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Abstract 

Pareto optimization combines independent objectives by computing the Pareto front of its search space, defined as 
the set of all solutions for which no other candidate solution scores better under all objectives. This gives, in a precise 
sense, better information than an artificial amalgamation of different scores into a single objective, but is more costly 
to compute. Pareto optimization naturally occurs with genetic algorithms, albeit in a heuristic fashion. Non-heuristic 
Pareto optimization so far has been used only with a few applications in bioinformatics. We study exact Pareto 
optimization for two objectives in a dynamic programming framework. We define a binary Pareto product operator 
∗Par on arbitrary scoring schemes. Independent of a particular algorithm, we prove that for two scoring schemes A 
and B used in dynamic programming, the scoring scheme A∗ParB correctly performs Pareto optimization over the 
same search space. We study different implementations of the Pareto operator with respect to their asymptotic and 
empirical efficiency. Without artificial amalgamation of objectives, and with no heuristics involved, Pareto optimiza-
tion is faster than computing the same number of answers separately for each objective. For RNA structure prediction 
under the minimum free energy versus the maximum expected accuracy model, we show that the empirical size of 
the Pareto front remains within reasonable bounds. Pareto optimization lends itself to the comparative investigation 
of the behavior of two alternative scoring schemes for the same purpose. For the above scoring schemes, we observe 
that the Pareto front can be seen as a composition of a few macrostates, each consisting of several microstates 
that differ in the same limited way. We also study the relationship between abstract shape analysis and the Pareto 
front, and find that they extract information of a different nature from the folding space and can be meaningfully 
combined.

Keywords:  Pareto optimization, Dynamic programming, Algebraic dynamic programming, RNA structure, Sankoff 
algorithm

© 2015 Saule and Giegerich. This article is distributed under the terms of the Creative Commons Attribution 4.0 International 
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any 
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons 
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
In combinatorial optimization, we evaluate a search 
space X of solution candidates by means of an objec-
tive function ψ. Generated from some input data of 
size n, the search space X is typically discrete and has 
size O(αn) for some α. Conceptually, as well as in prac-
tice, it is convenient to formulate the objective function 
as the composition of a choice function ϕ and a scoring 
function σ, ψ = ϕ ◦ σ, computing their composition as 
(ϕ ◦ σ)(X) = ϕ({σ(x)|x ∈ X}) for the overall solution. 
The most common form of the objective function ψ is 

that σ evaluates each candidate to a score (or cost) value, 
and ϕ chooses the candidate which maximizes (or mini-
mizes) this value. One or all optimal solutions can be 
returned, and with little difficulty, we can also define ϕ 
to compute all candidates within a threshold of optimal-
ity. This scenario is the prototypical case we will base our 
discussion on. However, it should not go unmentioned 
that there are other, useful types of “choice” functions 
besides maximization or minimization, such as comput-
ing score sums, full enumeration of the search space, or 
stochastic sampling from it.

Multi-objective optimization arises when we have sev-
eral criteria to evaluate our search space. Scanning the 
pizza space of our home town, we may be looking for the 
largest pizza, the cheapest, or the vegetarian pizza with 
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the richest set of toppings. When we use these criteria in 
combination, the question arises exactly how we combine 
them.

Let us consider two objective functions ψ1 = ϕ1 ◦ σ1 
and ψ2 = ϕ2 ◦ σ2 on the search space X and let us define 
different variants of an operator ∗ to designate particular 
techniques of combining the two objective functions.

• • Additive combination (ψ1 ∗+ ψ2) optimizes over the 
sum of the candidates scores computed by ϕ1 and ϕ2.  
This is a natural thing to do when the two scores are 
of the same type, and optimization goes in the same 
direction, i.e. ϕ1 = ϕ2 =: ϕ; we define 

In fact, this recasts the problem in the form of a single 
objective problem with a combined scoring function. 
This applies, e.g. for real costs (money), which sum up 
in the end no matter where they come from. Gotoh’s 
algorithm for sequence alignment under an affine gap 
model can be seen as an instance of this combination 
[1]. It minimizes the score sum of character matches, 
gap openings and gap extensions. Jumping alignments 
are another example [2]. They align a sequence to a 
multiple sequence alignment. The alignment always 
chooses the alignment row that fits best, but charges 
a cost for jumping to another row. Jump cost and 
regular alignment scores are balanced based on test 
data. However, often it is not clear how scores should 
be combined, and researchers resort to more general 
combinations.

• • Parametrized additive combination (ψ1 ∗+� ψ2) is 
defined as 

Here the extra parameter signals that there is some-
thing artificial in the additive combination of scores, 
and the � is to be trained from data in different appli-
cation scenarios, or left as a choice to the user of the 
approach. Such functions are often used in bioinfor-
matics   [3–7]. For example, the Sankoff algorithm 
scores joint RNA sequence alignment and folding 
by a combination of base pairing (ψ1) and sequence 
alignment (ψ2) score [3]. RNAalifold scores consen-
sus structures by a combination of free energy (σ1) 
and covariance (σ2) scores [8]. Covariance scores are 
converted into “pseudo-energies”, and the parameter � 
controls the relative influence of the two score com-
ponents. This combination often works well in prac-
tice, but a pragmatic smell remains. Returning to our 
earlier pizza space example: It does not really make 
sense to add the number of toppings to the size of the 
pizza, or subtract it from the price, no matter how we 

(1)ψ1 ∗+ ψ2 = ϕ ◦ (σ1 + σ2).

(2)ψ1 ∗+� ψ2 = ϕ ◦ (�σ1 + (1− �)σ2), 0 ≤ � ≤ 1.

choose �. In a way, the parameter � manifests our dis-
comfort with this situation.

• • Lexicographic combination (ψ1 ∗lex ψ2) performs 
optimization on pairs of scores of potentially differ-
ent type, not to be combined into a single score. 

where (ϕ1,ϕ2) optimizes lexicographically on the 
score pairs (σ1(x), σ2(x)). With the lexicographic com-
bination, we define a primary and a secondary objec-
tive, seeking either the largest among the cheapest 
pizzas, or the cheapest among the largest—certainly 
with different outcomes. This is very useful, for exam-
ple, when ϕ1 produces a large number of co-optimal 
solutions. Having a secondary criterion choose from 
the co-optimals is preferable to returning an arbitrary 
optimal solution under the first objective, maybe even 
unaware that there were alternatives.
Lexicographic and parameterized additive combina-
tion are incomparable with respect to their scope. ∗lex 
can combine scoring schemes of different types, but 
cannot optimize a sum of two scores even when they 
have the same type. ∗+� does exactly this. Only when 
both scores have the same type, there may be a choice 
of � big enough such that ∗+� emulates ∗lex.

•  • Pareto combination (ψ1 ∗Par ψ2) must be used in the 
case when there is no meaningful way to combine 
or prioritize the two objectives. It may also be useful 
and more informative in the previous scenarios, pro-
ducing a set of “optima” and letting the user decide 
the balance between the two objectives a posteriori.

Pareto optimality is defined via (non-)domination. An 
element (a, b) ∈ (A× B) dominates another one, if it is 
strictly better in one dimension, and not worse in the 
other. The solution set one computes is the Pareto front 
of {(σ1(x), σ2(x))|x ∈ X}. Taking ϕ1 and ϕ2 as maximiza-
tion, the Pareto front operator pf  is defined on subsets S 
of A× B, ordered by >A and >B, respectively, as follows: 

A set without dominated elements is called a Pareto set. 
Naturally, every subset of a Pareto set is a Pareto set, too. 
We define the Pareto combination as 

The Pareto combination ∗Paris more general than both ∗+�  
and ∗lex. This is obvious for ∗lex, and is also obvious for ∗+� 
when the two scores are of different type. It even holds for 
∗+� when they have the same type, but becomes more sub-
tle. It can be shown that ∗Par produces all optima that can 

(3)

(ψ1 ∗lex ψ2)(X) = (ϕ1,ϕ2)({(σ1(x), σ2(x))|x ∈ X}),

(4)
pf(S) = {(a, b) ∈ S | � ∃(a′, b′) ∈ S\{(a, b)}

such that (a′, b′) dominates (a, b)}.

(5)(ψ1 ∗Par ψ2)(X) = pf{(σ1(x), σ2(x))|x ∈ X}.
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be produced by ∗+� for some �, but there can also be others. 
See Theorem 3.1, and we also refer the reader to the careful 
treatment of this intriguing issue in Schnattinger’s thesis [9].

The combinations ∗+ and ∗+� are common practice and 
merit no theoretical investigation, as they reduce the 
problem to the single objective case. The lexicographic 
combination ∗lex has been studied in detail in [10]. Aside 
from its obvious use with primary and secondary objec-
tives, ∗lex has an amazing variety of applications when of 
one the two objectives does not perform optimization, 
but enumeration or summation (cf. above). Furthermore, 
when σ1 computes a classification attribute from the can-
didates and ϕ1 is the identity, it gives rise to the method 
of classified dynamic programming used, e.g. in probabil-
istic RNA shape analysis [11].

Here, we will take a deeper look into Pareto optimi-
zation, which has been used in bioinformatics mainly 
in a heuristic fashion. It naturally arises with the use 
of genetic algorithms. They traverse the search space 
improving candidates in a certain dimension, returning 
a solution when (say) σ1(x) can no longer be increased 
without decreasing σ2(x). A genetic algorithm uses dif-
ferent starting points and produces a heuristic subset of 
the Pareto front of the search space. This approach was 
used by Zhang et al. [12], who compute the Pareto front 
to solve a multiple sequence alignment problem. Cofol-
ga2mo  [13] is a structural RNA sequence aligner based 
on a multi-objective genetic algorithm. Cofolga2mo does 
not look strictly at the Pareto optimal solutions, but 
produces a heuristic subset of the (larger) set of “weak” 
Pareto optimal solutions. The objective function is com-
puted on similarity sequence score and consensus struc-
ture score (under the base-pairing probabilities model). 
Only the score of the consensus structure is given, the 
structure itself is not shown.

