
Compeau Algorithms for Molecular Biology 2013, 8:6
http://www.almob.org/content/8/1/6

RESEARCH Open Access

DCJ-Indel sorting revisited
Phillip EC Compeau

Abstract

Background: The introduction of the double cut and join operation (DCJ) caused a flurry of research into the study
of multichromosomal rearrangements. However, little of this work has incorporated indels (i.e., insertions and
deletions of chromosomes and chromosomal intervals) into the calculation of genomic distance functions, with the
exception of Braga et al., who provided a linear time algorithm for the problem of DCJ-indel sorting. Although their
algorithm only takes linear time, its derivation is lengthy and depends on a large number of possible cases.

Results: We note the simple idea that a deletion of a chromosomal interval can be viewed as a DCJ that creates a
new circular chromosome. This framework will allow us to amortize indels as DCJs, which in turn permits the
application of the classical breakpoint graph to obtain a simplified indel model that still solves the problem of
DCJ-indel sorting in linear time via a more concise formulation that relies on the simpler problem of DCJ sorting.
Furthermore, we can extend this result to fully characterize the solution space of DCJ-indel sorting.

Conclusions: Encoding indels as DCJ operations offers a new insight into why the problem of DCJ-indel sorting is
not ultimately any more difficult than that of sorting by DCJs alone. There is still room for research in this area, most
notably the problem of sorting when the cost of indels is allowed to vary with respect to the cost of a DCJ and we
demand a minimum cost transformation of one genome into another.

Keywords: Genome rearrangements, DCJ, Indels, Sorting, Solution space

Background
In the simplest terms, DNAmaymutate in two fundamen-
tally different ways. On the one hand, single-nucleotide
polymorphisms alter the base at a single position of the
nucleic acid polymer; on the other hand, huge mutations
called chromosomal rearrangements can move around,
duplicate, insert, or delete huge blocks of DNA, often from
one chromosome to another.
Chromosomal rearrangements were first observed by

Dobzhansky and Sturtevant in 1938 ([1]), but extensive
efforts to quantify their study did not take off until the
early 1990s. In the last two decades, a number of dis-
crete genomic models have been proposed and studied
(see [2] for an overview of the combinatorics of genome
rearrangements).
Having selected a genomic model and a collection of

genome operations to consider, the standard algorithmic
problem is the computation of the distance between two

Correspondence: pcompeau@math.ucsd.edu
Department of Mathematics, UC San Diego, 9500 Gilman Drive 0112, San
Diego, CA 92093, United States

genomes � and �, or the minimum number of allow-
able operations required to transform � into �; the more
difficult problem of sorting demands the operations them-
selves. The first historical example of such a discrete
genomic distance is the prefix reversal distance for per-
mutations (which model the order of genes along a single
linear chromosome), introduced in [3] and bounded in
[4-6]. The computation of prefix reversal distance has
been proposed to be NP-Hard (see [7]).
More recent research has moved past permutations and

toward multichromosomal genomic models that incorpo-
rate both linear and circular chromosomes. One of these
models, which we will study in this paper, models the
chromosomes of a genome with paths and cycles in a
graph. For this model, the double cut and join operation
(DCJ) was introduced in [8] and incorporates segment
reversals with a number of other operations. Interestingly,
a linear time greedy algorithm exists for DCJ sorting two
genomes having equal gene content (see [9]).
The incorporation of insertions and deletions of chro-

mosomes and chromosomal intervals (collectively called
indels) into DCJ distance was discussed in [10] and quanti-
fied rigorously in [11]. The latter authors provided a linear

© 2013 Compeau; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 2 of 9
http://www.almob.org/content/8/1/6

time algorithm for the associated problem of DCJ-indel
sorting, which gives a minimum collection of DCJ and
indel operations required to transform one genome into
another. Yet their argument is case-ridden, and so in this
paper, which builds upon [12], we wish to provide a much
simpler presentation of DCJ-indel sorting that still yields
a linear-time solution to the problem.

Main text
Preliminaries
Say that we are given a perfect matching on 2N labeled
vertices V , forming a set G of N edges called genes; the
vertices of each gene form its head and tail. We define a
genome � as the edge-disjoint union of two matchings.
The genes of�, denoted g(�), form amatching on V such
that g(�) ⊆ G; the adjacencies of�, denoted a(�), form a
matching on V (g(�)). We color the genes of � black and
the adjacencies of � blue (see Figure 1(a)).
A consequence of these definitions is that � comprises

a disjoint collection of paths and cycles, where each con-
nected component alternates between black genes and
blue adjacencies. Each component of � is called a chro-
mosome; paths (cycles) of � define linear (circular) chro-
mosomes of �. The endpoint v of a path in � is called
a telomere of �; v is not incident to an adjacency, and so
for clerical purposes, we say that v has the null adjacency
{v,∅}. A genome consisting of only circular (linear) chro-
mosomes is called a circular (linear) genome. Note that �

is circular if and only if the edges of a(�) form a perfect
matching on V (�).

