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Abstract 

The increase of protein–protein interaction (PPI) data of different species makes it possible to identify common 
subnetworks (conserved protein complexes) across species via local alignment of their PPI networks, which benefits 
us to study biological evolution. Local alignment algorithms compare PPI network of different species at both protein 
sequence and network structure levels. For computational and biological reasons, it is hard to find common subnet-
works with strict similar topology from two input PPI networks. Consequently some methods introduce less strict 
criteria for topological similarity. However those methods fail to consider the differences of the two input networks 
and adopt equally lenient criteria on them. In this work, a new dividing-and-matching-based method, namely UEDA-
MAlign is proposed to detect conserved protein complexes. This method firstly uses known protein complexes or 
computational methods to divide one of the two input PPI networks into subnetworks and then maps the proteins 
in these subnetworks to the other PPI network to get their homologous proteins. After that, UEDAMAlign conducts 
unequally lenient criteria on the two input networks to find common connected components from the proteins in 
the subnetworks and their homologous proteins in the other network. We carry out network alignments between 
S. cerevisiae and D. melanogaster, H. sapiens and D. melanogaster, respectively. Comparisons are made between other 
six existing methods and UEDAMAlign. The experimental results show that UEDAMAlign outperforms other existing 
methods in recovering conserved protein complexes that both match well with known protein complexes and have 
similar functions.
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Background
The majority of biological processes are not carried out 
by a single protein alone but by a group of proteins which 
physically interact with each other to form protein com-
plexes. It is believed that protein complexes are the build-
ing blocks of the cellular machinery and protein–protein 
interaction (PPI) networks evolve at module level  [1]. 
Consequently, identifying protein complexes of a sin-
gle species plays a significant role in understanding the 

underlying mechanism of cellular function, and iden-
tifying protein complexes conserved across difference 
species are helpful for studying biological evolution. 
Recently, some computational methods have been pro-
posed to identify protein complexes from a single PPI 
network  [2–9]. The underlying hypothesis behind these 
methods is that a protein complex corresponds to a dense 
subgraph or cluster of a single PPI network. Meanwhile, 
some computational methods have been introduced to 
identify the common subnetworks (conserved functional 
modules) across species by comparatively analyzing PPI 
networks of different species.

In contrast to traditional sequence-comparison-based 
methods, network-comparison-based methods provide 
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a new view of studying biological evolution, which con-
siders two proteins conserved across species if they 
have both similar sequences and similar interactive pat-
terns. The two proteins (homologous protein pairs) that 
are from two different PPI networks and have similar 
sequences are believed to have similar interactive pat-
terns if their neighbors in corresponding PPI networks 
also have similar sequences. These network-comparison-
based methods define the problem as network alignment. 
In context of biology, there are two challenges exist in PPI 
network alignment. The one is there exist many-to-many 
mappings between proteins of different species, which is 
the result of biological evolution, such as gene duplica-
tion [10]. The other is few strict meaning of conserved 
interactive patterns exist due to emergence or elimina-
tion of interactions in the course of evolution.

According to differences in the ways to deal with many-
to-many mapping, network alignment can be classified 
into two categories: global alignment and local align-
ment  [11]. The aim of global alignment is to find one-
to-one optimal mappings between proteins of two PPI 
networks. Global alignment can help us to understand 
variations between species and be used to detect func-
tions of orthologs and construct phylogenetic relation-
ships. There are also some global alignment methods [12] 
adopt some clustering methods to detect conserved sub-
networks based on the best mappings between the nodes 
from different PPI networks. However, these methods 
ignore the facts that there exist duplications of interact-
ing proteins and even whole complexes in a single spe-
cies. Previous studies observe that a significant fraction 
of complexes in S. cerevisiae (yeast) share strong similar-
ity with each other  [13]. By contrast, local alignment is 
utilized to detect pathways or protein complexes that are 
conserved across multiple species. There exist many-to-
many mappings between proteins of two PPI networks. 
Note that there are also other global or local alignment 
methods  [14–17] incorporate some biological informa-
tion, such as functional annotation, protein structure 
information, protein domain information to find truly 
homologous proteins and reduce the impacts of many-
to-many mappings. This work focuses on local align-
ment, whose goal is to find conserved complexes across 
different species only depending on sequence and topo-
logical similarity.

