
Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17
http://www.almob.org/content/8/1/17

RESEARCH Open Access

Estimating population size via line graph
reconstruction
Bjarni V Halldórsson1*, Dima Blokh2 and Roded Sharan2*

Abstract

Background: We propose a novel graph theoretic method to estimate haplotype population size from genotype
data. Themethod considers only the potential sharing of haplotypes between individuals and is based on transforming
the graph of potential haplotype sharing into a line graph using a minimum number of edge and vertex deletions.

Results: We show that the resulting line graph deletion problems are NP complete and provide exact integer
programming solutions for them. We test our approach using extensive simulations of multiple population evolution
and genotypes sampling scenarios. Our results also indicate that the method may be useful in comparing populations
and it may be used as a first step in a method for haplotype phasing.

Conclusions: Our computational experiments show that when most of the sharings are true sharings the problem
can be solved very fast and the estimated size is very close to the true size; when many of the potential sharings do
not stem from true haplotype sharing, our method gives reasonable lower bounds on the underlying number of
haplotypes. In comparison, a naive approach of phasing the input genotypes provides trivial upper bounds of twice
the number of genotypes.

Keywords: Population size, Haplotypes, Line graphs, Integer programming

Background
A fundamental problem in population studies is the esti-
mation of the size of the underlying haplotype pool. In
these studies, such as genomewide association studies,
a number of individuals are genotyped at some single
nucleotide polymorphism (SNP) locations. Since we can-
not observe the haplotypes of an individual, a common
approach to the size estimation problem is to phase the
genotype data, i.e., computationally predict the underlying
haplotypes. However, haplotype phasing is a notoriously
difficult problem [1] and can be optimally solved for small
instances only [2].
Here we propose a novel approach that does not

require the phasing of the haplotypes. It is based on
starting from the easy-to-compute information on poten-
tial haplotype sharing between individuals. Specifically,
we can test if two individuals have the potential to
share a haplotype by checking if their genotypes are

*Correspondence: bjarnivh@ru.is; roded@post.tau.ac.il
1School of Science and Engineering, Reykjavík University, Menntavegur 1,
Reykjavik 101, Iceland
2Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978,
Israel

consistent with such sharing (i.e., whenever one of the
genotypes is homozygous at a certain site, the other is
homozygous to the same allele or heterozygous). This
information can be encoded in a graph, known as the
Clark consistency (CC) graph [3], where each individ-
ual (genotype) is represented by a node and an edge is
added between two individuals if they can share a haplo-
type.
The line graph of a graph, is a new graph that has

nodes for each edge in the root (original) graph and an
edge between two nodes of the line graph if the corre-
sponding edges are adjacent in the root graph. If data
were perfect, i.e., the only observed potential sharings
were true sharings, then the resulting CC graph would be
a line graph whose root graph has haplotypes as nodes
and edges connect pairs of haplotypes corresponding to
the observed genotypes. The reconstruction of this root
graph would then enable us to compute the haplotype
population size. In practice, the graph is only close to
being a line graph and contains “extra” edges that do
not represent true sharing. These extra edges are due

© 2013 Halldórsson et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 2 of 10
http://www.almob.org/content/8/1/17

to the fact that the genotypes are consistent with each
other while there is no common shared haplotypes. For
reasonable population structure (as reflected in the sim-
ulations presented below), we expect such sharing of
genotypes to be rare. Thus, our goal is to find a smallest
number of edge deletions that will make the CC graph a
line graph. Once we arrive at a line graph we can recon-
struct its root graph, thereby getting an estimate of the
number of underlying haplotypes, as well as predictions
of which individuals share a haplotype (those pairs that
remain connected by an edge). We also consider a variant
of the line graph deletion problem where node deletions
are allowed; those correspond to cases where there are sig-
nificant genotyping errors or missing data in one of the
individuals or genotype pools.
CC graphs may also be determined from data gen-

erated using other technologies or experimental proto-
cols, including pooled sequencing [4]. In pooled sequenc-
ing, pools of DNA are constructed, each containing the
DNA of multiple individuals with each individual typically
belonging to multiple pools. Each pool is then genotyped
and a conflated genotype for all the individuals in the
pool is constructed. To create a CC graph we add an edge
between two individuals if they can share a haplotype, that
is, if for every pair of pools containing these individuals,
one in each pool, the two pools are consistent with sharing
a haplotype.
We study the complexity of the resulting line graph

modification problems. We observe that both problems
(edge- and vertex-deletion) are NP-complete and provide
polynomial integer programming formulations to solve
them.We also show how the method can be used as a first
step in an iterative algorithm for haplotype phasing. We
test our approach using extensive simulations of multiple
population evolution and genotypes sampling scenarios
and on data from the International HapMap Consortium
[5]. Our computational experiments show that whenmost
of the sharings are true sharings the problem can be solved
very fast and the estimated size is very close to the true
size. In cases where many of the potential sharings do not
stem from true haplotype sharing, due to spurious edge
or node insertions, our method gives reasonable lower
bounds on the underlying number of haplotypes. In com-
parison, a naive approach of phasing the input genotypes
provides trivial upper bounds of twice the number of
genotypes.
In the remainder of the paper, we start by present-

ing the background for this paper, the definition of
our optimization problems and an analysis of their
complexity. We then present five different integer pro-
gramming formulations to solve our optimization prob-
lems. Finally, we perform computational experiments on
both simulated data and on data from the International
HapMap Consortium.