Henceforth, we only consider genome pairs {�,�} such
that g(�) ∪ g(�) = G. A workhorse data structure
encoding the relationship between � and � is the break-
point graph ([13]), denoted by B(�,�) and defined as the
edge-disjoint uniona of a(�) and a(�), where adjacen-
cies of � will be colored red (Figure 1(b)). Observe that
B(�,�) is also a collection of disjoint paths and cycles,
which alternate between red and blue edges. The length
of a connected component of B(�,�) is its total num-
ber of edges; we consider an isolated vertex in B(�,�)

to be a path of length 0. The breakpoint graph is also
the line graph of the adjacency graph, which was first
defined in [9] and has also been used in rearrangement
studies.
A double cut and join operation (DCJ) on� (introduced

in [8]) uses one or two adjacencies of � via one of the
following four operations to produce a new genome �′:

1. {v,w}, {x, y} −→ {v, x}, {w, y}
2. {v,w}, {x,∅} −→ {v, x}, {w,∅}
3. {v,∅}, {w,∅} −→ {v,w}
4. {v,w} −→ {v,∅}, {w,∅}

The DCJ incorporates a wide range of genome rearrange-
ments, as shown in Figure 2.
For the particular case that� and� have the same genes

(i.e., g(�) = g(�) = G), the DCJ distance between � and
�, written dDCJ(�,�), is the minimum number of DCJs
required to transform � into � One can easily verify that
dDCJ forms a metric on the set of all genomes having gene

2t 2h

9h 9t
13h

13t

12h 12t

11h

11t

10t 10h 1h 1t 4h 4t 3t 3h 8t 8h 7h 7t

2t 2h 3t 3h 4t 4h 5t 5h

1h 1t

8h 8t

7h

7t

6h6t

9t

9h

(a)

7t 6h 11t 13h 13t 12h 12t 11h6t 9h 2t

4t 3t

2h

9t

8h7h

3h

8t
5t 4h 1t 1h 10h

γ,

5h 10t

(b)

γγγγγγ

γ
,

Figure 1 Two Genomes and their Breakpoint Graph. (a) Genomes � and � on a collection of 12 genes. We use “h” and “t” to denote the head
and tail of a gene. � is drawn with blue adjacencies, and � is drawn with red adjacencies. (b) The breakpoint graph of � and �. We have labeled
the endpoint v of a path with π if v is π -open, with γ if v is γ -open, and with ∅ if v is a telomere of at least one genome.



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 3 of 9
http://www.almob.org/content/8/1/6

v w

x y

v w

x y

Translocation

Translocation

v w x y

ReversalReversal

Fission

Fusion

Excision

Integration

Reversal

Reversal

ReversalReversal

Fission

Fusion

Fusion (#3)

Fission (#4)

Circularization (#3)

Linearization (#4)

(a) (b)

(c)

Translocation

Translocationx

wv

x

wv

ywv x

yx

wv

yx

wv

yx

v w

yx

wv

xy

wv

wy

xv

xv w

wv x

x

wv

x

wv

v w v w

v wv w

Figure 2 The Collection of All Possible DCJ Operations. The DCJ incorporates many operations, depending on the structure of the
chromosomes involved and whether the adjacencies used belong to the same chromosome. (a) Operation 1 in the definition of the DCJ
incorporates linear internal translocations, reversals, circular fusions/fissions, the excision of a circular chromosome from a linear chromosome, and
the integration of a circular chromosome into a linear chromosome. (b) Operation 2 incorporates telomeric translocations, affix reversals (which
involve the telomere of a linear chromosome), and the fission of a linear chromosome into a circular and linear chromosome (together with its
inverse). (c) Operations 3 and 4 include linear fusions/fissions as well as the linearization/circularization of a single chromosome.

set G. A closed formula for DCJ distance was derived in
[9] and translated into breakpoint graph notation in [14]:

dDCJ(�,�) = N − c(�,�) − peven(�,�)

2
(1)

Here, c(�,�) and peven(�,�) denote the number of cycles
and even-length paths in B(�,�), respectively.
For the more general case that � and � do not share

the same genes, a deletion of a chromosomal interval of
� replaces adjacencies {v,w} and {x, y} (contained in the
order (v,w, x, y) along a chromosome of �) with the adja-
cency {v, y} and removes the path connecting w to x. We
also allow deletions of entire chromosomes; however, we
must stipulate (following the lead of the authors in [11])
that every vertex removed from � must belong to V −
V (�).b The insertion of a chromosome or chromosomal
interval into � to obtain �′ is defined as the inverse of a
corresponding deletion from �′ that yields �. Note that a
consequence of this definition is that we may not insert a
gene unless it is contained in G. Insertions and deletions
are collectively called indels; thus, we define theDCJ-indel
distance between� and�, written dindDCJ(�,�), as themin-
imum number of DCJs and indels required to transform
� into �.

Because insertions and deletions are inverse opera-
tions, it follows that dindDCJ(�,�) = dindDCJ(�,�). However,
although dindDCJ is symmetric, unlike dDCJ it does not form
a metric, as the triangle inequality does not hold; see [15]
for a more complete discussion.

DCJ-Indel sorting
Handling circular singletons
We begin our discussion of DCJ-indel sorting by defining
a circular singleton of � (adapted from[11]) as a circu-
lar chromosome C such that V (C) ∩ V (�) = ∅. Note
that C is defined with respect to � as well as �. Ideally,
we could delete (insert) all circular singletons of � and
� immediately to simplify the problem of DCJ-indel sort-
ing; fortunately, this is indeed the case, as shown by the
following two results.

Proposition 1. If �′ is formed by removing a circular
singleton C from �, then dindDCJ(�

′,�) = dindDCJ(�,�) − 1.
Furthermore, when transforming � into � via a minimum
collection of DCJs and indels, no gene belonging to a circu-
lar singleton of� can ever appear in the same chromosome
as a gene of �.

