subopti-
mal alignments and its similarity with the structural
alignment results. They showed that regions of optimal
alignment, recurring most frequently in suboptimal
alignments, were very similar to alignments produced by
the structural alignment methods.

In works [12,13], evaluation of the accuracy of the
optimal alignment was based on determination of the
matching accuracy for each pair of matched amino acid
residues, with the following plotting of the robustness
index values versus the number of the aligned pair of
residues. For example, Mevissen and Vingron [12] used
a weight difference for the optimal alignment and the
alignment with the largest weight, in which residue i
and residue j were not matched, as a measure of robust-
ness for matching residue i with residue j. In the work
of Schlosshauer and Olsson [13], the measure of validity
for matching residue i with residue j was based on sub-
stituting the discrete function “max” in the dynamic
programming algorithm with a parameter-dependent
analog function. It allowed evaluating possible subopti-
mal alternatives for the chosen aligned pair of residues,
thus also allowing a numerical evaluation of the accu-
racy of their matching. This numerical index calculated
for each pair of residues serves as a measure of the local
accuracy of the alignment.

As opposed to the works mentioned above, our eva-
luation of algorithmic alignment methods was based not
on the assessment of the alignment results for a few
selected positions, but on the comparison of algorithmic
alignments with the GS alignment as a whole over the
total length of the sequences (see [14-16]). From the
results of comparison of structural alignments with local
algorithmic Smith-Waterman alignments Sunyaev et al.
[16] made a conclusion that the possibility of recon-
struction of structural alignments from algorithmic ones
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depends on the degree of similarity of appropriate pro-
teins; besides, examination of internal structures of both
alignments allowed to develop a more efficient proce-
dure for aligning two sequences, taking into account not
only the mean level of their identity, but also the distri-
bution of more or less similar regions in the sequences
in the structural alignment.

However, all the works cited above had a common
fault: algorithmic alignments were compared not with
the true evolutionary alignments (which were
unknown!), but with their approximations. This intro-
duced an error in the results, which could not be esti-
mated by the usual direct methods. We suggest using a
comparison of artificially generated sequences to evalu-
ate the quality of alignment algorithms, because the GS
alignment for such sequences is known from the very
beginning. A similar numerical experiment was
described in [17,18]. However, generation of the test set
of sequences in [17] did not reflect completely available
data on the evolutionary process, because insertions and
deletions were generated in accordance with an over-
simplified algorithm. In the work [18], to generate a set
of test sequences, a different evolution model was used,
which had been described in [19-21]. The model
included both point mutations and indels. Numerical
values of the mean accuracy were obtained for the glo-
bal alignment algorithm with affine gap penalties (the
global version of the Smith-Waterman algorithm) for
various evolutionary distances.

The purpose of our work was to determine conditions
of preferred applicability of the local and global versions
of the algorithm for determination of optimal align-
ments with an affine penalty function for indels [22].
Thereinafter, for the sake of brevity, this algorithm will
be called the “Smith-Waterman algorithm”. As is well
known, the global algorithm finds such positions for
gaps in the sequences, which correspond to the maxi-
mum value of the difference between summed weights
of matched residues and summed penalties for the gaps.
A local algorithm allows finding the optimal alignment
of two fragments of the studied sequences, whereby the
regions before and after the fragments forming the
alignment with the maximum weight are not taken into
account when the weight is calculated. Thus, unlike the
global algorithm, the local algorithm allows determining
not only optimal positions for gaps in some fragments,
but also the fragments themselves, which provide for
their appropriate positioning.

Our task was to determine the relative quality of
alignments obtained through the global and local algo-
rithms versus the degree of homology of similar regions
in the sequences (the “cores”) and the length of nonho-
mologous regions at the ends of the sequences (the
“consoles”). In particular, we tried to determine the
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application threshold for the global algorithm, i.e. the
values of the above-mentioned parameters, which pro-
vided for the same or better quality of alignments by
using the global algorithm in comparison to the quality
of alignments by using the local algorithm (see the defi-
nition of the alignment quality in section 2.3).