Preliminaries
Let G = (V ,E) be a graph with a set V of n vertices
and a set E of m edges. The line graph of G, denoted by
L(G), is constructed by having a node in L(G) for each
edge in G and an edge between two nodes of L(G) if the
corresponding edges are adjacent in G.

Line graph and CC graphs
If L(G) is the line graph of G, we refer to G as the root
graph of L(G). Line graphs have been studied by a number
of authors. Whitney [6] showed that, apart from a single
exception, the root graph of a line graph is unique. Lehot
[7] and Roussopoulos [8] have independently given linear-
time algorithms for detecting whether a graph is a line
graph and outputting its root graph. Van Rooij and Wilf
[9] gave a characterization of line graphs in terms of nine
forbidden subgraphs. The characterization can be stated
as follows; A triangle in a graph is even if every other
node is adjacent to 0 or 2 nodes in the triangle; it is odd
otherwise. A graph is a line graph iff it contains no two odd
triangles that share an edge is claw-free (a claw is a node
connected to three nodes not connected to each other).
This characterization can also be stated as a list of nine
distinct subgraphs that are forbidden from the line graph.
Each one of the nine different subgraphs has at most six
nodes and ten edges.
A key component of our approach is the graph of poten-

tial sharing of haplotypes between individuals. This graph,
called the Clark consistency (CC) graph, was first sug-
gested in the context of a method for haplotype phasing by
AndrewClark [10]. Given the genotypes of a set of individ-
uals, the CC graph has one node for each individual and an
edge between two individuals if their genotypes are con-
sistent with sharing a haplotype, i.e., if for every site where
one of the individuals is homozygous, the other individual
is either homozygous for the same allele or heterozygous.
As the haplotypes of individuals that are homozygous for
the whole region being considered are easily determined,
we assume that every given individual has two different
haplotypes (i.e., it is heterozygous for at least one of the
genotyped markers) and no two individuals have the same
pair of haplotypes.
As we show below, CC graphs and line graphs are

closely related. Let H be the CC graph of a given set of
genotypes. We say that H is allelable if there is an assign-
ment of pairs of colors to its nodes so that every two
adjacent nodes share exactly one color and every two
non-adjacent nodes have distinct color sets. Under this
assignment every color represents a haplotype or an allele
in the population. The number of colors is the estimated
number of genotypes. The following observation stands at
the basis of our computational approach.

Lemma 2.1. H is allelable iff it is a line graph.

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 3 of 10
http://www.almob.org/content/8/1/17

Proof. IfH is allelable then construct a graphG in which
every allele ofH represents a node and edges connect alle-
les that are paired together in the nodes of H. It is easy to
see that H is the line graph of G.
Conversely, if H = L(G) is a line graph then one can

assign distinct labels to the nodes of the corresponding
root graph G and use these labels to label the edges of G
and, hence, the nodes ofH. This assignment clearly shows
that H is allelable.

Lemma 2.1 implies that a set of haplotypes provid-
ing a valid phasing of genotypes will always form a line
graph. The converse, however, need not be true as the
SNP data of the original genotypes are not encoded in our
formulation.

Problem definition and its complexity
As the input data may have more edges than the under-
lying line graph, we do not expect real data to yield line
graphs. Rather it is desirable to transform a given CC
graph into a line graph using a minimum number of node
and edge deletions. In the following we formulate three
versions of the problem.

Problem 2.1. Given a graph G = (V ,E), find a line
graph G′ = (V ,E′) such that E′ ⊆ E and | E − E′ | is
minimized.

Problem 2.2. Given a graph G = (V ,E), find a line
graph G′ = (V ′,E) such that V ′ ⊆ V and | V − V ′ | is
minimized.

We also consider a combined problem where both
nodes and edges may be removed from a graph:

Problem 2.3. Given a graph G = (V ,E) and a constant
α, find a line graphG′ = (V ′,E′) such that E′ ⊆ E, V ′ ⊆ V
and | E − E′ | +α | V − V ′ | is minimized.

Yannakakis [11] has shown that the problems of deleting
a minimum number of edges or nodes of a graph in order
to make it into a line graph are both NP-hard.
As the problems can be formulated as a problem

of avoiding particular subgraphs which have at most
6 nodes and 10 edges, by [12] both problems are
fixed parameter tractable and can be solved in time
max{m, n}O(10i) and max{m, n}O(6j), respectively, where
i (resp., j) is the minimum number of edges (resp.,
vertices) that need to be deleted. Using the tech-
niques of Niedermeier and Rossmanith [13], the node
deletion variant can be solved in max{m, n}O(5.19j)
time.
Problem 2.2 can be formulated as a hitting set problem,

where all the sets that need to be hit are of size 4, 5 or 6.