Proof. Any collection of k DCJs and indels transforming
�′ into � can be supplemented by the deletion of C to



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 4 of 9
http://www.almob.org/content/8/1/6

yield k + 1 DCJs and indels transforming � into �; thus,
dindDCJ(�

′,�) ≥ dindDCJ(�,�) − 1.
To obtain the reverse bound, let us view a transforma-

tion T of � into � as a sequence (�0,�1, . . . ,�n) (n ≥ 1),
where �0 = �, �n = �, and �i+1 is obtained from
�i as the result of a single DCJ or indel. Consider the
sequence (�′

0,�′
1, . . . ,�′

n), where �′
i is constructed from

�i by removing the subgraph of �i induced by the ver-
tices ofC under the stipulation that whenever we remove a
path P connecting v to w, we replace adjacencies {v, x} and
{w, y} in � with {x, y} in �′

i. It is easy to see that �′
0 = �′,

�′
n = �, and for every i in range, either �′

i+1 is the result
of a DCJ or indel applied to �′

i or �′
i+1 = �′

i; thus,
(�′

0,�′
1, . . . ,�′

n) encodes a transformation of �′ into �

using at most n DCJs and indels. Furthermore, one can
verify that �′

i+1 = �′
i only when an adjacency of C is used

by a DCJ in T changing �i to �i+1 or when �i+1 is pro-
duced from �i by a deletion of vertices that all belong to
C. At least one such operation must always occur in T;
hence, dindDCJ(�

′,�) ≤ dindDCJ(�,�) − 1.
The proposition’s second conclusion follows from the

fact that if for some j (1 ≤ j ≤ n− 1), a chromosome of �j
contains a gene g1 of � and a gene g2 of C, then one DCJ
was required to combine g1 and g2 into the same chro-
mosome, and another will be needed to separate them,
yielding two distinct values of i for which �′

i+1 = �′
i.

From the first part of the proof, we may conclude that
dindDCJ(�,�) < n. �

Letting sing(�,�) denote the total number of circular
singletons of � and �, we have an immediate corollary.

Corollary 2. The DCJ-indel distance is given by the
following:

dindDCJ(�,�) = sing(�,�) + dindDCJ(�
0,�0) (2)

where�0 (�0) is formed by removing all circular singletons
from � (�).

With respect to DCJ-indel sorting, Corollary 2 allows us
to assume without loss of generality that � and � do not
contain any circular singletons.
We next make an observation taken from [16], which

is that the deletion of a chromosomal interval of � con-
necting w to x may be viewed as a DCJ: {v,w}, {x, y} →
{v, y}, {w, x}; this operation produces a circular chromo-
some containing w and x that is scheduled for removal,
including the case that v or y equals ∅ (the deletion of
an entire linear chromosome is handled by u = x = ∅);
see Figure 3. Because insertions are the inverses of dele-
tions, we would like to conclude that indels may be placed
in a one-to-one correspondence with the removal of cir-
cular chromosomes. Ironically, the apparent exception to

this proposed rule is the deletion of an entire circular
chromosome.
Yet if a deleted circular chromosome C is not produced

as the result of a DCJ, then C must be a circular single-
ton of � in order to be deleted. Otherwise, C has been
produced as the result of a DCJ applied to a chromoso-
mal interval; by the method we just described, we can
amortize the deletion in this DCJ unless the DCJ also cre-
ates another circular chromosome C′ that is scheduled
for deletion. However, this sequence of operations cannot
arise in a minimum collection of DCJs and indels trans-
forming � into �, as we could simply delete the original
chromosome from which C and C′ were produced by the
DCJ in question, thus requiring a single operation instead
of three.

Toward a newmodel of Indels
Wewill follow the observationmade in [16] that the actual
removal of deleted chromosomes can occur as a final
step in the transformation of � into �. As a result, we
may view the transformation of � into � as composed of
three steps: inserting chromosomes into � to yield a new
genome �′ with g(�′) = G; applying a sequence of DCJs
to produce a genome �′ having the same genes as �′; and
finally, deleting chromosomes from �′ to produce �. Note
that we can equivalently view the first step as the dele-
tion of chromosomes from �′ to obtain �. Combining
this observation with our correspondence between indels
and circular chromosomes above, we may introduce the
following framework.
Define a completion of� as a genome�′ having g(�′) =

G and for which a(�′) is composed of a(�) together with
a perfect matching on V (�′) − V (�). We call the adja-
cencies of a(�′) − a(�) new. Note that the chromosomes
of � embed as chromosomes of �′ and that the compo-
nents of �′ − � form cycles because the new adjacencies
of�′ induce a perfect matching onV (�′)−V (�); we may
now without ambiguity call these circular chromosomes
of �′ the indels of �′. A completion of a pair of genomes
(�,�) is simply a pair (�′,�′) for which �′ and �′ are
completions of � and �, respectively. The above discus-
sion implies that for any minimum cost transformation of
� into �, the indels of �′ correspond bijectively to DCJ
operations, so that we will amortize each unit indel cost
by that of a DCJ operation. This amortization yields the
following equation for DCJ-indel distance:

dindDCJ(�,�) = min
(�′,�′)

{
dDCJ(�

′,�′)
}

(3)

where the minimum is taken over all completions of
(�,�). A completion (�∗,�∗) is optimal if it attains
the minimum in (3). Applying the closed form equation
for the DCJ distance in (1) to immediately produces the
following result.



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 5 of 9
http://www.almob.org/content/8/1/6

w x v w y x w x y v 
w x 

y 

v y 

w x w x 

y 

w x 
w x v y 

DCJ DCJ DCJ 

DCJ 

Figure 3 Encoding the Deletion of a Chromosomal Interval as a DCJ. The deletion of a chromosomal interval connecting w to x can be
encoded by a DCJ that turns the interval connecting w to x into a circular chromosome. The four possible deletions of a chromosomal interval are
shown in the above figure; this correspondence holds even when the interval in question is taken to be an entire linear chromosome.

