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Abstract

Background: The de Bruijn graph data structure is widely used in next-generation sequencing (NGS). Many
programs, e.g. de novo assemblers, rely on in-memory representation of this graph. However, current techniques for
representing the de Bruijn graph of a human genome require a large amount of memory (> 30 GB).

Results: We propose a new encoding of the de Bruijn graph, which occupies an order of magnitude less space than
current representations. The encoding is based on a Bloom filter, with an additional structure to remove critical false
positives.

Conclusions: An assembly software implementing this structure, Minia, performed a complete de novo assembly of
human genome short reads using 5.7 GB of memory in 23 hours.
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Background

The de Bruijn graph of a set of DNA or RNA sequences
is a data structure which plays an increasingly impor-
tant role in next-generation sequencing applications. It
was first introduced to perform de novo assembly of
DNA sequences [1]. It has recently been used in a wider
set of applications: de novo mRNA [2] and metagenome
[3] assembly, genomic variants detection [4,5] and de
novo alternative splicing calling [6]. However, an impor-
tant practical issue of this structure is its high memory
footprint for large organisms. For instance, the straight-
forward encoding of the de Bruijn graph for the human
genome (1 ~ 2.4 - 10%, k-mer size k = 27) requires 15 GB
(n - k/4 bytes) of memory to store the nodes sequences
alone. Graphs for much larger genomes and metagenomes
cannot be constructed on a typical lab cluster, because of
the prohibitive memory usage.

Recent research on de Bruijn graphs has been targeted
on designing more lightweight data structures. Li et al.
pioneered minimum-information de Bruijn graphs, by not
recording read locations and paired-end information [7].
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Simpson et al. implemented a distributed de Bruijn graph
to reduce the memory usage per node [8]. Conway and
Bromage applied sparse bit array structures to store an
implicit, immutable graph representation [9]. Targeted
methods compute local assemblies around sequences of
interest, using negligible memory, with greedy extensions
[10] or portions of the de Bruijn graph [11]. Ye et al.
recently showed that a graph roughly equivalent to the de
Bruijn graph can be obtained by storing only one out of g
nodes (10 < g < 25) [12].

Conway and Bromage observed that the self-
information of the edges is a lower bound for exactly
encoding the de Bruijn graph [9]:

4/<+1
log, ( ( ) ) bits,
82 IE|

where k 4 1 is the length of the sequence that uniquely
defines an edge, and |E| is the number of edges. In this
article, we will consider for simplicity that a de Bruijn
graph is fully defined by its nodes. A similar lower bound
can then be derived from the self-information of the
nodes. For a human genome graph, the self-information
of IN| ~ 2.4 - 10° nodes is logz((s\l;‘)) ~ 6.8GB for k = 27,
i.e. &~ 24 bits per node.
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A recent article [13] from Pell et al. introduced the
probabilistic de Bruijn graph, which is a de Bruijn graph
stored as a Bloom filter (described in the next section).
It is shown that the graph can be encoded with as lit-
tle as 4 bits per node. An important drawback of this
representation is that the Bloom filter introduces false
nodes and false branching. However, they observe that
the global structure of the graph is approximately pre-
served, up to a certain false positive rate. Pell et al. did not
perform assembly directly by traversing the probabilistic
graph. Instead, they use the graph to partition the set of
reads into smaller sets, which are then assembled in turns
using a classical assembler. In the arXiv version of [13]
(Dec 2011), it is unclear how much memory is required by
the partitioning algorithm.

In this article, we focus on encoding an exact represen-
tation of the de Bruijn graph that efficiently implements
the following operations:

1. For any node, enumerate its neighbors
2. Sequentially enumerate all the nodes

The first operation requires random access, hence is
supported by a structure stored in memory. Specifically,
we show in this article that a probabilistic de Bruijn graph
can be used to perform the first operation exactly, by
recording a set of troublesome false positives. The second
operation can be done with sequential access to the list of
nodes stored on disk. One highlight of our scheme is that
the resulting memory usage is approximated by

16k
1.44 log, ( 2.08) + 2.08 bits/k-mer.