Trevisan [14] showed that the hitting set problem, when
the size of the input sets is bounded by B ≥ 2 (B = 6
in our case), is hard to approximate to within B− 1

19 . The
fact that all sets are of size at most six also implies a 6-
approximation algorithm for the line graph node deletion
problem [15].

Integer programming formulation
Here we provide integer programming formulations for
Problems 2.1, 2.2 and 2.3. The formulations rely on the
characterization given in Lemma 2.1. We let [i, j] repre-
sent {i, i + 1, ..., j}.

Edge deletions
LetG = (V ,E) be the input CC graph. Our basic program
has the following sets of binary variables: (i) A variable
de for every edge e ∈ E, where de = 1 iff e is deleted.
(ii) A variable xv,j for every node v ∈ V and every pos-
sible allele j ∈ [1, 2n], where xv,j = 1 iff individual v
has allele j. (iii) A variable se,j for every edge e ∈ E
and every possible allele j ∈ [1, 2n], where se,j = 1 iff
the two endpoints of e share allele j. It is formulated as
follows:

min
∑

e de
s.t.

∑2n
j=1 xv,j = 2 ∀v ∈ V

xv,j + xu,j ≤ 1 ∀(u, v) /∈ E, j ∈ [1, 2n]
∑2n

j=1 se,j = 1 − de ∀e ∈ E

xu,j + xv,j − 1 ≤ se,j ∀e = (v,u) ∈ E, j ∈ [1, 2n]

se,j ≤ xu,j ∀j ∈ [1, 2n] ,u ∈ e

de, xv,j, se,j ∈ {0, 1} ∀e ∈ E, v ∈ V , j ∈ [1, 2n]

In this formulation, the first constraint ensures that each
node is assigned two distinct colors; the next two con-
straints ensure that non-adjacent nodes (before or after
edge deletion) do not share a color; and the fourth and
fifth constraints ensure that the edge sharing variables are
consistent with the node coloring variables. A potential
problem with the formulation, however, is that different
permutations of the colors yield equivalent solutions. To
tackle this problem, we use the symmetry breaking tech-
niques of [16]. Specifically, we start by ordering the nodes
from 1 through n. Each node “owns” two colors: node i
owns colors (2i − 1) and 2i. The fact that xv,j = 1, where
j = 2v − 1 or j = 2v means that v is the first node to use

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 4 of 10
http://www.almob.org/content/8/1/17

color j. v is required to use color 2v−1 before it uses color
2v.
Overall, node v has access to colors 1, 2, . . . , 2v and can

use some of the previously used colors or be the first
ordered node to use new colors. These restrictions can be
represented by the following additional constraints:

xv,2v ≤ xv,2v−1 ∀v ∈ [1, n]

xj,2i−1 ≤ xi,2i−1 ∀j ∈ [i + 1, n]

xj,2i ≤ xi,2i ∀j ∈ [i + 1, n]

We observe that a number of the variables in the above
formulation can be automatically set to 0 and removed
from the formulation. In particular, if (i, j) /∈ E, i < j then
xj,2i = xj,2i−1 = 0, as j and i cannot share a color when
they do not share an edge. If e = (u, v), we also note that
se,j = 0 unless both u, v can be colored with color j, that is
if (v,

⌊
j+1
2

⌋
), (u,

⌊
j+1
2

⌋
) ∈ E.

Node deletions
If a graph does not contain one of the forbidden substruc-
tures then the graph is allelable. Otherwise, a vertex has
to be removed from each of the forbidden subgraphs. Our
algorithm relies on listing all occurrences of the forbidden
substructures and then solving the hitting set problem on
the set of forbidden substructures.
We observe that the deletion of a node will not cre-

ate a new forbidden substructure. The node deletion
problem can thus be formulated as an integer program
by listing all forbidden substructures and removing one
node from each one of them. We let tn be a binary
variable representing whether node i is removed and
denote by F the set of all forbidden induced subgraphs
of a line graph. Then the program is formulated as
follows:

min
∑

n tn
∑

n∈F tn ≥ 1 ∀F ∈ F

tn ∈ {0, 1} ∀n ∈ V

Edge and node deletions
In real data, both genotype errors and spurious sharing
relations may happen at the same time, leading to a com-
bined node- and edge-deletion problem. We define d,x, s
and t as before.We define the variable re as a boolean vari-
able representing that an edge has been removed, which
occurs when either one of its adjacent nodes or the edge

itself is deleted. We let α be the relative cost of node dele-
tion with respect to edge deletion. The combined program
is as follows:

min
∑

e de + α
∑

n tn
s.t.

∑2n
j=1 xv,j = 2 − 2tv ∀v ∈ V

xv,j + xu,j ≤ 1 ∀(u, v) /∈ E, j ∈ [1, 2n]
∑2n

j=1 se,j = 1 − re ∀e ∈ E

xu,j + xv,j − 1 ≤ se,j ∀e = (v,u) ∈ E, j ∈ [1, 2n]

se,j ≤ xu,j ∀j ∈ [1, 2n] ,u ∈ e

re ≤ tv + tu + de ∀e = (u, v) ∈ E

de ≤ re ∀e ∈ E

tu ≤ re ∀u ∈ e, e ∈ E

de, tv, xv,j, se,j, re ∈ {0, 1} ∀e ∈ E, v ∈ V , j ∈ [1, 2n]
We further augment this integer program with the sym-

metry breaking techniques described in Section ‘Edge
deletions’.