A similar approach was used by Taneda  [14] to solve 
the inverse RNA folding problem by computing the 
Pareto front between the folding energy in the first 
dimension and the similarity score to the target in the 
second dimension. In [15], the authors compute the 
Pareto front for multi-class gene selection. They use a 
genetic algorithm to avoid the statistics aggregation in 
gene expression, which could lead to the “siren pitfall” 
issue [16] when using ∗+�.

Let us now turn to non-heuristic cases of Pareto 
optimization. A family of monotonous operators in 
preordered and partially ordered sets in dynamic pro-
gramming were defined in [17]. The author showed the 
principle of optimality applies to the maximal return 
in the case of Markovian processes. Such processes 
evolve stochastically over time and do not consume any 
input. We are aware of only a few cases where Pareto 

optimization has been advocated within a dynamic pro-
gramming approach. It was used by Getachew et al. [18] 
to find the shortest path in a network given different 
time cost/functions, computing the Pareto front. The 
Pareto-Optimal Allocation problem was solved with 
dynamic programming by Sitarz [19]. In the field of bio-
informatics, Schnattinger et al. [20, 21] advocated Pareto 
optimization for the Sankoff problem. Their algorithm 
computes (ψ1 ∗Par ψ2), where ψ1 optimizes a sequence 
similarity score and ψ2 optimizes base pair probabilities 
in the joint folding of two RNA sequences.

Libeskind-Hadas et al. [22] used an exact Pareto opti-
misation by using dynamic programming to compute 
reconciliation trees in phylogeny. They introduce two 
binary operators ⊕ and ⊗ which stand respectively for 
set union and set cartesian product, both followed by 
a Pareto filtration for their specific problem. They opti-
mized A ⊗ B, where A and B are sets, by sorting A and B 
in lexicographical order and keeping the resulting Pareto 
list sorted.

Pareto optimization in a dynamic programming 
approach raises four specific questions, which we will 
address in the body of this article.

	 (i)	 Does the Pareto combination of two objectives sat-
isfy Bellman’s principle of optimality, the prerequi-
site for all dynamic programming ("Pareto optimi-
zation in ADP")?

	(ii)	 How to compute Pareto fronts both efficiently and 
incrementally, when proceeding from smaller to 
larger sub-problems ("Implementation)?

	(iii)	 What is the empirical size of the Pareto front, com-
pared to its expected size ("Applications")?

	(iv)	 What observations can de drawn from a computed 
Pareto front in a concrete application ("Applica-
tions")?

Heretofore, the issues (i) and (ii) had to be solved ad-
hoc with every approach employing Pareto optimization. 
Motivated by and generalizing on the work by Schnat-
tinger et al., we strive here for general insight in the use 
of Pareto optimization within dynamic programming 
algorithms. To maintain a well-defined class of dynamic 
programming algorithms to which our findings apply, we 
resort to the framework of algebraic dynamic program-
ming (ADP) [23].

Here is a short preview of our findings: we can prove, 
in a well circumscribed formal setting, that the Pareto 
combination preserves Bellman’s principle of optimality 
(Theorem  3.3). Thus, it is amenable to implementation 
in a dynamic programming framework such as ADP as 
a “single keystroke” operation. We show that while the 



Page 4 of 20Saule and Giegerich. ﻿Algorithms Mol Biol  (2015) 10:22 

search space size is typically exponential, we can expect 
Pareto fronts of linear size. This is confirmed empiri-
cally by our implementations of ∗Par (covering several 
algorithmic variants), and we observe that this is actually 
more efficient that producing a similar number of (near-
optimal) solutions with other means. Finally, using our 
implementations in the field of RNA structure prediction 
in some (albeit preliminary) experiments, we find that a 
small Pareto front in joint alignment and folding may be 
indicative of a homology relationship, and elucidate dif-
ferences in the MFE and MEA scoring schemes for RNA 
folding that could not be observed before.

Pareto sets: properties and algorithms
We introduce Pareto sets together with some basic math-
ematical properties and algorithms ("Pareto sets and the 
Pareto front operator", "Worst case and expected size of 
Pareto fronts"). We restrict our discussion to Pareto opti-
mization over value pairs, rather than vectors of arbitrary 
dimension. Pareto optimization in arbitrary dimension is 
shortly touched upon in our concluding section.

The operations on Pareto sets that arise in a dynamic 
programming framework are threefold: taking the Pareto 
front of a set of sub-solutions ("Computing the Pareto 
front", "Pareto operator complexity, revisited"), joining 
alternative solution sets ("Pareto merge in linear time"), 
and computing new solutions from smaller subprob-
lems by the application of scoring functions ( "Pareto set 
extension").

Pareto sets and the Pareto front operator
We start from two sets A and B and their Cartesian prod-
uct C = A× B. The sets A and B are totally ordered by 
relations >A and >B, respectively. This induces a par-
tial domination relation ≻ on C as follows. We have 
(a, b) ≻ (a′, b′) if a >A a′ and b ≥B b′, or a ≥A a′ and 
b >B b′. In words, the dominating element must be larger 
in one dimension, and not smaller in the other. In X ⊆ C,  
an element is dominant iff there is no other element in X 
that dominates it. A set without dominated elements is a 
Pareto set. We can restate Eq. (4) in words as: The Pareto 
front of X, denoted pf(X), is the set of all dominant ele-
ments in X. The definition of pf  actually depends on the 
underlying total orders, and we should write more pre-
cisely pf>A,>B

, but for simplicity, we will suppress this 
detail until it becomes relevant.

The following properties hold by definition and are 
easy to verify:

(6)pf(X) ⊆X

(7)pf(X) = ∅ ⇐⇒ X = ∅

Note that pf  is not monotone with respect to ⊆. Idem-
potency of pf  (Eq. 8) justifies the alternative definition: A 
set X ⊆ C is a Pareto set if pf(X) = X.

Algorithmically, we represent sets as lists, without 
duplicate elements. If a list represents a Pareto set, we 
call it a Pareto list.

A sorted Pareto list, by definition, is sorted lexico-
graphically under (>A,>B) in decreasing order. Naturally, 
on sorted lists, we can perform certain operations more 
efficiently, which must be balanced against the effort of 
keeping lists sorted.

The intersection of two Pareto sets is a Pareto set 
because it is a subset of a Pareto set by (9). This does not 
apply for Pareto set union, as elements in one Pareto set 
may be dominated by elements from the other. Therefore, 
we define the Pareto merge operation

Clearly, 
p
∨ inherits commutativity from ∪.

Observation 1  (Pareto merge associativity)

We show that both sides are equal to 
U := pf(A ∪ B ∪ C).

Let x ∈ U. Clearly, x ∈ A ∪ B ∪ C, and � ∃x′ ∈ A ∪ B ∪ C 
such that x′ ≻ x. This holds if and only if there is no such x′ 
in A

p
∨B, nor in C, which is equivalent to x ∈ (A

p
∨B)

p
∨C. 

A
p
∨(B

p
∨C) = U follows by a symmetric argument.� �

As a consequence, we can simply write A
p
∨B

p
∨C. Note 

that in practice, it may well make a difference in terms of 
efficiency whether we compute a three-way Pareto merge 
as (A

p
∨B)

p
∨C or as pf(A ∪ B ∪ C).

Worst case and expected size of Pareto fronts
In combinatorial optimization, the search space is typi-
cally large, but finite. This allows for some statements 
about the maximal and the expected size of a Pareto 
front.

Observation 2   (Sorted Pareto lists) A Pareto list sorted 
on the first dimension based on >A (i) is also sorted lexi-
cographically by (>A,>B) in decreasing order, and at the 
same time (ii) is sorted lexicographically in increasing 
order based on (>B,>A).

(8)pf(pf (X)) =pf(X)

(9)pf(X ∩ Y )⊇pf(X) ∩ pf(Y )

(10)A
p
∨B := pf(A ∪ B)

(11)(A
p
∨B)

p
∨C = A

p
∨(B

p
∨C)
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This is true because when the list l is a Pareto list and 
(a, b) ∈ l, there can be no other element (a, b′) with b �= b′.  
Because >B is a total order, one of the two would domi-
nate the other. Therefore, (i) the overall lexicographic 
order is determined solely by >A, and (ii) looking at the 
values in the second dimension alone, we find them in 
increasing order of >B.� �

This implies a worst-case observation on the size of 
Pareto fronts over discrete intervals:

Observation 3   (Worst case size of Pareto set) If A and 
B are discrete intervals of size M, then any Pareto set over 
A× B has N ≤ M elements.

This is true because by Observation 2, each decrease 
in the first dimension must come with an increase in the 
second component.� �

Observation 4  On random sets, the expected size of 
the Pareto front of a set of size N follows the harmonic 
law [24, 25],

� �

Computing the Pareto front
We specify algorithms to compute Pareto fronts from 
unsorted and sorted lists. In our pseudocode, ε denotes 
the empty list, x : l denotes a list with first element x and 
remainder list l, and vice versa for l : x. The arrow → indi-
cates term rewriting or state transition.

From an unsorted list
 An obvious possibility is to sort the list by an O(N logN ) 
sorting algorithm, and then compute the Pareto front 
by one of the algorithms for sorted lists specified below. 
We call this implementation of the Pareto front operator 
pf sort.