For the human genome example above and k = 27,
the size of the structure is 3.7 GB, i.e. 13.2 bits per node.
This is effectively below the self-information of the nodes.
While this may appear surprising, this structure does not
store the precise set of nodes in memory. In fact, com-
pared to a classical de Bruijn graph, the membership of
an arbitrary node cannot be efficiently answered by this
representation. However, for the purpose of many appli-
cations (e.g. assembly), these membership queries are not
needed.

We apply this representation to perform de novo assem-
bly by traversing the graph. In our context, we refer by
traversal to any algorithm which visits all the nodes of
the graph exactly once (e.g. a depth-first search algo-
rithm). Thus, a mechanism is needed to mark which nodes
have already been visited. However, nodes of a probabilis-
tic de Bruijn graph cannot store additional information.
We show that recording only the visited complex nodes
(those with in-degree or out-degree different than one) is a
space-efficient solution. The combination of (i) the prob-
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abilistic de Bruijn graph along with the set of critical false
positives, and (ii) the marking scheme, enables to perform
very low-memory de novo assembly.

In the first Section, the notions of de Bruijn graphs
and Bloom filters are formally defined. Section “Remov-
ing critical false positives” describes our scheme for
exactly encoding the de Bruijn graph using a Bloom filter.
Section “Additional marking structure for graph traversal”
presents a solution for traversing our representation of the
de Bruijn graph. Section “Results and discussion” presents
two experimental results: (i) an evaluation of the useful-
ness of removing false positives and (ii) an assembly of a
real human dataset using an implementation of the struc-
ture. A comparison is made with other recent assemblers
based on de Bruijn graphs.

de Bruijn graphs and Bloom filters

The de Bruijn graph [1], for a set of strings S, is a directed
graph. For simplicity, we adopt a node-centric definition.
The nodes are all the k-length substrings (also called
k-mers) of each string in S. An edge 51 — s is present if
the (k—1)-length suffix of 5 is also a prefix of s;. Through-
out this article, we will indifferently refer to a node and its
k-mer sequence as the same object.

A more popular, edge-centric definition of de Bruijn
graphs requires that edges reflect consecutive nodes. For
kr-mer nodes, an edge s; — sy is present if there exists a
(k' +1)-mer in a string of S containing s; as a prefix and s,
as a suffix. The node-centric and edge-centric definitions
are essentially equivalent when k¥’ = k—1 (although in the
former, nodes have length &, and k — 1 in the latter).

The Bloom filter [14] is a space efficient hash-based
data structure, designed to test whether an element is in
a set. It consists of a bit array of m bits, initialized with
zeros, and /s hash functions. To insert or test the member-
ship of an element, /1 hash values are computed, yielding 4
array positions. The insert operation corresponds to set-
ting all these positions to 1. The membership operation
returns yes if and only if all of the bits at these positions
are 1. A no answer means the element is definitely not in
the set. A yes answer indicates that the element may or
may not be in the set. Hence, the Bloom filter has one-
sided errors. The probability of false positives increases
with the number of elements inserted in the Bloom filter.
When considering hash functions that yield equally likely
positions in the bit array, and for large enough array size m
and number of inserted elements #, the false positive rate
Fis [14]:

h h
Fr(1=emm) = (1= ) (1)
where r = m/n is the number of bits per element. For

a fixed ratio r, minimizing Equation 1 yields the opti-
mal number of hash functions # ~ 0.7r, for which
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F is approximately 0.6185". Solving Equation 1 for m,
assuming that / is the optimal number of hash function,
yields m ~ 1.44 Iogz(})n.

The probabilistic de Bruijn graph is obtained by
inserting all the nodes of a de Bruijn graph (i.e all k-mers)
in a Bloom filter [13]. Edges are implicitly deduced by
querying the Bloom filter for the membership of all pos-
sible extensions of a k-mer. Specifically, an extension of a
k-mer v is the concatenation of either (i) the k — 1 suffix
of v with one of the four possible nucleotides, or (ii) one of
the four nucleotides with the k — 1 prefix of v.

The probabilistic de Bruijn graph holds an over-
approximation of the original de Bruijn graph. Querying
the Bloom filter for the existence of an arbitrary node may
return a false positive answer (but never a false negative).
This introduces false branching between original and false
positive nodes.