2. Methods

2.1 Preparation of test sets of sequence pairs

2.1.1 General description of sets

To carry out computer experiments we prepared 224
test sets, each set including 1000 sequence pairs ("test
pairs”). All sets were prepared using the same technique,
and different sets have different technique parameters
(see below).

A test sequence pair consists of two sequences gener-
ated independent of each other from a common initial
sequence ("ancestor”), each of their compared sequences
consisting of a homologous part ("core”) and nonhomo-
logous parts ("consoles”) surrounding the core.

The generation of test pairs is described in the next
subsection. It has the following parameters:

1) PAM is the measure of evolutional distance from
the common ancestor to the sequence cores (see
(19]);

2) r is the ratio of the total length of consoles to the
length of the common ancestor of sequence cores
(this ratio is accepted to be equal for the both
sequences of a pair and, as a result, the total lengths
of consoles are equal for the both sequences);

3) c is the ratio of the absolute value of the differ-
ence between console lengths to their total length
(this ratio is the same for the both sequences, but
for sequence S1I the left console is no longer than
the right one, and vice versa for sequence S2).

To generate test sets with such parameters we used
the following values:

1) PAM = 30, 60, 120, 240 PAM;
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2) r = 10%, 20%, 50%, 100% , 200%;
3) ¢ = 0% (the consoles are of the same length),
10%, 20%, ... 100% (one console is missing).

Test sets were prepared for all possible combinations
of the above parameters, i.e. in total 224 test sets were
prepared (including sequence sets without consoles);
the meaning of the r and ¢ values is explained in Fig-
ure 1.

2.1.2 Description of generation of a test sequence pair
The process of generation of a test sequence pair con-
sists of the following stages:

(i) Generation of a common ancestor P of cores of
test sequences;

(ii) Generation of cores KI and K2 of test sequences
in accord with the PAM value;

(iii) Estimation of the total length of consoles for
each of the sequences in accord with the r values;
(iv) Estimation of the length of each console in
accord with the ¢ value;

(v) Generation of consoles L1, RI (the left and right
consoles of the first sequence), L2, R2 (the left and
right consoles of the second sequence);

(vi) Construction of desired test sequences SI, S2:

S1=L1eKleRl; S2=L1eKIeRI.

To solve this task we used the following evolution
model, which is a version of the evolution model used
in our previous paper [18]. Therein we analyzed the
alignment of the ancestor sequence SO and generated
sequence SI from it, whereas here we examine align-
ments of sequences SI and S2 generated from the com-
mon ancestor sequence SO.

The ancestor sequence is generated as a random Ber-
noulli amino acid sequence of about 200 a.a., probabil-
ities of selection of amino acids were taken as advised in
[19]. Consoles are generated in the same way (indepen-
dent of each other and of the ancestor sequence). Their
lengths are estimated using the formulas (here and

L1 K1

R1
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RAGPIFNKQ VAFGDSLGWKFTAFLLNFTQATVVQNAVKLTQKTPPG LEAVHARKMAM
IGPRTPDSLAL VAFGESLGWQFSEFLLNYGQATVVQPAVKLTQKTPPGT ELHKLDPDP

» & »
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sequence.

L2 K2 R2
Figure 1 Modified sequences with consoles. Here L1, L2, K1, K2, R1, R2 are left consoles, cores and right consoles of the first and second
modified sequences; their lengths [L1] = |R2| = 9, [L2| = [R1| = 11, [K1| = |K2| (inequality is explained by differing length of random insertions

and deletions). Then r = (IL1| + [R1))/|P| = (9+11)/200 = 0.1, ¢ = (IR1] - [L1))/|(L1] + |R1|) = 2/20 = 0.1, where |P| = 200 is the length of the initial
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lower |w| is the length of a symbolic sequence w, i.e. |P|
is the length of sequence P which is a common ancestor
for cores of compared sequences):

IL1| = |Plere(I1—c)/2; |RI|=|P|ere(l+c)/2;

|[L2| = |Plere(1+c)/2; [R2| = |Plere(1—c)/2.

Generation of cores is described in subsection 2.1.3.
2.1.3 Construction of homologous regions of test sequences
(cores)

Cores K1 and K2 were constructed of an ancestor
sequence P independently and according to the same
procedure. The procedure consisted of two stages.