Theorem 3. The DCJ-indel distance is given by the fol-
lowing equation:

dindDCJ(�,�) = N − max
(�′,�′)

{
c(�′,�′) + peven(�′,�′)

2

}

(4)

where the maximum is taken over all completions of
(�,�).

Constructing an optimal completion
In light of Theorem 3, we have reduced DCJ-indel sorting
to the problem of constructing indels intelligently to max-
imize a weighted sum of breakpoint graph components.
Once we have produced an optimal completion (�∗,�∗),
we can simply invoke the O(N)-time sorting algorithm
described in [9] to transform �∗ into �∗ via a minimum
collection of DCJs.
Our goal is to construct (�∗,�∗) by direct analysis of

B(�,�). Because � and � do not necessarily share the
same genes, B(�,�) may contain path endpoints that are
not telomeres. Accordingly, we define a vertex v to be
π-open (γ -open) if v /∈ � (v /∈ �). In other words,
v must be matched to some other π-open vertex when
constructing the indels of �∗.c The paths of B(�,�)

are therefore classified according to their endpoints: a
π-path (γ -path) ends in one π-open (γ -open) vertex and
one telomere (of either � or �); a {π , γ }-path ends in a
π-open vertex and a γ -open vertex (such a pathmust have
even length at least 2); a {π ,π}-path ({γ , γ }-path) ends
in two π-open (γ -open) vertices and must therefore have
odd length. We should also provide statistics for counting
these different components. Define pπ ,γ as the number
of {π , γ }-paths in B(�,�); pπ

even as the number of even-
length π-paths in B(�,�); and p0even as the number of
even-length paths in B(�,�) containing no open vertices
(i.e., ending in two telomeres). Similar statistics count-
ing odd-length paths can be defined analogously. We have
dropped the genomes {�,�} from these statistics for the
sake of simplicity; all component statistics will be taken
with respect to B(�,�) unless otherwise noted.

We first present a proposition regarding the parity of the
paths of B(�,�).

Proposition 4. The component statistics of B(�,�) sat-
isfy the following condition:

pπ ,γ ≡ ∣∣pπ
odd − pπ

even
∣∣ ≡ ∣∣pγ

odd − pγ
even

∣∣ mod 2 (5)

Proof. The total number of π-open vertices is equal to
V (�′) −V (�) and must therefore be even. Of course, the
same is the case for γ -open vertices, and counting π-open
and γ -open vertices over the connected components of
B(�,�) thus produces the following equivalences:

pπ
odd + pπ

even + pπ ,γ ≡ 0 mod 2 (6)
pγ

odd + pγ
even + pπ ,γ ≡ 0 mod 2 (7)

Adding pπ ,γ to both sides of (6) and (7) gives the following:

pπ ,γ ≡ (
pπ
odd + pπ

even
) ≡ (

pγ

odd + pγ
even

)
mod 2 (8)

The equivalence of (5) and (8) is an arithmetical fact.

We next establish two necessary conditions on optimal
completions by culling the set of possible adjacencies of
any such completion. Our general strategy is to consider
the addition of a new adjacency {v,w} to a completion �′
as linking the component(s) of B(�,�) whose endpoints
are the (π-open) vertices v and w. Our first result states
that we must always link the endpoints of any {π ,π}-path
to each other.

Lemma 5. If (�∗,�∗) is an optimal completion of
(�,�), then every {π ,π}-path ({γ , γ }-path) of length 2k−1
in B(�,�) (k ≥ 1) embeds into a cycle of length 2k in
B(�∗,�∗).

Proof. Let P be a path of length 2k − 1 connecting
π-open vertices v and w in B(�,�). Our claim is that we
must link v and w in B(�∗,�∗). Suppose for the sake of
contradiction that we have a completion (�′,�′) such that



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 6 of 9
http://www.almob.org/content/8/1/6

P does not embed into a cycle of length 2k in B(�′,�′);
in this case, we must have adjacencies {v, x} and {w, y} in
a(�′), where all four vertices are distinct.
Consider the completion �′′ that is identical to �′

except that {v, x} and {w, y} are replaced by {v,w} and {x, y}.
In B(�′′,�′), we have closed P into a cycle of length 2k,
and at the same time, we have changed neither the parity
nor the linearity/circularity of the component contain-
ing x and y. Because we have increased the number of
breakpoint graph cycles by 1 without changing the total
number of paths, it follows from (1) that dDCJ(�′′,�′) =
dDCJ(�′,�′) − 1, and so (�′,�′) cannot be optimal.

Having dealt with {π ,π}- and {γ , γ }-paths of B(�,�),
any remaining component of B(�∗,�∗) must be either a
j-bracelet, which is a cycle linking j {π , γ }-paths (where
j ≥ 2 and j is even), or a k-chain, in which two π-paths
or two γ -paths are linked via an intermediate number
of {π , γ }-paths to form a path containing k components
from B(�,�) (k ≥ 2). Note that when k is even, a
k-chain C must contain either two π-paths or two
γ -paths, and when k is odd, C must contain one π-path
and one γ -path.
For the sake of simplicity, we will represent a j-bracelet

by (P1 : P2 : · · · : Pj) and a k-chain by [P1 : P2 : · · · : Pk],
where every Pi is linked to Pi+1, and in the case of a
j-bracelet, P1 is linked to Pj. Because we wish to maxi-
mize a weighted sum of breakpoint graph components, we
might guess that we should look for many short bracelets
and chains. Indeed, the length of a bracelet or chain in
B(�∗,�∗) is heavily restricted by the following lemma.