However, it is also interesting to combine the two 
phases. We present a Pareto-version of insertion sort, 
asymptotically in O(N 2), but potentially fast in practice, 
because it effectively decreases N already during the sort-
ing phase by eliminating dominated elements.

Pareto front operator pf isort

(12)H(N ) =

N
∑

i=1

(1/i).

Input: Unsorted list.
Output: Sorted Pareto list (in decreasing order

according to the first component).

The definition of the remove function makes use of the 
inductive property that the list l is already a (sorted) 
Pareto list, and by our above observation, it is increasing 
in the second dimension. Hence, we remove one domi-
nated element in each application of the last rule, and 
terminate when the second rule is applied. All the steps 
of remove are productive in the sense that they reduce the 
list length for subsequent calls to into.

From a lexicographically sorted list
From a sorted list, the Pareto front can be extracted in 
linear time [26]. We describe such an algorithm by a state 
transition system, which transforms an input and an (ini-
tially empty) output list into empty input and the Pareto 
front as output and call it pf lex.

Since the input list is shortened by one element in each 
step, this algorithm runs in O(N).

A smooth Pareto front algorithm for the general case
We can adapt the algorithm pf lex to the general case 
by adding two clauses for elements that appear out of 
order{:}

We pf lex extended by the following rules to obtain 
pf smooth:

pf isort(ε) → ε

pf isort((a, b):l) → into((a, b),pf isort(l))
into((a, b), ε) → (a, b):ε

into((a, b), (x, y):l)
a>x
→ (a, b):remove(b, (x, y):l)

into((a, b), (x, y):l)
a=x,b>y
→ (a, b):remove(b, l)

into((a, b), (x, y):l)
a=x,b≤y
→ (x, y):l

into((a, b), (x, y):l)
a<x,b>y
→ (x, y):into((a, b), l)

into((a, b), (x, y):l)
a<x,b≤y
→ (x, y):l

remove(b, ε) → ε

remove(b, (x, y):l)
b<y
→ (x, y):l

remove(b, (x, y):l)
b≥y
→ remove(b, l)

Input: Sorted list.
Output: Sorted Pareto list.

pf lex(l) → l ε

(a, b):in ε → in (a, b):ε

(a, b):in out:(x, y)
y≥b
→ in out:(x, y)

(a, b):in out:(x, y)
y<b
→ in out:(x, y):(a, b)

ε out → STOP
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where the function up(x, (a, b)) inserts the new pair from 
the low end into the Pareto list x:

Like our first algorithm pf isort, pf smooth handles the gen-
eral case in quadratic time, but smoothly adapts to sorted 
lists, becoming the same as pf lex when all elements are in 
order.

Unsorted Pareto front computation
Our previous implementations all compute the Pareto 
front in the form of a sorted list. However, in dynamic 
programming, solution sets are created in various ways 
and arise not necessarily sorted, even when sub-solutions 
are given on sorted order. Hence, it may be attractive to 
consider an algorithm that does not bother about sorting 
at all, consumes and produces unsorted lists. We call this 
variant pfnosort.

This resembles pf isort without sorting the output, and 
hence the resulting list must always be traversed com-
pletely for each element added. Worst case complexity is 
O(N 2).

Pareto operator complexity, revisited
For a more detailed complexity analysis of the above 
algorithms, we must distinguish the size of input and 
output. In our dynamic programming applications, we 
will compute pf({f (x, y)|x ∈ X , y ∈ Y }), where f is some 
local scoring function. If the Pareto sets X and Y have size 

Input: Unsorted list.
Output: Sorted Pareto list.

pf smooth(l) → l ε

(a, b):in out:(x, y)
a>x,b≥y
→ (a, b):in out

(a, b):in out:(x, y)
a>x,b<y
→ in up(out, (a, b)):(x, y)

up(ε, (a, b)) → (a, b):ε

up(z:(x, y), (a, b))
(a,b)≻(x,y)

→ up(z, (a, b))
(x,y)�(a,b)

→ z:(x, y)
a>x
→ up(z, (a, b)):(x, y)
a<x
→ z:(x, y):(a, b)

Input: Unsorted list.
Output: Unsorted Pareto list.

pfnosort(ε) → ε

pfnosort(x:y) → into(x,pfnosort(y))

into((a, b), ε) → (a, b):ε

into((a, b), (x, y):l)
(a,b)≻(x,y)

→ into((a, b), l)

into((a, b), (x, y):l)
(x,y)≻(a,b)

→ (x, y):l

into((a, b), (x, y):l)
(x,y)⊀(a,b),(a,b)⊀(x,y)

→ (x, y):into((a, b), l)

n, then {f (x, y)|x ∈ X , y ∈ Y } is of size n2, while the final 
result can be expected to be smaller again.

For a list of size N, the result of pf  has size N in the 
worst case. In the expected case, however, output size 
is H(N) (Eq. 12), and because H(N ) ≈ lnN  [24], we can 
asymptotically treat it as O(logN ). Our observations are 
summarized in Table 1.

The operator pf lex has the best complexity in both 
worst and expected case, but it also makes the strongest 
assumptions. In the expected case, pf isort,pf smooth, and 
even pfnosort asymptotically catch up with pf sort, whose 
separate O(N logN ) sorting phase gets no benefit from 
the elimination of dominated elements.

In a dynamic programming approach, the pf  operation is 
executed in the innermost loop of the program, and there-
fore, constant factors are also relevant. In particular, pfnosort 
becomes interesting as it makes the weakest assumption by 
not requiring lists to be sorted at any time, in contrast to 
pf lex. We will return to this aspect with our applications.

Pareto merge in linear time
We now specify an implementation of the Pareto merge 
operation 

p
∨ which makes use of the fact that its argu-

ments are Pareto sets, represented as lists in decreasing 
order by the first component (and in increasing order by 
the second).

Input: two sorted Pareto lists.
Output: a sorted Pareto list.

[ ]
p
∨ y → y

x
p
∨[ ] → x

(a, b) : x
p
∨(c, d) : y → case (a, b)?(c, d) of

case (>,>) : (a, b) : (x
p
∨(dropWhile(�(u, v).v ≤ b), y))

case (>,=) : (a, b) : (x
p
∨ y)

case (>,<) : (a, b) : (x
p
∨((c, d) : y))

case (=,>) : (a, b) : (x
p
∨(dropWhile(�(u, v).v ≤ b), y))

case (=,=) : (a, b) : (x
p
∨ y)

case (=,<) : (c, d) : ((dropWhile(�(u, v).v ≤ d), x)
p
∨ y)

case (<,>) : (c, d) : ((a, b) : x
p
∨ y)

case (<,=) : (c, d) : (x
p
∨ y)

case (<,<) : (c, d) : ((dropWhile(�(u, v).v ≤ d), x)
p
∨ y)

Table 1  Complexities of pf operators

Operator Worst case Expected case

pfsort O(N logN) O(N logN)

pf isort O(N2) O(N logN)

pf lex O(N) O(N)

pfsmooth O(N2) O(N logN)

pfnosort O(N2) O(N logN)
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The function dropWhile(p, l) walks down a list l until 
it finds an element that does not satisfy the predicate 
p. It returns this element and the remaining list. We 
use it to eliminate elements smaller than b (resp. d) in 
the second dimension. At first glance, the combination 
of 

p
∨ and dropWhile reminds of an O(N 2) algorithm, 

but this is not true. For input lists of length n1 and n2,  
where N = n1 + n2, the output list has at most length N. 
It requires at most O(N) calls to 

p
∨. dropWhile requires 

k + 1 calls when it deletes k elements, with k ∈ O(N ). 
However, each element deleted by dropWhile safes a sub-
sequent call to 

p
∨. Overall, the number of steps remains 

within O(N).

Pareto set extension
Dynamic programming is governed by Bellman’s princi-
ple of optimality, which the objective function ψ = ϕ ◦ σ 
must obey. Choice must distribute over scoring, which is 
computed incrementally from smaller to larger sub-solu-
tions. The score σ is computed by a combination of local 
scoring functions {f }. In Pareto optimization, f takes for 
form f ((a, b)) = (fA(a), fB(b)). For each such function f,

must hold. (The above equation is formulated here for 
the simplest case: a unary function f and a choice func-
tion that returns a singleton result). This requirement 
implies the functions f to be strictly monotone in each 
argument that is a subproblem result. (The score func-
tions may take other arguments, too, which are taken 
from the problem instance).

By Pareto set extension we mean the computation of 
f (X) = {f (x)|x ∈ X}, f (X ,Y ) = {f (x, y)|x ∈ X , y ∈ Y }, 
and so on for more arguments. On the partially ordered 
set (A× B,≻), we call f strictly monotone if fA and fB are 
strictly monotone on A and B, respectively.

Lemma 2.1  Pareto set extension. The extension of a 
Pareto set under a strictly monotone, unary function f is 
a Pareto set.

Proof  We must show that f(X) holds no dominated ele-
ments. Assume f(X) holds a dominated element f ((a′, b′)),  
dominated by some f((a, b)). We have fA(a) >A fA(a

′) or 
fB(b) >B fB(b

′). Strict monotonicity implies a >A a′ or 
b >B b′, implying (a, b) ≻ (a′, b′) in contradiction to the 
prerequisite that X is a Pareto set.� �

The same reasoning does not apply for functions f 
with multiple arguments. Let fA = fB = (+). We have 
f ({(4, 1), (3, 2)}, {(3, 3), (1, 4)}) = {(7, 4), (5, 5), (6, 5), (4, 6)}, 
where (6, 5) ≻ (5, 5) and this extension is not a Pareto set.