At the first stage, insertions and deletions were incor-
porated into the ancestor sequence. Let us say that
there is an indel at position i (i from I to L+1) if there
is an insertion before position i or a deletion beginning
from this position i; position L+I corresponds to the
insertion at the sequence terminus. The probability of
an indel at a given position was calculated by the for-
mula:

P (indel) = 0.0224 — 0.0219 - ¢(~0-01168+PAM) (1)

where PAM is the number characterizing the evolu-
tional distance between the original and modified
sequences [19].

For each position 4, i = 1, ..., L+1, we determined by a
random choice if there is an indel. Then we decided at
random if an insertion or deletion appeared, the prob-
ability of the deletion was chosen to be 0.55. This value
was determined empirically, provided that the total
length of insertions and deletions was equal. When p
(ins) = p(del) = 0.5 at the accepted procedure, the total
length of insertions was greater than that of deletions.
The length of an insertion or deletion was chosen at
random from Zipfian distribution which, as stated in
[20], is independent of the evolutional distance. If the
chosen deletion length exceeded the distance from posi-
tion i to the sequence terminus (in particular, at i = L
+1) or the beginning of the deletion coincided with the
already deleted position, the attempt was ignored.
Ignored was also the insertion if its beginning coincided
with the elongation of the earlier made insertion or
deletion. Thus, we prevented insertions and deletions,
whose length was not equal to the value obtained from
the preset distribution.

At the second stage, point mutations were inserted in
the obtained sequence. At this, mutations were naturally
inserted only in the remaining sites of the original
sequence. A cycle of inserting mutations consisted in
the following. A substitution is made in every position
with certain probability, the probability of origin of a
new symbol in this position being determined by the
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Table 1 Correspondence of %id and PAM.

%id PAM %id PAM
99 1 50 80

95 5 45 94

90 11 40 12
85 17 35 133
80 23 30 159
75 30 25 195
70 38 20 246
65 47 15 328
60 56 10 489
55 67 5 830

The average fraction of coincidence of the ancestor and mutant sequences (%
id) and the corresponding PAM value. Only substitutions are allowed in the
mutant sequence.

probability matrix PAMI [19]. This cycle changes
approximately so many times as is the value of PAM.
Table 1 shows average portions of coincidence of the
ancestor and mutant sequences (%id) and parameter
PAM.

The letter composition of insertions was generated
analogous to original sequences. It should be noted that
contrary to the scheme used in [18], in this case the
total length of insertions-deletions was not a constant
value for all pairs of sequences from one test set and
obeyed the law of random numbers (which is closer to
the real evolutional set).

2.2. Comparison of “ancestor-descendant” and
“descendanti1-descendant2” tests

In the above procedure, test pairs of sequences are gen-
erated according to the “descendantl-descendant2”
scheme (i.e. two descendants of a common ancestor are
compared) rather than by the “ancestor-descendant”
scheme (the ancestor sequence is compared to its des-
cendant). The first scheme in a better way models a
comparison of real sequences. However the PAM para-
meter, used traditionally for characterizing the evolu-
tional distance, is second-scheme-oriented, but since the
parameter is universal, nothing prevents its use for esti-
mating the distance between descendants of a common
ancestor.

Table 2 shows how different values of PAM corre-
spond to the ratio of the test sequences generated
according to the “descendantl-descendant2” scheme.
The table has two data blocks ("ancestor-descendant”
and “descendantl-descendant2”). The first block is of
two columns each characterizing reference alignment
(see subsection 2.3) of the ancestor sequence and the
core generated from it in the course of the process
described in subsection 2.1. Column “%id” lists average
percentage of column-coincidences among all columns
describing letter comparison. Column “%indel” describes
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Table 2 Characteristics of modified sequences generated
according to the sequential ("ancestor-descendant”) and
diverging ("descendant1-descendant2”) schemes

PAM “Ancestor- “Descendant1-descendant2”
descendant”
%lId %Indel %id PAM (id) %indel PAM (indel)
30 74.9% 3.3% 579%  60.55 0.6% 68.56
60 57.9% 54% 376% 12225 10.7% 202.14
120 37.6% 7.5% 20.1%  245.08 14.7% >830
240 20.2% 8.9% 10.5% 47387 17.3% > 830