Up to now, many local alignment methods have been 
proposed to detect conserved protein complexes. Gen-
erally, there are two types of local alignment methods: 
alignment-graph-based method and dividing-and-match-
ing-based method. The basic idea of alignment-graph-
based method is that false positive protein interactions 
are rare possible to duplicate in other species and 
merging two PPI networks being compared according 

homologous mappings between proteins can filter false 
positive protein interactions. Alignment-graph-based 
methods [18–21] usually take two steps to identify con-
served complexes. Firstly, a weighted alignment graph 
is built from two input PPI networks. Each node of the 
graph is composed of a pair of homologous proteins, one 
from each network. Each edge of the graph is weighed by 
certain methods that account for the degree to which an 
interaction in one PPI network is conserved across spe-
cies. After that, some clustering methods are adopted to 
detect conserved protein complexes from the weighted 
alignment graph. Those existing alignment-graph-based 
methods differ in the strategies taken to construct align-
ment graph and to clustering the alignment graph. Divid-
ing-and-matching-based method is an alternatively way 
of finding conserved complexes, which firstly uses known 
protein complexes or computational methods to divide 
one of the two input PPI networks into subnetworks and 
then maps the proteins in these subnetworks to the other 
PPI network  [22–25]. The motivation underlying this 
kind of methods is to investigate how those protein com-
plexes that are experimentally or computationally identi-
fied from a single species are conserved across species. In 
recent years, there are available know protein complexes 
of some species, such as yeast and human, and some 
computational methods that have good performance of 
detecting protein complexes from the PPI network of 
single species  [2, 26–30]. All of this make it pressing to 
design an effective dividing-and-matching-based method 
to identify conserved protein complexes.

To overcome the challenge that there are few strict 
meaning of conserved interactions across species, 
both alignment-graph-based methods and dividing-
and-matching-based methods introduce less restric-
tive definition of conserved interactions in the course 
of comparison. As for alignment-graph-based method, 
some methods, such as Network-Blast  [18], Network-
Path [31] and Mawish [19], introduce edges in align-
ment graph if a pair of proteins in one networks is 
directly connected while their homologous proteins 
in the other network are indirectly connected. How-
ever PHUNKE  [20] cancels the requirement of indi-
rect connection between homologous proteins in the 
other network and connects two nodes in alignment 
graph if there is at least a pair of proteins in one net-
work is directly connected. AlignNemo  [17] adopts 
less restrict criterion and constructs edges in align-
ment graph if a least a pair of proteins in one PPI net-
work is directly or indirectly connected. NetAligner [32] 
adds edges between node pair in alignment graph at 
a distance greater than 2 and tolerates gaps and mis-
match of any length. As for dividing-and-matching-
based method, Manikandan et al.  [33] have proposed a 
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Match-and-Split algorithm which matches proteins of 
two networks according to a local matching criterion 
and splits the whole networks into connected compo-
nents. This process is recursively implemented on those 
components and finally outputs conserved complexes. 
Luqman and Karp [24] have introduced Produles which 
uses PageRank-Nibble [34] algorithm to partition one of 
the two input networks and maps these subnetworks to 
the other network. After that, a local extension is imple-
mented to detect the connected components that con-
sist of the homologous proteins in the other network. 
According to those connected components, the subnet-
works are refined and the connected parts in them are 
extracted as conserved protein complexes. Obviously, 
Match-and-Split and Produles algorithm do not match 
the two networks exactly in their graph structure. How-
ever, they only take direct neighbors into account when 
implementing local alignment, which is so rigid that 
very few conserved protein complexes are identified. 
With respect to this, DAMAlign [25] is proposed in our 
previous work, which takes both dividing-and-matching 
strategies and the same lenient criteria as AlignNemo to 
locally extend a pair of homologous protein pairs. That 
is, in the course of finding common connected compo-
nents, DAMAlign recruits a pair of homologous pro-
teins if there is at least one path of length not larger than 
2 to connect one of node in the homologous protein pair 
in its corresponding network. The comparisons made by 
previous studies show that AlignNemo, AlignMCL [21] 
and DAMAlign succeed in detecting more conserved 
complexes than previous methods  [18, 19], such as 
Mawish, NetworkBlast,PHUNKEE and Produles. The 
reason may be considering indirectly connected node 
pairs in one network is robust against missing interac-
tions in original network. Although NetAligner employs 
more lax criteria to introduce conserved interactions, it 
also yields a lot of false positive conserved interactions, 
which reduces its performance of detecting conserved 
complexes.

