
Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22
DOI 10.1186/s13015-015-0051-7

RESEARCH

Pareto optimization in algebraic
dynamic programming
Cédric Saule* and Robert Giegerich

Abstract 

Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as
the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise
sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly
to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic
Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto
optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator
∗Par on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A
and B used in dynamic programming, the scoring scheme A∗ParB correctly performs Pareto optimization over the
same search space. We study different implementations of the Pareto operator with respect to their asymptotic and
empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimiza-
tion is faster than computing the same number of answers separately for each objective. For RNA structure prediction
under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of
the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation
of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe
that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates
that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto
front, and find that they extract information of a different nature from the folding space and can be meaningfully
combined.

Keywords:  Pareto optimization, Dynamic programming, Algebraic dynamic programming, RNA structure, Sankoff
algorithm

© 2015 Saule and Giegerich. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In combinatorial optimization, we evaluate a search
space X of solution candidates by means of an objec-
tive function ψ. Generated from some input data of
size n, the search space X is typically discrete and has
size O(αn) for some α. Conceptually, as well as in prac-
tice, it is convenient to formulate the objective function
as the composition of a choice function ϕ and a scoring
function σ, ψ = ϕ ◦ σ, computing their composition as
(ϕ ◦ σ)(X) = ϕ({σ(x)|x ∈ X}) for the overall solution.
The most common form of the objective function ψ is

that σ evaluates each candidate to a score (or cost) value,
and ϕ chooses the candidate which maximizes (or mini-
mizes) this value. One or all optimal solutions can be
returned, and with little difficulty, we can also define ϕ
to compute all candidates within a threshold of optimal-
ity. This scenario is the prototypical case we will base our
discussion on. However, it should not go unmentioned
that there are other, useful types of “choice” functions
besides maximization or minimization, such as comput-
ing score sums, full enumeration of the search space, or
stochastic sampling from it.

Multi-objective optimization arises when we have sev-
eral criteria to evaluate our search space. Scanning the
pizza space of our home town, we may be looking for the
largest pizza, the cheapest, or the vegetarian pizza with

Open Access

*Correspondence: cedric.saule@uni‑bielefeld.de
Faculty of Technology and the Center for Biotechnology, Bielefeld
University, Bielefeld, Germany

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-015-0051-7&domain=pdf

Page 2 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

the richest set of toppings. When we use these criteria in
combination, the question arises exactly how we combine
them.

Let us consider two objective functions ψ1 = ϕ1 ◦ σ1
and ψ2 = ϕ2 ◦ σ2 on the search space X and let us define
different variants of an operator ∗ to designate particular
techniques of combining the two objective functions.

• • Additive combination (ψ1 ∗+ ψ2) optimizes over the
sum of the candidates scores computed by ϕ1 and ϕ2.
This is a natural thing to do when the two scores are
of the same type, and optimization goes in the same
direction, i.e. ϕ1 = ϕ2 =: ϕ; we define

In fact, this recasts the problem in the form of a single
objective problem with a combined scoring function.
This applies, e.g. for real costs (money), which sum up
in the end no matter where they come from. Gotoh’s
algorithm for sequence alignment under an affine gap
model can be seen as an instance of this combination
[1]. It minimizes the score sum of character matches,
gap openings and gap extensions. Jumping alignments
are another example [2]. They align a sequence to a
multiple sequence alignment. The alignment always
chooses the alignment row that fits best, but charges
a cost for jumping to another row. Jump cost and
regular alignment scores are balanced based on test
data. However, often it is not clear how scores should
be combined, and researchers resort to more general
combinations.

• • Parametrized additive combination (ψ1 ∗+� ψ2) is
defined as

Here the extra parameter signals that there is some-
thing artificial in the additive combination of scores,
and the � is to be trained from data in different appli-
cation scenarios, or left as a choice to the user of the
approach. Such functions are often used in bioinfor-
matics [3–7]. For example, the Sankoff algorithm
scores joint RNA sequence alignment and folding
by a combination of base pairing (ψ1) and sequence
alignment (ψ2) score [3]. RNAalifold scores consen-
sus structures by a combination of free energy (σ1)
and covariance (σ2) scores [8]. Covariance scores are
converted into “pseudo-energies”, and the parameter �
controls the relative influence of the two score com-
ponents. This combination often works well in prac-
tice, but a pragmatic smell remains. Returning to our
earlier pizza space example: It does not really make
sense to add the number of toppings to the size of the
pizza, or subtract it from the price, no matter how we

(1)ψ1 ∗+ ψ2 = ϕ ◦ (σ1 + σ2).

(2)ψ1 ∗+� ψ2 = ϕ ◦ (�σ1 + (1− �)σ2), 0 ≤ � ≤ 1.

choose �. In a way, the parameter � manifests our dis-
comfort with this situation.

• • Lexicographic combination (ψ1 ∗lex ψ2) performs
optimization on pairs of scores of potentially differ-
ent type, not to be combined into a single score.

where (ϕ1,ϕ2) optimizes lexicographically on the
score pairs (σ1(x), σ2(x)). With the lexicographic com-
bination, we define a primary and a secondary objec-
tive, seeking either the largest among the cheapest
pizzas, or the cheapest among the largest—certainly
with different outcomes. This is very useful, for exam-
ple, when ϕ1 produces a large number of co-optimal
solutions. Having a secondary criterion choose from
the co-optimals is preferable to returning an arbitrary
optimal solution under the first objective, maybe even
unaware that there were alternatives.
Lexicographic and parameterized additive combina-
tion are incomparable with respect to their scope. ∗lex
can combine scoring schemes of different types, but
cannot optimize a sum of two scores even when they
have the same type. ∗+� does exactly this. Only when
both scores have the same type, there may be a choice
of � big enough such that ∗+� emulates ∗lex.

•  • Pareto combination (ψ1 ∗Par ψ2) must be used in the
case when there is no meaningful way to combine
or prioritize the two objectives. It may also be useful
and more informative in the previous scenarios, pro-
ducing a set of “optima” and letting the user decide
the balance between the two objectives a posteriori.

Pareto optimality is defined via (non-)domination. An
element (a, b) ∈ (A× B) dominates another one, if it is
strictly better in one dimension, and not worse in the
other. The solution set one computes is the Pareto front
of {(σ1(x), σ2(x))|x ∈ X}. Taking ϕ1 and ϕ2 as maximiza-
tion, the Pareto front operator pf is defined on subsets S
of A× B, ordered by >A and >B, respectively, as follows:

A set without dominated elements is called a Pareto set.
Naturally, every subset of a Pareto set is a Pareto set, too.
We define the Pareto combination as

The Pareto combination ∗Paris more general than both ∗+�
and ∗lex. This is obvious for ∗lex, and is also obvious for ∗+�
when the two scores are of different type. It even holds for
∗+� when they have the same type, but becomes more sub-
tle. It can be shown that ∗Par produces all optima that can

(3)

(ψ1 ∗lex ψ2)(X) = (ϕ1,ϕ2)({(σ1(x), σ2(x))|x ∈ X}),

(4)
pf(S) = {(a, b) ∈ S | � ∃(a′, b′) ∈ S\{(a, b)}

such that (a′, b′) dominates (a, b)}.

(5)(ψ1 ∗Par ψ2)(X) = pf{(σ1(x), σ2(x))|x ∈ X}.

Page 3 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

be produced by ∗+� for some �, but there can also be others.
See Theorem 3.1, and we also refer the reader to the careful
treatment of this intriguing issue in Schnattinger’s thesis [9].

The combinations ∗+ and ∗+� are common practice and
merit no theoretical investigation, as they reduce the
problem to the single objective case. The lexicographic
combination ∗lex has been studied in detail in [10]. Aside
from its obvious use with primary and secondary objec-
tives, ∗lex has an amazing variety of applications when of
one the two objectives does not perform optimization,
but enumeration or summation (cf. above). Furthermore,
when σ1 computes a classification attribute from the can-
didates and ϕ1 is the identity, it gives rise to the method
of classified dynamic programming used, e.g. in probabil-
istic RNA shape analysis [11].

Here, we will take a deeper look into Pareto optimi-
zation, which has been used in bioinformatics mainly
in a heuristic fashion. It naturally arises with the use
of genetic algorithms. They traverse the search space
improving candidates in a certain dimension, returning
a solution when (say) σ1(x) can no longer be increased
without decreasing σ2(x). A genetic algorithm uses dif-
ferent starting points and produces a heuristic subset of
the Pareto front of the search space. This approach was
used by Zhang et al. [12], who compute the Pareto front
to solve a multiple sequence alignment problem. Cofol-
ga2mo [13] is a structural RNA sequence aligner based
on a multi-objective genetic algorithm. Cofolga2mo does
not look strictly at the Pareto optimal solutions, but
produces a heuristic subset of the (larger) set of “weak”
Pareto optimal solutions. The objective function is com-
puted on similarity sequence score and consensus struc-
ture score (under the base-pairing probabilities model).
Only the score of the consensus structure is given, the
structure itself is not shown.

A similar approach was used by Taneda [14] to solve
the inverse RNA folding problem by computing the
Pareto front between the folding energy in the first
dimension and the similarity score to the target in the
second dimension. In [15], the authors compute the
Pareto front for multi-class gene selection. They use a
genetic algorithm to avoid the statistics aggregation in
gene expression, which could lead to the “siren pitfall”
issue [16] when using ∗+�.

Let us now turn to non-heuristic cases of Pareto
optimization. A family of monotonous operators in
preordered and partially ordered sets in dynamic pro-
gramming were defined in [17]. The author showed the
principle of optimality applies to the maximal return
in the case of Markovian processes. Such processes
evolve stochastically over time and do not consume any
input. We are aware of only a few cases where Pareto

optimization has been advocated within a dynamic pro-
gramming approach. It was used by Getachew et al. [18]
to find the shortest path in a network given different
time cost/functions, computing the Pareto front. The
Pareto-Optimal Allocation problem was solved with
dynamic programming by Sitarz [19]. In the field of bio-
informatics, Schnattinger et al. [20, 21] advocated Pareto
optimization for the Sankoff problem. Their algorithm
computes (ψ1 ∗Par ψ2), where ψ1 optimizes a sequence
similarity score and ψ2 optimizes base pair probabilities
in the joint folding of two RNA sequences.

Libeskind-Hadas et al. [22] used an exact Pareto opti-
misation by using dynamic programming to compute
reconciliation trees in phylogeny. They introduce two
binary operators ⊕ and ⊗ which stand respectively for
set union and set cartesian product, both followed by
a Pareto filtration for their specific problem. They opti-
mized A ⊗ B, where A and B are sets, by sorting A and B
in lexicographical order and keeping the resulting Pareto
list sorted.

Pareto optimization in a dynamic programming
approach raises four specific questions, which we will
address in the body of this article.