(13)ϕ({f (x), f (y)}) = f (ϕ({x, y}))

Dressing up Pareto optimization for dynamic program-
ming, we must (i) formulate conditions under which 
ψ1 ∗Par ψ2 fulfills Bellman’s principle, and (ii) show how 
the Pareto front of the overall solution can be computed 
incrementally and efficiently from Pareto fronts of sub-
solutions, using a combination of the techniques intro-
duced above. Heretofore, these issues had to be resolved 
with every dynamic programming algorithm that uses 
Pareto optimization, such as the one by Sitarz or Schn-
attinger et  al.  [19, 20]. Striving for general results for a 
whole class of algorithms, we resort to the framework of 
ADP.� �

Pareto optimization in ADP
Algebraic dynamic programming (ADP) is a framework 
for dynamic programming over sequential data. Its 
declarative specifications achieve a perfect separation 
of the issues of search space construction, tabulation, 
and scoring, in clear contrast to the traditional formu-
lation of dynamic programming algorithms by matrix 
recurrences. Therefore, ADP lends itself to the investi-
gation of Pareto optimization in dynamic programming 
in general, i.e. independent of a particular DP algorithm. 
The base reference on ADP is [23] and the lexicographic 
product was introduced in [10]. ADP in practice is sup-
ported by implementations of the framework embedded 
in Haskell  [27] or as an independent domain-specific 
language and compiler in the Bellman’s GAP system [28, 
29]. The results in the present article suggest to extend 
these systems by a generic Pareto product on evaluation 
algebras, i.e. to provide the operator ∗Par as a language 
feature.

In this section, we recall the basic definitions of ADP 
(Signatures, evaluation algebras, and tree grammars), 
in order to relate the Pareto product to other product 
operators (Relation between Pareto and other products) 
and prove our main theorem (Preservation of Bellman’s 
principle by the Pareto product). We also show a hand-
crafted case of a Pareto product, and its reformulation in 
ADP (A hand-crafted use case of the Pareto product).

Algebraic framework
Signatures, evaluation algebras, and tree grammars
Let A be an alphabet and A∗ the set of finite strings over 
A. A signature � is a set of function symbols and a data 
type place holder (also called a sort) S. The return type of 
an f ∈ � is S, each argument is of type S or A. T� denotes 
a term language described by the signature � and T�(V ) 
is the term language with variables from the set V. A �
-algebra or interpretation A is a mathematical structure 
given by a carrier set SA for S and functions fA operating 
on this set for each f ∈ �, consistent with their specific 
type. Interpreting t ∈ T� by A is denoted A(t) and yields 
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a value in SA. An evaluation algebra A is a �-algebra aug-
mented with an objective function ϕA : [S] → [S], where 
square brackets denote multisets.

A regular tree grammar G over a signature � is defined 
as tuple (V ,A,Z,P), where V is the set of non-terminal 
symbols, A is an alphabet, Z is the axiom and P a set of 
production rules. Each production is of form

The regular tree language L(G) of G is the subset of T� 
that can be derived from Z by the rules in P.

ADP semantics
For input sequence z, the tree grammar G defines the 
search space of the problem instance

where yield is the function returning the alphabet sym-
bols decorating the leaves of the tree. (For our present 
purpose, the reader needs not worry about technical 
details and can take tree grammars as black-box genera-
tors of the search space).

Given a tree grammar G, an evaluation algebra A with 
choice function ϕA, and input sequence z, an ADP prob-
lem is solved by computing

While this declarative formulation suggests a three-phase 
computation—construct X, evaluate to A(X), choose from 
it via ϕA—an ADP compiler adds in the amalgamation of 
these three phases, as it is typical for dynamic program-
ming. For this dynamic programming machinery to work 
correctly, the algebra A must satisfy Bellman’s principle of 
optimality, stated in full generality [30] by the requirements

where the Xi denote multisets (reflecting that the same 
intermediate result can be found several times; this is 
why we write x ← X instead of x ∈ X) and fA is any func-
tion from the underlying signature. Note that for nullary 
functions fA (constants) (17) is trivially satisfied as it sim-
plifies to the identity

When the choice function maximizes or minimizes over a 
total order, Bellman’s principle implies the strict monoto-
nicity of the scoring functions (Lemma 3.2 below). When 

(14)v → t with v ∈ V , t ∈ T�(V ).

(15)Xz = {x ∈ L(G) | yield(x) = z},

(16)G(A, x) := ϕA([A(x) | x ∈ Xz])

(17)

ϕA[fA(x1, . . . , xk)|x1 ← X1, . . . , xk ← Xk ]

= ϕA[fA(x1, . . . , xk)|x1

← ϕA(X1), . . . , xk ← ϕA(Xk)]

(18)ϕA[X1 ∪ X2] = ϕA(ϕA(X1) ∪ ϕA(X2))

(19)ϕA[] = []

(20)ϕA([fA]) = ϕA([fA]).

only some maximal or minimal solution is sought, one 
could relax this condition to weak monotonicity, but when 
all optimal solutions, or even near-optimals are desired, 
monotonicity must be strict  [31]. The formulation given 
above is more general than the monotonicity require-
ment, as it also applies to arbitrary objective functions 
where there may be no maximization or minimization 
involved, such as candidates counting or enumeration.

Products of algebras
Combinations of multiple optimization objectives can be 
expressed in ADP by products of algebras. For all variants 
of the product operator (∗), we define

These functions compute independently scores in the 
Cartesian product of A and B. By contrast, objective 
functions are combined in different ways by different 
product operators.

The lexicographic product, for example, is an evalua-
tion algebra over � and the objective function of A∗lexB 
is:

In this formula, set(X) reduces the multiset X to a set. So, 
A∗lexB implements the lexicographical ordering of the 
two independent criteria as its objective. Aside from ∗lex,  
Bellman’s GAP also implements a Cartesian and (in a 
restricted form) a so-called “interleaved” product. To our 
knowledge, a Pareto product operator has not yet been 
considered for inclusion in ADP compilers.

Relation between Pareto and other products
As we show next, Pareto optimization can rightfully be 
considered as the most general of the combinations dis-
cussed here. This holds strictly in the sense that from the 
Pareto front, the solutions according to the other combi-
nations can be extracted.

Theorem  3.1  (Pareto front subsumption) For any 
grammar G, scoring algebras A and B satisfying Bellman’s 
principle, and input sequence x, consider the algebra com-
binations A ∗+� B, A ∗lex B, and A ∗Par B.

(1)		 G(A ∗+� B, x) = (ϕA ∗+ �ϕB)(G(A ∗Par B, x))

(2)		 G(A ∗lex B, x) = (ϕA ∗lex ϕB)(G(A ∗Par B, x))

Proof   
(1)		 Let t be the optimal candidate chosen by the left-

hand side. Its score is �A(t)+ (1− �)B(t), by (7) 

(21)
fA * B((a1, b1), ..., (am, bm))

= (fA(a1, ..., am), fB(b1, ..., bm))

ϕA∗lexB[(a1, b1), . . . , (am, bm)]

= [(l, r)]|l ∈ set(ϕA[a1, . . . , am]), r ← ϕB[r
′|(l′, r′)

← [(a1, b1), . . . , (am, bm)], l
′ = l]
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and by the definition of (∗+�). This score is maxi-
mal. Hence, candidate t must be in the Pareto front 
computed on the right-hand side, represented by 
the Pareto-optimal pair (A(t),  B(t)). It could only 
be missing in the Pareto front if there was another 
candidate t ′ dominating t, i.e. with A(t ′) > A(t) and 
B(t ′) ≥ B(t) or vice versa. But then, we would have 
�A(t ′)+ (1− �)B(t ′) > �A(t)+ (1− �)B(t), con-
tradicting the optimality of t. Conversely, no candi-
date t ′′ in the Pareto front can score strictly higher 
that t, because then, this candidate would have been 
returned instead of t.

(2)		 The same reasoning applies to the lexicographic 
combination.

The above argument is formulated for an appli-
cation of the choice function to a complete search 
space of candidates. By virtue of Bellman’s princi-
ple satisfied by A, B, and their products, the argu-
ment inductively holds (by structural induction on 
the candidates involved) when the choice functions 
are applied at intermediate steps during the dynamic 
programming computation. That A ∗Par B also sat-
isfies Bellman’s principle will be shown in our main 
theorem.� �

A hand‑crafted use case of the Pareto product
Any dynamic programmer can hand-craft a Pareto 
product A∗ParB from two evaluation algebras. This 
requires a substantial programming and debugging 
effort. Our intention is that this human effort can 
avoided by a general technique delegated to an ADP 
compiler. This idea was inspired by the work of Schn-
attinger et  al.   [20, 21]. Their algorithm computes via 
dynamic programming the Pareto front for the “Sankoff 
problem” of joint RNA sequence alignment and con-
sensus structure prediction  [3]. This is their algorithm 
in facsimile:

(22)

S(i, j, k , l) = Pareto-Max






























s +−→γ : s ∈ S(i, j − 1, k , l)
∪ s +−→γ : s ∈ S(i, j, k , l − 1)

∪ s +−→σ (Xj ,Yl) : s ∈ S(i, j − 1, k , l − 1)

�

h,q







s + d
s ∈ S(i, h− 1, k , q − 1)

d ∈ D(h, j, k , l)

D(i, j, k , l) = s +
−→
�X

i,j +
−→
�Y

k ,l : s ∈ S(i, j − 1, k , l − 1)

S(i, i, k , l) = −→γ (l − k) : l > k

S(i, j, k , k) = −→γ (j − i) : j > i

S(i, i, k , k) =
−→
0

Here, 
−→
�X

i,j is the probability that i and j be paired in the 
sequence X. This is computed independently of the align-
ment score, which is composed of −→γ , the gap penalty and 
−→σ (Xj,Yl), the alignment score between the jth base in X 
and the lth base in Y.