Lines correspond to different values of PAM. The figures in columns are
described in the text (subsection 2.2). All data are given as selected from 1000
sequence pairs. For control, the same data were obtained for a variety of
10,000 pairs; the results do not differ from those given in the table with an
accuracy of tenths of a percent.

the percentage of column-indels among columns of
reference alignment. The “descendantl-descendant2”
block has four columns. Columns “%id” and “%indel”
have the same meaning as in the “ancestor-descendant”
block, though they denote reference alignment of two
descendants of a common ancestor. Columns PAM(%id)
and PAM(%indel) list PAM values at which correspond-
ing characteristics could be obtained for “ancestor-des-
cendant” pairs. The table shows that from the point of
view of %id, the use of a diverging scheme is equivalent
to the use of a sequential scheme at a twice higher PAM
value. Nonetheless the number of indels for the “descen-
dantl-descendant2” scheme with parameter PAM is
essentially higher than for the “ancestor-descendant”
scheme with parameter 2-PAM.

2.3 Alignment of sequences with consoles

Alignment of generated sequences was performed using
two variations of the Smith-Waterman algorithm - the
global and local ones. For global alignment the substitu-
tion weight matrix PAM250 and gap-open and gap-
extension penalties 14 and 2 were used; for local align-
ment the Gonnet250 matrix and penalties 10 and 0.5
were used. Such parameter values were chosen on the
base of the preliminary computer experiments [15,17]
which allowed getting the best values of the quality of
alignments (see subsection 2.4) through all test sets.
These values are close to those commonly used.

Prior to the tests with sequences of variable homology
along the sequence, we investigated the dependence of
the quality of the alignment on the applied substitution
matrix and gap-open and gap-extension penalties. For
this purpose the following numerical experiment was
held.

Test sets including 1000 pairs of sequences each were
generated according to the “sequential” scheme of evo-
lution with average distances between ancestors and
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descendants of 60, 100, 200, 300 PAM (see the descrip-
tion of “sequential” and “diverging” schemes in item
2.2).

Pairs of sequences of each test set were aligned by glo-
bal version of Smith-Waterman algorithm using two
matrices: “native” (i.e. the PAM matrix corresponding to
the evolutionary distance between sequences) and
PAM250. Values of the measures of similarity (2.4) of
algorithmic alignments via the reference alignments
derived from “native” matrix and the PAM250 matrix,
are practically the same (difference less than 1%, see the
table in additional file 1, sheet PAM250). As we
observed, the high homologous proteins (id > 45%) can
be successfully aligned, using a matrices designed for
large evolutionary distances. At the same time, attempts
to align low homologous proteins, using a matrix
designed for shorter distances, significantly deteriorate
the results, signifying mismatch of algorithmic and refer-
ence alignments.

This is confirmed by a more complete numerical
experiment. For this aim, each pair of sequences of all
test sets were aligned using matrices PAM60, PAM100,
PAM200, and PAM300. Gap-open and gap-extension
penalties ranged from 10 to 20 and from 1 to 5, respec-
tively (see the data in additional file 1, sheet Max
Values). A practical conclusion of this finding,
obviously, is that if the evolutionary distance between
the sequences is unknown, the evolutionary distance
corresponding to applied matrix, should be certainly
greater than expected distance between the sequences.

Complete data on the comparative analysis of weight
matrices are given in additional file 1, sheet All Values.

2.4 Determination of the quality of algorithmic
alignments

We are fascinated how close the alignments obtained by
the program are to the reference alignments, i.e. align-
ments with aligned positions generated from the same
position of the ancestor sequence. To assess the close-
ness ("the alignment quality”), we have used Accuracy
and Confidence measures described elsewhere [14-16].
It should be underlined that in the reference alignment
the console positions were accepted to be unaligned.
Therefore when calculating the number of comparisons
in the algorithmic alignment, we took only columns in
which at least one symbol would belong to a homolo-
gous region. To explain the above, we will analyze the
following example. Let K1 = “abcdefghzzk” and K2 =
“abxxcdefghk” be cores of the compared sequences
(their reference alignment is given in Figure 2a). Then
let S1 = “****abcdefghzzk****“ and S2 = “****abxxc-
defghlc****“ be sequences with consoles (asterisks desig-
nate console symbols that are insignificant for us and
probably diverse). The algorithmic alignment of
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(a)
ab--cdefghzzk
abxxcdefgh--k