	 (i)	 Does the Pareto combination of two objectives sat-
isfy Bellman’s principle of optimality, the prerequi-
site for all dynamic programming ("Pareto optimi-
zation in ADP")?

	(ii)	 How to compute Pareto fronts both efficiently and
incrementally, when proceeding from smaller to
larger sub-problems ("Implementation)?

	(iii)	 What is the empirical size of the Pareto front, com-
pared to its expected size ("Applications")?

	(iv)	 What observations can de drawn from a computed
Pareto front in a concrete application ("Applica-
tions")?

Heretofore, the issues (i) and (ii) had to be solved ad-
hoc with every approach employing Pareto optimization.
Motivated by and generalizing on the work by Schnat-
tinger et al., we strive here for general insight in the use
of Pareto optimization within dynamic programming
algorithms. To maintain a well-defined class of dynamic
programming algorithms to which our findings apply, we
resort to the framework of algebraic dynamic program-
ming (ADP) [23].

Here is a short preview of our findings: we can prove,
in a well circumscribed formal setting, that the Pareto
combination preserves Bellman’s principle of optimality
(Theorem 3.3). Thus, it is amenable to implementation
in a dynamic programming framework such as ADP as
a “single keystroke” operation. We show that while the

Page 4 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

search space size is typically exponential, we can expect
Pareto fronts of linear size. This is confirmed empiri-
cally by our implementations of ∗Par (covering several
algorithmic variants), and we observe that this is actually
more efficient that producing a similar number of (near-
optimal) solutions with other means. Finally, using our
implementations in the field of RNA structure prediction
in some (albeit preliminary) experiments, we find that a
small Pareto front in joint alignment and folding may be
indicative of a homology relationship, and elucidate dif-
ferences in the MFE and MEA scoring schemes for RNA
folding that could not be observed before.

Pareto sets: properties and algorithms
We introduce Pareto sets together with some basic math-
ematical properties and algorithms ("Pareto sets and the
Pareto front operator", "Worst case and expected size of
Pareto fronts"). We restrict our discussion to Pareto opti-
mization over value pairs, rather than vectors of arbitrary
dimension. Pareto optimization in arbitrary dimension is
shortly touched upon in our concluding section.

The operations on Pareto sets that arise in a dynamic
programming framework are threefold: taking the Pareto
front of a set of sub-solutions ("Computing the Pareto
front", "Pareto operator complexity, revisited"), joining
alternative solution sets ("Pareto merge in linear time"),
and computing new solutions from smaller subprob-
lems by the application of scoring functions ("Pareto set
extension").

Pareto sets and the Pareto front operator
We start from two sets A and B and their Cartesian prod-
uct C = A× B. The sets A and B are totally ordered by
relations >A and >B, respectively. This induces a par-
tial domination relation ≻ on C as follows. We have
(a, b) ≻ (a′, b′) if a >A a′ and b ≥B b′, or a ≥A a′ and
b >B b′. In words, the dominating element must be larger
in one dimension, and not smaller in the other. In X ⊆ C,
an element is dominant iff there is no other element in X
that dominates it. A set without dominated elements is a
Pareto set. We can restate Eq. (4) in words as: The Pareto
front of X, denoted pf(X), is the set of all dominant ele-
ments in X. The definition of pf actually depends on the
underlying total orders, and we should write more pre-
cisely pf>A,>B

, but for simplicity, we will suppress this
detail until it becomes relevant.

The following properties hold by definition and are
easy to verify:

(6)pf(X) ⊆X

(7)pf(X) = ∅ ⇐⇒ X = ∅

Note that pf is not monotone with respect to ⊆. Idem-
potency of pf (Eq. 8) justifies the alternative definition: A
set X ⊆ C is a Pareto set if pf(X) = X.

Algorithmically, we represent sets as lists, without
duplicate elements. If a list represents a Pareto set, we
call it a Pareto list.

A sorted Pareto list, by definition, is sorted lexico-
graphically under (>A,>B) in decreasing order. Naturally,
on sorted lists, we can perform certain operations more
efficiently, which must be balanced against the effort of
keeping lists sorted.

The intersection of two Pareto sets is a Pareto set
because it is a subset of a Pareto set by (9). This does not
apply for Pareto set union, as elements in one Pareto set
may be dominated by elements from the other. Therefore,
we define the Pareto merge operation

Clearly,
p
∨ inherits commutativity from ∪.

Observation 1  (Pareto merge associativity)

We show that both sides are equal to
U := pf(A ∪ B ∪ C).

Let x ∈ U. Clearly, x ∈ A ∪ B ∪ C, and � ∃x′ ∈ A ∪ B ∪ C
such that x′ ≻ x. This holds if and only if there is no such x′
in A

p
∨B, nor in C, which is equivalent to x ∈ (A

p
∨B)

p
∨C.

A
p
∨(B

p
∨C) = U follows by a symmetric argument.� �

As a consequence, we can simply write A
p
∨B

p
∨C. Note

that in practice, it may well make a difference in terms of
efficiency whether we compute a three-way Pareto merge
as (A

p
∨B)

p
∨C or as pf(A ∪ B ∪ C).

Worst case and expected size of Pareto fronts
In combinatorial optimization, the search space is typi-
cally large, but finite. This allows for some statements
about the maximal and the expected size of a Pareto
front.

Observation 2  (Sorted Pareto lists) A Pareto list sorted
on the first dimension based on >A (i) is also sorted lexi-
cographically by (>A,>B) in decreasing order, and at the
same time (ii) is sorted lexicographically in increasing
order based on (>B,>A).

(8)pf(pf (X)) =pf(X)

(9)pf(X ∩ Y)⊇pf(X) ∩ pf(Y)

(10)A
p
∨B := pf(A ∪ B)

(11)(A
p
∨B)

p
∨C = A

p
∨(B

p
∨C)

Page 5 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

This is true because when the list l is a Pareto list and
(a, b) ∈ l, there can be no other element (a, b′) with b �= b′.
Because >B is a total order, one of the two would domi-
nate the other. Therefore, (i) the overall lexicographic
order is determined solely by >A, and (ii) looking at the
values in the second dimension alone, we find them in
increasing order of >B.� �

This implies a worst-case observation on the size of
Pareto fronts over discrete intervals:

Observation 3  (Worst case size of Pareto set) If A and
B are discrete intervals of size M, then any Pareto set over
A× B has N ≤ M elements.

This is true because by Observation 2, each decrease
in the first dimension must come with an increase in the
second component.� �

Observation 4  On random sets, the expected size of
the Pareto front of a set of size N follows the harmonic
law [24, 25],

� �

Computing the Pareto front
We specify algorithms to compute Pareto fronts from
unsorted and sorted lists. In our pseudocode, ε denotes
the empty list, x : l denotes a list with first element x and
remainder list l, and vice versa for l : x. The arrow → indi-
cates term rewriting or state transition.

From an unsorted list
 An obvious possibility is to sort the list by an O(N logN)
sorting algorithm, and then compute the Pareto front
by one of the algorithms for sorted lists specified below.
We call this implementation of the Pareto front operator
pf sort.

However, it is also interesting to combine the two
phases. We present a Pareto-version of insertion sort,
asymptotically in O(N 2), but potentially fast in practice,
because it effectively decreases N already during the sort-
ing phase by eliminating dominated elements.

Pareto front operator pf isort

(12)H(N) =

N
∑

i=1

(1/i).

Input: Unsorted list.
Output: Sorted Pareto list (in decreasing order

according to the first component).

The definition of the remove function makes use of the
inductive property that the list l is already a (sorted)
Pareto list, and by our above observation, it is increasing
in the second dimension. Hence, we remove one domi-
nated element in each application of the last rule, and
terminate when the second rule is applied. All the steps
of remove are productive in the sense that they reduce the
list length for subsequent calls to into.

From a lexicographically sorted list
From a sorted list, the Pareto front can be extracted in
linear time [26]. We describe such an algorithm by a state
transition system, which transforms an input and an (ini-
tially empty) output list into empty input and the Pareto
front as output and call it pf lex.

Since the input list is shortened by one element in each
step, this algorithm runs in O(N).

A smooth Pareto front algorithm for the general case
We can adapt the algorithm pf lex to the general case
by adding two clauses for elements that appear out of
order{:}

We pf lex extended by the following rules to obtain
pf smooth:

pf isort(ε) → ε

pf isort((a, b):l) → into((a, b),pf isort(l))
into((a, b), ε) → (a, b):ε

into((a, b), (x, y):l)
a>x
→ (a, b):remove(b, (x, y):l)

into((a, b), (x, y):l)
a=x,b>y
→ (a, b):remove(b, l)

into((a, b), (x, y):l)
a=x,b≤y
→ (x, y):l

into((a, b), (x, y):l)
a<x,b>y
→ (x, y):into((a, b), l)

into((a, b), (x, y):l)
a<x,b≤y
→ (x, y):l

remove(b, ε) → ε

remove(b, (x, y):l)
b<y
→ (x, y):l

remove(b, (x, y):l)
b≥y
→ remove(b, l)

Input: Sorted list.
Output: Sorted Pareto list.

pf lex(l) → l ε

(a, b):in ε → in (a, b):ε

(a, b):in out:(x, y)
y≥b
→ in out:(x, y)

(a, b):in out:(x, y)
y<b
→ in out:(x, y):(a, b)

ε out → STOP

Page 6 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

where the function up(x, (a, b)) inserts the new pair from
the low end into the Pareto list x:

Like our first algorithm pf isort, pf smooth handles the gen-
eral case in quadratic time, but smoothly adapts to sorted
lists, becoming the same as pf lex when all elements are in
order.

Unsorted Pareto front computation
Our previous implementations all compute the Pareto
front in the form of a sorted list. However, in dynamic
programming, solution sets are created in various ways
and arise not necessarily sorted, even when sub-solutions
are given on sorted order. Hence, it may be attractive to
consider an algorithm that does not bother about sorting
at all, consumes and produces unsorted lists. We call this
variant pfnosort.

This resembles pf isort without sorting the output, and
hence the resulting list must always be traversed com-
pletely for each element added. Worst case complexity is
O(N 2).