Removing critical false positives

The cFP structure

Our contribution is a mechanism that avoids false branch-
ing. Specifically, we propose to detect and store false
positive elements which are responsible for false branch-
ing, in a separate structure. To this end, we introduce
the cFP structure of critical False Positives k-mers, imple-
mented with a standard set allowing fast membership test.
Each query to the Bloom filter is modified such that the yes
answer is returned if and only if the Bloom filter answers
yes and the element is not in ¢FP.

Naturally, if ¢FP contained all the false positives ele-
ments, the benefits of using a Bloom filter for memory
efficiency would be lost. The key observation is that the
k-mers which will be queried when traversing the graph
are not all possible k-mers. Let S be the set of true pos-
itive nodes, and &£ be the set of extensions of nodes from
S. Assuming we only traverse the graph by starting from a
node in S, false positives that do not belong to £ will never
be queried. Therefore, the set cFP will be a subset of £. Let
‘P be the set of all elements of £ for which the Bloom filter
answers yes. The set of critical false positives cFP is then
formally defined as cFP = P \ S.

Figure 1 shows a simple graph with the set S of correct
nodes in regular circles and ¢FP in dashed rectangles. The
exact representation of the graph is therefore made of two
data structures: the Bloom filter, and the set cFP of criti-
cal false positives. Algorithm 1 describes how to construct
cFP using a fixed amount of memory. The set P is created
on disk, from which ¢FP is then gradually constructed by
iteratively filtering P with partitions of S ((D;);>0) loaded
in a hash-table. The sets S, P, and (D;);>0 are stored on
the hard disk. The sets (P;);>o reside in RAM, and are
dimensioned to occupy as much space as the Bloom filter
(which was freed at Step 4). Note that I/O to the disk are
always sequential.
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Algorithm 1 Constant-memory enumeration of critical
false positives
1: Input: The set S of all nodes in the graph, the Bloom
filter constructed from S, the maximum number M
of elements in each partition (determines memory
usage)
2: Output: The set cFP
3: Store on disk the set P of extensions of S for which
the Bloom filter answers yes

4: Free the Bloom filter from memory
5: Dy < P

6: 1< 0

7: while end of S is not reached do

8 P,‘ <~ ¢

9:  while |P;| < M do

10: P; < P;U{next k-mer in S}

11:  for each k-mer m in D; do

12: if m ¢ P; then

13: Dit1 < Dit1 U {m}

14:  Delete D;, P;
15: i<—i+1
16: cFP < D;

Dimensioning the Bloom filter for minimal memory usage
The set ¢cFP grows with the number of false positives. To
optimize memory usage, a trade-off between the sizes of
the Bloom filter and ¢FP is studied here.

Using the same notations as in the definition of the
Bloom filter, given that n = |S|, the size of the filter m and
the false positive rate F are related through Equation 1.
The expected size of cFP is 8n - F, since each node only
has eight possible extensions, which might be false posi-
tives. In the encoding of ¢FP, each k-mer occupies 2 - k
bits. Recall that for a given false positive rate F, the
expected optimal Bloom filter size is 1.44# log,( }). The
total structure size is thus expected to be

1
1.44nlog, (}_) + (16 - Fnk) bits (2)

Bloom filter cFP

The size is minimal for 7 &~ (16k/2.08)~!. Thus, the
minimal number of bits required to store the Bloom filter
and the set ¢FP is approximately

1.44 1 1ok 2.08 3
n- (Ladlogy(, ) +2.08). 3)

For illustration, Figure 2-(a) shows the size of the struc-
ture for various Bloom filter sizes and k = 27. For this
value of k, the optimal size of the Bloom filter is 11.1 bits
per k-mer, and the total structure occupies 13.2 bits per
k-mer. Figure 2-(b) shows that k has only a modest influ-
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Figure 1 A complete example of removing false positives in the probabilistic de Bruijn graph. (a) shows S, an example de Bruijn graph (the
7 non-dashed nodes), and B, its probabilistic representation from a Bloom filter (taking the union of all nodes). Dashed rectangular nodes (in red in
the electronic version) are immediate neighbors of S in B. These nodes are the critical false positives. Dashed circular nodes (in green) are all the
other nodes of ; (b) shows a sample of the hash values associates to the nodes of S (a toy hash function is used); (c) shows the complete Bloom
filter associated to S; incidentally, the nodes of B are exactly those to which the Bloom filter answers positively; (d) describes the lower bound for
exactly encoding the nodes of S (self-information) and the space required to encode our structure (Bloom filter, 10 bits, and 3 critical false positives,

(d)

ence on the optimal structure size. Note that the size of
the ¢FP structure is in fact independent of k.