(b)
*———%**abcdefghzzk****
*% % *abxx-cdefghk**--**

(c)

***abcdefghzzk

abxx-cdefghk**
++++++

Figure 2 Determination of the quality of alignment of
sequences with consoles. (a) Reference alignment of sequence
cores. (b) Algorithmic alignment of sequences. (c) Fragment of
algorithmic alignment the quality of which should be assessed (+
means that comparison is present in the reference alignment).

sequences with consoles is shown in Figure 2b, and its
fragment whose quality is to be assessed is given in Fig-
ure 2c. We get the following.

Number of columns without deletions in the reference
alignment:

G=9;

Number of columns without deletions in the algorith-
mic alignment:

A=13;

Number of common columns without deletions:
I=0;

Accuracy:
Accuracy = I/G = 6/9;

Confidence:

Confidence = 1/A = 6/13.

3. Results and Discussion

We have analyzed the dependence of the quality (i.e.
accuracy and confidence) of the global and local align-
ments of console sequences versus the following values:
(1) the evolutional distance between homologous frag-
ments of sequences ("cores”); (2) the console length; and
(3) console asymmetry ("shifted cores”).

3.1. Symmetrical consoles
Table 3 shows the dependence of the accuracy and con-
fidence values at a symmetrical position of the core (¢ =
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0) and at all PAM and r values analyzed (see subsection
2.1.1). It is seen that when the evolutional distance PAM
and the console length r grow, the accuracy and confi-
dence values decrease. In this case, with the same evolu-
tional distance and console length, the accuracy and
confidence values of the global alignment are somewhat
higher than those of the local alignment, this difference
increasing with the growth of the evolutional distance.
For example, at an evolutional distance of 240 PAM the
accuracy of the global alignment is by 18.6% higher than
that of the local alignment, whereas the confidence is
only 16.2% higher.

Thus, at a symmetrical position of the consoles, the
global algorithm has higher resistance to the increase of
evolutional distance and console length than the local
algorithm.

3.2. Asymmetrical consoles

In contrast, if homologous regions of aligned
sequences are shifted in opposite directions from the
center of sequences, both the accuracy and confidence
of the global alignment decrease remarkably (see Fig-
ure 3). In such a case, at a fixed evolutional distance
between the sequence cores and the total length of
consoles, degradation of the global alignment becomes
sharp in a relatively narrow range of changing the con-
sole asymmetry ¢ (see the definition of ¢ in subsection
2.1.1). So, at the evolutional distance of 30PAM, the
total length of consoles 100% of the core length and
the increase of console asymmetry from 80% to 90%,
the accuracy and confidence drop from 85% to 51%.
At the total length of consoles 200% and an increase
of console asymmetry from 50% to 60%, a much shar-
per decrease in the accuracy and confidence takes
place (from 73% to 6%).

It should be noted that the above accuracy values of
global alignments are much lower than the values given
in previous papers (see, for example, [18]). This is
explained by the fact that we analyze the sequences with
consoles, whereas in the cited and some other papers
only alignments of sequences homologous as a whole
were considered.

When the evolutional distance between homologous
regions of sequences continues to increase, this ten-
dency becomes more pronounced. Thus, when the evo-
lutional distance is 60 PAM, the total console length is
100% and the core shift changes from 50% to 70%, the
accuracy value decreases from 87% to 30%, and the con-
fidence value decreases from 85% to 29%. When the
evolutional distance is 120 PAM, the total console
length is 50% and the core shift changes from 40% to
60%, the accuracy value decreases from 67% to 38%, and
the confidence value decreases from 64% to 36%. When
the evolutional distance is 240 PAM and the console
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Table 3 Accuracy and confidence of global and local alignment at symmetrical consoles