Lemma 6. If (�∗,�∗) is an optimal completion, then a
component C∗ of B(�∗,�∗) can only contain two or more
{π , γ }-paths if C∗ is a 2-bracelet.

Proof. Again, say for the sake of contradiction that we
have an optimal completion (�′,�′) for which a compo-
nent C′ of B(�′,�′) contains two or more {π , γ }-paths. If
C′ is not a 2-bracelet, then it must contain {π , γ }-paths
P1 and P2 that are linked by precisely one new adjacency.
Say that P1 joins π-open vertex v to γ -open vertex w and
that P2 joins π-open vertex x to γ -open vertex y. To meet
the assumption that P1 and P2 are linked by precisely one
new adjacency, suppose that {v, x} ∈ a(�′) but {w, y} /∈
a(�′), where instead {w,w′} and {y, y′} are in a(�′). Replac-
ing these two adjacencies with {w, y} and {w′, y′} defines
a different completion �′′ for which B(�′,�′′) contains
(P1 : P2). Viewed as an operation on B(�′,�′) to yield
B(�′,�′′), we have two cases.
First, if C′ was a bracelet, then we have formed two new

bracelets from C′, one of which is (P1 : P2). Otherwise,
C′ was a chain, in which case we have formed a chain (of
the same parity) in addition to (P1 : P2). In either case,

dDCJ(�′,�′′) < dDCJ(�′,�′), and so (�′,�′) cannot be
optimal.

Following Lemma 6, we may only have 2-bracelets,
2-chains, and 3-chains in B(�∗,�∗). After a simple result
about 2-chain components, we will be ready to state our
main result on DCJ-indel sorting.

Proposition 7. The breakpoint graph of an optimal
completion cannot have one 2-chain joining two odd
π-paths and another 2-chain joining two even π-paths.
The same holds for γ -paths.

Proof. Once again, proceed by contradiction and
assume that (�′,�′) is an optimal completion with such
2-chains [P1 : P2] and [P3 : P4]. Replacing these 2-chains
with [P1 : P3] and [P2 : P4] replaces two odd paths in
B(�′,�′) with two even paths; hence, (�′,�′) cannot be
optimal.

Theorem 8. Algorithm 9, given below, defines an O(N)

time algorithm for DCJ-indel sorting. For pairs {�,�} hav-
ing sing(�,�) = 0, the DCJ-indel distance is given by the
following equation:

dindDCJ(�,�) = N −
[(

c + pπ ,π + pγ ,γ +
⌊
pπ ,γ

2

⌋)

+ 1
2

(
p0even + min

{
pπ
odd, p

π
even

}

+min
{
pγ

odd, p
γ
even

} + δ
) ]

(9)

Here, δ = 1 when pπ ,γ is odd and either pπ
odd > pπ

even,
pγ

odd > pγ
even or pπ

odd < pπ
even, p

γ

odd < pγ
even; otherwise,

δ = 0.

Proof. We aim to construct an optimal completion
(�∗,�∗) having

c(�∗,�∗) = c + pπ ,π + pγ ,γ +
⌊
pπ ,γ

2

⌋
(10)

peven(�∗,�∗) = p0even + min
{
pπ
odd, p

π
even

}
+ min

{
pγ

odd, p
γ
even

} + δ (11)

First, we count the cycles of B(�∗,�∗). By Lemma 5,
every {π ,π}-path or {γ , γ }-path of B(�,�)must be closed
into a cycle by adding a single new adjacency (Step 1 of
Algorithm 9). We now claim that there exists an optimal
completion containing

⌊
pπ ,γ

2

⌋
2-bracelets. Note that we

may always replace 3-chains [P1 : P2 : P3] and [P4 :
P5 : P6] (where P1 and P4 are π-paths) with [P1 : P4],
(P2 : P5), and [P3 : P6], without increasing the DCJ
distance of the associated completion because we have
obtained a cycle from two paths. This argument implies



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 7 of 9
http://www.almob.org/content/8/1/6

Step 2 of Algorithm 9 and produces the value of c(�∗,�∗)
stated above.
As for the even paths of B(�∗,�∗), let us operate under

the assumption that pπ ,γ is odd. Then after forming a
maximal collection of 2-bracelets, we will be left with one
additional {π , γ }-path P. We claim that (�∗,�∗) will be
optimal if we link as many π-paths (γ -paths) of opposite
parity as possible. On the one hand, Proposition 7 states
that we cannot have 2-chains [P1 : P2] and [P3 : P4],
where P1 and P2 are even π-paths and P3 and P4 are odd
π-paths. On the other hand, say that we have a 2-chain
[P1 : P2] and a 3-chain [P3 : P : P4], where without loss
of generality we assume that P1 and P2 are odd π-paths,
P3 is an even π-path, and P4 is a γ -path. Replacing these
chains with the chains [P1 : P3] and [P2 : P : P4] does not
change the number of paths of even length in B(�∗,�∗),
implying Step 3 of Algorithm 9.
As a result, all remaining π-paths must have the same

parity, as must all the γ -paths; thus, we may choose any
π-path and γ -path to link to P (Step 4 of Algorithm 9) and
form a 3-chain. The length of this 3-chain may be even
(δ = 1) or odd (δ = 0) depending on whether the length
of its π-path and γ -path have equal parity or not. All
remaining paths must therefore be 2-chains linking pairs
of π-paths or pairs of γ -paths (Step 5 of Algorithm 9).
If instead pπ ,γ is even, then δ = 0, and the argument

for constructing an optimal completion proceeds simi-
larly, except that no {π , γ }-paths will remain after forming
a maximal collection of 2-bracelets, eliminating the need
for Step 4.