In spite of that previous researchers have done great 
efforts to improve the performance of their methods 
by introducing less strict criteria to find conserved 
interactions, few of them consider the difference of the 
two input networks and adopt equally lenient crite-
ria on them. In fact, there exist differences between PPI 
networks of different species in their structures and 
topologies. The distance between proteins that have 
homologous proteins in the other PPI network may vary 
with species. Therefore, in this work, we propose a new 
dividing-and-matching method named by UEDAMA-
lign to detect conserved protein complexes via local 
network alignment. UEDAMAlign, similar to previous 
dividing-and-matching methods, such as Produles and 

DAMAlign, partitions one of PPI network into subnet-
works and then maps these subnetworks to the other 
PPI network to find common connected components. 
In contrast to previous dividing-and-matching methods, 
UEDAMAlign implements unequal criteria on the two 
networks to find common connected components with 
respect to the structural and topological differences of 
the two networks. That is UEDAMAlign locally extends 
a pair of homologous proteins if there is a path of length 
not larger than l to connect the homologous protein in 
the PPI network one or a path of length not larger than 
r to connect the homologous protein in the other net-
work. To evaluate the effectiveness of UEDAMAlign, 
We carry out network alignment between S. cerevisiae 
and D. melanogaster, H. sapiens and D. melanogaster, 
respectively. Comparisons are made between other six 
existing methods and UEDAMAlign whose parameters 
l and r are both set to 2. The experimental results show 
that When UEDAMAlign takes the same lenient criteria 
as AlignNemo and DAMAlign do, it is superior to other 
existing methods because it can detect conserved pro-
tein complexes that both match well with known protein 
complexes and have similar functions. Finally, we discuss 
the effect of parameters l and r on the performance of 
UEDAMAlign.

Methods
The detection process of UEDAMAlign is broadly 
divided into four steps. At the beginning, several random 
walking steps are unequally taken on the two input PPI 
networks to detect some potential mappings between 
proteins of the two networks. After that, one of the two 
PPI networks is divided by known protein complexes or 
computational methods. Then proteins in those subnet-
works are mapped to the other PPI network to find their 
homologous proteins and the connected components of 
those homologous proteins are extracted from the other 
PPI networks by using a heuristic approach. The final 
step of UEDAMAlign is to filter out the predicted con-
served complexes that are highly overlapping with others.

Exploring potential mappings between proteins of two 
species
In network alignment, the homologous mappings 
between the proteins of two different PPI networks 
can be inferred from their sequence-based similarity. 
Those proteins with similar sequences are most likely 
to evolve from a common ancestor and thus have simi-
lar functions. Moreover, interactive proteins of a single 
species tend to share common functions. Therefore, we 
assume that the protein and its neighbors in a single 
PPI network should map to a common protein in the 
other PPI network. Since proteins are most likely to 
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share functions not only with their direct neighbors but 
also with their indirect neighbors, and even with their 
level k neighbors, some potential mappings between 
proteins of two species can be inferred from their 
direct, indirect or level k neighbors. Furthermore, the 
level of neighbors with which a protein tend to share 
functions varies with species due to the structural and 
topological difference of their PPI networks. Hence, 
we should infer potential protein–protein mappings 
from unequal level of neighbors for different species. 
In this work, we adopt an unbalanced Bi-random walk 
algorithm to find potential mapping between proteins 
of two species. This method has also been used in our 
previous study  [35] that gets protein-function asso-
ciations by walking different number of steps in PPI 
network and functional interrelationship network. To 
formally define our method, some variables are intro-
duced in advance.