Evolutional distance, PAM Console length, %

Global alignment Local alignment

Accuracy, % Confidence, % Accuracy, % Confidence,%
30 0 98.98 98.86 98.19 98.57
30 10 98.90 9862 98.23 98.20
30 20 98.77 98.38 98.11 97.95
30 50 98.50 97.88 9791 9745
30 100 9847 97.82 9791 97.36
30 200 98.40 97.61 97.65 96.93
60 0 95.88 9542 93.19 94.37
60 10 95.89 95.25 9361 93.91
60 20 95.24 94.38 93.29 93.20
60 50 94.59 93.22 92.92 91.99
60 100 94.65 93.05 92.84 9146
60 200 94.35 92.77 9257 91.21
120 0 8247 8147 71.76 76.71
120 10 81.13 79.79 71.34 74.16
120 20 79.30 77.59 71.16 72.64
120 50 77.95 7577 70.51 69.77
120 100 76.70 7411 69.48 67.78
120 200 76.32 73.34 68.69 66.79
240 0 38.86 38.31 15.14 19.30
240 10 36.80 35.90 15.50 1812
240 20 33.06 32.05 14.22 1571
240 50 30.71 29.46 14.22 14.49
240 100 27.93 26.63 12.79 1243
240 200 2533 23.90 9.27 8.88

The dependence of Accuracy and Confidence values on the evolutional distance between cores (Evolutional distance, PAM) and relation of the total length of
consoles to the core length (Console length, %) is shown. Of notice is the qualitative predominance of the global algorithm at the evolutional distance of 240

PAM.

length is 50%, the accuracy and confidence values begin
to decrease at a shift of 10%.

So, an increase in the evolutional distance between
homologous regions of sequences causes a noticeable
decrease in the quality of global alignment, a consider-
able decrease of the quality of global alignment taking
place at a decreasing length of consoles and a diminish-
ing shift of the core from the center of sequences.

The entire records of the dependence of accuracy and
confidence values on the three parameters are given in
Additional File 2.

It is essential that at all considered values of PAM,
length and asymmetry of consoles, there is no remark-
able decrease in the quality of local alignment. In other
words, in case of asymmetrical consoles, the local algo-
rithm is more resistant to the increase in evolutional
distance and console length than the global algorithm.

Thus, we can conclude that there exists some threshold
value of the three parameters: extent of core homology,

total length of consoles and asymmetry of consoles. Prior
to this value, the quality of the global alignment is higher
than that of the local alignment, but above this value the
global alignment quality decreases sharply, whereas the
local alignment quality remains the same.

3.3. Determination of the “slope zone”
The plots in Figure 3 show that when the asymmetry of
consoles ¢ changes from 0 to 100% (at fixed evolutional
distances between cores and the total length of con-
soles), the accuracy and confidence of global alignments
decrease. In this case the decrease is sharp in a relatively
narrow (~ 20%) range of c¢ values; this range will be
called the slope zone. In this section we will demon-
strate how to predict theoretically where this area is. It
will be accepted that the substitution weight matrix and
gap penalties are fixed (see subsection 2.3).

Let P be a pair of test sequences, Lker(P) be the aver-
age length of cores of these sequences, Score (P) be the
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Figure 3 Dependence of accuracy and confidence of alignments versus the core shift c. A, B - evolutional distance of 30PAM; C, D -
evolutional distance of 120PAM. A, C - console length r = 100%; B, D - console length r = 200%. The accuracy and confidence of the global
(GIb.Accur, GIb.Conf) and local (Lcl. Accur, Lcl.Conf) alignments at the console length making 100% and 200% of the length of cores and at
evolutional distances between the cores 30PAM and 120PAM. The parameter ¢ (see its definition in subsection 2.1.1) determines the core shift
value. The plots for accuracy and confidence are compatible at evolutional distance of 30PAM.

weight of reference alignment of cores for the consid-
ered set. The density of cores alignment for pair P will
be the relation:

Dyer (P) = Score (P) /Lker (P) .

Let us consider one of the sets of test sequences
described in subsection 2.1. Using Dy, and Ly, we will
denote mean values: Dker(P) and Lker(P), respectively,
for the sequences in the set under discussion.