Algorithm 9. Given genomes (�,�), the following
algorithm constructs an optimal completion (�∗,�∗) in
O(N) time.

0 Remove all circular singletons from � and �.
1 Close every {π ,π}-path ({γ , γ }-path) into a cycle by

adding a single new adjacency to �∗ (�∗).
2 Form a maximum set of 2-bracelets.
3 Form a maximum set of even 2-chains by linking

pairs of π-paths (γ -paths) having opposite parity.
4 If pπ ,γ is odd, then link the remaining {π , γ }-path

with any remaining π-path and γ -path to form a
3-chain.

5 Arbitrarily link pairs of remaining π-paths, all of
which have the same parity, to form 2-chains. Do the
same for remaining γ -paths.

The solution space of DCJ-Indel sorting
The problem of DCJ sorting is well understood, its
solution space having been described in [17]. Thus, by
Theorem 3, to identify the solution space of DCJ-indel
sorting (an open problem), we simply need to enumerate
the construction of indels of an optimal completion. We

mentioned this enumeration in [12], but here we will
explore the details of the calculation.

Handling circular singletons
By Proposition 1, we may consider the circular single-
tons of � and � independently of other chromosomes; for
that matter, because insertions and deletions are defined
symmetrically, we may assume that � contains k chro-
mosomes and that � is the empty genome. Then by
Corollary 2 and the trivial fact that any DCJ applied to
� changes the total number of chromosomes of � by at
most 1 (see [8]), we may obtain � from � in k steps if and
only if we perform j successive DCJs (0 ≤ j < k), each of
which fuses two circular chromosomes into one, followed
by applying k − j chromosome deletions.
Assuming that k is relatively small, the enumeration of

all such transformations of � into � poses a tedious but
straightforward task, as a fusion of two circular chromo-
somes corresponds to a DCJ using two adjacencies from
different chromosomes.

Genomes lacking circular singletons
Having handled circular singletons, we may assume that
sing(�,�) = 0. Fortunately, the lemmas presented before
Theorem 8 have greatly reduced the collection of possi-
ble optimal completions, which we now continue to pare
down.

Proposition 10. Every π-path (γ -path) embedding into
a 3-chain of an optimal completion must have the same
parity.

Proof. Say for the sake of contradiction that we have an
optimal completion (�′,�′) such that B(�′,�′) contains
3-chains [P1 : P2 : P3] and [P4 : P5 : P6], where P1 and
P4 are π-paths of opposite parity. Consider the comple-
tion (�′′,�′′), which is defined by rejoining adjacencies of
(�′,�′) to form [P1 : P4], (P2 : P5), and [P3 : P6] in
B(�′′,�′′). The 2-chain [P1 : P4] must have even length,
and (P2 : P5) is a cycle; thus, dDCJ(�′′,�′′) < dDCJ(�′,�′),
and so (�′,�′) cannot be optimal.

Proposition 11. If pπ ,γ is even, then the breakpoint
graph of an optimal completion must contain a maximum
set of even-length 2-chains.

Proof. We proceed by contradiction. Say that (�′,�′) is
an optimal completion for which an odd π-path P1 and an
even π-path P2 are contained in different components of
B(�′,�′), neither of which is an even 2-chain. By Propo-
sitions 7 and 10, we may assume that P1 and P2 embed
into an odd-length 2-chain [P1 : P5] and a 3-chain [P2 :
P3 : P4] . Because pπ ,γ is even by Proposition 4, we must
have at least one additional 3-chain [P6 : P7 : P8], where



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 8 of 9
http://www.almob.org/content/8/1/6

(again by Proposition 10) P6 is an even-length π-path, and
the γ -paths P4 and P8 have the same parity. With these
assumptions in hand, we may rejoin adjacencies to form
the four components [P1 : P2] (even), [P5 : P6] (even),
(P3 : P7), and [P4 : P8] (odd), producing a cycle and two
even 2-chains from our original three paths. Hence, by (4),
(�′,�′) cannot be optimal.

We are now ready to fully describe the collection of
optimal completions when pπ ,γ is even. To construct an
optimal completion, after closing each {π ,π}-path and
{γ , γ }-path, which can be done uniquely, we must form a
maximum collection of even 2-chains by Proposition 11.
Recall that our aim is to maximize the statistic c(�∗,�∗)+
peven(�∗,�∗)

2 , and consider the following two subcases.

Case 1. pπ ,γ is even, pπ
odd ≤ pπ

even, and pγ

odd ≥ pγ
even.

First, a maximal collection of even-length 2-chains will
total pπ

odd + pγ
even components, which requires simply

choosing pπ
odd even-length π-paths, then matching them

to odd-length π-paths. This can be achieved in A1 ways,
where

A1 =
(
pπ
even
pπ
odd

)
· (
pπ
odd

)
!= P

(
pπ
even, pπ

odd
)

(12)

Next, we follow the same method for forming even-length
2-chains by linking γ -paths of opposite parity, yielding B1
total matchings:

B1 = P
(
pγ

odd, p
γ
even

)
(13)

Here, we use P(n, k) to denote the partial permutation
statistic: P(n, k) = n!