The authors demonstrated their algorithm respects Bell-
man’s principle and correctly computes the Pareto front of 
its search space. The proof essentially uses the fact that 
both scores are additive. They showed that all Pareto solu-
tions are generated by the algorithm and that no Pareto 
solutions are lost during the computation. They based 
their proof on monotonicity in order to show that the 
three first terms of the computation of S(i, j, k, l) consist in 
summing constant vectors to the current solutions, which 
leads to the conservation of the dominant solutions. They 
also showed that the last term needs only dominant solu-
tions contribute to the final result. So, previous deletions 
of dominated solutions do not lead to a loss of Pareto 
overall optima. However, in this problem formulation, the 
general nature of the proof is not easily recognized. We 
now reformulate this algorithm in the algebraic frame-
work. The correctness of the Pareto optimization then fol-
lows from our main theorem below.

Sankoff problem signature and algebras
The signature and algebras used to compute base 
pair probabilities (PROB) and similarity between two 
sequences (SIM) are presented in Table 2.

The function �(x, y) returns the probability that the 
bases x and y be paired. These base pair probabilities are 
computed as a preliminary step. The functions σ(x, y) 
returns 1 if a = b and else, it returns 0. The function γ () 
returns the penalties for insertion or deletion, here it is 
−3. The line marked (*) corresponds to the Eq. 22 of the 
original algorithm.

Tree grammar GSankoff  for the Sankoff problem
For the Sankoff problem, there are two input sequences, 
refered to in the form 〈x, y〉.

Table 2  Two evaluation algebras for the Sankoff problem

SIGNATURE PROB SIM

nil = 0 0

NoStr (x, y) = x + y x + y

Split (x, y) = x + y x + y

Pair (〈a, b〉, x , 〈c, d〉) = x + �(a, c) + �(b, d) x + σ(a, b) + σ(c, d) (*)

Ins (〈ǫ , b〉) = 0 γ (b)

Del (〈a, ǫ〉) = 0 γ (a)

Match (〈a, b〉) = 0 σ(a, b)

ϕ = Max Mx
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Calling the Sankoff program
Calling either GSankoff (SIM, 〈x, y〉) or 
GSankoff (PROB, 〈x, y〉), we either align for maximal simi-
larity, or for maximal base pairing. To solve the problem 
with Pareto optimization, we call

Preservation of Bellman’s principle by the Pareto product
In this section we present our main theorem, showing 
that the Pareto product always preserves Bellman’s prin-
ciple. For the Pareto product to apply, we have the pre-
requisite that algebras A and B both maximize over a 
total order. In this situation, Bellman’s principle special-
izes as follow:

Lemma 3.2  If ϕ maximizes over a total order, Eq. (17) 
implies that all k-ary functions f for k > 0 are strictly 
monotone with respect to each argument.

Proof  Assume Eq. (17) holds and max stands for ϕ.  
If strict monotonicity was violated, there would be a 
value pair such that x > y, but f (..., x, ...) ≤ f (..., y, ...),  
with all other arguments of f unchanged. Then 
max[f (max[x, y])] = [f (x)], whereas max[f(x),  f(y)] is 
either [f(x), f(y)] if both are equal, or otherwise it is [f(y)]. 
In either case, (17) is violated.� �

Theorem  3.3  The Pareto product preserves Bellman’s 
principle.

Proof  Under the premise that algebras A and B satisfy 
Bellman’s principle of optimality, we must show that 
A∗ParB satisfies Eqs. (17–19). The algebra functions in the 
product algebra are fA * B, cf. (21), and the choice func-
tion is pf>A,>B

.

pf>A,>B
 satisfies (19). This is a trivial consequence of 

Eq. (6).
pf>A,>B

 satisfies (18). We have to show that

where pf  is short for pf>A,>B
. W.l.o.g assume x ∈ X. The 

element x ∈ X ∪ Y  is in pf(X ∪ Y ) if and only if it is not 

GSankoff (SIM∗ParPROB, �x, y�).

pf(X ∪ Y ) = pf(pf(X) ∪ pf(Y ))

dominated by any other element in X ∪ Y . This implies 
x ∈ pf(X), and x is not dominated by an element in 
pf(Y ) ⊆ Y . Hence, x ∈ pf(pf(X) ∪ pf(Y )). Conversely, 
x ∈ X ∪ Y  is not in pf(X ∪ Y ) if and only if it is domi-
nated by some element z ∈ X ∪ Y . Because of transitivity 
of ≻, it will be also dominated by a dominant element in 
X or Y, which is a member of pf(X) or pf(Y ), respectively. 
Hence, x is not in pf(pf(X) ∪ pf(Y )).
pf>A,>B

 satisfies (17). If fA∗Parb is a constant (nullary) 
function, it satisfies (17) because of (20).

For the other functions, we have to show that

with pf short for pf>A,>B
. It is clear that the right-hand side 

is a subset of the left-hand side, so we only have to show 
that no dominating elements are lost. From Lemma 3.2 we 
know that fA and fB are strictly monotone in each argu-
ment position. Now consider fA * B(..., (ai, bi), ...). With 
all other arguments equal, fA(..., ai, ...) ≻ fA(..., ai’, ...) 
if and only if ai ≻ ai’, and the same for fB. We con-
clude that fA * B(..., (ai, bi), ...) ≻ fA * B(..., (ai’, bi’), ...) if 
and only if (ai, bi) ≻ (ai’, bi’), and hence fA * B is strictly 
monotone with respect to the partial ordering ≻. If 
(ai, bi) ≻ (ai’, bi’) in Xi and hence (ai’, bi’) /∈ pf(Xi), then 
the element fA * B(..., (ai’, bi), ...) will not be considered on 
the left-hand side. But anyway, it would be dominated by 
fA * B(..., (ai, bi), ...) and could not enter the overall result. �

While our theorem guarantees that (A∗ParB) satisfies 
Bellman’s principle under the above prerequisites, an 
ADP compiler providing the ∗Par operation on evaluation 
algebras cannot check these prerequisites. In general, it 
cannot prove that ϕA and ϕB maximize over a total order, 
nor can it ensure strict monotonicity. However, there 
may be obvious abuses of ∗Par that a compiler can safe-
guard against.

Implementation
The Pareto product can be implemented simply by pro-
viding the Pareto front operator ϕ = pf>A,>B

 as the 
choice function for the algebra product (A∗ParB). In this 
case, the results of pf>A,>B

 can be represented as sorted 
or unsorted lists. A more ambitious implementation 
would monitor the status of intermediate results as lexi-
cographically sorted lists, to take advantage of the more 
efficient Pareto front operator pf lex or pf smooth on sorted 
lists.

We will describe these implementation options by 
means of an example production which covers the rele-
vant cases. A tree grammar describing an ADP algorithm 
has an arbitrary number of productions, but their mean-
ing is independent.

pf([fA * B(x1, . . . , xk)|x1 ← X1, . . . , xk ← Xk])

= pf([fA * B(x1, . . . , xk)|x1 ← pf(X1), . . . , xk ← pf(Xk)])
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Let f, g, and h be a binary, an unary and a nullary scor-
ing function from the underlying signature. A tree gram-
mar rule such as 

specifies the computation of partial results for a sub-
problem of type W from partial results already computed 
from subproblems of types X and Y, of type Z, or for an 
empty subproblem via a (constant) scoring function h. It 
is important to have a binary operation in our example, 
as this type of Pareto set extension does not perserve the 
Pareto property, and hence is a more difficult case (cf. 
Lemma 2.1). Beyond this, signature functions may have 
arbitrary arity, and trees on the right-hand side can have 
arbitrary height. These cases can be handled in analogy 
to what we do next.

We use the nonterminal symbols also as names for the 
list of subproblem solutions derived from them. Hence, 
we compute a list of answers W = [w1,w2, ...] from 
X = [x1, x2, ...] and so on. Note that h denotes a con-
stant list, in most cases a singleton, but not necessarily 
so. We do not have to worry about indexing subproblems 
and dynamic programming tables, as this is added by the 
standard ADP machinery.

Standard implementation
Candidate lists are created by terminal grammar rules, by 
extension of intermediate results with scoring functions, 
and by union of answers from alternative rules for the 
same nonterminal.

We describe the standard implementation by three 
operators ⊗,⊕, #, respectively pronounced “extend”, 
“combine” and “select”.

Let C = (A× B), and let L denote the powerset of C. 
Elements of L are simply lists over C in our implementa-
tion. (L → L) denotes functions over subsets of C, such 
as our choice functions. Our operators have the following 
types:

The type of ⊗ is overloaded according to the arity of its 
function argument, which is arbitrary in general. For our 
exposition, we need only arities 1 and 2. (This flexible 

(23)# :L× (L → S) → L

(24)⊕ :L× L → L

(25)⊗ :L× (C → C) → L

(26)⊗ :L× L× (C × C → C) → L

arity overloading explains why we do not use infix notion 
with ⊗.) The operators are defined as follows:

Operator # simply applies the choice function to a list l of 
intermediate results (27), generally the function ϕ, and pf  
in our specific case. We append lists of solutions with ⊕ 
(28), and ⊗ extends solutions from smaller subproblems 
to bigger ones (29, 30). Note that there is no require-
ment on the constant scoring function h. Typically, such 
a function generates an empty list or a single element 
anyway. In general however, it may produce a list of alter-
native answers, and this need not be a Pareto list in the 
standard implementation.

