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Abstract

Recently one step mutation matrices were introduced to model the impact of substitutions on arbitrary branches of a
phylogenetic tree on an alignment site. This concept works nicely for the four-state nucleotide alphabet and provides
an efficient procedure conjectured to compute the minimal number of substitutions needed to transform one
alignment site into another. The present paper delivers a proof of the validity of this algorithm. Moreover, we provide
several mathematical insights into the generalization of the OSMmatrix to multi-state alphabets. The construction of
the OSMmatrix is only possible if the matrices representing the substitution types acting on the character states and
the identity matrix form a commutative group with respect to matrix multiplication. We illustrate this approach by
looking at Abelian groups over twenty states and critically discuss their biological usefulness when investigating
amino acids.
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Background
Alignments of homologous sequences provide fundamen-
tal materials to the reconstruction of phylogenetic trees
and many other sequence-based analyses (see, e.g., [1,2]).
Each alignment column (site) consists of character states
that are assumed to have evolved from a common ances-
tral state by means of substitutions. Any combination of
the character states in the aligned sequences at one align-
ment column represents a so-called character [3], which
is sometimes also called site pattern [4]. Given a phy-
logenetic tree and an alignment that evolved along the
tree, Klaere et al. [5] showed, for binary alphabets, how a
character changes into another character if a substitution
occurs on an arbitrary branch of the tree. The impact of
such a substitution is summarized by the so-called One
Step Mutation (OSM) matrix. The OSMmatrix allows for
analytical formulae to compute the posterior probability
distribution of the number of substitutions on a given tree
that give rise to a character [5].
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Nguyen et al. [4] extended the concept of the OSM
matrix to the four-state nucleotide alphabet while devel-
oping a method, the MISFITS algorithm, to evaluate the
goodness of fit between models and data in phyloge-
netic inference. There, the OSM matrix is constructed
based on the Kimura three parameter (K3ST) substitu-
tion model [6]. Nguyen et al. [4] illustrated how one can
apply the Fitch algorithm [7] to compute the minimal
number of substitutions required to change one char-
acter into another character under the OSM setting. In
the present paper, we deliver a proof of the validity of
this algorithm.
In addition, the OSM matrix can be constructed only

if the matrices representing the substitutions, the so-
called substitution matrices, and the identity matrix form
a commutative or Abelian group (see, e.g., [8]) with
respect to matrix multiplication [4]. The link between
Abelian groups in phylogenetic models has been stud-
ied before, most notably by Hendy et al. [9]. Further,
an extension of nucleotide substitution models with an
underlying Abelian group to joint states at the leaves of
a tree has also been studied by other authors. Bashford
et al. [10] introduced an approach very similar to
OSM to study the multi-taxon tensor space. Bryant [11]
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also introduced a very similar framework to study the
Hadamard transform of [12] in the light of multi-taxon
processes.
In this work, we first introduce standard phylogenetic

notation. We then formalize the construction of the OSM
matrix, and which part of its construction is used in the
MISFITS algorithm. We further present possible exten-
sions of the OSM framework to arbitrary alphabets.
We will show that the MISFITS algorithm in fact com-
putes the minimal number of substitutions needed to
change one character into another character. Moreover,
we discuss the extension of the algorithm to substitu-
tion models which do not have an underlying Abelian
group. Finally, we discuss the Abelian groups available for
amino acids.

Notation and problem recapitulation
Notation
Recall that a rooted binary phylogenetic X-tree is a tree
T = (V (T ),E(T )) with the following properties: There
is one vertex ρ ∈ V (T ) with indegree 0 and outdegree
1, which is called the root of T . All edges e ∈ E(T ) are
directed away from ρ, and all vertices v ∈ V (T ) \ {ρ} have
indegree 1 and outdegree 0 or 2. Vertices with outdegree
0 are usually referred to as leaves of T . Remember that for
an X-tree, there are exactly |X| = n leaves, which is why
there is a bijection between the set of leaves of T and the
taxon set X. Thus, when there is no ambiguity, we use the
terms leaf and taxon synonymously. Moreover, we often
just write “phylogenetic tree” or “tree” when referring to a
rooted binary phylogenetic tree.
Furthermore, recall that a character f is a function f :