In comparison, a Bloom filter with virtually no critical
false positives would require F - 8n < 1, ie.r > 144
log, (8n). For a human genome (n = 2.4 - 10%), r would be
greater than 49.2, yielding a Bloom filter of size 13.7 GB.

Additional marking structure for graph traversal

Many NGS applications, e.g. de novo assembly of genomes
[15] and transcriptomes [2], and de novo variant detec-
tion [6], rely on (i) simplifying and (ii) traversing the de
Bruijn graph. However, the graph as represented in the
previous section neither supports (i) simplifications (as it
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Figure 2 Optimal data structure size for the parameter r, then for the parameter k. (a) Structure size (Bloom filter, critical false positives) in
function of the number of bits per k-mer allocated to the Bloom filter (also called ratio r) for k = 27. The trade-off that optimizes the total size is
shown in dashed lines. (b) Optimal size of the structure for different values of k.
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is immutable) nor (ii) traversals (as the Bloom filter can-
not store an additional visited bit per node). To address
the former issue, we argue that the simplification step can
be avoided by designing a slightly more complex traversal
procedure [16].

We introduce a novel, lightweight mechanism to record
which portions of the graph have already been visited.
The idea behind this mechanism is that not every node
needs to be marked. Specifically, nodes that are inside
simple paths (i.e nodes having an in-degree of 1 and
an out-degree of 1) will either be all marked or all
unmarked. We will refer to nodes having their in-degree
or out-degree different to 1 as complex nodes. We pro-
pose to store marking information of complex nodes,
by explicitly storing complex nodes in a separate hash
table. In de Bruijn graphs of genomes, the complete set
of nodes dwarfs the set of complex nodes, however the
ratio depends on the genome complexity [17]. The mem-
ory usage of the marking structure is n.C, where n
is the number of complex nodes in the graph and C
is the memory usage of each entry in the hash table
(C ~ 2k + 8).

Implementation

The de Bruijn graph structure described in this article was
implemented in a new de novo assembly software: Minia®.
An important preliminary step is to retrieve the list of dis-
tinct k-mers that appear in the reads, i.e. true graph nodes.

To discard likely sequencing errors, only the k-mers which
appear at least d times are kept (solid k-mers). We exper-
imentally set d to 3. Classical methods that retrieve solid
k-mers are based on hash tables [18], and their memory
usage scale linearly with the number of distinct k-mers. To
deal with reverse-complementation, k-mers are identified
to their reverse-complements.

k-mer counting

To avoid using more memory than the whole structure, we
implemented a novel, constant-memory k-mer counting
procedure. The multi-set of all k-mers present in the reads
is partitioned and partitions are saved to disk. Then, each
partition is separately loaded in memory in a temporary
hash table. The k-mer counts are returned by traversing
each hash table. Low-abundance k-mers are filtered. This
approach permits to count all k-mers of a human genome
dataset using only a fixed amount of memory and disk
space. The algorithm is explicitly described and evaluated
in another article [19].

Graph traversal

We implemented in Minia a graph traversal algorithm
that constructs a set of contigs (gap-less sequences). The
Bloom filter and the ¢FP structure are used to determine
neighbors of each node. The marking structure records
already traversed nodes. A bounded-depth, bounded-
breadth BFS algorithm (following Property 2 in [16])
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is performed to traverse short, locally complex regions.
Specifically, the traversal ignores tips (dead-end paths)
shorter than 2k + 1 nodes. It chooses a single path (con-
sistently but arbitrarily), among all possible paths that
traverse graph regions of breadth < 20, provided these
regions end with a single node of depth < 500. These
regions are assumed to be sequencing errors, short vari-
ants or short repetitions of length < 500 bp. The breadth
limit prevents combinatorial blowup. Note that paired-
end reads information is not taken into account in this
traversal. In a typical assembly pipeline (e.g. [8]), a sepa-
rate program (scaffolder) can be used to link contigs using
pairing information. Also, a gap-filling step (e.g. Gap-
Closer in SOAPdenovo [7]) is typically used to fill the gaps
between contigs in scaffolds.