Edge deletions with errors
The model described in the previous sections does not
deal with noise due to genotype miscalls. Genotyping
errors may lead to haplotypes not sharing an edge when
they in fact should. There are two ways in which this prob-
lem can be handled by our framework. The first method
that we suggest is to add edges when the genotypes are
compatible in all but a fixed number of error locations, our
formulation would then be to remove the minimum num-
ber of edges, possibly with weights related to the number
of errors in the edges.
The second allows for edge insertions, possibly with

weights related to the number genotyping errors that are
needed to have occurred for there to be an edge between
the two nodes. We describe below an extension of our
integer programming formulation to allow for such edge
insertions, solving the more general problem of editing
a graph (by edge insertions and deletions) to form a line
graph.
As before, we let G = (V ,E) be a graph which

we would like to make allelable with n =| V | and
m =| E |. We introduce be as an indicator for an edge
be = 1 if e ∈ G and be = 0 if e /∈ G. We intro-
duce a variable ce for every edge e /∈ G, we let ce = 1
if e is inserted and ce = 0 if e is not inserted. We let
we denote a weight associated with each edge that can
be deleted or inserted. We let the variables xv,j and de
have the same interpretation as before. The variables se,j
also have the same interpretation as before, except that
e can now be any pair e = (u, v) ∈ V × V ,u �= v.

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 5 of 10
http://www.almob.org/content/8/1/17

min
∑

e∈E wede + ∑
e∈V×V−E wece

s.t.
∑2n

j=1 xv,j = 2 ∀v ∈ V
xv,j + xu,j ≤ 1 + be − ce ∀(u, v) ∈ V × V , v �= u, j ∈ [1, 2n]
∑2n

j=1 se,j = be + ce − de ∀e ∈ V × V
xu,j + xv,j − 1 ≤ se,j ∀e = (v,u) ∈ V × V , v �= u, j ∈ [1, 2n]

se,j ≤ xu,j ∀j ∈[1, 2n] ,u ∈ e
ce, de, xv,j, se,j ∈ {0, 1} ∀v ∈ V , e ∈ E, j ∈ [1, 2n]

This formulation can be extended to capture both the
symmetry breaking constraints and the node deletion
case, described earlier.

Haplotype phasing under the parsimony criteria
Researchers are frequently interested in knowing not only
the number of haplotypes for a particular instance but
also the haplotypes themselves. While the main purpose
of the paper is not to present amethod for haplotype phas-
ing, we will show how the method presented here can be
used as a first step in a constraint generation approach for
haplotype phasing.
In order to determine the minimum number of hap-

lotypes we would start by solving a modified version of
our integer program for edge deletions. We exploit the
symmetry breaking constraints to count andminimize the
number of haplotypes used to explain the line graph.

min
∑

v∈V xv,2v−1 + xv,2v
s.t.

∑2v
j=1 xv,j = 2 ∀v ∈ V

xv,j + xu,j ≤ 1 ∀(u, v) /∈ E, j ∈ [1, 2n]
∑2n

j=1 se,j ≤ 1 ∀e ∈ E
xu,j + xv,j − 1 ≤ se,j ∀e = (v,u) ∈ E, j ∈ [1, 2n]

se,j ≤ xu,j ∀j ∈ [1, 2n] ,u ∈ e
xv,2v ≤ xv,2v−1 ∀v ∈ [1, n]
xj,2i−1 ≤ xi,2i−1 ∀i ∈ [1, n] , j ∈ [i + 1, n]
xj,2i ≤ xi,2i ∀i ∈ [1, n] , j ∈ [i + 1, n]
xv,j ∈ {0, 1} ∀v ∈ V , j ∈ [1, 2v]
se,j ∈ {0, 1} ∀e ∈ E, j ∈ [1, 2n]

We note that as there is no cost associated with deleting
edges we no longer have a need for the de variables.
We note that the line graph minimizing the number

of haplotypes will always provide a lower bound on the
number of haplotypes. There however may be other con-
straints provided by the genotypes that will not be fulfilled
by the above optimization formalization. The next step

in our algorithm is to search for sets of haplotype shar-
ings inconsistent with the solution found by the integer
program.
We let I be the solution of the integer program and let

e ∈ I denote that in I there exists a color j such that
se,j = 1 We start by initializing a set S with the two nodes
of an edge e ∈ I. We then perform a partial phasing of
the genotypes of these individuals. In the partial phas-
ing we consider each SNP where one of the individuals
is homozygote and the other is heterozygote; the shared
haplotypemust then contain the allele of the heterozygote.
We then grow S by selecting a neighbor, v to one of the

nodes in S and add v to S. If no such neighbor exists then
we have a valid partial phasing for the nodes of S and
the nodes in S need not be considered further. If such a
neighbor does exist, then we use S to partially phase the
genotype of v. As we describe below, such a phasing of v
may not always be possible, if it is we update the haplo-
types in S and iterate the growth of S. If such a phasing
does not exist we conclude that not all of the neigbor rela-
tions considered so far can hold simultaneously and we
resolve the integer program with the added constraint:

∑
e∈I

n∑
j=1

se,j ≤| {e | e ∈ I ∩ S} | −1

We now describe how we use S to partially phase v. We
let hu(v) be the haplotype u shares with v. This haplotype
is uniquely defined; At the time v is added to S, u has two
partially phased haplotypes, at least one of which is shared
with a neighbor w ∈ S. If I indicates that all three of u, v
and w share a haplotype then the haplotype v shares with
u is the haplotype u shares with w, if not u shares with v
the haplotype it does not share with w. It is possible that
hu(v) has been phased for one allele of a SNP while v is
homozygote for the other allele, in this case v cannot be
phased consistently with the partial phasing of S. If not, we
add constraints from v to the phasing of haplotypes of S; If
hu(v) is heterozygote for a SNP and v is homozygote then
hu(v) must at that SNP be assigned the allele of v and the
other haplotype of umust be assigned the other allele. As

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 6 of 10
http://www.almob.org/content/8/1/17

Table 1 Effect of increasing population size

Genotypes # edges # edges Estimated # True # Compute

sampled removed haplotypes haplotypes time (s)

25 21 0 33 33 0

50 46 1 64 63 0.04

75 74 0 95 95 0.01

100 105 0 125 126 0.02

125 129 2 154 153 0.05

250 294 1 300 300 0.07

500 634 3 589 594 0.29

Genotypes are generated by sampling with replacement two haplotypes at a time from a population of size twice the number of genotypes. The size of this
population is varied. The estimated and true numbers of haplotypes both refer to the set of haplotypes underlying the sampled genotypes.

Table 2 Effect of increasing coverage

Genotypes Coverage # edges # edges Estimated # True # Compute

removed haplotypes haplotypes time (s)

25 0.5 17 0 37 37 0.00

50 1 46 1 64 63 0.04

75 1.5 98 0 82 82 0.04

100 2 186 0 87 88 0.02

125 2.5 301 0 92 92 0.09

Performance evaluation with respect to a sample drawn from an initial population of 100 haplotypes. The number of individuals drawn from the sample is varied.

Table 3 Effect of population size in a recombinant population

N0 # SNPs # genotypes # edges # edges Estimated # True # Compute

removed haplotypes haplotypes time (s)

500 116 100 484 245 83 144 1216

1000 231 100 235 105 114 172 120

2500 584 100 23 0 178 189 0.0

5000 1215 100 15 0 185 195 0.0

10000 3027 500 135 1 880 894 5

Performance evaluation for a recombinant population while varying population size.

Table 4 Effect of increasing coverage in a recombinant population

N0 # SNPs # genotypes # edges # edges Estimated # True # Compute

removed haplotypes haplotypes time (s)

1000 193 50 38 5 73 87 5

1000 231 100 235 105 114 172 120

1000 289 200 738 374 170 287 300

Performance evaluation on a recombinant population while varying sample size.

the nodes of S are connected the fact that v is heterozygote
for the SNPwill affect the partial phasings of all nodes in S.
Finally, we note that vmay be connected to more than one
node in S, we similarly consider whether v is consistent
with the partial phasing of those nodes.

Experimental results
We comprehensively test our algorithm for deleting edges
and vertices on data from the International HapMap
Consortium [5] and under two simulated scenarios, cor-
responding to a bottleneck population isolate and a

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 7 of 10
http://www.almob.org/content/8/1/17

Table 5 Partial genotypes

Partial # Extra α # genotypes # partial genotypes # edges Estimated # True

genotypes edges removed removed removed haplotypes haplotypes

5 40 1.5 5 4 1 68 78

5 40 4 2 2 8 68 78

10 70 1.5 10 9 1 63 71

10 70 4 4 3 18 63 71

15 102 1.5 13 9 0 55 62

15 102 4 7 6 14 59 62

Performance evaluation in a population where some of the genotypes are only partially observed.

population that has continuously undergone recombina-
tion and mutation. For the population isolate we show
that we can almost fully recover the haplotype structure
from the sharing information alone. For the population
that has undergone continuous recombination and muta-
tion we get a bound on the number of haplotypes that
is close to the true number of haplotypes in the popula-
tion. Our experiments further reveal that the occurrence
of genotypes showing a large degree of sharing does not
materially affect our ability to estimate the number of hap-
lotypes in the remaining population. The computational
experiments were done using CPLEX 12, making use of a
single CPU processor core with 4GB of memory.

Bottleneck population
Haplotypes that are shared across a long region are with
high probability identical by descent, i.e. they are the
result of the genetic material of a single forefather being
passed to a number of his descendents. Some of the hap-
lotypes, however, will be identical by state only, i.e., the
haplotypes are the same but cannot be traced to a single
common forefather. The probability of identical by state
sharing decreases rapidly with the length of the haplotype
being considered. The probability of identity by state shar-
ing depends on the size of the ancestral population. We
simulate graphs that might occur from the detection of
identity by state sharing.