X → C for some set C := {c1, c2, c3, . . . , cr} of r char-
acter states (r ∈ N). We denote by Cn the set of all rn
possible characters on C and n taxa. For instance, for the
four-state DNA alphabet, CDNA = {A,G,C,T} and the set
CnDNA consists of all 4n possible characters.
An extension of f to V (T ) is a map g : V (T ) → C

such that g(i) = f (i) for all i in X. For such an extension
g of f , we denote by lT (g) the number of edges e = {u, v}
in T on which a substitution occurs, i.e. where g(u) �=
g(v). The parsimony score of f on T , denoted by lT (f ), is
obtained by minimizing lT (g) over all possible extensions
g. Given a tree T and a character f on the same taxon
set, one can easily calculate the parsimony score of f on
T with the famous Fitch algorithm [7]. Moreover, when
a character state changes along one edge of the tree, we
refer to this state change as substitution or mutation. As
for our purposes only so-called manifest mutations are
relevant, i.e. those mutations that can be observed and
are not reversed, we do not distinguish between muta-
tions and substitutions, which is why we use these terms
synonymously.

Construction of the OSMmatrix
Wenow introduce theOSM framework in a stepwise fash-
ion. The aim of the OSM approach is to determine the
effects a single mutation occurring on a rooted tree T has
on a character evolving on that tree.
The first task of this approach is to formalize the term

mutation and its effects on a single character state in C. A
mutation is an operation σ : C → C which is bijective, i.e.
it satisfies the following condition:

C1. For all ci ∈ C there is a cj ∈ C such that σ(ci) = cj,
and if σ(ci) = σ(cj), then ci = cj.

This guarantees that a mutation affects a character state
in a unique fashion. It is well-known that any bijective
function on a finite discrete state set is a permutation
(e.g., [13]). Thus, a mutation is a specific instance of a
permutation applied to a character.
The next step is to select the set � of admissible per-

mutations acting on C. It is mathematically convenient to
select � such that it forms an Abelian group [9] with a
regular (transitive and free) action on C. Hence,� satisfies
the following conditions:

C2. For every pair ci, cj ∈ C there is exactly one
permutation σ ∈ � such that σ(ci) = cj, i.e., the
action of � on C is regular.

C3. For all σ1, σ2 ∈ � also the product σ1 ◦ σ2 ∈ �.
Mathematically speaking, � is closed with respect to
concatenation of its permutations.

C4. For all σ1, σ2 ∈ � we have σ1 ◦ σ2 = σ2 ◦ σ1. Thus, �
is commutative, and hence the order in which we
assign permutations is irrelevant for the outcome.

C5. There is an element σ0 ∈ � such that for all σ1 ∈ �

we have σ1 ◦ σ0 = σ0 ◦ σ1 = σ1, i.e. there exists a
so-called neutral element, namely the identity, in �.
For all ci ∈ C only σ0(ci) = ci, i.e. σi is fixed point free
for all σi �= σ0.

C6. For every σ1 ∈ � there exists a σ2 ∈ � such that
σ1 ◦ σ2 = σ0. Mathematically speaking, for every
element of � there exists an inverse element. This
guarantees that every permutation can be reversed
within a single step.

C7. For all σ1, σ2, σ3 ∈ � we have
σ1 ◦ (σ2 ◦ σ3) = (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ σ2 ◦ σ3, i.e. the
associative law holds.

It should be noted that any set of permutations is asso-
ciative, i.e. satifies C7. Thus, for a set of permutations �

to be Abelian with a regular action on C it only needs to
satisfy C1−C6.
In the following, we consider the matrix representation

of permutations. A permutation matrix over C is an r × r
matrix such that σcicj = 1 if σ(ci) = cj, and 0 other-
wise. We consider it equivalent to discuss a permutation
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or its corresponding matrix. Therefore, concatenation “◦”
is equivalent to the matrix multiplication “·”. We use σ to
denote a permutation or a permutationmatrix, depending
on the context.

Example 1. In genetics, the most commonly used char-
acter state set is CDNA = {A,G,C,T}. There are two
different Abelian groups for four states, namely the Klein-
Four-group Z2 × Z2 and the cyclic group Z4. The Klein-
Four-group is constructed from the cyclic group Z2 over
two elements, the identity τ0 and the flip τ1. These take the
matrix form

τ0 =
(
1 0
0 1

)
, τ1 =

(
0 1
1 0

)
.