Pareto operator complexity, revisited
For a more detailed complexity analysis of the above
algorithms, we must distinguish the size of input and
output. In our dynamic programming applications, we
will compute pf({f (x, y)|x ∈ X , y ∈ Y }), where f is some
local scoring function. If the Pareto sets X and Y have size

Input: Unsorted list.
Output: Sorted Pareto list.

pf smooth(l) → l ε

(a, b):in out:(x, y)
a>x,b≥y
→ (a, b):in out

(a, b):in out:(x, y)
a>x,b<y
→ in up(out, (a, b)):(x, y)

up(ε, (a, b)) → (a, b):ε

up(z:(x, y), (a, b))
(a,b)≻(x,y)

→ up(z, (a, b))
(x,y)�(a,b)

→ z:(x, y)
a>x
→ up(z, (a, b)):(x, y)
a<x
→ z:(x, y):(a, b)

Input: Unsorted list.
Output: Unsorted Pareto list.

pfnosort(ε) → ε

pfnosort(x:y) → into(x,pfnosort(y))

into((a, b), ε) → (a, b):ε

into((a, b), (x, y):l)
(a,b)≻(x,y)

→ into((a, b), l)

into((a, b), (x, y):l)
(x,y)≻(a,b)

→ (x, y):l

into((a, b), (x, y):l)
(x,y)⊀(a,b),(a,b)⊀(x,y)

→ (x, y):into((a, b), l)

n, then {f (x, y)|x ∈ X , y ∈ Y } is of size n2, while the final
result can be expected to be smaller again.

For a list of size N, the result of pf has size N in the
worst case. In the expected case, however, output size
is H(N) (Eq. 12), and because H(N) ≈ lnN [24], we can
asymptotically treat it as O(logN). Our observations are
summarized in Table 1.

The operator pf lex has the best complexity in both
worst and expected case, but it also makes the strongest
assumptions. In the expected case, pf isort,pf smooth, and
even pfnosort asymptotically catch up with pf sort, whose
separate O(N logN) sorting phase gets no benefit from
the elimination of dominated elements.

In a dynamic programming approach, the pf operation is
executed in the innermost loop of the program, and there-
fore, constant factors are also relevant. In particular, pfnosort
becomes interesting as it makes the weakest assumption by
not requiring lists to be sorted at any time, in contrast to
pf lex. We will return to this aspect with our applications.

Pareto merge in linear time
We now specify an implementation of the Pareto merge
operation

p
∨ which makes use of the fact that its argu-

ments are Pareto sets, represented as lists in decreasing
order by the first component (and in increasing order by
the second).

Input: two sorted Pareto lists.
Output: a sorted Pareto list.

[]
p
∨ y → y

x
p
∨[] → x

(a, b) : x
p
∨(c, d) : y → case (a, b)?(c, d) of

case (>,>) : (a, b) : (x
p
∨(dropWhile(�(u, v).v ≤ b), y))

case (>,=) : (a, b) : (x
p
∨ y)

case (>,<) : (a, b) : (x
p
∨((c, d) : y))

case (=,>) : (a, b) : (x
p
∨(dropWhile(�(u, v).v ≤ b), y))

case (=,=) : (a, b) : (x
p
∨ y)

case (=,<) : (c, d) : ((dropWhile(�(u, v).v ≤ d), x)
p
∨ y)

case (<,>) : (c, d) : ((a, b) : x
p
∨ y)

case (<,=) : (c, d) : (x
p
∨ y)

case (<,<) : (c, d) : ((dropWhile(�(u, v).v ≤ d), x)
p
∨ y)

Table 1  Complexities of pf operators

Operator Worst case Expected case

pfsort O(N logN) O(N logN)

pf isort O(N2) O(N logN)

pf lex O(N) O(N)

pfsmooth O(N2) O(N logN)

pfnosort O(N2) O(N logN)

Page 7 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

The function dropWhile(p, l) walks down a list l until
it finds an element that does not satisfy the predicate
p. It returns this element and the remaining list. We
use it to eliminate elements smaller than b (resp. d) in
the second dimension. At first glance, the combination
of

p
∨ and dropWhile reminds of an O(N 2) algorithm,

but this is not true. For input lists of length n1 and n2,
where N = n1 + n2, the output list has at most length N.
It requires at most O(N) calls to

p
∨. dropWhile requires

k + 1 calls when it deletes k elements, with k ∈ O(N).
However, each element deleted by dropWhile safes a sub-
sequent call to

p
∨. Overall, the number of steps remains

within O(N).

Pareto set extension
Dynamic programming is governed by Bellman’s princi-
ple of optimality, which the objective function ψ = ϕ ◦ σ
must obey. Choice must distribute over scoring, which is
computed incrementally from smaller to larger sub-solu-
tions. The score σ is computed by a combination of local
scoring functions {f }. In Pareto optimization, f takes for
form f ((a, b)) = (fA(a), fB(b)). For each such function f,

must hold. (The above equation is formulated here for
the simplest case: a unary function f and a choice func-
tion that returns a singleton result). This requirement
implies the functions f to be strictly monotone in each
argument that is a subproblem result. (The score func-
tions may take other arguments, too, which are taken
from the problem instance).

By Pareto set extension we mean the computation of
f (X) = {f (x)|x ∈ X}, f (X ,Y) = {f (x, y)|x ∈ X , y ∈ Y },
and so on for more arguments. On the partially ordered
set (A× B,≻), we call f strictly monotone if fA and fB are
strictly monotone on A and B, respectively.

Lemma 2.1  Pareto set extension. The extension of a
Pareto set under a strictly monotone, unary function f is
a Pareto set.

Proof  We must show that f(X) holds no dominated ele-
ments. Assume f(X) holds a dominated element f ((a′, b′)),
dominated by some f((a, b)). We have fA(a) >A fA(a

′) or
fB(b) >B fB(b

′). Strict monotonicity implies a >A a′ or
b >B b′, implying (a, b) ≻ (a′, b′) in contradiction to the
prerequisite that X is a Pareto set.� �

The same reasoning does not apply for functions f
with multiple arguments. Let fA = fB = (+). We have
f ({(4, 1), (3, 2)}, {(3, 3), (1, 4)}) = {(7, 4), (5, 5), (6, 5), (4, 6)},
where (6, 5) ≻ (5, 5) and this extension is not a Pareto set.

(13)ϕ({f (x), f (y)}) = f (ϕ({x, y}))

Dressing up Pareto optimization for dynamic program-
ming, we must (i) formulate conditions under which
ψ1 ∗Par ψ2 fulfills Bellman’s principle, and (ii) show how
the Pareto front of the overall solution can be computed
incrementally and efficiently from Pareto fronts of sub-
solutions, using a combination of the techniques intro-
duced above. Heretofore, these issues had to be resolved
with every dynamic programming algorithm that uses
Pareto optimization, such as the one by Sitarz or Schn-
attinger et al. [19, 20]. Striving for general results for a
whole class of algorithms, we resort to the framework of
ADP.� �

Pareto optimization in ADP
Algebraic dynamic programming (ADP) is a framework
for dynamic programming over sequential data. Its
declarative specifications achieve a perfect separation
of the issues of search space construction, tabulation,
and scoring, in clear contrast to the traditional formu-
lation of dynamic programming algorithms by matrix
recurrences. Therefore, ADP lends itself to the investi-
gation of Pareto optimization in dynamic programming
in general, i.e. independent of a particular DP algorithm.
The base reference on ADP is [23] and the lexicographic
product was introduced in [10]. ADP in practice is sup-
ported by implementations of the framework embedded
in Haskell [27] or as an independent domain-specific
language and compiler in the Bellman’s GAP system [28,
29]. The results in the present article suggest to extend
these systems by a generic Pareto product on evaluation
algebras, i.e. to provide the operator ∗Par as a language
feature.

In this section, we recall the basic definitions of ADP
(Signatures, evaluation algebras, and tree grammars),
in order to relate the Pareto product to other product
operators (Relation between Pareto and other products)
and prove our main theorem (Preservation of Bellman’s
principle by the Pareto product). We also show a hand-
crafted case of a Pareto product, and its reformulation in
ADP (A hand-crafted use case of the Pareto product).

Algebraic framework
Signatures, evaluation algebras, and tree grammars
Let A be an alphabet and A∗ the set of finite strings over
A. A signature � is a set of function symbols and a data
type place holder (also called a sort) S. The return type of
an f ∈ � is S, each argument is of type S or A. T� denotes
a term language described by the signature � and T�(V)
is the term language with variables from the set V. A �
-algebra or interpretation A is a mathematical structure
given by a carrier set SA for S and functions fA operating
on this set for each f ∈ �, consistent with their specific
type. Interpreting t ∈ T� by A is denoted A(t) and yields

Page 8 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

a value in SA. An evaluation algebra A is a �-algebra aug-
mented with an objective function ϕA : [S] → [S], where
square brackets denote multisets.

A regular tree grammar G over a signature � is defined
as tuple (V ,A,Z,P), where V is the set of non-terminal
symbols, A is an alphabet, Z is the axiom and P a set of
production rules. Each production is of form

The regular tree language L(G) of G is the subset of T�
that can be derived from Z by the rules in P.

ADP semantics
For input sequence z, the tree grammar G defines the
search space of the problem instance

where yield is the function returning the alphabet sym-
bols decorating the leaves of the tree. (For our present
purpose, the reader needs not worry about technical
details and can take tree grammars as black-box genera-
tors of the search space).

Given a tree grammar G, an evaluation algebra A with
choice function ϕA, and input sequence z, an ADP prob-
lem is solved by computing

While this declarative formulation suggests a three-phase
computation—construct X, evaluate to A(X), choose from
it via ϕA—an ADP compiler adds in the amalgamation of
these three phases, as it is typical for dynamic program-
ming. For this dynamic programming machinery to work
correctly, the algebra A must satisfy Bellman’s principle of
optimality, stated in full generality [30] by the requirements

where the Xi denote multisets (reflecting that the same
intermediate result can be found several times; this is
why we write x ← X instead of x ∈ X) and fA is any func-
tion from the underlying signature. Note that for nullary
functions fA (constants) (17) is trivially satisfied as it sim-
plifies to the identity

When the choice function maximizes or minimizes over a
total order, Bellman’s principle implies the strict monoto-
nicity of the scoring functions (Lemma 3.2 below). When

(14)v → t with v ∈ V , t ∈ T�(V).

(15)Xz = {x ∈ L(G) | yield(x) = z},

(16)G(A, x) := ϕA([A(x) | x ∈ Xz])

(17)

ϕA[fA(x1, . . . , xk)|x1 ← X1, . . . , xk ← Xk]

= ϕA[fA(x1, . . . , xk)|x1

← ϕA(X1), . . . , xk ← ϕA(Xk)]

(18)ϕA[X1 ∪ X2] = ϕA(ϕA(X1) ∪ ϕA(X2))

(19)ϕA[] = []

(20)ϕA([fA]) = ϕA([fA]).

only some maximal or minimal solution is sought, one
could relax this condition to weak monotonicity, but when
all optimal solutions, or even near-optimals are desired,
monotonicity must be strict [31]. The formulation given
above is more general than the monotonicity require-
ment, as it also applies to arbitrary objective functions
where there may be no maximization or minimization
involved, such as candidates counting or enumeration.