Using this set of definitions, our example production 
describes the computation of

Any of our variants pf sort,pf isort,pfnosort can be used for 
pf , but not the linear-time pf lex, because in (28) and (29), 
lists come out unsorted.

Lexicographically sorted implementation
This implementation defines the operators ⊕ and ⊗ such 
that they keep intermediate lists sorted. As a conse-
quence, the Pareto front operator pf  can be replaced by 
the more efficient pf lex.

The function merge merges two sorted lists in linear time, 
such that the result is sorted, and foldrmerge does so iter-
atively for a list of sorted lists.

We show by structural induction that all intermediate 
solution lists are sorted. Eq. (35) covers the base case. It 
requires that a constant function such as h produces its 
answer list in sorted form. Now consider the recursive 
cases, assuming that lists X and Y are sorted. In Eq. (34), 

(27)l # pf = pf(l)

(28)l1⊕ l2 = l1++ l2

(29)⊗(f ,X ,Y ) = [f (x, y) | x ∈ X , y ∈ Y ]

(30)⊗(g ,X) = [g(x) | x ∈ X]

W = (⊗(f ,X ,Y ) ⊕ ⊗(g ,Z)) ⊕ h) # pf .

(31)l # pf = pf lex(l)

(32)l1⊕ l2 = merge(l1, l2)

(33)
⊗(f ,X ,Y ) = foldrmerge([[f (x, y) | x ← X] | y ∈ Y ])

(34)⊗(g ,X) = [g(x) | x ← X]

(35)h = sort(h)
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the constructed list is sorted. This follows from the pre-
requisite that algebras A and B satisfy Bellman’s principle, 
and hence g is monotonic in both algebras. Thus, given 
a sorted list X, the list [g(x)|x ∈ X] is also sorted lexico-
graphically (Lemma 2.5). In Eq. (33), the above monoto-
nicity argument holds for each of the lists [f (x, y)|x ∈ X] 
for fixed y. Lists for different y ∈ Y  are merged, which 
results in an overall sorted list. This also takes linear time. 
In Eq. (32), two sorted lists are merged into a sorted list. 
In Eq. (31), pf lex finds a sorted list and reduces it to a 
Pareto list, which by definition is sorted (cf. 2.2).

Pareto‑eager implementation
The standard implementation applies a Pareto front 
operator after constructing a list of intermediate results. 
This list is built and combined from several sublists. By 
our main theorem, the Pareto front operation distributes 
over combinations of sublists, so we can integrate the # 
operator into the ⊕ operator. This has the effect that sizes 
of intermediate results are reduced as early as possible. 
We define our operators as follows:

Again we argue by structural induction over the candi-
dates in the search space. As the base case, h must produce 
Pareto lists as initial answers (Eq.  40). The 

p
∨ operation 

in Eq. (37) can assume argument lists to be Pareto lists 
already. In Eq. (39), the new list must be a Pareto list due 
to the extension Lemma 2.5. In Eq. (38), the same holds 
for each intermediate list [f (x, y)|x ∈ X] for each y, and we 
can merge them successively. Finally, the # operator skips 
the computation of the Pareto front, as by induction, all 
the lists that arise at this point are Pareto lists already.

In "Pareto merge in linear time", we showed that 
p
∨ 

can be implemented in O(N), and therefore, each step 
in the Pareto-eager implementation takes linear time. 
This means that Pareto optimization incurs no intrinsic 
overhead, compared to a single objective which returns 
a comparable number of results. This is an encouraging 
insight, but leaves us one aspect to worry about: The size 
N of the Pareto front which is computed from an input 
sequence of length n.

(36)l # pf = l

(37)l1⊕ l2 = l1
p
∨ l2

(38)

⊗(f ,X ,Y ) = foldr
p
∨[] [[f (x, y) | x ← X] | y ← Y ]

(39)⊗(g ,X) = [g(x) | x ← X]

(40)h = pf(h)

Runtime impact of Pareto front size
For a typical dynamic programming problem in sequence 
analysis, an input sequence of length n creates an expo-
nential search space of size O(2n). Still, by tabulation and 
re-use of intermediate subproblem solutions, dynamic 
programming manages to solve such a problem in poly-
nomial time, say O(nr). The value of r depends on the 
nature of the problem, and when encoded in ADP, it is 
apparent as a property of the grammar which describes 
the problem decomposition [23]. We have r = 2 for sim-
ple sequence alignment, r = 3 for simple RNA structure 
prediction, r = 4 to r = 6 for RNA structures including 
various classes of pseudoknots, and so on. This all applies 
when a single, optimal result is returned.

For ADP algorithms returning the k best results, com-
plexity must be stated more precisely as O(nrkr−1). As 
long as k is a constant, such as in k-best optimization, 
this does not change the asymptotics. However, comput-
ing all answers within p percent of the optimal score may 
well incur exponential growth of k. Probabilistic shape 
analysis of RNA has a runtime of O(n3αn) with α ≈ 1.1, 
because the number of shape classes grows exponentially 
with sequence length [11, 32].

With Pareto optimization, the size k of the answer set 
is not fixed in beforehand. The size of the Pareto front, 
for a set of size N, is expected to be H(N) (cf. "Pareto sets 
and the Pareto front operator"). Using N ∈ O(2n) and 
H(N ) ≈ ln(N )   [24], we can expect an effective size of 
the result sets in O(n). Taking all things together, we can 
compute the Pareto front for an (algebraic) dynamic pro-
gramming problem in O(n2r−1) expected time, where n 
is input length and r reflects the complexity of the search 
space.

In applications, the size of the Pareto front needs not 
to follow expectation. We may achieve efficiency of 
O(nrkr−1) where k ≪ n. Fortunately, in the application 
scenario of the next section, we find ourselves in this pos-
itive situation.

Applications
Evaluation goals
In our applications reported here, we persue a twofold 
goal. (i) Our foremost goal is to determine whether 
Pareto optimization is practical in some real-world 
applications. This includes the assessment of constant 
factors of alternative implementations of the Pareto 
front operator pf . And (ii), we want to demonstrate 
that Pareto optimization allows us to draw interest-
ing observations about the relative behaviour of two 
scoring schemes competing for the same purpose. 
Our applications are taken from the domain of RNA 
secondary structure prediction. One is the Sankoff 
problem of simultaneous alignment and folding of 
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two RNA sequences, introduced already above. The 
two scoring systems are sequence similarity versus 
base pair probabilities. Our second application choice 
is the single sequence structure prediction problem, 
using two alternative scoring functions. One is MFE, 
the classical minimum free energy folding approach, 
based on a thermodynamic nearest-neighbour model 
with about thousand parameters. The other one is 
MEA, maximum expected accuracy folding, which is 
a recent refinement of MFE folding. By this method, 
the MFE approach is first used to calculate base 
pair probabilities for the folding space of the given 
sequence, and in a second phase, the structure is 
determined which maximises the accumulated base 
pair probabilities.

Our first hypothesis addresses efficiency issues.

Hypothesis A  Pareto optimization in a realistic sce-
nario is not more expensive than other approaches calcu-
lating a similar amount of alternative answers.

We assess hypothesis A in "Runtime and memory 
measurements" by computing the trade-off between 
the different Pareto front implementations described 
in "Implementation". Emprical Pareto front sizes are 
reported in "Pareto front size". We use the MFE versus 
MEA application for all these measurements. An inter-
esting occurence of worst case behaviour for Schnat-
tinger’s variant of the Sankoff algorithm is analyzed in 
"Anti-correlation and real worst case behaviour".

For a more biologically inspired assessment, we chose 
the Sankoff problem to test

Hypothesis B  A small Pareto front is indicative of a 
strong biological signal of homology.

This assessment is shown in "Pareto solutions in the 
Sanko algorithm".

We try to get insight into the relationship of the struc-
tures that make up the Pareto front, coming back to the 
application of MFE versus MEA folding.

Hypothesis C  The Pareto front of MFE versus MEA is 
comprised of a small number of macrostates, accompa-
nied by essentially the same corona of microstates.

Akin to Pareto optimization, abstract shape analysis of 
RNA can give us an “interesting” set of alternative fold-
ings  [11]. They are characterized by the best-scoring 
structures having different abstract shapes. This idea 
being perfectly orthogonal to Pareto optimization, we 
give some attention to the question how abstract shapes 
and Pareto optima are related. Here we test the

Hypothesis D  Abstract shape analysis and Pareto 
optimization produce about the same set of alternative 
“interesting” structures.

In the evaluation of hypotheses A–D, our test data 
for the MFE/MEA application consists of 331 RNA 
sequences of length 12–356 nucleotides, extracted from 
the full data set used in [33]. The data set is available with 
the supplementary material. For the Sankoff problem, we 
use sequences from two Rfam families. We use n1 = 19 
PreQ1 RNA sequences (SSTRAND : RF_00522) and 
n2 = 30 IRE RNA sequences (SSTRAND : RF_00037)  
extracted from the core data set of the Rfam database 
[34].

Algorithms implemented
We give a short sketch of how our algorithms are imple-
mented. For each application, we can re-use grammars 
and algebras from the RNAshapes repository  [35]. It is 
just the Pareto optimization which is new.

For the standard implementation, we tested the vari-
ants pf isort, pf sort, pf smooth, and pfnosort (cf. "Computing 
the Pareto front"). Fortunately, the standard implementa-
tion can be mimicked in GAP-L without changing lan-
guage or compilera. However, we can not evaluate the 
Pareto-eager implementation based on pf lex with Bell-
man’s GAP, as this would imply extension of GAP-L and 
modification of the sophisticated code generation in the 
Bellman’s GAP compiler.