Table 6 Hapmap populations

Abbreviation Description

ASW African ancestry in Southwest USA

CHB Han Chinese in Beijing, China

CHD Chinese in Metropolitan Denver, Colorado

GIH Gujarati Indians in Houston, Texas

JPT Japanese in Tokyo, Japan

LWK Luhya in Webuye, Kenya

TSI Toscani in Italia

A list of the HapMap populations used in this study and their abreviations.

We use Hudson’s ms simulator [17] to simulate realistic
genotype populations. We assume that there is an initial
small bottleneck population that then rapidly expanded.
We simulate genotypes for the initial population and then
generate the current population as a random sample with
replacement from this initial population. The parameters
for the simulation are chosen such as to sample approxi-
mately a 5 cM locus, or 3027 SNPs, a size for which it is
reasonable to expect that no recombinations would take
place in the region between two individuals being stud-
ied. We consider two sets of experiments for this scenario.
In the first experiment we vary the size of the population
but keep the number of times that each haplotype is sam-
pled on expectation fixed. In the second experiment we
vary the expected number of times that each haplotype is
sampled and keep the size of the population fixed.
In Table 1 we fix the expected number of times that a

haplotype is sampled as 1 and we vary the size of the pop-
ulation, which we present as the number of haplotypes in
the ancestral population. It can be seen that the number of
edges grows roughly linearly with the size of the popula-
tion being sample. Our simulations show that the number
of estimated haplotypes is in close agreement with the
true number of haplotypes in the sample. As some of the
haplotypes are sampledmultiple times the number of hap-
lotypes in the sample is typically smaller than the actual
population size. Notably, all instances are solved very fast
(less than a second).
In Table 2 we look at an initial bottleneck population

of 100 haplotypes while varying the number of genotypes
sampled from this population from 25 to 125. This implies
that each haplotype in the ancestral population is sam-
pled between 0.5 and 2.5 times (on average). As the sample
size increases, our estimate of the number of haplotypes
tightly follows the true number of haplotypes sampled
from the population, with both approaching the actual
population size of 100. We observe that the number of
edges in the graph grows roughly as the square of the
sample size. The CPU time used for all these instances is
minimal.

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 8 of 10
http://www.almob.org/content/8/1/17

Table 7 Hapmap populations

Population Number of edges Number of haplotypes Number of edges deleted

ASW 121.6 (58–313) 94.3 (70–111) 38.2 (4–161)

CHB 247.1 (54–758) 94.8 (72–118) 90.9 (14–209)

CHD 265.2 (27–811) 99.9 (70–132) 74.8 (5–189)

GIH 193.3 (72–373) 91.7 (57–119) 86.1 (23–188)

JPT 277.5 (38–812) 90.0 (69–131) 102 (13–179)

LWK 105.8 (28–244) 104.7 (80–129) 33.1 (2–98)

TSI 267.6 (79–579) 92.4 (69–108) 94.0 (20–225)

The number of haplotypes estimated in a sample of 77 individuals when considering haplotypes of length 200 SNPs. Number given are the average (min- max) of 10
different datasets.

Recombinant population
The second scenario that we simulate is a population that
is undergoing mutation and recombination. We fix muta-
tion rate at 10−9 per generation and recombination rate
between two adjacent base pairs at 10−8 per generation.
In all of our experiments we simulate a 1MB region, vary-
ing the number of individuals in the ancestral population
(N0) and the number of individuals sampled in the current
population.
First, we vary the size of the initial population, while

leaving the number of individuals considered mostly con-
stant (see Table 3). We observe that when the size of the
initial population grows the probability that two individ-
uals can share a haplotype decreases rapidly. Many of the
edges observed in these graphs are due to sharing between
genotypes that are not due to the sharing of haplotypes.
The graphs being considered are therefore far from being
line graphs and many edges need to be removed in order
to make them into ones. Nevertheless, we are able to give
estimates of the number of haplotypes in a population
even in this setting.
The quality of our estimate is, not surprisingly, depen-

dent on the number of edges that need to be removed to
create a line graph. Our estimated number of haplotypes is
consistently smaller than the true number of haplotypes,
but the number of estimated haplotypes is never below

57% of the true number of haplotypes. Similar conclu-
sions can be drawn from the second set of experiments
in which we fix the size of the initial population and vary
the size of the sample that we draw from that population
(see Table 4).