Products of algebras
Combinations of multiple optimization objectives can be
expressed in ADP by products of algebras. For all variants
of the product operator (∗), we define

These functions compute independently scores in the
Cartesian product of A and B. By contrast, objective
functions are combined in different ways by different
product operators.

The lexicographic product, for example, is an evalua-
tion algebra over � and the objective function of A∗lexB
is:

In this formula, set(X) reduces the multiset X to a set. So,
A∗lexB implements the lexicographical ordering of the
two independent criteria as its objective. Aside from ∗lex,
Bellman’s GAP also implements a Cartesian and (in a
restricted form) a so-called “interleaved” product. To our
knowledge, a Pareto product operator has not yet been
considered for inclusion in ADP compilers.

Relation between Pareto and other products
As we show next, Pareto optimization can rightfully be
considered as the most general of the combinations dis-
cussed here. This holds strictly in the sense that from the
Pareto front, the solutions according to the other combi-
nations can be extracted.

Theorem 3.1  (Pareto front subsumption) For any
grammar G, scoring algebras A and B satisfying Bellman’s
principle, and input sequence x, consider the algebra com-
binations A ∗+� B, A ∗lex B, and A ∗Par B.

(1)		 G(A ∗+� B, x) = (ϕA ∗+ �ϕB)(G(A ∗Par B, x))

(2)		 G(A ∗lex B, x) = (ϕA ∗lex ϕB)(G(A ∗Par B, x))

Proof 
(1)		 Let t be the optimal candidate chosen by the left-

hand side. Its score is �A(t)+ (1− �)B(t), by (7)

(21)
fA * B((a1, b1), ..., (am, bm))

= (fA(a1, ..., am), fB(b1, ..., bm))

ϕA∗lexB[(a1, b1), . . . , (am, bm)]

= [(l, r)]|l ∈ set(ϕA[a1, . . . , am]), r ← ϕB[r
′|(l′, r′)

← [(a1, b1), . . . , (am, bm)], l
′ = l]

Page 9 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

and by the definition of (∗+�). This score is maxi-
mal. Hence, candidate t must be in the Pareto front
computed on the right-hand side, represented by
the Pareto-optimal pair (A(t), B(t)). It could only
be missing in the Pareto front if there was another
candidate t ′ dominating t, i.e. with A(t ′) > A(t) and
B(t ′) ≥ B(t) or vice versa. But then, we would have
�A(t ′)+ (1− �)B(t ′) > �A(t)+ (1− �)B(t), con-
tradicting the optimality of t. Conversely, no candi-
date t ′′ in the Pareto front can score strictly higher
that t, because then, this candidate would have been
returned instead of t.

(2)		 The same reasoning applies to the lexicographic
combination.

The above argument is formulated for an appli-
cation of the choice function to a complete search
space of candidates. By virtue of Bellman’s princi-
ple satisfied by A, B, and their products, the argu-
ment inductively holds (by structural induction on
the candidates involved) when the choice functions
are applied at intermediate steps during the dynamic
programming computation. That A ∗Par B also sat-
isfies Bellman’s principle will be shown in our main
theorem.� �

A hand‑crafted use case of the Pareto product
Any dynamic programmer can hand-craft a Pareto
product A∗ParB from two evaluation algebras. This
requires a substantial programming and debugging
effort. Our intention is that this human effort can
avoided by a general technique delegated to an ADP
compiler. This idea was inspired by the work of Schn-
attinger et al. [20, 21]. Their algorithm computes via
dynamic programming the Pareto front for the “Sankoff
problem” of joint RNA sequence alignment and con-
sensus structure prediction [3]. This is their algorithm
in facsimile:

(22)

S(i, j, k , l) = Pareto-Max






























s +−→γ : s ∈ S(i, j − 1, k , l)
∪ s +−→γ : s ∈ S(i, j, k , l − 1)

∪ s +−→σ (Xj ,Yl) : s ∈ S(i, j − 1, k , l − 1)

�

h,q







s + d
s ∈ S(i, h− 1, k , q − 1)

d ∈ D(h, j, k , l)

D(i, j, k , l) = s +
−→
�X

i,j +
−→
�Y

k ,l : s ∈ S(i, j − 1, k , l − 1)

S(i, i, k , l) = −→γ (l − k) : l > k

S(i, j, k , k) = −→γ (j − i) : j > i

S(i, i, k , k) =
−→
0

Here,
−→
�X

i,j is the probability that i and j be paired in the
sequence X. This is computed independently of the align-
ment score, which is composed of −→γ , the gap penalty and
−→σ (Xj,Yl), the alignment score between the jth base in X
and the lth base in Y.

The authors demonstrated their algorithm respects Bell-
man’s principle and correctly computes the Pareto front of
its search space. The proof essentially uses the fact that
both scores are additive. They showed that all Pareto solu-
tions are generated by the algorithm and that no Pareto
solutions are lost during the computation. They based
their proof on monotonicity in order to show that the
three first terms of the computation of S(i, j, k, l) consist in
summing constant vectors to the current solutions, which
leads to the conservation of the dominant solutions. They
also showed that the last term needs only dominant solu-
tions contribute to the final result. So, previous deletions
of dominated solutions do not lead to a loss of Pareto
overall optima. However, in this problem formulation, the
general nature of the proof is not easily recognized. We
now reformulate this algorithm in the algebraic frame-
work. The correctness of the Pareto optimization then fol-
lows from our main theorem below.

Sankoff problem signature and algebras
The signature and algebras used to compute base
pair probabilities (PROB) and similarity between two
sequences (SIM) are presented in Table 2.

The function �(x, y) returns the probability that the
bases x and y be paired. These base pair probabilities are
computed as a preliminary step. The functions σ(x, y)
returns 1 if a = b and else, it returns 0. The function γ ()
returns the penalties for insertion or deletion, here it is
−3. The line marked (*) corresponds to the Eq. 22 of the
original algorithm.

Tree grammar GSankoff for the Sankoff problem
For the Sankoff problem, there are two input sequences,
refered to in the form 〈x, y〉.

Table 2  Two evaluation algebras for the Sankoff problem

SIGNATURE PROB SIM

nil = 0 0

NoStr (x, y) = x + y x + y

Split (x, y) = x + y x + y

Pair (〈a, b〉, x , 〈c, d〉) = x + �(a, c) + �(b, d) x + σ(a, b) + σ(c, d) (*)

Ins (〈ǫ , b〉) = 0 γ (b)

Del (〈a, ǫ〉) = 0 γ (a)

Match (〈a, b〉) = 0 σ(a, b)

ϕ = Max Mx

Page 10 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

Calling the Sankoff program
Calling either GSankoff (SIM, 〈x, y〉) or
GSankoff (PROB, 〈x, y〉), we either align for maximal simi-
larity, or for maximal base pairing. To solve the problem
with Pareto optimization, we call

Preservation of Bellman’s principle by the Pareto product
In this section we present our main theorem, showing
that the Pareto product always preserves Bellman’s prin-
ciple. For the Pareto product to apply, we have the pre-
requisite that algebras A and B both maximize over a
total order. In this situation, Bellman’s principle special-
izes as follow:

Lemma 3.2  If ϕ maximizes over a total order, Eq. (17)
implies that all k-ary functions f for k > 0 are strictly
monotone with respect to each argument.

Proof  Assume Eq. (17) holds and max stands for ϕ.
If strict monotonicity was violated, there would be a
value pair such that x > y, but f (..., x, ...) ≤ f (..., y, ...),
with all other arguments of f unchanged. Then
max[f (max[x, y])] = [f (x)], whereas max[f(x), f(y)] is
either [f(x), f(y)] if both are equal, or otherwise it is [f(y)].
In either case, (17) is violated.� �

Theorem 3.3  The Pareto product preserves Bellman’s
principle.

Proof  Under the premise that algebras A and B satisfy
Bellman’s principle of optimality, we must show that
A∗ParB satisfies Eqs. (17–19). The algebra functions in the
product algebra are fA * B, cf. (21), and the choice func-
tion is pf>A,>B

.

pf>A,>B
 satisfies (19). This is a trivial consequence of

Eq. (6).
pf>A,>B

 satisfies (18). We have to show that

where pf is short for pf>A,>B
. W.l.o.g assume x ∈ X. The

element x ∈ X ∪ Y is in pf(X ∪ Y) if and only if it is not

GSankoff (SIM∗ParPROB, �x, y�).

pf(X ∪ Y) = pf(pf(X) ∪ pf(Y))

dominated by any other element in X ∪ Y . This implies
x ∈ pf(X), and x is not dominated by an element in
pf(Y) ⊆ Y . Hence, x ∈ pf(pf(X) ∪ pf(Y)). Conversely,
x ∈ X ∪ Y is not in pf(X ∪ Y) if and only if it is domi-
nated by some element z ∈ X ∪ Y . Because of transitivity
of ≻, it will be also dominated by a dominant element in
X or Y, which is a member of pf(X) or pf(Y), respectively.
Hence, x is not in pf(pf(X) ∪ pf(Y)).
pf>A,>B

 satisfies (17). If fA∗Parb is a constant (nullary)
function, it satisfies (17) because of (20).

For the other functions, we have to show that

with pf short for pf>A,>B
. It is clear that the right-hand side

is a subset of the left-hand side, so we only have to show
that no dominating elements are lost. From Lemma 3.2 we
know that fA and fB are strictly monotone in each argu-
ment position. Now consider fA * B(..., (ai, bi), ...). With
all other arguments equal, fA(..., ai, ...) ≻ fA(..., ai’, ...)
if and only if ai ≻ ai’, and the same for fB. We con-
clude that fA * B(..., (ai, bi), ...) ≻ fA * B(..., (ai’, bi’), ...) if
and only if (ai, bi) ≻ (ai’, bi’), and hence fA * B is strictly
monotone with respect to the partial ordering ≻. If
(ai, bi) ≻ (ai’, bi’) in Xi and hence (ai’, bi’) /∈ pf(Xi), then
the element fA * B(..., (ai’, bi), ...) will not be considered on
the left-hand side. But anyway, it would be dominated by
fA * B(..., (ai, bi), ...) and could not enter the overall result. �

While our theorem guarantees that (A∗ParB) satisfies
Bellman’s principle under the above prerequisites, an
ADP compiler providing the ∗Par operation on evaluation
algebras cannot check these prerequisites. In general, it
cannot prove that ϕA and ϕB maximize over a total order,
nor can it ensure strict monotonicity. However, there
may be obvious abuses of ∗Par that a compiler can safe-
guard against.

Implementation
The Pareto product can be implemented simply by pro-
viding the Pareto front operator ϕ = pf>A,>B

 as the
choice function for the algebra product (A∗ParB). In this
case, the results of pf>A,>B

 can be represented as sorted
or unsorted lists. A more ambitious implementation
would monitor the status of intermediate results as lexi-
cographically sorted lists, to take advantage of the more
efficient Pareto front operator pf lex or pf smooth on sorted
lists.