Results and discussion

Throughout the Results section, we will refer to the N50
metric of an assembly (resp. NG50) as the longest contig
size, such that half the assembly (resp. half the reference)
is contained in contigs longer than this size.

On the usefulness of removing critical false positives

To test whether the combination of the Bloom filter and
the ¢FP structure offers an advantage over a plain prob-
abilistic de Bruijn graph, we compared both structures
in terms of memory usage and assembly consistency. We
retrieved 20 million E. coli short reads from the Short
Read Archive (SRX000429), and discarded pairing infor-
mation. Using this dataset, we constructed the proba-
bilistic de Bruijn graph, the cFP structure, and marking
structure, for various Bloom filter sizes (ranging from 5
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to 19 bits per k-mer) and k = 23 (yielding 4.7 M solid
k-mers).

We measured the memory usage of both structures.
For each, we performed an assembly using Minia with
exactly the same traversal procedure. The assemblies were
compared to a reference assembly (using MUMmer),
made with an exact graph. The percentage of nucleotides
in contigs which aligned to the reference assembly was
recorded.

Figure 3 shows that both the probabilistic de Bruijn
graph and our structure have the same optimal Bloom fil-
ter size (11 bits per k-mer, total structure size of 13.82 bits
and 13.62 per k-mer respectively). In the case of the prob-
abilistic de Bruijn graph, the marking structure is promi-
nent. This is because the graph has a significant amount
of complex k-mers, most of them are linked to false posi-
tive nodes. For the graph equipped with the cFP structure,
the marking structure only records the actual complex
nodes; it occupies consistently 0.49 bits per k-mer. Both
structures have comparable memory usage.

However, Figure 3 shows that the probabilistic de Bruijn
graph produces assemblies which strongly depend on the
Bloom filter size. Even for large sizes, the probabilistic
graph assemblies differ by more than 3 kbp to the ref-
erence assembly. We observed that the majority of these
differences were due to missing regions in the proba-
bilistic graph assemblies. This is likely caused by extra
branching, which shortens the lengths of some contigs
(contigs shorter than 100 bp are discarded).

Below & 9 bits per k-mer, probabilistic graph assemblies
significantly deteriorate. This is consistent with another
article [13], which observed that when the false positive

Probabilistic de Bruijn graph
50

B Marking struct.
B Bloom filter

40

4527
e - 100

Bloom filter size (bits/kmer)

Figure 3 Data structure sizes for the probabilistic de Bruijn graph. Data structure sizes (Bloom filter, marking structure, and cfP if applicable) for
the probabilistic de Bruijn graph with (top right) and without the cFP structure (top left), for an actual dataset (E. coli, k = 23). All plots are in function
of the number of bits per k-mer allocated to the Bloom filter. Additionally, the difference is shown (bottom left and bottom right) between a
reference assembly made using an exact de Bruijn graph, and an assembly made with each structure.
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rate is over 18% (i.e., the Bloom filter occupies < 4 bits
per k-mer), distant nodes in the original graph become
connected in the probabilistic de Bruijn graph. To sum up,
assemblies produced by the probabilistic de Bruijn graph
are prone to randomness, while those produced by our
structure are exact.

de novo assembly

Complete human genome

We assembled a complete human genome (NA18507,
SRA:SRX016231, 142.3 Gbp of unfiltered reads of length
~ 100 bp, representing 47x coverage) using Minia. After
k-mer counting, 2,712,827,800 solid k-mers (d = 3) were
inserted in a Bloom filter dimensioned to 11.1 bits per
solid k-mer. The c¢FP structure contained 78,762,871
k-mers, which were stored as a sorted list of 64 bits inte-
gers, representing 1.86 bits per solid k-mer. A total of
166,649,498 complex k-mers (6% of the solid k-mers) were
stored in the marking structure using 4.42 bits per solid
k-mer (implementation uses 8(35‘21 bytes per k-mer).
Table 1 shows the time and memory usage required for
each step in Minia.