Let P(N*N) and H(M*M) be adjacent matrixes of two 
input PPI networks respectively. P(N*N) is row-normal-
ized and H(M*M) is column-normalized. The element 
p(i, j) of matrix P(N*N) and h(i, j) of matrix H(M*M) is 
defined as follows.

where degree(i) denotes sum of interactions of node i .
Let matrix A(N*M) represent known protein–pro-

tein mappings measured by sequence-based similari-
ties. Its element a(i,j) is 1, if there exists an mapping 
between protein i of one species and protein j of the 
other one, 0 otherwise. R(N*M) denotes the final 
protein–protein mappings. The value of its element 
r(i,j) represents the probability that protein i will be 
mapped to protein j.

Given matrix P, H and A, we want to calculate matrix R. 
Since proteins and their level k neighbors in one PPI net-
work may map to the same proteins in the counterpart 
network, several random walk steps are taken on the two 
PPI networks, respectively. At each walking step, multi-
plying P on the left and H on the right respectively can 
detect some potential protein–protein mappings (Eqs. 3, 
4). Then the weighted average of the multiply results 
updates matrix R (Eq. 5). Consider the difference of the 
two input networks, the level of neighbors from which 
the proteins infer mapping information should be dif-
ferent. To address this problem, two parameters (l and r) 
are adopted to control maximal iteration steps in the two 
networks. Mathematically, the process can be expressed 
as Algorithm 1.

(1)p(i, j) =

{

= 1

degree(i)
if degree(i) > 0

0 otherwise

}

.

(2)h(i, j) =

{

= 1

degree(j)
if degree(j) > 0

0 otherwise

}

.

where t (=1, 2, . . .) represents the walking steps. Matrix 
A storing known protein–protein mappings can regu-
late the iteration process. The parameter α(0< α <1) is 
used to adjust the weight of regulation of network and 
of prior knowledge stored in Matrix A (in this work, α 
is set to 0.5).  �p or  �h are indicators which are 1 if the 
number of walk steps on PPI network One or Two are 
less than their thresholds (l or r), respectively, 0 oth-
erwise. ISORank  [11] adopts similar strategy to obtain 
potential mappings between proteins of two different PPI 
networks and computes their global network alignment. 
In ISORank, however, random walks are taken simulta-
neously on the two networks until the global networks. 
Actually, ISORank treats the two networks equally. How-
ever, Our work separately takes random walks on two 
networks, which walks only several steps (t is set to 1, 
2, . . .) and is convenient for controlling different walk-
ing steps taken on the two networks according to their 
difference in topology and structure. Consequently, our 
method is more flexible to get protein–protein mappings 
between two PPI networks.

Detecting conserved protein complexes from PPI networks
The basic idea of UEDAMAlign is first dividing PPI net-
works into small subnetworks and then mapping pro-
teins of subnetworks to the other PPI network. Many 
computational methods, such as Coach [36], MCL [37, 
38], CMC [39], CFinder [40] and so on, have been pro-
posed to detect protein complexes form a single PPI 
network and achieve good performance. Moreover, 
biological experiments have been implemented on sev-
eral species and the data of known protein complexes 
is available. Consequently those known protein com-
plexes or those predicted by computational methods 
can be conveniently used as partition of a PPI network. 
The main challenge of UEDAMAlign lies in mapping 
proteins in subnetworks of a PPI network to the other 
one in order to find common connected components. In 
the course of finding common connected components, 

Algorithm 1 Finding potential mappings
1: Input:Matrix P ,H,A parameter α,iteration steps l , r;
2: Output:predicted association matrix R ;
3: R0 = A = A

sum(A)
4: for (t = 1 to max(l , r)) do
5: λp = λh = 0;
6: if ( t < l) then
7: Rt

p = αP ∗Rt−1 + (1− α)A (3) //PPI network One
8: λp = 1
9: end if
10: if (t<r) then
11: Rt

h = αRt−1 ∗H + (1− α)A (4) //PPI network Two
12: λh = 1
13: end if
14: Rt = (λp ∗Rt