We will describe these implementation options by
means of an example production which covers the rele-
vant cases. A tree grammar describing an ADP algorithm
has an arbitrary number of productions, but their mean-
ing is independent.

pf([fA * B(x1, . . . , xk)|x1 ← X1, . . . , xk ← Xk])

= pf([fA * B(x1, . . . , xk)|x1 ← pf(X1), . . . , xk ← pf(Xk)])

Page 11 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

Let f, g, and h be a binary, an unary and a nullary scor-
ing function from the underlying signature. A tree gram-
mar rule such as

specifies the computation of partial results for a sub-
problem of type W from partial results already computed
from subproblems of types X and Y, of type Z, or for an
empty subproblem via a (constant) scoring function h. It
is important to have a binary operation in our example,
as this type of Pareto set extension does not perserve the
Pareto property, and hence is a more difficult case (cf.
Lemma 2.1). Beyond this, signature functions may have
arbitrary arity, and trees on the right-hand side can have
arbitrary height. These cases can be handled in analogy
to what we do next.

We use the nonterminal symbols also as names for the
list of subproblem solutions derived from them. Hence,
we compute a list of answers W = [w1,w2, ...] from
X = [x1, x2, ...] and so on. Note that h denotes a con-
stant list, in most cases a singleton, but not necessarily
so. We do not have to worry about indexing subproblems
and dynamic programming tables, as this is added by the
standard ADP machinery.

Standard implementation
Candidate lists are created by terminal grammar rules, by
extension of intermediate results with scoring functions,
and by union of answers from alternative rules for the
same nonterminal.

We describe the standard implementation by three
operators ⊗,⊕, #, respectively pronounced “extend”,
“combine” and “select”.

Let C = (A× B), and let L denote the powerset of C.
Elements of L are simply lists over C in our implementa-
tion. (L → L) denotes functions over subsets of C, such
as our choice functions. Our operators have the following
types:

The type of ⊗ is overloaded according to the arity of its
function argument, which is arbitrary in general. For our
exposition, we need only arities 1 and 2. (This flexible

(23)# :L× (L → S) → L

(24)⊕ :L× L → L

(25)⊗ :L× (C → C) → L

(26)⊗ :L× L× (C × C → C) → L

arity overloading explains why we do not use infix notion
with ⊗.) The operators are defined as follows:

Operator # simply applies the choice function to a list l of
intermediate results (27), generally the function ϕ, and pf
in our specific case. We append lists of solutions with ⊕
(28), and ⊗ extends solutions from smaller subproblems
to bigger ones (29, 30). Note that there is no require-
ment on the constant scoring function h. Typically, such
a function generates an empty list or a single element
anyway. In general however, it may produce a list of alter-
native answers, and this need not be a Pareto list in the
standard implementation.

Using this set of definitions, our example production
describes the computation of

Any of our variants pf sort,pf isort,pfnosort can be used for
pf , but not the linear-time pf lex, because in (28) and (29),
lists come out unsorted.

Lexicographically sorted implementation
This implementation defines the operators ⊕ and ⊗ such
that they keep intermediate lists sorted. As a conse-
quence, the Pareto front operator pf can be replaced by
the more efficient pf lex.

The function merge merges two sorted lists in linear time,
such that the result is sorted, and foldrmerge does so iter-
atively for a list of sorted lists.

We show by structural induction that all intermediate
solution lists are sorted. Eq. (35) covers the base case. It
requires that a constant function such as h produces its
answer list in sorted form. Now consider the recursive
cases, assuming that lists X and Y are sorted. In Eq. (34),

(27)l # pf = pf(l)

(28)l1⊕ l2 = l1++ l2

(29)⊗(f ,X ,Y) = [f (x, y) | x ∈ X , y ∈ Y]

(30)⊗(g ,X) = [g(x) | x ∈ X]

W = (⊗(f ,X ,Y) ⊕ ⊗(g ,Z)) ⊕ h) # pf .

(31)l # pf = pf lex(l)

(32)l1⊕ l2 = merge(l1, l2)

(33)
⊗(f ,X ,Y) = foldrmerge([[f (x, y) | x ← X] | y ∈ Y])

(34)⊗(g ,X) = [g(x) | x ← X]

(35)h = sort(h)

Page 12 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

the constructed list is sorted. This follows from the pre-
requisite that algebras A and B satisfy Bellman’s principle,
and hence g is monotonic in both algebras. Thus, given
a sorted list X, the list [g(x)|x ∈ X] is also sorted lexico-
graphically (Lemma 2.5). In Eq. (33), the above monoto-
nicity argument holds for each of the lists [f (x, y)|x ∈ X]
for fixed y. Lists for different y ∈ Y are merged, which
results in an overall sorted list. This also takes linear time.
In Eq. (32), two sorted lists are merged into a sorted list.
In Eq. (31), pf lex finds a sorted list and reduces it to a
Pareto list, which by definition is sorted (cf. 2.2).

Pareto‑eager implementation
The standard implementation applies a Pareto front
operator after constructing a list of intermediate results.
This list is built and combined from several sublists. By
our main theorem, the Pareto front operation distributes
over combinations of sublists, so we can integrate the #
operator into the ⊕ operator. This has the effect that sizes
of intermediate results are reduced as early as possible.
We define our operators as follows:

Again we argue by structural induction over the candi-
dates in the search space. As the base case, h must produce
Pareto lists as initial answers (Eq. 40). The

p
∨ operation

in Eq. (37) can assume argument lists to be Pareto lists
already. In Eq. (39), the new list must be a Pareto list due
to the extension Lemma 2.5. In Eq. (38), the same holds
for each intermediate list [f (x, y)|x ∈ X] for each y, and we
can merge them successively. Finally, the # operator skips
the computation of the Pareto front, as by induction, all
the lists that arise at this point are Pareto lists already.

In "Pareto merge in linear time", we showed that
p
∨

can be implemented in O(N), and therefore, each step
in the Pareto-eager implementation takes linear time.
This means that Pareto optimization incurs no intrinsic
overhead, compared to a single objective which returns
a comparable number of results. This is an encouraging
insight, but leaves us one aspect to worry about: The size
N of the Pareto front which is computed from an input
sequence of length n.

(36)l # pf = l

(37)l1⊕ l2 = l1
p
∨ l2

(38)

⊗(f ,X ,Y) = foldr
p
∨[] [[f (x, y) | x ← X] | y ← Y]

(39)⊗(g ,X) = [g(x) | x ← X]

(40)h = pf(h)

Runtime impact of Pareto front size
For a typical dynamic programming problem in sequence
analysis, an input sequence of length n creates an expo-
nential search space of size O(2n). Still, by tabulation and
re-use of intermediate subproblem solutions, dynamic
programming manages to solve such a problem in poly-
nomial time, say O(nr). The value of r depends on the
nature of the problem, and when encoded in ADP, it is
apparent as a property of the grammar which describes
the problem decomposition [23]. We have r = 2 for sim-
ple sequence alignment, r = 3 for simple RNA structure
prediction, r = 4 to r = 6 for RNA structures including
various classes of pseudoknots, and so on. This all applies
when a single, optimal result is returned.

For ADP algorithms returning the k best results, com-
plexity must be stated more precisely as O(nrkr−1). As
long as k is a constant, such as in k-best optimization,
this does not change the asymptotics. However, comput-
ing all answers within p percent of the optimal score may
well incur exponential growth of k. Probabilistic shape
analysis of RNA has a runtime of O(n3αn) with α ≈ 1.1,
because the number of shape classes grows exponentially
with sequence length [11, 32].

With Pareto optimization, the size k of the answer set
is not fixed in beforehand. The size of the Pareto front,
for a set of size N, is expected to be H(N) (cf. "Pareto sets
and the Pareto front operator"). Using N ∈ O(2n) and
H(N) ≈ ln(N) [24], we can expect an effective size of
the result sets in O(n). Taking all things together, we can
compute the Pareto front for an (algebraic) dynamic pro-
gramming problem in O(n2r−1) expected time, where n
is input length and r reflects the complexity of the search
space.

In applications, the size of the Pareto front needs not
to follow expectation. We may achieve efficiency of
O(nrkr−1) where k ≪ n. Fortunately, in the application
scenario of the next section, we find ourselves in this pos-
itive situation.

Applications
Evaluation goals
In our applications reported here, we persue a twofold
goal. (i) Our foremost goal is to determine whether
Pareto optimization is practical in some real-world
applications. This includes the assessment of constant
factors of alternative implementations of the Pareto
front operator pf . And (ii), we want to demonstrate
that Pareto optimization allows us to draw interest-
ing observations about the relative behaviour of two
scoring schemes competing for the same purpose.
Our applications are taken from the domain of RNA
secondary structure prediction. One is the Sankoff
problem of simultaneous alignment and folding of

Page 13 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

two RNA sequences, introduced already above. The
two scoring systems are sequence similarity versus
base pair probabilities. Our second application choice
is the single sequence structure prediction problem,
using two alternative scoring functions. One is MFE,
the classical minimum free energy folding approach,
based on a thermodynamic nearest-neighbour model
with about thousand parameters. The other one is
MEA, maximum expected accuracy folding, which is
a recent refinement of MFE folding. By this method,
the MFE approach is first used to calculate base
pair probabilities for the folding space of the given
sequence, and in a second phase, the structure is
determined which maximises the accumulated base
pair probabilities.

Our first hypothesis addresses efficiency issues.

Hypothesis A  Pareto optimization in a realistic sce-
nario is not more expensive than other approaches calcu-
lating a similar amount of alternative answers.

We assess hypothesis A in "Runtime and memory
measurements" by computing the trade-off between
the different Pareto front implementations described
in "Implementation". Emprical Pareto front sizes are
reported in "Pareto front size". We use the MFE versus
MEA application for all these measurements. An inter-
esting occurence of worst case behaviour for Schnat-
tinger’s variant of the Sankoff algorithm is analyzed in
"Anti-correlation and real worst case behaviour".

For a more biologically inspired assessment, we chose
the Sankoff problem to test

Hypothesis B  A small Pareto front is indicative of a
strong biological signal of homology.

This assessment is shown in "Pareto solutions in the
Sanko algorithm".

We try to get insight into the relationship of the struc-
tures that make up the Pareto front, coming back to the
application of MFE versus MEA folding.

Hypothesis C  The Pareto front of MFE versus MEA is
comprised of a small number of macrostates, accompa-
nied by essentially the same corona of microstates.

Akin to Pareto optimization, abstract shape analysis of
RNA can give us an “interesting” set of alternative fold-
ings [11]. They are characterized by the best-scoring
structures having different abstract shapes. This idea
being perfectly orthogonal to Pareto optimization, we
give some attention to the question how abstract shapes
and Pareto optima are related. Here we test the

Hypothesis D  Abstract shape analysis and Pareto
optimization produce about the same set of alternative
“interesting” structures.