We compared our results with assemblies reported by
the authors of ABySS [8], SOAPdenovo [7], and the pro-
totype assembler from Conway and Bromage [9]. Table 2
shows the results for four classical assembly quality met-
rics, and the time and peak memory usage of the com-
pared programs. We note that Minia has the lowest
memory usage (5.7 GB), seconded by the assembler from
Conway and Bromage (32 GB). The wall-clock execution
time of Minia (23 h) is comparable to the other assem-
blers; note that it is the only single-threaded assembler.
The N50 metric of our assembly (1.2 kbp) is slightly above
that of the other assemblies (seconded by SOAPdenovo,
0.9 kbp). All the programs except one assembled 2.1 Gbp
of sequences.

We furthermore assessed the accuracy of our assem-
bly by aligning the contigs produced by Minia to the
GRCh37 human reference using GASSST [20]. Out of
the 2,090,828,207 nucleotides assembled, 1,978,520,767

Table 1 Details of steps implemented in Minia

Step Time (h) Memory (Gb)
k-mer counting 1.1 Constant (set to 4.0)
Enumerating positive extensions 2.8 3.6 (Bloom filter)
Constructing cFP 29 Constant (set to 4.0)
Assembly 6.4 5.7 (Bloom f.+ cFP

+ mark. struct.)
Overall 23.2 57

Details of steps implemented in Minia, with wall-clock time and memory usage
for the human genome assembly. For constant-memory steps, memory usage
was automatically set to an estimation of the final memory size. In all steps, only
one CPU core was used.
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Table 2 de novo human genome (NA18507) assemblies

Method Minia C.&B. ABySS SOAPdenovo
Value of k chosen 27 27 27 25

Number of contigs (M)~ 3.49 7.69 435

Longest contig (kbp) 18.6 220 15.9 -

Contig N50 (bp) 1156 250 870 886

Sum (Gbp) 2.09 1.72 2.10 2.08

Nb of nodes/cores 11 1/8 21168 1/16

Time (wall-clock, h) 23 50 15 33

Memory (sum 5.7 32 336 140

of nodes, GB)

de novo human genome (NA18507) assemblies reported by our assembler
(Minia), Conway and Bromage assembler [9], ABySS [8], and SOAPdenovo [7].
Contigs shorter than 100 bp were discarded. Assemblies were made without any
pairing information.

nucleotides (94.6%) were contained in contigs having a
full-length alignment to the reference, with at least 98%
sequence identity. For comparison, 94.2% of the contigs
assembled by ABySS aligned full-length to the reference
with 95% identity [8].

To evaluate another recent assembler, SparseAssembler
[12], the authors assembled another dataset (NA12878),
using much larger effective k values. SparseAssembler
stores an approximation of the de Bruijn graph, which can
be compared to a classical graph for k¥’ = k + g, where
g is the sparseness factor. The reported assembly of the
NA12878 individual by SparseAssembler (k + g = 56)
has a N50 value of 2.1 kbp and was assembled using 26
GB of memory, in a day. As an attempt to perform a
fair comparison, we increased the value of k from 27 to
51 for the assembly done in Table 2 (k = 56 showed
worse contiguity). The N50 obtained by Minia (2.0 kbp)
was computed with respect to the size of SparseAssembler
assembly. Minia assembled this dataset using 6.1 GB of
memory in 27 h, a 4.2x memory improvement compared
to SparseAssembler.

Chromosome 14 of the human genome

In order to evaluate the quality of the results produced
by Minia more accurately, we assembled the human chro-
mosome 14 (88 Mbp ungapped) separately. The Illumina
dataset is from the GAGE benchmark [21] (100 bp reads,
all short paired-end libraries). Pairing information was
not used in Minia. To establish a fair comparison with
Minia, we selected two assemblies from GAGE (made
with ABySS and Velvet, downloaded from the GAGE web-
site) for which contigs were constructed without using
pairing information. All the assemblies were done with a
k-mer size of 31, as chosen by the authors of GAGE. Addi-
tionnaly, we executed Minia with k = 47, as this k-mer
size was experimentally found to provide better results
than k = 31.
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QUAST v1.3 was executed with the --gage option
to evaluate the quality of the contigs of each assembly.
Table 3 shows several contiguity, coverage and quality
metrics computed using the same reference genome and
QUAST command-line for the three assemblies. The large
misassemblies row shows the number of positions in the
assembled contigs for which the left and right flanking
sequences align either over 1 kbp away from each other,
or on different strands or chromosomes. The local mis-
assemblies row shows the number of positions in the
assembled contigs for which the left and right flanking
sequences are distant from each other by 90 bp to 1 kbp.