Then let Lcon = r-Lker be the length of consoles, Dcon
be the total average relation ofalignment weights of two
independent random sequences of equal length to the

sequence length, ¢ be the asymmetry of consoles (see
the designations in subsection 2.1). Then the mean
weight Scoreglob of the reference alignment of a pair of
test sequences generated by the scheme given in subsec-
tion 2.1 with the pairs Lker, PAM, r, and c is determined
by the following equation:

Scoregiob = Lier * Dier + Leon - Deon - (1 —¢) — 2 - GEP - Loy - ¢ — 2 - GOP,

2)

where GOP and GEP are gap-open and gap-extension
penalties.

By fixing all members in equation (2), except the
asymmetry values ¢, we will get an equation for the
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typically close to the point where the plot for Dy, passes the zero value. At rather high ¢ values the density of algorithmic global alignments

dependence of the mean weight of reference alignments
Scoreglob versus the asymmetry of sequences c. Let us
analyze the relation

Dglob (C) = Scoreglob (C)/(Lker + Lcon)

of the mean weight of reference alignments to the
mean length of test sequences in a corresponding set.
The D, value will be called the mean density of refer-
ence alignments. Similarly, the mean density of random
alignments D,,,,; will be the relation of the mean weight

of optimal alignment of two independent random
sequences to the length of these sequences (see the
details in subsection 3.4).

Computer experiments (see Figure 4) showed that a
sharp decrease in the accuracy and confidence of global
alignments takes place close to the asymmetry value ¢
which is the root of equation

Dglob(c) = Dyana (3)
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(here the length of random sequences is Lie,+Lc,,). In
other words, it is impossible to restore the reference
alignment if its weight does not (almost) differ from the
alignment weight of random sequences. Using the L.,
PAM, r values, the above stated allows us to roughly
determine the range of asymmetry values c¢ at which the
quality of global alignment decreases.

3.4. Determination of density of random alignments
To find the D,,,,; value, we determined the weight
dependence of two random sequences versus their
length (see Figure 5). Pairs of random sequences from
10 to 600 a.a. were obtained according to the procedure
described in subsection 2.1.2. The pairs were aligned
using the global version of Smith-Waterman algorithm
with the substitution weight matrix PAM250 and gap-
open and gap-extension penalties GOP = 14, GEP = 2.
As seen from Figure 5, the lowest density corresponds
to the shortest sequences of 10 a.a. and is -0.858. Let us
mention for comparison that for the substitution weight
matrix PAM250 and the amino acid frequency distribu-
tion from [19] the mean weight of symbol comparison
is -0.863, which is estimated by the formula:

Zi=1..n Pi Zﬁm P; Sij,

where Pi is the probability of appearance of the i-th
amino acid residue and S;; is the substitution weight.

Alignment of random sequences:
Density vs. Length

0 100 200 300 400

Length

Figure 5 Dependence of density of global alignment of
random sequences versus their length. Pairs of random
sequences from 10 to 600 a.a. were obtained according to the
procedure described in Methods (subsection 2.1.2). The pairs were
aligned using the global version of Smith-Waterman algorithm
(substitution weight matrix PAM250, gap-open and gap-extension
penalties GOP = 14, GEP = 2).

500 600
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3.5. Comparison with other algorithms

Additionally, we compared three algorithms: Needle-
man-Wunsch [1], Smith-Waterman [2] and GAP3 [5]. A
generalized global alignment algorithm (GAP3) is a
development of the standard Needleman-Wunsch
dynamic programming algorithm designed for compar-
ing sequences with intermittent similarities, an ordered
list of similar regions separated by different regions. (In
difference to the algorithm given in [1], the algorithm
described in [5] besides the usual weight substitution
matrix and gap-open and gap-extension penalties,
requires an additional parameter - constant penalty for
each difference block.)

A comparison test was carried out on thirteen sets of
1,000 pairs of sequences each with the following para-
meters (2.1.1): 1) evolutionary distance from a common
ancestor to the sequence cores PAM = 120 PAM; 2) the
ratio of the total length of consoles to the length of the
common ancestor of sequence cores r = 20, 50, 100%; 3)
the ratio of the absolute value of the difference between
console lengths to their total length ¢ = 0, 30, 50, 70%.