The Klein-Four-group consists of the four Kronecker
products of these two matrices, i.e. s0 = τ0 ⊗ τ0, s1 =
τ1 ⊗ τ0, s2 = τ0 ⊗ τ1, and s3 = τ1 ⊗ τ1. The Kronecker
products here yield 4 × 4matrices, e.g.,

s1 = τ1 ⊗ τ0 =
(
0 τ0

τ0 0

)
=

⎛⎜⎜⎝
A C G T

A 0 0 1 0
C 0 0 0 1
G 1 0 0 0
T 0 1 0 0

⎞⎟⎟⎠.

The set �K3ST := {s0, s1, s2, s3} coincides with the sub-
stitution matrices under the Kimura 3ST model [6]. In
particular, s1 describes transitions within purines (A,G)

and pyrimidines (C,T), s2 represents transversions within
pairs (A,C) and (G,T), and s3 represents the remaining set
of transversions within pairs (A,T) and (C,G).
The second Abelian group over four states, the cyclic

group Z4, is formed by selecting a 4-cycle, e.g., A → G →
T → C → A and concatenating this cycle with itself. The
resulting set of permutations �Z4 contains the following
elements:

s′1 =

⎛⎜⎜⎜⎜⎝

A C G T

A 0 0 1 0
C 1 0 0 0
G 0 0 0 1
T 0 1 0 0

⎞⎟⎟⎟⎟⎠,

s′2 = s′21 = s′1 · s′1, s′3 = s′31, s′0 = s′41.

Note that there are actually six different four-cycles for
CDNA. These result in three distinguishable Abelian groups.
Bryant [14] generates his cyclic group with the four-cycle
A → C → G → T → A, and shows that the result-
ing set �K2ST underlies the Kimura 2ST model [15], where

s′2 corresponds to the transition within purines and pyrim-
idines, and s′1 and s′3 are the (not further distinguished)
transversions.

The next step in constructing the OSMmatrix is to con-
struct a set �T of operations over Cn governed by T ,
and based on the permutation set �. To this end, we first
define �n as a set of operations which work elementwise,
i.e. for f = (f1, . . . , fn) ∈ Cn and σ ∈ �n we have

σ(f ) := (σ1(f1), . . . , σn(fn)), σi ∈ �.

This can also be described by the Kronecker product,
i.e. equally

σ(f ) = σ1 ⊗ · · · ⊗ σn(f ). (1)

This means that there are rn different operators in �n =
� ⊗ · · · ⊗ �.

Remark 1. Therefore, for any pair of characters f , g ∈ Cn
we can find an operation σ ∈ �n such that σ(f ) = g.

Another noteworthy consequence of using the
Kronecker product is that the elements of �n are per-
mutations over Cn [16,17], and in fact �n satisfies our
Conditions C1−C7, i.e. �n is an Abelian group over Cn.
In the OSM framework we assume that the permuta-

tions acting on a character f ∈ Cn are derived from the
underlying rooted tree T . If permutation σi ∈ � acts
on the pendant edge leading to taxon j ∈ X, then the
associated permutation matrix σ j,i acting on Cn has the
form

σ j,i :=
j−1⊗
l=1

σ0 ⊗ σi ⊗
n⊗

l=j+1
σ0.

If a permutation acts on an interior edge e, then it simul-
taneously acts on the states of all descendant taxa of e, i.e.
all those taxa whose path to the root passes e. E.g., assume
Taxa 1 and 2 form a cherry, i.e. their most recent common
ancestor, 12, has no other descendants, and permutation
σi ∈ �, i = 1, . . . , r − 1 is acting on the edge leading to
this ancestor. Then, we get the permutation

σ 12,i := σi ⊗ σi ⊗ σ0 · · · ⊗ σ0 = σ 1,i · σ 2,i. (2)

This shows in particular that a Kronecker product
of some permutations acting on each character state is
equivalent to the matrix product of the permutations act-
ing on the entire character. The right hand side equation
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shows that a single permutation on an internal edge has
the same effect as simultaneously applying the same per-
mutation on the pendant edges of all descendant taxa. In
other words, if de(e) denotes the set of descendants of
edge e, and σi ∈ �, then

σ e,i =
∏

j∈de(e)
σ j,i. (3)

Note that the set �X of all permutations acting on the
pendant edges is a generator of �n, i.e. the closure of �X

contains all permutations in �n. Since �n contains a sin-
gle permutation to transform character f ∈ Cn into g ∈ Cn,
and since �X generates �n, there is a shortest chain of
permutations in �X which transforms f into g. �X is also
the set of permutations implied by the star tree for X. In
general, the set of all permutations on tree T is