In order to compare the Pareto-eager implementation 
to the others, we resorted to an implementation of ADP 
as a Haskell-embedded combinator language [23]. First, 
we added the variants pf isort, pfnosort, and pf smooth for 
the standard implementation. Then, we designed a modi-
fied set of combinators, corresponding to the outline 
in "Pareto-eager implementation". (For the expert: The 
key idea is to exploit monotonicity and compute the set 
{f (xi, yj)} of intermediate results represented as nested 
lists in the form [[f (xi, yj)|j = 1, ...]|i = 1, ...]. For fixed xi, 
the sublist [f (xi, yj)|j = 1, ...] is sorted if the list [y1, , , , ] is. 
This is ensured by structural induction and strict mono-
tonicity of f on its second argument position). While this 
implementation is significantly slower than Bellman’s 
GAP code, it suffices to compare the Pareto-eager imple-
mentation to its alternatives.

We use available building blocks for the independent 
optimizations: the RNA folding grammar OverDangle 
(avoiding lonely base pairs) and the evaluation algebras 
MFE and MEA. In MFE and MEA, we replace their objec-
tive functions by ones that report the k best (near-opti-
mal) structures, where k is a parameter. This allows us to 
run OverDangle(MFE(k), x) and OverDangle(MEA(k), x), 
with the choice of k explained further below.
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The size of the folding space X for a given sequence x 
is independent of the optimization we perform. The Bell-
man’s GAP compiler can automatically produce a count-
ing algebra COUNT, that determines the size of the 
folding space. We run OverDangle(COUNT, x) on all our 
test data to get concrete folding space sizes, to be related 
to the sizes of their Pareto fronts.

The choice of k for a fair evaluation is not obvious. 
Selecting k = 1 for MFE and MEA would be unfair, as 
the Pareto front provides much deeper information. We 
considered using k = E(|X |, |x| = n), but the expected 
size of the search space is not a good predictor, as |X| 
varies strongly with the sequence content of x. There-
fore, we first run Pareto optimization on x, record the 
size of the Pareto front for this call, and then set k to this 
number when computing OverDangle(MFE(k),  x) and 
OverDangle(MEA(k), x).

Runtime and memory measurements
This section and the next are devoted to our

Hypothesis A  Pareto optimization in a realistic sce-
nario is not more expensive than other approaches calcu-
lating a similar amount of alternative answers.

We evaluate the performances of the Pareto front com-
putation, using pf isort(X), pf sort(X), pf smooth(X), and 
pfnosort(X). Note that all compute the same Pareto front, 
and hence have the same k in their asymptotics. For a fair 
comparison with two single-objective algorithms MFE 
and MEA, we use their versions MFE(k) and MEA(k), 
computing the k best structures under each objective. 
Here, k is set to the actual Pareto front size for the given 
input (which, of course, is only known because before we 
also compute the Pareto front with the other algorithms). 
All programs are compiled by the Bellman’s GAP com-
piler using the same optimization options [29].

In Table  3 we show computation time and memory 
consumption, accumulated over all sequences and spe-
cifically for the longest sequence. These are our main 
observations:

1.	 In terms of runtime, we find that the Pareto opti-
mization performs not only better than the sum of 
the two independent optimizations, but also bet-
ter than each of them individually. We attribute this 
to the fact that the Pareto algorithm adjusts itself 
to the size of the Pareto front, and this size tendsb 
to be smaller than k for small sub-problems. The 
search space itself, however, is exponentially larger 
than the Pareto front, and even on small sub-words 
it provides k near-optimals for MFE(k) and MEA(k) 
to spend computation on. This effect is strongest for 

our longest sequence, where k = 38 and the ratio of 
(MFE(k)+MEA(k))/pfnosort ≈ 45.

2.	 The average case behaviour of pfnosort(X) is supe-
rior to all the sorting implementations of pf . This 
is an unexpected and interesting observation. We 
attribute this to a positive randomization effect. 
Comparing a new element to the extremal points of 
the Pareto front, maximal in one but minimal in the 
other dimension, is unlikely to establish domination. 
This what always happens first with sorted interme-
diate lists, and the element will walk along towards 
the middle of the list until it eventually is found to 
be dominated. In unsorted lists, a non-extremal ele-
ment that dominates the new entry will, on average, 
be encountered earlier.

3.	 For evaluating the Pareto-eager strategy, we used 
the Haskell-embedded implementation. In the func-
tional setting, pf isort required the least garbage col-
lections and performed best. Somewhat unexpect-
edly, the eager strategy was consistently a bit slower 
than pf isort and close to pfnosort, slower only by a 
factor varying between 1.0 and 1.2. It was faster than 
pf smooth, in turn by a factor between 1.1 and 1.5.

4.	 Memory consumption of Pareto optimization is 
consistent over different implementations of pf . It 
is higher than either MFE(k) or MEA(k) alone, but 
clearly less than the sum of MFE(k) and MEA(k). This 
is better than expected, because after all, it solves 
both problems simultaneously.

Note that the above values are measurements of con-
stant factors, and averaged over many runs. So, pfnosort 
is not always faster than pf smooth. In fact, we have seen 
cases where pfnosort is faster than pf smooth for pf>A,>B

, 
but slower for pf>A,<B

 (where in the latter case, we switch 
from maximization to minimization in algebra B).

Table 3  Runtimes and  memory requirements for  MFE(k), 
MEA(k) (where k is the empirical Pareto front size for  a 
given  input), and  their Pareto product (MFE ∗Par MEA), 
accumulated over 331 sequences (left) and for the longest 
sequence (n = 356, k = 38, right)

The computations were performed by using Bellman’s GAP.

Algebra Time (min) Memory (GB) Time (min) Memory (GB)

MFE(k) alone 71 163.68 5 1.16

MEA(k) alone 61 153.51 5 1.05

MFE(k) + MEA(k)132 (+) 163.68 (max) 10 1.16 (max)

(MFE∗ParMEA)

 pfnosort 8 197.28 0.22 1.28

 pfsmooth 9.5 192.79 0.5 1.28

 pfsort 18 271.21 1 1.28

 pf isort 32 250.21 3 2.11
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Pareto front size
The size of the Pareto front is of critical practical impor-
tance. Pareto front sizes in the hundreds, even for 
sequences of moderate length, would be prohibitive. The 
number of solutions in the Pareto front depends on the 
data. Not only on the sequence length and the size of the 
search space in our RNA folding scenario, but also on the 
actual structures found. For example, if there is a very 
prominent structure in the folding space, it will dominate 
many other solutions in both objectives, and the Pareto 
front will be small. On the other hand, in one case we 
observed a Pareto front of size ≈ |x| with the program of 
Schnattinger et al. on a Sankoff-style algorithm, an effect 
we will study in detail below.

Figure  1 shows our measurements. We observe the 
following:

• • Pareto front sizes are quite moderate, ranging round 
10 for n = 100, 15 for n = 200, up to 45 for n = 274

. Specifically, our longest sequence (n = 356) has a 
Pareto front of size 38.

• • Variance is high (as expected), and because of the 
strong variation, we did not fit a line through our 
measurement points. However, they are all domi-
nated by the expected size of the Pareto front (red 
line).

•  • We did not smooth the graph for H(|X|), such that 
it also demonstrates the variance in the search space 
sizes; just read the y-axis as a logarithmic scale for 
eH(|X |). The roughly linear behavior conforms with 
the theoretical analysis.

The moderate sizes of Pareto fronts in our applications 
also imply that no benefit is to be expected from using 
quad-tree data structures in place of our sorted list rep-
resentation. According to measurements in [36], popula-
tion sizes in the thousands are required to make the more 
sophisticated data structure pay off.

Summing up our empirical data, we state that Hypoth-
esis A has been confirmed in general, which does not rule 
out that there are problematic cases. One of these is dis-
cussed next.

Anti‑correlation and real worst case behaviour
Two scoring functions are correlated to the extent by 
which they rank the candidates of the search space in 
the same order. Perfect correlation or anti-correlation 
would render a combined application of both objectives 
meaningless. Perfect positive correlation implies that an 
optimal candidate under >A is also optimal under >B, 
so nothing is to be gained from optimizing with respect 
to >B. Perfect anti-correlation means that the optimal 
candidates under >B are the worst candidates under >A.  

Hence, they can also be obtained as the optimal candi-
dates optimizing under <A alone. In interesting scenar-
ios, we can expect the two scoring schemes to correlate 
in some of the local scoring functions, and anti-correlate 
in others.

Anti-correlation can make the worst case real, where 
the size of the Pareto front does not follow the Har-
monic law, but is linear the size of the interval of score 
values actually occurring (cf. Observation 3). There 
is a minor flaw in the objective function used in [20], 
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harmless at first sight, but provoking worst case behav-
iour on some inputs. It is instructive to look at the situ-
ation in detail.

The objective functions in [20] are adopted from 
the amalgamated score in [8]. Schnattinger et  al. took 
RNAalifold’s parametrized combination of energy and 
covariance scoring, dissecting (ψ1 ∗+� ψ2) literally into 
(ψ1 ∗Par ψ2). However, Hofacker et  al. had chosen for 
their combination an engineered variant of similarity 
scoring, where base pair columns were not scored for 
sequence similarity (see equation line marked 22). Our 
algorithm corrects this case, see label (∗) in Table 3, mak-
ing algebra SIM a proper similarity score. Literal dis-
section of this combination in [20] led to two scoring 
schemes that are negatively correlated in the following 
case: Choosing a base pair increases the covariance score 
but decreases the sequence similarity score in the case 
where the individual bases in the paired alignment col-
umns actually match. Amusingly, the worst case occurs 
when solving the Sankoff problem for two identical 
sequences! While we would expect a Pareto front of size 
1, with no gaps, no mismatches, and a maximal number p 
of base pairs, what we actually get is a worst case Pareto 
front of p elements, because every base pair omitted 
increases the sequence score.