In the evaluation of hypotheses A–D, our test data
for the MFE/MEA application consists of 331 RNA
sequences of length 12–356 nucleotides, extracted from
the full data set used in [33]. The data set is available with
the supplementary material. For the Sankoff problem, we
use sequences from two Rfam families. We use n1 = 19
PreQ1 RNA sequences (SSTRAND : RF_00522) and
n2 = 30 IRE RNA sequences (SSTRAND : RF_00037)
extracted from the core data set of the Rfam database
[34].

Algorithms implemented
We give a short sketch of how our algorithms are imple-
mented. For each application, we can re-use grammars
and algebras from the RNAshapes repository [35]. It is
just the Pareto optimization which is new.

For the standard implementation, we tested the vari-
ants pf isort, pf sort, pf smooth, and pfnosort (cf. "Computing
the Pareto front"). Fortunately, the standard implementa-
tion can be mimicked in GAP-L without changing lan-
guage or compilera. However, we can not evaluate the
Pareto-eager implementation based on pf lex with Bell-
man’s GAP, as this would imply extension of GAP-L and
modification of the sophisticated code generation in the
Bellman’s GAP compiler.

In order to compare the Pareto-eager implementation
to the others, we resorted to an implementation of ADP
as a Haskell-embedded combinator language [23]. First,
we added the variants pf isort, pfnosort, and pf smooth for
the standard implementation. Then, we designed a modi-
fied set of combinators, corresponding to the outline
in "Pareto-eager implementation". (For the expert: The
key idea is to exploit monotonicity and compute the set
{f (xi, yj)} of intermediate results represented as nested
lists in the form [[f (xi, yj)|j = 1, ...]|i = 1, ...]. For fixed xi,
the sublist [f (xi, yj)|j = 1, ...] is sorted if the list [y1, , , ,] is.
This is ensured by structural induction and strict mono-
tonicity of f on its second argument position). While this
implementation is significantly slower than Bellman’s
GAP code, it suffices to compare the Pareto-eager imple-
mentation to its alternatives.

We use available building blocks for the independent
optimizations: the RNA folding grammar OverDangle
(avoiding lonely base pairs) and the evaluation algebras
MFE and MEA. In MFE and MEA, we replace their objec-
tive functions by ones that report the k best (near-opti-
mal) structures, where k is a parameter. This allows us to
run OverDangle(MFE(k), x) and OverDangle(MEA(k), x),
with the choice of k explained further below.

Page 14 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

The size of the folding space X for a given sequence x
is independent of the optimization we perform. The Bell-
man’s GAP compiler can automatically produce a count-
ing algebra COUNT, that determines the size of the
folding space. We run OverDangle(COUNT, x) on all our
test data to get concrete folding space sizes, to be related
to the sizes of their Pareto fronts.

The choice of k for a fair evaluation is not obvious.
Selecting k = 1 for MFE and MEA would be unfair, as
the Pareto front provides much deeper information. We
considered using k = E(|X |, |x| = n), but the expected
size of the search space is not a good predictor, as |X|
varies strongly with the sequence content of x. There-
fore, we first run Pareto optimization on x, record the
size of the Pareto front for this call, and then set k to this
number when computing OverDangle(MFE(k), x) and
OverDangle(MEA(k), x).

Runtime and memory measurements
This section and the next are devoted to our

Hypothesis A  Pareto optimization in a realistic sce-
nario is not more expensive than other approaches calcu-
lating a similar amount of alternative answers.

We evaluate the performances of the Pareto front com-
putation, using pf isort(X), pf sort(X), pf smooth(X), and
pfnosort(X). Note that all compute the same Pareto front,
and hence have the same k in their asymptotics. For a fair
comparison with two single-objective algorithms MFE
and MEA, we use their versions MFE(k) and MEA(k),
computing the k best structures under each objective.
Here, k is set to the actual Pareto front size for the given
input (which, of course, is only known because before we
also compute the Pareto front with the other algorithms).
All programs are compiled by the Bellman’s GAP com-
piler using the same optimization options [29].

In Table 3 we show computation time and memory
consumption, accumulated over all sequences and spe-
cifically for the longest sequence. These are our main
observations:

1.	 In terms of runtime, we find that the Pareto opti-
mization performs not only better than the sum of
the two independent optimizations, but also bet-
ter than each of them individually. We attribute this
to the fact that the Pareto algorithm adjusts itself
to the size of the Pareto front, and this size tendsb
to be smaller than k for small sub-problems. The
search space itself, however, is exponentially larger
than the Pareto front, and even on small sub-words
it provides k near-optimals for MFE(k) and MEA(k)
to spend computation on. This effect is strongest for

our longest sequence, where k = 38 and the ratio of
(MFE(k)+MEA(k))/pfnosort ≈ 45.

2.	 The average case behaviour of pfnosort(X) is supe-
rior to all the sorting implementations of pf . This
is an unexpected and interesting observation. We
attribute this to a positive randomization effect.
Comparing a new element to the extremal points of
the Pareto front, maximal in one but minimal in the
other dimension, is unlikely to establish domination.
This what always happens first with sorted interme-
diate lists, and the element will walk along towards
the middle of the list until it eventually is found to
be dominated. In unsorted lists, a non-extremal ele-
ment that dominates the new entry will, on average,
be encountered earlier.

3.	 For evaluating the Pareto-eager strategy, we used
the Haskell-embedded implementation. In the func-
tional setting, pf isort required the least garbage col-
lections and performed best. Somewhat unexpect-
edly, the eager strategy was consistently a bit slower
than pf isort and close to pfnosort, slower only by a
factor varying between 1.0 and 1.2. It was faster than
pf smooth, in turn by a factor between 1.1 and 1.5.

4.	 Memory consumption of Pareto optimization is
consistent over different implementations of pf . It
is higher than either MFE(k) or MEA(k) alone, but
clearly less than the sum of MFE(k) and MEA(k). This
is better than expected, because after all, it solves
both problems simultaneously.

Note that the above values are measurements of con-
stant factors, and averaged over many runs. So, pfnosort
is not always faster than pf smooth. In fact, we have seen
cases where pfnosort is faster than pf smooth for pf>A,>B

,
but slower for pf>A,<B

 (where in the latter case, we switch
from maximization to minimization in algebra B).

Table 3  Runtimes and memory requirements for MFE(k),
MEA(k) (where k is the empirical Pareto front size for a
given input), and their Pareto product (MFE ∗Par MEA),
accumulated over 331 sequences (left) and for the longest
sequence (n = 356, k = 38, right)

The computations were performed by using Bellman’s GAP.

Algebra Time (min) Memory (GB) Time (min) Memory (GB)

MFE(k) alone 71 163.68 5 1.16

MEA(k) alone 61 153.51 5 1.05

MFE(k) + MEA(k)132 (+) 163.68 (max) 10 1.16 (max)

(MFE∗ParMEA)

 pfnosort 8 197.28 0.22 1.28

 pfsmooth 9.5 192.79 0.5 1.28

 pfsort 18 271.21 1 1.28

 pf isort 32 250.21 3 2.11

Page 15 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

Pareto front size
The size of the Pareto front is of critical practical impor-
tance. Pareto front sizes in the hundreds, even for
sequences of moderate length, would be prohibitive. The
number of solutions in the Pareto front depends on the
data. Not only on the sequence length and the size of the
search space in our RNA folding scenario, but also on the
actual structures found. For example, if there is a very
prominent structure in the folding space, it will dominate
many other solutions in both objectives, and the Pareto
front will be small. On the other hand, in one case we
observed a Pareto front of size ≈ |x| with the program of
Schnattinger et al. on a Sankoff-style algorithm, an effect
we will study in detail below.

Figure 1 shows our measurements. We observe the
following:

• • Pareto front sizes are quite moderate, ranging round
10 for n = 100, 15 for n = 200, up to 45 for n = 274

. Specifically, our longest sequence (n = 356) has a
Pareto front of size 38.

• • Variance is high (as expected), and because of the
strong variation, we did not fit a line through our
measurement points. However, they are all domi-
nated by the expected size of the Pareto front (red
line).

•  • We did not smooth the graph for H(|X|), such that
it also demonstrates the variance in the search space
sizes; just read the y-axis as a logarithmic scale for
eH(|X |). The roughly linear behavior conforms with
the theoretical analysis.

The moderate sizes of Pareto fronts in our applications
also imply that no benefit is to be expected from using
quad-tree data structures in place of our sorted list rep-
resentation. According to measurements in [36], popula-
tion sizes in the thousands are required to make the more
sophisticated data structure pay off.

Summing up our empirical data, we state that Hypoth-
esis A has been confirmed in general, which does not rule
out that there are problematic cases. One of these is dis-
cussed next.

Anti‑correlation and real worst case behaviour
Two scoring functions are correlated to the extent by
which they rank the candidates of the search space in
the same order. Perfect correlation or anti-correlation
would render a combined application of both objectives
meaningless. Perfect positive correlation implies that an
optimal candidate under >A is also optimal under >B,
so nothing is to be gained from optimizing with respect
to >B. Perfect anti-correlation means that the optimal
candidates under >B are the worst candidates under >A.

Hence, they can also be obtained as the optimal candi-
dates optimizing under <A alone. In interesting scenar-
ios, we can expect the two scoring schemes to correlate
in some of the local scoring functions, and anti-correlate
in others.

Anti-correlation can make the worst case real, where
the size of the Pareto front does not follow the Har-
monic law, but is linear the size of the interval of score
values actually occurring (cf. Observation 3). There
is a minor flaw in the objective function used in [20],

0 50 100 150 200 250 300 350

0
20

40
60

80
10

0
12

0 Pareto front size in function of the sequence size.

Sequence size.

P
ar

et
o

fr
on

t s
iz

e.

Expected Pareto font size

Pareto font size

0 50 100 150 200 250 300 350

0
5

10
15

20

Number of Shape in function of the sequence size.

Sequence size.

N
um

be
r

of
 s

ha
pe

s.

Number of RNAshape

a

b

Figure 1  a Empirical Pareto front size of OverDangle(MFE∗ParMEA, x)
as a function of |x|. The red line corresponds the H(|X|), the expected
Pareto front size according to the harmonic law, applied to the empir-
ical value of |X| for each x. b Number of abstract RNA shapes [11] in
the Pareto front, in function of the sequence size.

Page 16 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

harmless at first sight, but provoking worst case behav-
iour on some inputs. It is instructive to look at the situ-
ation in detail.