�T = {
σ e,i : e ∈ E(T ), i ∈ {0, . . . , r − 1}} ,

where r is the number of states in �.
For every X-tree T we have �T ⊇ �X , and therefore

�T is a generator for �n, too. An illustration of such a
generator set �T over the character set Cn is the so-called
Cayley graph [18], which has as vertices the characters of
Cn, and two characters f , g ∈ Cn are connected if there is
a permutation σ ∈ �T such that σ(f ) = g. In [5] Cayley
graphs have been presented as alternative illustrations of
the tree T over a binary state set C = {0, 1}.

Example 2. Regard the K3ST model from Example 1
and the rooted two-taxon tree depicted in Figure 1a. With
this �T

K3ST is given by the set

se1,1 := s1 ⊗ s0, se2,1 := s0 ⊗ s1, se12,1 := s1 ⊗ s1,
se1,2 := s2 ⊗ s0, se2,2 := s0 ⊗ s2, se12,2 := s2 ⊗ s2,
se1,3 := s3 ⊗ s0, se2,3 := s0 ⊗ s3, se12,3 := s3 ⊗ s3.

Each permutation which acts on the characters is thus a
symmetric 16 × 16 permutation matrix depicting a tran-
sition (se,1), transversion 1 (se,2), or transversion 2 (se,3)
along edge e ∈ E(T ). Figures 1b-d display the permutation
matrices for a transition on branch e1 (se1,1), e2 (se2,1) and
e12 (se12,1), respectively. Figure 1e shows the Cayley graph
associated with �T

K3ST.

We are now in a position to recall the definition of the
OSM matrix MT for a rooted binary phylogenetic tree T
as explained in [5] and [19]. For an edge e ∈ E(T ) we
denote by pe the relative branch length of e, i.e. its actual
branch length (expected number of substitutions per site)
divided by the length of T (the sum of all branch lengths).

Thus, one can view pe as the probability that a muta-
tion is observed at edge e assuming that a single mutation
occurred on T . Clearly,

∑
e∈E(T ) pe = 1. Further, denote

by αe,i the probability that this mutation on e is of type
i ∈ {1, . . . , r−1}with∑r−1

i∈1 αe,i = 1 for all e ∈ E(T ). Then
the OSMmatrix is the convex sum of the elements in �T ,
where each permutation σ e,i is multiplied by αe,ipe, the
probability of hitting the edge e with permutation σi ∈ �.
Thus, we obtain:

MT =
∑

e∈E(T )

r−1∑
i=1

αe,ipeσ e,i. (4)

MT can be regarded as the weighted exchangeability
matrix for all characters under the K3ST model assuming
that a single substitution occurs on the tree T . Figure 1f
depicts the OSM matrix for the tree in Figure 1a. Here,
colors indicate relative branch lengths pe, and patterns
denote permutation types αi. E.g., a blue square with
horizontal lines indicates the product pe2αe2,1, i.e. the
probability of observing a transition s1 on edge e2.

The transformation problem
With the construction of �T we have generated the tools
needed to formally describe the computations in Step 4 of
the MISFITS algorithm [4]. Given a rooted tree T and two
characters f and f d in Cn, we want to compute theminimal
number of substitutions required on the tree to convert f
into f d. [4] presented an efficient procedure to compute
this minimal number of substitutions.

Algorithm 1
INPUT: rooted binary phylogenetic tree T on leaf set X,

characters f and f d on X, Abelian group �.
STEP 1: Using Remark 1, find the substitution type
σi which translates fj into f dj for all positions
j = 1, . . . , |X|. Let σ ∈ �n be the resulting operation,
i.e. σ(f ) = f d .
STEP 2: Let c := c1 . . . c1 be a constant character on
X with c1 ∈ C. Let h := σ(c).
STEP 3: Calculatem := lT (h).
OUTPUT:m.