This observation teaches us that a large Pareto front 
can result from inadvertent anti-correlation in the scor-
ing functions.

Pareto solutions in the Sankoff algorithm
We now consider Pareto optimization for the Sankoff 
problem. The two optimization objectives combined are 
sequence similarity (SIM) and base pair probability of the 
consensus structure (PROB). One can expect both meas-
ures to be more correlated when the sequences are in fact 
closely related and have a conserved consensus structure. 
We investigate our

Hypothesis B   A small Pareto front is indicative of a 
strong biological signal of homology.

A thorough assessment of this hypothesis is outside 
of the scope of the present article, but we give some evi-
dence that supports it. Our test data consists of n1 = 19 
PreQ1 RNA sequences (SSTRAND : RF_00522) and 
n2 = 30 IRE RNA sequences (SSTRAND : RF_00037)  
extracted from the core data set of the Rfam database 
[34]. We perform all intra-family and inter-family align-
ments. The results are shown in Figure 2.

We observe the following:

• • The Pareto front size is reduced when comparing 
sequences from the same family (average Pareto 

front size of 2.56 for the IRE/IRE and 2.50 for the 
PreQ1/PreQ1).

• • The Pareto front size is larger when aligning two 
sequences from different families (average Pareto 
front size of 11). Note that the two families are unre-
lated, so this can be taken as an experiment on ran-
dom RNA sequences.

•  • However, there is some overlap between the extreme 
cases of both scenarios.

The size of the Pareto front could be useful for deciding 
family membership, not by itself but as a third criterion 
in addition to the two scores obtained separately. In fact, 
one might also be interested in the similarity between the 
structures that occur in the Pareto front. This is what we 
consider next.

Internal structure of the Pareto front of MFE and MEA 
folding
We now consider each structure in the Pareto front of 
some sequences extracted from the MFE/MEA dataset 
with respect to our

Hypothesis C   The Pareto front is comprised of a small 
number of macrostates, accompanied by essentially the 
same corona of microstates.

By using the RNA movies software [37], we can illus-
trate the transitions between the different structures 
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in the Pareto front. In the Movie 1, Movie 2, Movie 3 
(cf. Additional files 1, 2, 3, respectively; these are ani-
mated GIFs best viewed with a browser), we can see 
that there is a single dominating structure (macrostate). 
The different structures in the Pareto front are all minor 
modifications of this macrostate. They are local helix 
modifications or show the formation of small new heli-
ces inside big loops. For larger Pareto fronts, we can 
observe such microstates arranged around several mac-
rostates, indicating very different structures (Additional 
file 4: Movie 4, Additional file  5: Movie 5, Additional 
file 6: Movie 6). Each macrostate has a different abstract 
shape.

Hypothesis C was confirmed in all the cases we stud-
ied. This means that one could condense the information 
in the Pareto front to a small set of macrostate struc-
tures, which would have different shapes. This leads us 
to further explore the relationship between Pareto opti-
mization (based on MFE and MEA) and abstract shape 
analysis (based on shape abstraction and either MFE or 
MEA alone).

Pareto optimization versus abtract shape analysis
Our Hypothesis D is a somewhat radical statement:

Abstract shape analysis and Pareto optimization 
produce about the same set of alternative “interest-
ing” structures.

It would make Pareto optimization less attractive in 
the domain of RNA structure analysis, as well as in other 
domains where the idea of shape abstraction can be repli-
cated. But our observations refute this hypothesis. Over-
all, the relation between the two approaches appears to 
be non-trivial.

We checked the ratio of the number of structures in 
the Pareto front, and the number of different abstract 
shapes they represent, but this ratio, ranging from 1 to 
≈ 12, did no exhibit an obvious pattern. Taking a SHAPE 
algebra from the RNAshapes repository, an experiment 
with OverDangle(SHAPE ∗ (MFE∗Par MEA), x) has been 
performed. This call computes the Pareto front for each 
shape. The computation was performed for six sequences 
extracted from the dataset used for computing the Pareto 
front between MFE/MEA. The results are presented 
in the Figures  3, 4, 5 and 6. We see different scenarios 
occuring:

In Figure  3, we find a dominating shape and a single-
ton Pareto front. In Figure 4, we find a dominating shape 
and a Pareto front which holds exactly the MFE and 
MEA optima of this shape. In Figure  5, we see a more 
fine-grained Pareto front with all elements residing in the 
dominant shape. Figure  6 shows a two-element Pareto 
front composed of different shapes.

Note that in a case like Figure  4, Pareto optimization 
with MFE and MEA will only produce the dominant 
shape (“[[][]]”, yellow), while in combination with 
abstract shape analysis, we also see two further mac-
rostates that might be of interest: “[][]” (pink) and 
“[[][][]]” (dark green). From these observations, 
we conclude that Hypothesis D is to be refuted. Shape 
abstraction and Pareto optimization are independ-
ent techniques that allow for even deeper analysis in 
combination.

Conclusion
Let us review our results, referring back to the questions 
(i)–(iv) formulated in the introduction. We have shown 
(i) that the exact Pareto front of two independent objec-
tives can be computed by dynamic programming. The 
theoretical prerequisite for this is the preservation of 

RNAshape
 classes

Figure 3  Pareto front per shape for the RNA structure of a hammer-
head ribozyme (SSTRAND : RFA_00430).

RNAshape 
classes

Figure 4  Pareto front per shape for the structures of a tRNA 
SSTRAND : SPR_00243.
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Bellman’s principle by the Pareto product operator ∗Par, 
established in our main theorem.

We have shown (ii) that by the Pareto-eager imple-
mentation, one can achieve Pareto optimization without 
an asymptotic penalty, compared to other optimizations 
which return a comparable number of results. We have 
shown (iii) that empirically, for the case of RNA folding 
under different objectives, the size of the Pareto front 
remains within moderate bounds, clearly lower than the-
oretical expectation. All in all, this says the Pareto opti-
mization is practical for sequence analysis and moderate 
sequence sizes.

We demonstrated (iv) that Pareto optimization allows 
us to study in depth the relative behaviour of two com-
peting objectives, minimum-free-energy and maximum-
expected-accuracy in our application domain. We found 

in pairwise sequence analysis that, as to be expected, 
a small Pareto front in the Sankoff problem indicates a 
potential family relationship.

These findings, of course, create new work items and 
open questions. Foremost, the implementation of the ∗Par 
operator together with its Pareto-eager implementation 
is up as a challenge to all who work on frameworks sup-
porting dynamic programming in sequence analysis. It 
will be interesting to see if the Pareto-eager implementa-
tion can beat pfnosort in terms of constant factors in such 
implementations.

Many established bioinformatics tools, which so far 
rely on an ad-hoc combination of different objectives, 
could be re-evaluated using Pareto optimization. Spe-
cifically for RNA structure analysis, in a recent review 
Rivas argues that in order to further improve predic-
tions, different types of informations must be taken into 
account  [38]. She advocates the conversion of all data 
sources into a probabilistic framework as a unifying solu-
tion. Pareto optimization opens up an alternative route, 
as it allows to combine multiple objectives without such 
conversion. This includes the Pareto-style combination of 
stochastic grammars with other (non-probabilistic) types 
of information.

Eventually, Pareto optimization may be useful in 
development to avoid it in production! After computing 
a set of Pareto-optimal answers, the user is left with the 
problem to draw conclusions from this set. Often, what 
users want is a single answer. This holds in particular 
when the “user” is a high-throughput pipeline. This calls 
for product operations such as ∗lex or ∗+�, as we used 
to provide in the past. But now, the designers of such a 
program can use Pareto optimization in the design stage 
to make a well-informed choice of the combination of 
objective functions eventually offered for production 
use.

Let us end this introduction with a word on Pareto 
optimization in higher dimensions than two. Pareto opti-
mization can be defined over score vectors of any dimen-
sion. Here we deal only with two dimensions, providing 
the operator ∗Par that turns two scoring schemes A and 
B into their Pareto combination A∗ Par B. This may sug-
gest the idea that with (A ∗Par B) ∗Par C we have Pareto 
optimization in three dimensions, and in four with 
(A ∗Par B)∗Par(C ∗Par D). But No!, Pareto optimization is 
not modular in this sense. The prerequisite for ∗Par is that 
A and B optimize over a total order, while their Pareto 
combination optimizes over the partial order (>A,>B). 
Hence, A ∗Par B is not admissible for further Pareto com-
binations. To arrive at higher dimensions of Pareto opti-
mization, one must define a Pareto combination operator 
of flexible arity. Complexity of algorithms changes, and 
more sophisticated data structures, such as the quad-trees 

 

RNAshape
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Figure 5  Pareto front per shape for the structures of a tRNA 
(SSTRAND : SPR_00142).

RNAshape
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Figure 6  Pareto front per shape for the structures of a tRNA 
(SSTRAND : SPR_00103).
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studied in  [36] may come into focus. This is remains a 
challenge for future research.

Endnotes
aFor GAP-L experts: We supply the grammar with 

the algebra product A ∗ B, where ϕA = ϕB = id, and 
add application of pfϕA,ϕB via a semantic filter where 
appropriate.

bThis is only a tendency—a final Pareto front of size k 
does not rule out intermediate results with Pareto fronts 
larger than k.
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