Combined node and edge deletions
We simulate a scenario in which there are genotypes
showing a high degree of excess sharing of haplotypes. To
this end, we focus on the data set of 50 genotypes pre-
sented in Table 4, and designate increasing subsets of the
genotypes as being partially observed, i.e., only a subset
of their markers is observed supposedly due to failure or
otherwise missing data.
In more detail, in Table 5 we modify a graph consisting

of 50 genotypes, consisting of 38 edges where 5 edges have
to be removed to transform the graph into a line graph.
We let 5, 10 or 15 of the genotypes be partially observed,
i.e., genotyped at only at 30% of their markers. We show
the number of edges added to the graph due to these par-
tial observations. Next, we apply our combined node and
edge deletion algorithm and use two settings for the alpha
parameter controlling the relative penalty of node vs. edge
deletion. The first value that we use, α = 1.5, prefers a
node deletion whenever more than one of the node’s adja-
cent edges has to be deleted. The second value of 4 allows

Table 8 Hapmap populations

Population Number of edges Number of haplotypes Number of edges deleted

ASW 57 (48–73) 110.1 (102–115) 1.7 (0–9)

CHB 35.7 (0–106) 132.3 (103–154) 10.2 (0–42)

CHD 46.9 (1–141) 129.7 (100–153) 15.8 (0–65)

GIH 41.1 (13–95) 126.5 (109–143) 8.6 (0–36)

JPT 60 (4–158) 122.7 (92–151) 21.3 (0–66)

LWK 37.5 (11–97) 129.8 (119–143) 1.6 (0–6)

TSI 41.2 (4–115) 130.7 (105–150) 12.9 (0–46)

The number of haplotypes estimated in a sample of 77 individuals when considering haplotypes of length 400 SNPs. Number given are the average (min-max) of 10
different datasets.

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 9 of 10
http://www.almob.org/content/8/1/17

up to 4 edge deletions before the node deletion is pre-
ferred. In each setting we provide the the number of edges
and genotypes removed and the number of removed geno-
types that were partially observed. We evaluate the size
estimate given by the algorithm against the true number of
haplotypes in the data set without counting the haplotypes
in the partially observed genotypes.
We observe that the occurrence of the partial genotypes

does not appear to materially affect our estimate of the
number of haplotypes in the remaining population. We
also observe that the largest number of nodes removed in
each experiment are from the subset corresponding to the
partially observed genotypes. When α = 1.5, 60 − −90%
of the partially observed genotypes are removed and less
than 12% of the other genotypes. When α = 4, 30−−40%
of the partial genotypes are removed and less than 3%
of the other genotypes. All computations presented in
Table 5 finished in under one second.

Comparison to a phasing-based estimation
Apart from the preprocessing, the complexity of our
method does not depend on the number of genotyped
markers. In contrast, many haplotype phasing methods
are not able to handle the large number of markers dealt
with in our approach [2]. We thus opted to compare
our method to phasing-based estimates derived from the
application of the BEAGLE phaser [18] to our data. Sur-
prisingly, in all the simulated settings, the number of
haplotypes estimated by BEAGLE was twice the num-
ber of genotypes, which is a trivial upper bound for the
number of haplotypes in a population.

Number of alleles in HapMap populations
We use data from seven of the HapMap [5] populations
(cf. Table 6), not considering those populations that con-
tain trios, as sharing of haplotypes between trios is to be
expected, which would skew our results. As the size of
the populations is variable and in order to have compa-
rable results between populations, we select a sample of
77 individuals from each of these populations. We select
regions of sizes 200 and 400 SNPs and compute the hap-
lotype sharings over those regions. We run ten different
data sets for each population, selected as the first ten non-
overlapping windows on chromosome 1, for a total of 140
data sets. Most of the computations finished in less than
one second, a few however took considerable longer time
to solve and six of the simulations were stopped after hav-
ing run without producing an optimal solution after 24
hours. We present results for the remaining 134 instances
in Tables 7 and 8.
We run our edge deletion algorithm on each one of

the populations to estimate the number of haplotypes.
This estimate can be expected to correlate with the effec-
tive population size for the populations; Populations with

a smaller effective populations size can be expected to
have a higher number of haplotype sharings and fewere
haplotypes in our samples.
We observe that the number of haplotype sharings is

smaller in the two populations of African heritage (ASW
and LWK) than the non-African populations. This indi-
cates that these populations have higher genetic diversity
and is consistent with the “out of Africa” theory. An excep-
tion to this rule is that when considering regions of 400
SNPs, the ASW populations has a higher average amount
of haplotype sharings than some of the other populations.
When looking more closely at the data we observed that
this higher rate of haplotype sharing is in large part due
the same pairs of individuals sharing haplotypes across
all 10 datasets, indicating an identical by descent shar-
ing among those pairs of individuals. We further observe
that the ASW population has the fewest number of hap-
lotypes when considering regions of 400 SNPs and that
those solutions are found while deleting very few edges.

Conclusions
We show that the problem of assigning alleles to individ-
uals when only information about the sharing of alleles
between individuals is known is equivalent to the prob-
lem of determining whether a graph is a line graph. When
sharing information is not perfect we give polynomial size
integer programming algorithms for determining allele
sharing. We show how this method can be used to esti-
mate the genetic diversity of different populations. We
suspect that the method proposed here may be useful in
computing important parameters in population genetics
such as the effective population size, however a careful
analysis of its statistical properties is necessary.
We further show how this method can be extended

to give an iterative optimization algorithm for haplotype
phasing. We demonstrate that the first iteration in this
algorithm can solve larger problem instances that can in
general be solved using common implementations of the
haplotype phasing algorithm. As we have not provided
an implementation of a haplotype phasing algorithm it
remains to be seen if our proposed algorithm is practical
and effective.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Methodology was developed by BVH and RS. Experiments were run by DB.
Manuscript was written by BVH, DB and RS. All authors read and approved the
final manuscript.