We prove the correctness of our algorithm. In our
framework, m corresponds to the minimum number of
permutations σ1, . . . , σm ∈ � such that σ1⊗· · ·⊗σm(f ) =
f d. In this form,m has multiple equivalent interpretations.
It is the length of the shortest path between f and f d in
the Cayley graph for �T , where this path corresponds to
σ1 ⊗ · · · ⊗ σm. Further, m corresponds to the minimum
power (k) of MT such that Mj

T (f , f d) = 0 for j < k and
Mk

T (f , f d) > 0, because a positive entry inMk
T means that

there is a concatenation of k permutations connecting the
associated characters.
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Figure 1 Construction of the OSMmatrix. (a) A rooted tree with taxa 1 and 2. (b) A transition s1 on the left branch e1 (the red branch) changes a
character into exactly one new character as depicted by the red horizontal stripe cells of the permutation matrix σ e1,s1 . The matrix has 16 rows and
16 columns representing the possible characters for the alignment of two nucleotide sequences. The permutation matrices generated by s1 for the
right branch e2 (blue) and for the branch leading to the “root” e12 (green) are displayed in (c) and (d), respectively. The corresponding Cayley graph
for the tree is illustrated in (e). The convex sum of all the weighted (by the relative branch length and the probability of the substitution type)
permutation matrices generated by all substitution types for all branches is the OSM matrix of the tree (MT ) as shown in (f). Horizontal stripe cells
represent the probability of the transition s1; diagonal stripes the transversion s2; and thin reverse diagonal stripes the transversion s3. The colors of
these cells indicate the relative branch lengths and follow the colors of the branches as in (a). Thus, these colors also depict the branch origin of the
substitutions.
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Example 3. Figure 2 demonstrates how Algorithm 4
works under the K3ST model, i.e. when the group is � =
�K3ST (Figure 2a). Consider the rooted five-taxon tree in
Figure 2b and the character GTAGA at the leaves. Assume
that the character GTAGA is to be converted into character
ACCTC. By comparing the two characters position-wise,
we need a substitution s1 on the external branch leading
to taxon 1 to convert G into A at the first position. Sim-
ilarly, we need a substitution s1 on the external branch
leading to taxon 2, and a substitution s2 on every exter-
nal branch leading to taxa 3, 4, and 5. Thus, the operation
s := (s1, s1, s2, s2, s2) transfers the character GTAGA into
the character ACCTC. As the operation s also translates
the constant character AAAAA into GGCCC, converting
GTAGA into ACCTC is equivalent to evolving the char-
acter state A at the root along the tree to obtain the
character GGCCC at the leaves. The Fitch algorithm [7]
applied to the character GGCCC with the constraint that
the character state at the root is A produces a unique most
parsimonious solution of two substitutions as depicted
by Figure 2c.

Results
The impact of parsimony on the estimation of substitutions
In this section, we provide some mathematical insights
into the role of maximum parsimony in the estimation of
the number of substitutions needed to convert a charac-
ter into another one as explained above. In particular, we
deliver a proof for Algorithm 4.

Theorem 1. Let T be a rooted binary phylogenetic tree
on taxon set X and let f be a character that evolved on T
due to some evolutionarymodel and let f d be another char-
acter on X. Then, the minimum number of substitutions to

be put on T which change the evolution of f in such a way
that f d is generated can be calculated with Algorithm 4.

Proof. Let f , f d, X, T and � be as required for the input
of Algorithm 4. Then, as defined in the algorithm, we have
σ̂ (f ) = (̂σ1(f1), σ̂2(f2), . . . , σ̂n(fn)) = f d, where σ̂j ∈ �

refers to the substitution type needed to translate fj into
f dj .
Considering the underlying tree T , we may assume

σ̂1, . . . , σ̂n act on the pending branches leading to taxa
1, . . . , n, respectively.
Now we show that it is equivalent to consider σ̂ (c),

where c is a constant character, instead of σ̂ (f ). Let μ ∈
�T be a transformation with μ(f ) = f d. Then,

σ̂−1 ◦ μ(f ) = σ̂−1(f d) = f . (5)

Next, let σ̃ ∈ �T be such that σ̃ (c) = f . Then, using (5),
we have

σ̂−1 ◦ μ ◦ σ̃ (c) = σ̂−1 ◦ μ(f ) = f = σ̃ (c).

On the other hand, we can use the commutativity of the
underlying Abelian group to derive

σ̂−1 ◦ μ ◦ σ̃ (c) = σ̃ ◦ σ̂−1 ◦ μ(c).