(n−k)! . We will be left with pπ
even − pπ

odd
even π-paths and pγ

odd − pγ
even odd γ -paths. It is impossi-

ble to create anymore even-length paths in B(�∗,�∗), and
so wemust form amaximum collection of pπ ,γ

2 2-bracelets
from the {π , γ }-paths:
C1 = (

pπ ,γ
even − 1

)
! != (

pπ ,γ
even − 1

) (
pπ ,γ
even − 3

) · · · (5)(3)(1)
(14)

Note the definition of double factorial. Finally, we link
arbitrary remaining π-paths to each other and arbitrary
remaining γ -paths to each other:

D1 = (
pπ
even − pπ

odd − 1
)
! ! · (pγ

odd − pγ
even − 1

)
! ! (15)

By the independence of these four procedures, the total
number of optimal completions is simply given by the
product A1 · B1 · C1 · D1.

Case 2. pπ ,γ is even, pπ
odd > pπ

even, and pγ

odd > pγ
even. In

this case, we first form a maximum set of 2-chains:

A2 = P
(
pπ
odd, p

π
even

) · P (
pγ

odd, p
γ
even

)
(16)

We then have pπ
odd −pπ

even odd-length π-paths and pγ

odd −
pγ
even odd-length γ -paths remaining. Assume without loss

of generality that pπ
odd −pπ

even ≥ pγ

odd −pγ
even, and setm =

min {pπ ,γ , pγ

odd − pγ
even}. We may attain the formula in (9)

if and only if we form 2j even-length 3-chains for some
integer j satisfying 0 ≤ j ≤ m

2 , then create pπ ,γ

2 − j total
2-bracelets from the remaining {π , γ }-paths. Any remain-
ing odd-length π-paths (γ -paths) must then be linked to
each other to form (odd-length) 2-chains in B(�∗,�∗).
The number of such possibilities can be counted by the
following statistic B2:

B2 =
m/2∑
j=0

(
pπ
odd − pπ

even
2j

)(
pγ

odd − pγ
even

2j

)(
pπ ,γ

2j

) [
(2j)!

]2·
(
pπ
odd − pπ

even − 2j − 1
)
! !

(
pγ

odd − pγ
even − 2j − 1

)
! !(

pπ ,γ − 2j − 1
)
! !

(17)

Again, the two statistics can be carried out independently,
yielding A2 · B2 total optimal completions.
In both of the first two cases, reversing the inequalities

will lead to analogous arguments. For the next two cases,
suppose instead that pπ ,γ is odd, and select a single {π , γ }-
path P that must belong to a 3-chain.

Case 3. pπ ,γ is odd, pπ
odd < pπ

even, and pγ

odd > pγ
even.

Note that there are A3 = pπ ,γ total ways to select a {π , γ }-
path P. Of the four possibilities for the parity of the paths
to which P may be linked to form a 3-chain, one may wish
to verify that the only way we cannot attain the maximum
in (9) is if we link P to an odd-length π-path and an even-
length γ -path. Thus, we arrive at three mutually exclusive
subcases.
In our first subcase, P is linked to an even-length π-path

and an odd-length γ -path:

B3 = pπ
even · pγ

odd (18)

We now have an even number of {π , γ }-paths remain-
ing and have reduced our problem to a simpler one that
falls under Case 1 above, from which we may obtain some
number C3 of optimal completions.
In the second subcase, we join P to an odd-length

π-path and an odd-length γ -path. First, select two such
paths:

D3 = pπ
odd · pγ

odd (19)

Again we have reduced the problem to a subproblem
falling under Case 1, from which we may obtain E3 total
optimal completions. In our third and final subcase, we
join P to an even π-path and an even γ -path:

F3 = pπ
even · pγ

even (20)

Say that applying Case 1 to the resulting subcase in which
pπ ,γ is even yields G3 total optimal completions. Then by



Compeau Algorithms for Molecular Biology 2013, 8:6 Page 9 of 9
http://www.almob.org/content/8/1/6

independence, the total number of optimal completions
over all three subcases will be given by A3 · (B3 ·C3 +D3 ·
E3 + F3 · G3).

Case 4. pπ ,γ is odd, pπ
odd > pπ

even, and pγ

odd > pγ
even.

Having selected P from the A4 = pπ ,γ total {π , γ }-paths,
one may verify that the only way we can achieve the max-
imum in (9) is by linking P to an odd-length π-path and
an odd-length γ -path, of which there are B4 = pπ

odd · pγ

odd
total choices. We have therefore reduced our problem
of linking components of B(�,�) to a smaller problem,
falling under Case 2, for which pπ ,γ is even. If there are C4
total solutions to this smaller problem, then the number
of optimal completions is given by A4 · B4 · C4.
As in the first two cases, reversing the inequali-

ties defining Cases 3 and 4 will result in analogous
arguments.

Conclusions
In this paper, we have demonstrated how the prob-
lem of DCJ-indel sorting, first solved in [11], can
equally be handled via direct inspection of the break-
point graph. Unfortunately, we still do not see a nat-
ural correspondence between the two approaches to
DCJ-indel sorting, which appear to be at odds because
their definitions of indels are equivalent but motivated
differently.
Furthermore, modeling an indel as a circular chromo-

some resulting from a DCJ has uncovered the solution
space of DCJ-indel sorting, thus resolving an open prob-
lem. We wonder if other operations could be adapted
to a similar model to yield a straightforward calculation
of other genomic distances involving indels. We are also
curious whether this model applies to the case of find-
ing a minimum-cost transformation of one genome into
another as we vary the parameter associated with the
(constant) indel cost.

Endnotes
aThis definition allows B(�,�) to contain cycles of
length 2.
bIn particular, this requirement bars the trivial transfor-
mation of � into � in which every chromosome from � is
deleted, and then all the chromosomes of � inserted.
cNote that v cannot be simultaneously π- and γ -open,
although it may be a telomere of both � and � or be
π-open and a telomere of � (in both cases, v is an isolated
vertex of B(�,�), i.e., a path of length 0).