On this dataset, Minia with k = 31 produced an assem-
bly of lower contiguity and better accuracy to ABySS and
Velvet. Minia with k = 47 produced a better assem-
bler over all metrics than the other assemblers run with
k = 31. Overall, the quality of assemblies produced
with Minia can be considered satisfactory with respect to
contigs made from state of the art assemblers. It should
be noted that in the GAGE benchmark, other methods
(e.g. SOAPdenovo, Allpaths, etc..) produced assemblies of
much higher contiguity. These methods performed post-
processing steps (scaffolding and gap-filling), usually after
completing an initial contigs construction phase with a
classical de Bruijn graph.

Conclusions

This article introduces a new, space-efficient represen-
tation of the de Bruijn graph. The graph is implicitly
encoded as a Bloom filter. A subset of false positives,
those which introduce false branching from true posi-
tive nodes, are recorded in a separate structure. A new
marking structure is introduced, in order for any traversal
algorithm to mark which nodes have already been vis-
ited. The marking structure is also space-efficient, as it
only stores information for a subset of k-mers. Combining
the Bloom filter, the critical false positives structure and

Table 3 de novo human genome chromosome 14
assemblies

Assembly Minia ABySS Velvet
Value of k chosen 47 31 31 31
Number of contigs (k) 485 56.1 519 456
Longest contig (kbp) 289 26.5 30.0 279
Contig NG50 (kbp) 2.8 1.7 2.0 2.3
Large misassemblies 11 3 20 385
Local misassemblies 25 27 158 867
Coverage (%) 924 81.9 82.2 84.4
Unaligned contigs length (kbp) 331 13.5 236 564.5

de novo human genome chromosome 14 assemblies reported by our assembler
(Minia), compared to Velvet and ABySS assemblies from the GAGE benchmark.
QUAST was used to evaluate all three assemblers.
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the marking structure, we implemented a new memory-
efficient method for de novo assembly (Minia).

To the best of our knowledge, Minia is the first method
that can create contigs for a complete human genome on
a desktop computer. Our method improves the memory
usage of de Bruijn graphs by two orders of magnitude
compared to ABySS and SOAPdenovo, and by roughly
one order of magnitude compared to succinct and sparse
de Bruijn graph constructions. Furthermore, the current
implementation completes the assembly in 1 day using a
single CPU thread.

De Bruijn graphs have more NGS applications than just
de novo assembly. We plan to port our structure to replace
the more expensive graph representations in two pipelines
for reference-free alternative splicing detection, and SNP
detection [4,6]. We wish to highlight three directions for
improvement. First, some steps of Minia could be imple-
mented in parallel, e.g. graph traversal. Second, a more
succinct structure can be used to mark complex k-mers.
Two candidates are Bloomier filters [22] and minimal
perfect hashing.

Third, the set of critical false positives could be reduced,
by exploiting the nature of the traversal algorithm used
in Minia. The traversal ignores short tips, and in gen-
eral, graph regions that are eventually unconnected.
One could then define n-th order critical false positives
(n-cFP) as follows. An extension of a true positive graph
node is a n-cFP if and only if a breadth-first search from
the true positive node, in the direction of the extension,
has at least one node of depth n + 1. In other words,
false positive neighbors of the original graph which are
part of tips, and generally local dead-end graph structures,
will not be flagged as critical false positives. This is an
extension of the method presented in this article which,
in this notation, only detects O-th order critical false
positives.

Simultaneously and independently of the present work,
Bowe et al. [23] have proposed a de Bruijn graph repre-
sentation using 4+ o0(1) bits per edge. Their data structure
is more succinct than ours, and at the same time more
complex and difficult to implement. Since their structure
has not been fully implemented yet, it is not possible to
compare the practical performance with Minia. However,
this new advance is very interesting and raises the ques-
tion of whether their structure is the most succinct way to
represent a de Bruijn graph.

Endnote
®Source code available at http://minia.genouest.org/.
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