So altogether we have

σ̂−1 ◦ μ ◦ σ̃ (c) = σ̃ ◦ σ̂−1 ◦ μ(c) = σ̃ (c)

and therefore σ̂−1 ◦ μ(c) = c and thus μ(c) = σ̂ (c). As
μ was arbitrarily chosen, this implies that any transfor-
mation which maps f to σ̂ (f ) = f d also maps c to σ̂ (c).
Therefore, we have

{ρ ∈ �T : ρ(f ) = f d} = {ρ ∈ �T : ρ(c) = σ̂ (c)}.

s1
s2 3s

s
0

T

A G

C

(a)

A C C T C
G T A G A

1s 1s 2s 2s 2s

3 4 521

(b)

A

G G C C C

C
G

C
C

3 4 521

(c)

Figure 2 Computing the minimal number of substitutions to translate a character into another one. (a) depicts the Klein-four group �K3ST,
which consists of the identity s0 and the three substitution types s1, s2, s3 from the K3ST model. (b) In order to convert the character GTAGA into
ACCTC under �K3ST, we need to introduce the operation s := (s1, s1, s2, s2, s2). As the operation s also translates the constant character AAAAA to
GGCCC, converting GTAGA into ACCTC is equivalent to evolving the character state A at the root along the tree to obtain the character GGCCC at the
leaves. The Fitch algorithm applied to the latter produces a unique most parsimonious solution of two substitutions as depicted by (c).
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Theminimumnumber of substitutions to change f from
f d on T is just an element of the first set consisting of the
fewest number of compositions. As the two sets are equal,
we can investigate the second set rather than the first. So
we need an element of the second set which consists of as
few as possible compositions. Assuming that σ = σ1 ⊗
· · · ⊗ σn, we can assign σ1, . . . , σn to the pending branches
of T and treat them like character states to which we then
apply the Fitch algorithm. This completes the proof.

Informally speaking, the idea is as follows: As there is
exactly one path from the root ρ to any taxon x ∈ X, we
wish to determine whether we can ‘pull up’ some of the
operations along this path in order to affect more than one
taxon and still give the same result. This idea has been
described above (Equations (2) and (3)), and it coincides
precisely with the idea of the parsimony principle.
However, in order to avoid confusion regarding the

operation σ as a character on which to apply parsi-
mony, Algorithm 4 instead acts on the constant character.
Clearly, in order to evolve the constant character c :=
c1 · · · c1 on a tree with root state c1, the corresponding
operation would be σ̃ := σ0⊗· · ·⊗σ0. Note that σ(c) = h
and σ(f ) = f d, and that two character states in h are iden-
tical if and only if the corresponding substitutions in σ are
identical, too. Therefore, it is possible to let MP act on h
rather than directly on σ .
By the definition of maximum parsimony, when applied

to h on tree T with given root state c1, it calculates the
minimum number m of substitutions to explain h on T .
This number m is therefore precisely the number of sub-
stitutions needed to generate h on T rather than c. As
σ(f ) = f d, m also is the number of substitutions needed
to generate f d from f on T .

The impact of different groups
For any alphabet C, there might be more than one Abelian
group. Different groups might result in different num-
bers of substitutions required to translate a character into
another character. We illustrate this observation using the
following example.

Example 4. Recall the starting point of Example 3, i.e.
regard the five-taxon tree T from Figure 3b, and the char-
acters f = GTAGA and f d = ACCTC. Now, instead of
using �K3ST we use the permutations from the cyclic group
�Z4 . In this setting, we need a substitution s′3 (blue in
Figure 3a) on the external edge leading to taxon 1 to con-
vert G into A at the first position, and so on. Thus, we
get the operation s′2 := (s′3, s′1, s′3, s′1, s′3) such that s′(f ) =
f d. We immediately see, that s′ transforms the constant
character c = AAAAA into h = CGCGC. The Fitch
algorithm applied to the character CGCGC with the con-
straint that the character state at the root is A produces a
unique most parsimonious solution of three substitutions
as depicted by Figure 3c. Thus, under the �c group we
need one substitution more than under the�K3ST group (cf.
Example 3).