Acknowledgements
RS was supported by a research grant from the Israel Science Foundation
(grant no. 241/11).

Received: 20 December 2012 Accepted: 29 June 2013
Published: 5 July 2013

Halldórsson et al. Algorithms for Molecular Biology 2013, 8:17 Page 10 of 10
http://www.almob.org/content/8/1/17

References
1. Halldórsson BV, Bafna V, Edwards N, Lippert R, Yooseph S, Istrail S: A

survey of computational methods for determining haplotypes. In
Computational Methods for SNPs and Haplotype Inference (LNCS 2983):
Springer; 2004:26–47. [http://citeseerx.ist.psu.edu/viewdoc/
summary?doi:10.1.1.85.4196]

2. Catanzaro D, Godi A, Labbé M: A class representative model for pure
Parsimony Haplotyping. INFORMS J Comput 2009, 22(2):195–209

3. Halldórsson BV, Aguiar D, Tarpine R, Istrail S: The Clark Phaseable
sample size problem: long-range phasing and loss of
heterozygosity in GWAS. J Comput Biol 2011, 18(3):323–333. [http://dx.
doi.org/10.1089/cmb.2010.0288]

4. Prabhu S, Pe’er I: Overlapping pools for high-throughput targeted
resequencing. Genome Res 2009, 19:1254–61

5. The International HapMap Consortium: Integrating common and rare
genetic variation in diverse human populations. Nature 2010,
467:52–58

6. Whitney H: Congruent graphs and the connectivity of graphs. Am J
Math 1932, 54:150–162

7. Lehot PGH: An optimal algorithm to detect a line graph and output
its root graph. J ACM 1974, 21:569–575. [http://doi.acm.org/10.1145/
321850.321853]

8. Roussopoulos N: Amax(m,n) algorithm for determining the graph H
from its line graph G. Inf Process Lett 1974, 2:108–112

9. Van Rooij A, Wilf H: The interchange graphs of a finite graph. Acta
Math Acad Sci Hungar 1965, 16:263–269

10. Clark A: Inference of haplotypes from PCR-amplified samples of
diploid populations.Mol Biol Evol 1990, 7:111–122

11. Yannakakis M: Node-and edge-deletion NP-complete problems. In
Proceedings of the tenth annual ACM symposium on Theory of computing,
STOC ’78. New York: ACM:1978:253–264. [http://doi.acm.org/10.1145/
800133.804355]

12. Cai L: Fixed-parameter tractability of graphmodification problems
for hereditary properties. Inf Process Lett 1996, 58:171–176

13. Niedermeier R, Rossmanith P: An efficient fixed-parameter algorithm
for 3-Hitting Set. J Discrete Algorithms 2003, 1:89–102

14. Trevisan L: Non-approximability results for optimization problems
on bounded degree instances. In Proceedings of the Thirty-Third Annual
ACM Symposium on Theory of Computing. ACM; 2001:453–461

15. Even S, Bar-Yehuda R: A linear-time approximation algorithm for the
weighted vertex cover problem. J Algorithms 1981, 2(2):198–203

16. Campelo M, Campos V, Correa R: On the asymmetric representatives
formulation for the vertex coloring problem. Discrete Appl Math 2008,
156(7):1097–1111

17. Hudson RR: Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 2002, 18(2):337–338

18. Browning BL, Browning SR: A unified approach to genotype
imputation and haplotype-phase inference for large data sets of
trios and unrelated individuals. Am J HumanGenet 2009, 84(2):210–223

doi:10.1186/1748-7188-8-17
Cite this article as: Halldórsson et al.: Estimating population size via line
graph reconstruction. Algorithms for Molecular Biology 2013 8:17.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://citeseerx.ist.psu.edu/viewdoc/summary?
http://citeseerx.ist.psu.edu/viewdoc/summary?
http://dx.doi.org/10.1.1.85.4196
http://dx.doi.org/10.1089/cmb.2010.0288
http://dx.doi.org/10.1089/cmb.2010.0288
http://doi.acm.org/10.1145/321850.321853
http://doi.acm.org/10.1145/321850.321853
http://doi.acm.org/10.1145/800133.804355
http://doi.acm.org/10.1145/800133.804355

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Preliminaries
	Line graph and CC graphs
	Problem definition and its complexity

	Integer programming formulation
	Edge deletions
	Node deletions
	Edge and node deletions
	Edge deletions with errors
	Haplotype phasing under the parsimony criteria

	Experimental results
	Bottleneck population
	Recombinant population
	Combined node and edge deletions
	Comparison to a phasing-based estimation
	Number of alleles in HapMap populations

	Conclusions
	Competing interests
	Authors' contributions
	Acknowledgements
	References