p + λh ∗Rt
h)/(λp + λh) (5) //Merge two results

15: end for
16: return R
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UEDAMAlign adopts unequally lenient criteria to 
extend a pair of homologous proteins. The span dis-
tance of a protein pair in a single network is unequal 
with respect to the difference of input PPI networks, 
which is determined by inputting parameters l and r. 
For example, when taking the same lenient criteria as 
AlignNemo and DAMAlign do, UEDAMAlign absorbs 
a pair of homologous proteins into its predicted con-
served protein complexes if at least one of protein in the 
homologous protein pair connects to the proteins in the 
predicted conserved protein complexes through a path 
of length not larger than 2. In this case, parameters l 
and r are set to 2. When parameters l and r are set to 2 
and 3 respectively, UEDAMAlign locally extends a pair 
of homologous proteins if there exists a path of length 
not larger than 2 to connect the node in the homolo-
gous protein pair in PPI network one or a path of length 
not larger than 3 to connect the node in the homolo-
gous protein pair in PPI network two. Figure  1 shows 
eight cases of connectivity in conserved protein com-
plexes from two different PPI networks when l and r 
are set to 2. Figure 2 shows eleven cases of connectivity 
in conserved protein complexes from two different PPI 
networks when l and r are set to 2 and 3 respectively. 
The nodes with different color come from different PPI 
networks. The full lines connecting two different color 
nodes represent their known homologous mappings. 
The dot lines represent artificial homologous mappings 
detected by unbalanced Bi-random walk algorithm. The 

full lines connecting the same color nodes represent 
their interactions.

Given k subnetworks p1, p2, . . . pk extracted from PPI 
network P(N*N), the other PPI network H(M*M), known 
protein–protein mapping matrix A(N*M), parameter l, r 
and a constructed mapping matrix R(N*M), UEDAMA-
lign proceeds as follows:

Step 1: In this step, we aim to extract the proteins 
from an input subnetwork that both have homologs 
in the other PPI network and are connected through at 
least one path of length not larger than a threshold. The 
threshold is set to l and r for network P and H, respec-
tively. Given ModuleOne and ModuleTwo store con-
served protein complexes induced from PPI network 
P and H respectively. Start from an arbitrarily node of 
subnetwork pi(i = 1, 2, . . . k), find its homologous pro-
teins in H, which are homologous to both the node and 
its neighbors in the input subnetwork pi according to the 
matrix R. Put the neighbors into ModuleOne if they sat-
isfy one of following conditions:

1.	 There exists at least one real homologous mapping 
between the shared homologous proteins and the 
nodes or its neighbors

2.	 There exist two different homologous proteins shared 
by the node and its neighbors but also the two dif-
ferent homologous proteins are really matched with 
two proteins other than the node and its neighbors in 
input subnetwork pi.

b c d

g hf

a

e
Figure 1  Eight cases (a–h) of connectivity in conserved protein complexes from two different PPI networks when UEDAMAlign adopts the same 
lenient criteria as AlignNemo does to extend a pair of homologous proteins. The nodes with different color come from different PPI networks. The full 
lines connecting two different color nodes represent their known homologous mappings. The dot lines represent artificial homologous mappings by 
a unbalanced Bi-random walk algorithm. The full lines connecting the same color nodes represent their interactions.
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Since there are some artificial mappings in matrix R, 
only those real homologous proteins are put into Mod-
uleTwo. The real homologous mappings are stored in 
Matrix A. Then start again from the neighbors, repeat the 
process in step 1 until no more nodes in subnetworks pi 
can been put into ModuleOne.

Step 2: The aim of step 2 is to refine ModuleTwo by 
reducing many-to-many homologous mappings. Each 
node in ModuleTwo is assigned a weight, which is 
defined as sum of mapping values in matrix R between 
the node and its counterpart in ModuleOne. Con-
nected components from proteins in ModuleTwo are 
deduced by searching both their direct neighbors and 
up to level l or r neighbors (level l neighbors for sub-
networks from network P, level r neighbors for subnet-
works from H). For the components that consist of at 

least two nodes, their counterparts in ModuleOne are 
regard as being covered. Exclude components with one 
node from ModuleTwo if their counterparts in Module-
One have been covered. Otherwise, keep the one with 
high weight .