Competing interests
The author declares that he has no competing interests.

Acknowledgements
The author would like to acknowledge the support of Pavel Pevzner (UC San
Diego Department of Computer Science), who offered guidance during the
drafting of the manuscript.

Received: 21 December 2012 Accepted: 7 February 2013
Published: 1 March 2013

References
1. Dobzhansky T, Sturtevant AH: Inversions in the chromosomes of

drosophila pseudoobscura. Genetics 1938, 23:28–64.
2. Fertin G, Labarre A, Rusu I, Tannier E, Vialette S: Combinatorics of Genome

Rearrangements. Cambridge: MIT Press; 2009.
3. Harry Dweighter (pseudonym of Goodman J): Problem E2569. AmMath

Mon 1975, 82:1010.
4. Gates WH, Papadimitriou CH: Bounds for sorting by prefix reversal.

Discrete Math 1979, 27:47–57. [http://www.sciencedirect.com/science/
article/pii/0012365X79900682]

5. Heydari MH, Sudborough I: On the diameter of the pancake network.
J Algorithms 1997, 25:67–94. [http://www.sciencedirect.com/science/
article/pii/S0196677497908749]

6. Chitturi B, Fahle W, Meng Z, Morales L, Shields C, Sudborough I, Voit W:
An upper bound for sorting by prefix reversals. Theor Comput Sci 2009,
410(36):3372–3390. [http://www.sciencedirect.com/science/article/pii/
S0304397508003575]. [Graphs, Games and Computation: Dedicated to
Professor Burkhard Monien on the Occasion of his 65th Birthday].

7. Bulteau L, Fertin G, Rusu I: Pancake flipping is hard. CoRR. preprint,
abs/1111.0434.

8. Yancopoulos S, Attie O, Friedberg R: Efficient sorting of genomic
permutations by translocation, inversion and block interchange.
Bioinformatics 2005, 21(16):3340–3346. [http://bioinformatics.
oxfordjournals.org/content/21/16/3340.abstract]

9. Bergeron A, Mixtacki J, Stoye J: A unifying view of genome
rearrangements.WABI 2006. LNCS (LNBI) 2006, 4175:163–173.

10. Yancopoulos S, Friedberg R: DCJ path formulation for genome
transformations which include insertions, deletions, and
duplications. J Comput Biol 2009, 16(10):1311–1338.

11. Braga MDV, Willing E, Stoye J: Genomic distance with DCJ and indels.
Proc 10th Int Conf Algorithms Bioinformatics 2010:90–101. [http://portal.
acm.org/citation.cfm?id=1885783.1885793]

12. Compeau PEC: A simplified view of DCJ-Indel distance. InWABI
Volume 7534 of Lecture Notes in Computer Science. Edited by Raphael BJ,
Tang J: Springer; 2012:365–377. [http://dblp.uni-trier.de/db/conf/wabi/
wabi2012.html#Compeau12]

13. Bafna V, Pevzner PA: Genome rearrangements and sorting by
reversals. SIAM J Comput 1996, 25(2):272–289.

14. Tannier E, Zheng C, Sankoff D:Multichromosomal median and halving
problems under different genomic distances. BMC Bioinformatics
2009, 10:120. [http://www.biomedcentral.com/1471-2105/10/120]

15. Braga M, Machado R, Ribeiro L, Stoye J: On the weight of indels in
genomic distances. BMC Bioinformatics 2011, 12(Suppl 9):S13.
[http://www.biomedcentral.com/1471-2105/12/S9/S13]

16. Ma J, Ratan A, Raney BJ, Suh BB, Miller W, Haussler D: The infinite sites
model of genome evolution. Proc Natl Acad Sci USA 2008,
105(38):14254–14261. [http://dx.doi.org/10.1073/pnas.0805217105]

17. Braga MD, Stoye J: The solution space of sorting by DCJ. J Comput Biol
2010, 17(9):1145–1165.

doi:10.1186/1748-7188-8-6
Cite this article as: Compeau: DCJ-Indel sorting revisited. Algorithms for
Molecular Biology 2013 8:6.

http://www.sciencedirect.com/science/article/pii/0012365X79900682
http://www.sciencedirect.com/science/article/pii/0012365X79900682
http://www.sciencedirect.com/science/article/pii/S0196677497908749
http://www.sciencedirect.com/science/article/pii/S0196677497908749
http://www.sciencedirect.com/science/article/pii/S0304397508003575
http://www.sciencedirect.com/science/article/pii/S0304397508003575
http://bioinformatics.oxfordjournals.org/content/21/16/3340.abstract
http://bioinformatics.oxfordjournals.org/content/21/16/3340.abstract
http://portal.acm.org/citation.cfm?id=1885783.1885793
http://portal.acm.org/citation.cfm?id=1885783.1885793
http://dblp.uni-trier.de/db/conf/wabi/wabi2012.html#Compeau12
http://dblp.uni-trier.de/db/conf/wabi/wabi2012.html#Compeau12
http://www.biomedcentral.com/1471-2105/10/120
http://www.biomedcentral.com/1471-2105/12/S9/S13
http://dx.doi.org/10.1073/pnas.0805217105

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Main text
	Preliminaries
	DCJ-Indel sorting
	Handling circular singletons
	Toward a new model of Indels
	Constructing an optimal completion

	The solution space of DCJ-Indel sorting
	Handling circular singletons
	Genomes lacking circular singletons


	Conclusions
	Endnotes
	Competing interests
	Acknowledgements
	References