We used the GAP3 program available online (http://
deepc2.psi.iastate.edu/aat/gap3/), with matrix PAM250,
and gap-open and gap-extension penalties equal to 14
and 2 and constant penalty for each difference block
equal to 40. The results of comparison are shown in
Table 4.

The table shows that in comparison with Smith-
Waterman local alignment, in all cases the GAP3 align-
ment benefits slightly in Accuracy, but advantage in
Confidence is significantly larger (it means that GAP3
makes a little more correct matches than the first algo-
rithm, making fewer false matches).

As for comparison with global Needleman-Wunsch
alignments, in the case without consoles the GAP3
alignments have a much lower Accuracy and a slightly
higher Confidence. For symmetric consoles simulta-
neously with increase in their length (Core shift = 0,
Console length = 20,...,100%), this tendency is reduced
and becomes less prominent. It was mentioned above
that as a result of the displacement of the cores of
aligned sequences in the opposite direction from the
center, the reliability of the global alignment is markedly
reduced. However, a local alignment has no such a ten-
dency. As shown, at the evolutionary distance of
120PAM, the GAP3 alignment is not only resistant to
displacement, but also resistant to increasing the length
of nonhomologous consoles.

4. Conclusion

The study has revealed regularities allowing for defining
more exactly the areas of effective application of every
algorithm: when consoles are positioned symmetrically,
the global algorithm is more resistant to increasing
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Table 4 Accuracy and confidence of global, local and GAP3 alignment at various consoles

PAM Console Core Global alignment Local alignment GAP3
length shift
r, % c, %
Accur., Confid., Accur., Confid., Accur., Confid.,
% % % % % %
120 0 0 8247 8147 71.76 76.71 7142 86.60
120 20 0 79.30 7759 71.16 7264 71.58 84.98
120 20 30 75.64 7339 7137 7299 7226 85.02
120 20 50 7223 69.83 70.17 7218 72.19 84.78
120 20 70 6947 66.93 70.81 7294 71.03 84.80
120 50 0 77.95 75.77 70.51 69.77 72.66 84.00
120 50 30 7204 69.08 7147 7091 73.06 84.92
120 50 50 5353 50.96 69.34 69.36 71.80 83.62
120 50 70 20.18 18.98 70.37 71.03 72.14 84.16
120 100 0 76.70 7411 6948 67.78 72.18 83.39
120 100 30 53.69 5145 69.63 68.09 7212 8325
120 100 50 415 371 68.66 67.23 7215 83.84
120 100 70 0.08 0.05 68.95 6847 7247 83.04

The dependence of Accuracy and Confidence values of tree types of alignment on the evolutional distance between cores (PAM), relation of the total length of
consoles to the core length (Console length r, %) and the ratio of the absolute value of the difference between console lengths to their total length (Core shift c,

%) are shown.

evolutional distance and console length than the local
algorithm (about 10% accuracy and about 8% confidence
at 120PAM and up to 20% accuracy and confidence at
240PAM); quite the opposite, when consoles are asym-
metrical, the local algorithm is more resistant to increas-
ing evolutional distance and console length than the
global algorithm. The boundary of the global algorithm
preference is determined roughly by the value of asym-
metrical position of homologous fragments of sequences
(cores) at which the reference alignment density is
almost equal to the density of random sequence align-
ment. The mean divergence of 5 + 10%, which is typical
both of accuracy and confidence of global and local
alignments at a symmetrical position of cores, precondi-
tions the developing of a combined method for making
a more reliable alignment.

Additional material

Additional File 1: Substitution matrix and gap-open and gap-
extension penalties test for optimal global alignment. Accuracy and
Confidence values for global alignments versus the following: (1)
evolutional distance between sequences (PAM); (2) substitution matrix; (3)
gap open and gap extension penalties (GOP, GEP).

Additional File 2: Dependence of accuracy and confidence values
on three parameters (PAM, r, and c). Accuracy and Confidence values
for global and local alignments versus the following: (1) evolutional
distance between homologous fragments of sequences (PAM); (2)
console length (1); (3) console asymmetry (core shift, ¢).
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