Note that variation of the minimum number of substi-
tutions needed to translate a character into another one
between different groups is not surprising: As different
substitution types are needed to translate one pattern into
the other one, depending solely on the underlying group,
one groupmight need the same substitution type for some
neighboring branches in the tree and another group differ-
ent ones. Informally speaking, this would imply that in the
first case, the substitution could be “pulled up” by the Fitch

s’1
s’
3 s’2

s’0

T

A G

C

(a)
G T A G A

3s’ 3s’ 1s’ 3s’
A C C T C

1s’

3 4 521

(b)

A

C G C G C

C
C

C
C

3 4 521

(c)

Figure 3 Converting one character into another character using the cyclic group. (a) depicts the cyclic group�c , which consists of the identity
s′0 ≡ s0 and the three substitution types s′1, s′2, s′3 for nucleotide character states. (b) In order to convert the character GTAGA into ACCTC using this
group, we need to introduce the operation s′ := (s′3, s′1, s′3, s′1, s′3). As the operation s′ also transforms the constant character AAAAA to CGCGC,
converting GTAGA into ACCTC is equivalent to evolving the character state A at the root along the tree such that the character CGCGC is attained at
the leaves. The Fitch algorithm applied to the latter produces a unique most parsimonious solution of three substitutions as depicted by (c).
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algorithm to happen on an ancestral branch, whereas in
the second case this would not be possible.

The link between substitution models and permutation
matrices
In Examples 1 and 2 we have shown that the K3ST sub-
stitution model can be included into our framework. The
connection between the Klein-Four-group and the K3ST
model (as well as the one between the Z2 group and sym-
metric 2-state model) were described in-depth in [9]. This
section aims at discussing alternative models and how to
identify their use (or lack thereof) for our approach.
Most substitution models assume the independence of

the different branches of a tree to compute the joint proba-
bility of the characters in Cn. Therefore, they use the prob-
abilities for substitutions among the character states in C
along the edges of the tree T . We now establish a proba-
bilistic link between �T and Cn. This link is provided by
Birkhoff’s theorem:

Theorem 2 (Birkhoff’s theorem, e.g., [20], Theorem
8.7.1). A matrix M is doubly stochastic, i.e., each column
and each row of M sum to 1, if and only if for some N < ∞
there are permutation matrices σ1, . . . , σN and positive
scalars α1, . . . ,αN ∈ [ 0, 1] such that α1+· · ·+αn = 1 and
M = α1σ1 + · · · + αNσN .

Therefore, the weighted sum of the permutation matri-
ces in �T yields a doubly stochastic matrix MT as intro-
duced above. MT also describes a random walk on Cn
governed by T where the single step in Cn is illustrated by
the associated Cayley graph. Its stationary distribution is
uniform, i.e. when we throw sufficiently many mutations
on T then we expect to see each character with probability
1/rn.
Another, even more useful consequence of Birkhoff’s

theorem is the fact that it tells us which substitution mod-
els are suited for the OSM approach. If the transition
matrix associated with the substitution model is doubly
stochastic, then we find a set of permutations which give
rise to the model.
Let us see how this influences the symmetric form of

the general time reversible model (sGTR) with uniform
stationary distribution. It has the transition probability
matrix

PsGTR =

⎛⎜⎜⎝
A C G T

A 1 − a − b − c a b c
C a 1 − a − d − e d e
G b d 1 − b − d − f f
T c e f 1 − c − e − f

⎞⎟⎟⎠.

Assigning permutation matrices to the respective param-
eters yields the set �sGTR with elements s0 (identity)
and

sa =

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ , sb =

⎛⎜⎜⎜⎝
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞⎟⎟⎟⎠

sc =

⎛⎜⎜⎜⎝
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎞⎟⎟⎟⎠ , sd =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎞⎟⎟⎟⎠ ,

se =

⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠ , sf =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ .

The weighted sum of the non-identity elements yields

asa + bsb + csc + dsd + ese + fsf

=

⎛⎜⎜⎜⎝
d + e + f ab c
a b + c + f d e
b da + c + e f
c ef a + b + d

⎞⎟⎟⎟⎠ ,

which is equal to PsGTR if a+ b+ c+ d+ e+ f = 1. Thus,
the set�sGTR is to sGTRwhat�K3ST is to K3ST. However,
�sGTR does not satisfy condition C5, because sa, · · · , sf are
not fixed point free. This can be seen as the main diago-
nal of sa, · · · , sf does not only contain zeros. It is also not
commutative (condition C4) as e.g. sa · sc �= sc · sa. And
it is not closed under matrix multiplication (condition
C3), which means that a concatenation of permutations in
�sGTR might lead to a new permutation not in�sGTR, e.g.,
sa · sf �∈ �sGTR. Other complex models like Tamura-Nei
[21] do not even permit the decomposition of its transi-
tion matrix into the convex sum of permutation matrices.
All of this shows why the overall applicability of complex
models to the OSM approach is rather limited.
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There are other approaches to describe phylogenetic
models based on the group structure of their substitution
matrices. In particular, Sumner et al. [22] use Lie algebra
to construct OSM type matrices for the general Markov
model, and discuss shortcomings of the group structure
for the general GTR model [23].