The objective functions in [20] are adopted from
the amalgamated score in [8]. Schnattinger et al. took
RNAalifold’s parametrized combination of energy and
covariance scoring, dissecting (ψ1 ∗+� ψ2) literally into
(ψ1 ∗Par ψ2). However, Hofacker et al. had chosen for
their combination an engineered variant of similarity
scoring, where base pair columns were not scored for
sequence similarity (see equation line marked 22). Our
algorithm corrects this case, see label (∗) in Table 3, mak-
ing algebra SIM a proper similarity score. Literal dis-
section of this combination in [20] led to two scoring
schemes that are negatively correlated in the following
case: Choosing a base pair increases the covariance score
but decreases the sequence similarity score in the case
where the individual bases in the paired alignment col-
umns actually match. Amusingly, the worst case occurs
when solving the Sankoff problem for two identical
sequences! While we would expect a Pareto front of size
1, with no gaps, no mismatches, and a maximal number p
of base pairs, what we actually get is a worst case Pareto
front of p elements, because every base pair omitted
increases the sequence score.

This observation teaches us that a large Pareto front
can result from inadvertent anti-correlation in the scor-
ing functions.

Pareto solutions in the Sankoff algorithm
We now consider Pareto optimization for the Sankoff
problem. The two optimization objectives combined are
sequence similarity (SIM) and base pair probability of the
consensus structure (PROB). One can expect both meas-
ures to be more correlated when the sequences are in fact
closely related and have a conserved consensus structure.
We investigate our

Hypothesis B  A small Pareto front is indicative of a
strong biological signal of homology.

A thorough assessment of this hypothesis is outside
of the scope of the present article, but we give some evi-
dence that supports it. Our test data consists of n1 = 19
PreQ1 RNA sequences (SSTRAND : RF_00522) and
n2 = 30 IRE RNA sequences (SSTRAND : RF_00037)
extracted from the core data set of the Rfam database
[34]. We perform all intra-family and inter-family align-
ments. The results are shown in Figure 2.

We observe the following:

• • The Pareto front size is reduced when comparing
sequences from the same family (average Pareto

front size of 2.56 for the IRE/IRE and 2.50 for the
PreQ1/PreQ1).

• • The Pareto front size is larger when aligning two
sequences from different families (average Pareto
front size of 11). Note that the two families are unre-
lated, so this can be taken as an experiment on ran-
dom RNA sequences.

•  • However, there is some overlap between the extreme
cases of both scenarios.

The size of the Pareto front could be useful for deciding
family membership, not by itself but as a third criterion
in addition to the two scores obtained separately. In fact,
one might also be interested in the similarity between the
structures that occur in the Pareto front. This is what we
consider next.

Internal structure of the Pareto front of MFE and MEA
folding
We now consider each structure in the Pareto front of
some sequences extracted from the MFE/MEA dataset
with respect to our

Hypothesis C  The Pareto front is comprised of a small
number of macrostates, accompanied by essentially the
same corona of microstates.

By using the RNA movies software [37], we can illus-
trate the transitions between the different structures

65 70 75 80 85 90 95

5
10

15
20

Pareto front size in function of the sequence size

Sequence size.

P
ar

et
o

fr
on

t s
iz

e.

PreQ1/PreQ1
IRE/IRE
PreQ1/IRE

Compared families

Figure 2  Empirical Pareto front size of GSankoff (PROB∗ParSIM, x). The
red plots correspond to the alignment of two PreQ1 sequences, the
green ones to the alignment of two IRE sequences and the blue ones
to the alignment between a IRE sequence and a PreQ1 sequence.
Sequence size is the sum of the two aligned sequences size.

Page 17 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

in the Pareto front. In the Movie 1, Movie 2, Movie 3
(cf. Additional files 1, 2, 3, respectively; these are ani-
mated GIFs best viewed with a browser), we can see
that there is a single dominating structure (macrostate).
The different structures in the Pareto front are all minor
modifications of this macrostate. They are local helix
modifications or show the formation of small new heli-
ces inside big loops. For larger Pareto fronts, we can
observe such microstates arranged around several mac-
rostates, indicating very different structures (Additional
file 4: Movie 4, Additional file 5: Movie 5, Additional
file 6: Movie 6). Each macrostate has a different abstract
shape.

Hypothesis C was confirmed in all the cases we stud-
ied. This means that one could condense the information
in the Pareto front to a small set of macrostate struc-
tures, which would have different shapes. This leads us
to further explore the relationship between Pareto opti-
mization (based on MFE and MEA) and abstract shape
analysis (based on shape abstraction and either MFE or
MEA alone).

Pareto optimization versus abtract shape analysis
Our Hypothesis D is a somewhat radical statement:

Abstract shape analysis and Pareto optimization
produce about the same set of alternative “interest-
ing” structures.

It would make Pareto optimization less attractive in
the domain of RNA structure analysis, as well as in other
domains where the idea of shape abstraction can be repli-
cated. But our observations refute this hypothesis. Over-
all, the relation between the two approaches appears to
be non-trivial.

We checked the ratio of the number of structures in
the Pareto front, and the number of different abstract
shapes they represent, but this ratio, ranging from 1 to
≈ 12, did no exhibit an obvious pattern. Taking a SHAPE
algebra from the RNAshapes repository, an experiment
with OverDangle(SHAPE ∗ (MFE∗Par MEA), x) has been
performed. This call computes the Pareto front for each
shape. The computation was performed for six sequences
extracted from the dataset used for computing the Pareto
front between MFE/MEA. The results are presented
in the Figures 3, 4, 5 and 6. We see different scenarios
occuring:

In Figure 3, we find a dominating shape and a single-
ton Pareto front. In Figure 4, we find a dominating shape
and a Pareto front which holds exactly the MFE and
MEA optima of this shape. In Figure 5, we see a more
fine-grained Pareto front with all elements residing in the
dominant shape. Figure 6 shows a two-element Pareto
front composed of different shapes.

Note that in a case like Figure 4, Pareto optimization
with MFE and MEA will only produce the dominant
shape (“[[][]]”, yellow), while in combination with
abstract shape analysis, we also see two further mac-
rostates that might be of interest: “[][]” (pink) and
“[[][][]]” (dark green). From these observations,
we conclude that Hypothesis D is to be refuted. Shape
abstraction and Pareto optimization are independ-
ent techniques that allow for even deeper analysis in
combination.

Conclusion
Let us review our results, referring back to the questions
(i)–(iv) formulated in the introduction. We have shown
(i) that the exact Pareto front of two independent objec-
tives can be computed by dynamic programming. The
theoretical prerequisite for this is the preservation of

RNAshape
 classes

Figure 3  Pareto front per shape for the RNA structure of a hammer-
head ribozyme (SSTRAND : RFA_00430).

RNAshape
classes

Figure 4  Pareto front per shape for the structures of a tRNA
SSTRAND : SPR_00243.

Page 18 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

Bellman’s principle by the Pareto product operator ∗Par,
established in our main theorem.

We have shown (ii) that by the Pareto-eager imple-
mentation, one can achieve Pareto optimization without
an asymptotic penalty, compared to other optimizations
which return a comparable number of results. We have
shown (iii) that empirically, for the case of RNA folding
under different objectives, the size of the Pareto front
remains within moderate bounds, clearly lower than the-
oretical expectation. All in all, this says the Pareto opti-
mization is practical for sequence analysis and moderate
sequence sizes.

We demonstrated (iv) that Pareto optimization allows
us to study in depth the relative behaviour of two com-
peting objectives, minimum-free-energy and maximum-
expected-accuracy in our application domain. We found

in pairwise sequence analysis that, as to be expected,
a small Pareto front in the Sankoff problem indicates a
potential family relationship.

These findings, of course, create new work items and
open questions. Foremost, the implementation of the ∗Par
operator together with its Pareto-eager implementation
is up as a challenge to all who work on frameworks sup-
porting dynamic programming in sequence analysis. It
will be interesting to see if the Pareto-eager implementa-
tion can beat pfnosort in terms of constant factors in such
implementations.

Many established bioinformatics tools, which so far
rely on an ad-hoc combination of different objectives,
could be re-evaluated using Pareto optimization. Spe-
cifically for RNA structure analysis, in a recent review
Rivas argues that in order to further improve predic-
tions, different types of informations must be taken into
account [38]. She advocates the conversion of all data
sources into a probabilistic framework as a unifying solu-
tion. Pareto optimization opens up an alternative route,
as it allows to combine multiple objectives without such
conversion. This includes the Pareto-style combination of
stochastic grammars with other (non-probabilistic) types
of information.

Eventually, Pareto optimization may be useful in
development to avoid it in production! After computing
a set of Pareto-optimal answers, the user is left with the
problem to draw conclusions from this set. Often, what
users want is a single answer. This holds in particular
when the “user” is a high-throughput pipeline. This calls
for product operations such as ∗lex or ∗+�, as we used
to provide in the past. But now, the designers of such a
program can use Pareto optimization in the design stage
to make a well-informed choice of the combination of
objective functions eventually offered for production
use.

Let us end this introduction with a word on Pareto
optimization in higher dimensions than two. Pareto opti-
mization can be defined over score vectors of any dimen-
sion. Here we deal only with two dimensions, providing
the operator ∗Par that turns two scoring schemes A and
B into their Pareto combination A∗ Par B. This may sug-
gest the idea that with (A ∗Par B) ∗Par C we have Pareto
optimization in three dimensions, and in four with
(A ∗Par B)∗Par(C ∗Par D). But No!, Pareto optimization is
not modular in this sense. The prerequisite for ∗Par is that
A and B optimize over a total order, while their Pareto
combination optimizes over the partial order (>A,>B).
Hence, A ∗Par B is not admissible for further Pareto com-
binations. To arrive at higher dimensions of Pareto opti-
mization, one must define a Pareto combination operator
of flexible arity. Complexity of algorithms changes, and
more sophisticated data structures, such as the quad-trees

RNAshape
 classes

Figure 5  Pareto front per shape for the structures of a tRNA
(SSTRAND : SPR_00142).

RNAshape
 classes

Figure 6  Pareto front per shape for the structures of a tRNA
(SSTRAND : SPR_00103).

Page 19 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

studied in [36] may come into focus. This is remains a
challenge for future research.

Endnotes
aFor GAP-L experts: We supply the grammar with

the algebra product A ∗ B, where ϕA = ϕB = id, and
add application of pfϕA,ϕB via a semantic filter where
appropriate.

bThis is only a tendency—a final Pareto front of size k
does not rule out intermediate results with Pareto fronts
larger than k.

Authors’ contributions
The authors closely cooperated on all aspects of this work. Both authors read
and approved the final manuscript.

Acknowledgements
The authors would like to thank T. Schnattinger and H.A. Kestler for the
discussions which inspired this generalization of their work. Thanks go to
Stefan Janssen for help with the Bellman’s GAP system, and to the anonymous
reviewers of this journal for helpful comments and criticism. We acknowledge
support of the publication fee by Deutsche Forschungsgemeinschaft and the
Open Access Publication Funds of Bielefeld University.

Compliance with ethical guidelines

Competing interests
The authors declare that they have no competing interests.

Received: 28 August 2014 Accepted: 7 May 2015

References
	1.	 Gotoh O (1982) An improved algorithm for matching biological

sequences. J Mol Biol 162:705–708
	2.	 Spang R, Rehmsmeier M, Stoye J (2002) A novel approach to remote

homology detection: jumping alignments. J Comput Biol 9(5):747–760
	3.	 Sankoff D (1985) Simultaneous solutions of the RNA folding, alignment

and proto-sequences problems. SIAM J Appl Math 45(5):810–825
	4.	 Gorodkin J, Heyer LJ, Stormo GD (1997) Finding the most significant com-

mon sequence and structure motifs in a set of RNA sequences. Nucleic
Acid Res 25(18):3724–3732

Additional files

Additional file 1:  Movie 1. Transitions between the different structures
in the Pareto front.

Additional file 2:  Movie 2. Transitions between the different structures
in the Pareto front.

Additional file 3:  Movie 3. Transitions between the different structures
in the Pareto front.

Additional file 4:  Movie 4. Transitions between the different structures
in the Pareto front.

Additional file 5:  Movie 5. Transitions between the different structures
in the Pareto front.

Additional file 6:  Movie 6. Transitions between the different structures
in the Pareto front.

	5.	 Havgaard JH, Lyngsø RB, Gorodkin J (2005) The FOLDALIGN web server
for pairwise structural RNA alignment and mutual motif search. Nucleic
Acid Res 33:650–653

	6.	 Mathews DH (2005) Predicting a set of minimal free energy RNA
secondary structures common to two sequences. Bioinformatics
21(10):2246–2253

	7.	 Wexler Y, Zilberstein C, Ziv-Ukelson M (2007) A study of accessible motifs
and RNA folding complexity. J Comput Biol 14(6):856–872

	8.	 Hofacker IL, Bernhart SHF, Stadler PF (2004) Alignment of RNA base pair-
ing probabilities matrices. Bioinformatics 20(14):2222–2227

	9.	 Schnattinger T (2014) Multi-objective optimization for RNA folding, align-
ment and phylogeny. PhD thesis, Fakultät für Ingenieurwissenschaften
und Informatik der Universität Ulm

	10.	 Steffen P, Giegerich R (2005) Versatile and declarative dynamic
programming using pair algebras. BMC Bioinform 6(1):224.
doi:10.1186/1471-2105-6-224

	11.	 Voß B, Giegerich R, Rehmsmeier M (2006) Complete probabilistic analysis
of RNA shapes. BMC Biol 4(1):5. doi:10.1186/1741-7007-4-5

	12.	 Zhang C, Wong AKC (1997) Toward efficient molecular sequence align-
ment: a system of genetic algorithm and dynamic programming. Trans
Syst Man Cybern Part B Cybern 27(6):918–932

	13.	 Taneda A (2010) Multi-objective pairwise RNA sequence alignment.
Bioinformatics 26(19):2383–2390

	14.	 Taneda A (2011) MODENA: a multi-objective RNA inverse folding. Adv
Appl Bbioinform Chem 4:1–12

	15.	 Rajapakse JC, Mundra PA (2013) Multiclass gene selection using Pareto-
fronts. IEEE/ACM Trans Comput Biol Bioinform 10(1):87–97

	16.	 Forman G (2004) A pitfall and solution in multi-class feature selection for
text classification. In: Proceedings of the 21th International Conference
on Machine Learning

	17.	 Henig MI (1985) The principle of optimality in dynamic program-
ming with returns in partially ordered states. Inst Op Res Manag Sci
10(3):462–470

	18.	 Getachew T, Kostreva M, Lancaster L (2000) A generalization of dynamic
programming for Pareto optimization in dynamic networks. Revue
Française d’Automatique, d’Informatique et de Recherche opérationnelle.
Recherche Opérationelle 34(1):27–47

	19.	 Sitarz S (2009) Pareto optimal allocation and dynamic programming. Ann
Op Res 172:203–219

	20.	 Schnattinger T, Schöning U, Marchfelder A, Kestler HA (2013) Struc-
tural RNA alignment by multi-objective optimization. Bioinformatics
29(13):1607–1613

	21.	 Schnattinger T, Schöning U, Marchfelder A, Kestler HA (2013) RNA-Pareto:
interactive analysis of Pareto-optimal RNA sequence-structure align-
ments. Bioinformatics 29(23):3102–3104

	22.	 Libeskind-Hadas R, Wu Y-C, Bansal MS, Kellis M (2014) Pareto-optimal
phylogenetic tree reconciliation. Bioinformatics 30(12):87–95

	23.	 Giegerich R, Meyer C, Steffen P (2004) A discipline of dynamic pro-
gramming over sequence data. Sci Comput Program 51(3):215–263.
doi:10.1016/j.scico.2003.12.005

	24.	 Graham RL, Knuth DE, Patashnik O (1994) Concrete mathematics: a
foundation for computer science, 2nd edn. Addison-Wesley Longman
Publishing Co., Inc, Boston

	25.	 Yukish MA (2004) Algorithms to identify Pareto points in multi-dimen-
sional data sets. PhD thesis, Pennsylvania State University, Graduate
School, College of Engineering

	26.	 Kung H, Luccio F, Preparata F (1975) O(n) finding on the maxima of a set
of vectors. J Assoc Comput Mach 4(4):469–476

	27.	 zu Siederdissen CH (2012) Sneaking around concatMap: efficient com-
binators for dynamic programming. In: Proceedings of the 17th ACM
SIGPLAN International Conference on Functional Programming. ICFP ’12,
pp 215–226. ACM, New York, NY, USA. doi:10.1145/2364527.2364559

	28.	 Sauthoff G, Möhl M, Janssen S, Giegerich R (2013) Bellman’s GAP—a
language and compiler for dynamic programming in sequence analysis.
Bioinformatics 29(5):551–560. doi:10.1093/bioinformatics/btt022. http://
bioinformatics.oxfordjournals.org/content/early/2013/01/25/bioinformat-
ics.btt022.full.pdf+html

	29.	 Sauthoff G, Giegerich R (2014) Yield grammar analysis and product
optimization in a domain-specific language for dynamic programming.
Sci Comput Program 87:2–22. doi:10.1016/j.scico.2013.09.011

http://dx.doi.org/10.1186/1471-2105-6-224
http://dx.doi.org/10.1186/1741-7007-4-5
http://dx.doi.org/10.1016/j.scico.2003.12.005
http://dx.doi.org/10.1145/2364527.2364559
http://dx.doi.org/10.1093/bioinformatics/btt022
http://bioinformatics.oxfordjournals.org/content/early/2013/01/25/bioinformatics.btt022.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/early/2013/01/25/bioinformatics.btt022.full.pdf+html
http://bioinformatics.oxfordjournals.org/content/early/2013/01/25/bioinformatics.btt022.full.pdf+html
http://dx.doi.org/10.1016/j.scico.2013.09.011

Page 20 of 20Saule and Giegerich. ﻿Algorithms Mol Biol (2015) 10:22

	30.	 Sauthoff G, Janssen S, Giegerich R (2011) Bellman’s GAP: a declara-
tive language for dynamic programming. In: Proceedings of the 13th
International ACM SIGPLAN Symposium on Principles and Practices of
Declarative Programming. PPDP ’11, pp 29–40. ACM, New York, NY, USA.
doi:10.1145/2003476.2003484

	31.	 Morin TL (1982) Monotonicity and the principle of optimality. J Math Anal
Appl 86:665–674

	32.	 Nebel M, Scheid A (2009) On quantitative effects of RNA shape abstrac-
tion. Theory Biosci 128:211–225. doi:10.1007/s12064-009-0074-z

	33.	 Andronescu M, Condon A, Hoos HH, Mathews DH, Murphy KP (2010)
Computational approaches for RNA energy parameter estimation. RNA
16:2304–2316

	34.	 Burge SW, Daub J, Eberhardt R, Tate J, Barquist L, Nawrocki EP et al (2012)
Rfam 11.0: 10 years of RNA families. Nucleic Acid Res. doi:10.1093/nar/
gks1005

	35.	 Janssen S, Schudoma C, Steger G, Giegerich R (2011) Lost in fold-
ing space? Comparing four variants of the thermodynamic model
for RNA secondary structure prediction. BMC Bioinform 12(429).
doi:10.1186/1471-2105-12-429

	36.	 Mostaghim S, Teich J (2003) Quad-trees: a data structure for storing
Pareto-sets in multi-objective evolutionary algorithms with elitism. In: In
evolutionary computation based multi-criteria optimization: theoretical
advances and applications

	37.	 Giegerich R, Evers DJ (1999) RNAmovies: visualizing RNA secondary
structure spaces. Bioinform Former CABIOS 15:32–37

	38.	 Rivas E (2013) The four ingredients of single-sequence RNA secondary
structure prediction. A unifying perspective. RNA Biol 10(7):1185

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

http://dx.doi.org/10.1145/2003476.2003484
http://dx.doi.org/10.1007/s12064-009-0074-z
http://dx.doi.org/10.1093/nar/gks1005
http://dx.doi.org/10.1093/nar/gks1005
http://dx.doi.org/10.1186/1471-2105-12-429

	Pareto optimization in algebraic dynamic programming
	Abstract
	Background
	Pareto sets: properties and algorithms
	Pareto sets and the Pareto front operator
	Worst case and expected size of Pareto fronts
	Computing the Pareto front
	From an unsorted list
	From a lexicographically sorted list
	A smooth Pareto front algorithm for the general case
	Unsorted Pareto front computation

	Pareto operator complexity, revisited
	Pareto merge in linear time
	Pareto set extension

	Pareto optimization in ADP
	Algebraic framework
	Signatures, evaluation algebras, and tree grammars
	ADP semantics
	Products of algebras

	Relation between Pareto and other products
	A hand-crafted use case of the Pareto product
	Sankoff problem signature and algebras
	Tree grammar for the Sankoff problem
	Calling the Sankoff program

	Preservation of Bellman’s principle by the Pareto product

	Implementation
	Standard implementation
	Lexicographically sorted implementation
	Pareto-eager implementation
	Runtime impact of Pareto front size

	Applications
	Evaluation goals
	Algorithms implemented
	Runtime and memory measurements
	Pareto front size
	Anti-correlation and real worst case behaviour
	Pareto solutions in the Sankoff algorithm
	Internal structure of the Pareto front of MFE and MEA folding
	Pareto optimization versus abtract shape analysis

	Conclusion
	Endnotes
	Authors’ contributions
	Received: 28 August 2014 Accepted: 7 May 2015References