Application to other biologically interesting sets
As stated above, OSM-type models require an underly-
ing Abelian group. Thus, the OSM setting is applicable
not only to binary data or four-state (DNA or RNA)
data, but also to alphabets of 16 (doublets), 64 (codons),
and 20 characters (amino acids) respectively. We compare
such extensions to existing biologically motivated binning
approaches and discuss their relevance.
As we have shown in the previous sections, the sym-

metric form of the Klein-Four-Group Z2 × Z2 is math-
ematically beautiful, computationally convenient and
biologically relevant. Similar statements can be made
about all powers of Z2, including the biologically relevant
alphabets of 16 (doublets) and 64 (codons) letters.
There are four Abelian groups for twenty-state alpha-

bets, namelyZ2×Z2×Z5, Z4×Z5, Z2×Z10, and the cyclic

group Z20 (see e.g., [24] for a complete list of all groups
with up to 35 elements). Their construction is analogous
to the construction of the Klein-Four-group in Example 1.
For example, the elements of Z4×Z5 are Kronecker prod-
ucts of one of the four permutations in the cyclic group Z4
with one of the five permutations of the cyclic group Z5.
Figure 4 shows a heat-map type visualization of an

OSM-type matrix on a single-leaf tree where the color-
ing of the cells corresponds to the weights given to the
20 permutations in the respective groups. We see that the
coloring pattern nicely reflects the four cosets of the sub-
group Z5 in Z2 × Z2 × Z5. This can also be interpreted
as a binning of the 20 states in the underlying alphabet
into four sets of five elements each. If the weighting cor-
responds to a convex combination of operations, then the
visualized matrix is doubly stochastic.
Binnings are also done for amino acids, using either bio-

chemical properties or evolutionary divergence. An exam-
ple of a biochemical binning is the hydrophobic index,
where the 20 amino acids are binned into four groups,
very hydrophobic, hydrophobic, neutral, and hydrophilic.
Unfortunately, this binning does not correspond to any
of the proposed Abelian groups. Moreover, it is difficult

Figure 4Matrices illustrate the four Abelian groups for a twenty-state alphabet. (a) the Z2 × Z2 × Z5 group, (b) Z4 × Z5, (c) Z2 × Z10, and
(d) Z20. Each matrix visualizes the cosets of the subgroups of the depicted group and suggests an associated grouping of the 20 states.
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to derive transitions between these groups just from the
biochemical properties.
Transition matrices for evolutionary models for amino

acid substitutions are usually generated by counting
mutation types in the alignments (see, e.g., [25] for an
overview). From these, optimal groupings can be obtained
using clustering approaches [26]. The existence of esti-
mates for the transition probability between all amino
acids provides the possibility to get further information
about between-group operations. These groupings could
be forced to fit Abelian groups. However, as indicated in
[26] a grouping into four groups of five amino acids each
is rarely optimal.

Conclusions
In this paper, we provide the necessary mathematical
background for the OSM setting which was introduced
and used previously [4,19], but had not been analyzed
mathematically for more than two character states. More-
over, the present paper also delivers new insight concern-
ing the requirements for the OSM model to work: In fact,
we were able to show that mathematically, it is sufficient
to have an underlying Abelian group – which shows a gen-
eralization of the OSM concept that was believed to be
impossible previously [4]. Therefore, we show that OSM
is applicable to any number of states.
However, note that the original intuition of the authors

in [4] was biologically motivated: The authors supposed
that the group not only has to be Abelian, but also sym-
metric in the sense that each operation can be undone
by being applied a second time. Thinking about DNA, for
instance, this works: For example, the transition from A
to G can be reverted by another substitution of the same
type, namely a transition from G to A. This symmetry
condition is fulfilled by the Klein-Four-group, but not by
the cyclic group on four states.
While the OSM approach can be extended to any num-

ber of states, its biological relevance becomes somewhat
obscure when there is no corresponding group which
is a power of Z

2. In particular, there are four distinct
Abelian groups for 20 states, but none fits a biologically
meaningful binning of the 20 amino acids.
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