Step 3: In this step, we will handle the case that the 
node of input subnetwork are isolated but their homolo-
gous proteins have connections with protein in Modu-
leTwo. For example, when the parameters l and r are set 
to 2, steps 1 and 2 can cover the case of Figure 1a–f. In 
step 3, we consider the case of Figure  1g, h. When the 
parameters l and r are set to 2 and 3, respectively, steps 1 
and 2 can cover the case of Figure 2a–h. In step 3, we con-
sider the case of Figure 2i–k. Check the rest of proteins 
in subnetworks pi but not in ModuleOne. Attach them 
to ModuleOne if their counterparts (true homologous 

a b d

fe

i j k

c

g h

Figure 2  Eleven cases (a–k) of connectivity in conserved protein complexes from two different PPI networks, when parameters l and r are set to 
2 and 3 in the course of extending a pair of homologous proteins. The nodes with different color come from different PPI networks. The full lines 
connecting two different color nodes represent their known homologous mappings. The dot lines represent artificial homologous mappings by a 
unbalanced Bi-random walk algorithm. The full lines connecting the same color nodes represent their interactions.



Page 7 of 17Peng et al. Algorithms Mol Biol  (2015) 10:21 

proteins in the other PPI network) satisfy one of follow-
ing conditions.

1.	 Exist in ModuleTwo.
2.	 Connect a node in ModuleTwo through a path of 

length not more than the threshold (l for network P, 

r for network H). In this case, put these counterparts 
into ModuleTwo.

Since conserved complexes consist of homologous pro-
teins, discard the proteins in ModuleOne or ModuleTwo 
that have not homologous protein. When all subnetworks 

Algorithm 2 UEDAMAlign
1: Input:P (N*N),H(M*M),A(N ,M),subnetworks(p1,p2, ...pk)of P ,subnetworks(h1,h2, ...hz)of H,

Parameters l,r;
2: Output:predicted conserved complex list moduleOneList for P , moduleTwoList for H ;
3: According to matrix P ,H and A,Parameters l,r build Matrix R by using Algorithm 1;
4: for each subnetwork pi of P do
5: for each protein n in pi do
6: if (color(n) ==0) then
7: queue.push(n);
8: Create moduleOne and moduleTwo to store conserved complexes in P and H;
9: while !(queue.empty) do
10: Step 1:
11: while !(queue.empty) do
12: u = queue.pop();
13: if (color(u) ==0) then
14: moduleOne.add(u);
15: color(u)=1;
16: end if
17: for each neighbor nei of u do
18: if (color(nei) ==0) then
19: if (s is a real homologous protein and shared by u and nei according to R)

then
20: moduleTwo.add(s);
21: queue.push(nei);
22: else if (exist two different homologous protein shared by u and nei and they

have two different real homologous proteins other than u and nei in subnetwork
pi ) then

23: queue.push(nei);
24: end if
25: end if
26: end for
27: end while
28: Step 2:components=ModuleTwo.GetComponets;
29: for each cp in components do
30: if (cp.size <2) and (cp.homolog.covered or cp.weight is small) then
31: moduleTwo= moduleTwo-cp;
32: end if
33: end for
34: discard nodes in moduleOne or moduleTwo if they have not homologous protein in

counterpart network.
35: Step 3:
36: for each protein u in pi do
37: if (color(u)==0) and (u.homolog in moduleTwo or u.homolog connect a node in

ModuleTwo through a path of length not more than l) then
38: queue.push(u);
39: moduleTwo.add(u.homolog);
40: end if
41: end for
42: end while
43: if (moduleOne.size>=2 and moduleTwo.size>=2) then
44: moduleOneList.add(moduleOne.size);
45: moduleTwoList.add(moduleTwo.size);
46: end if
47: end if
48: end for
49: end for
50: exchange role of P and H and corresponding parameter l and r repeat step 4 to 47;
51: Step 4: filter out highly overlapping conserved protein complexes;
52: return moduleOneList, moduleTwoList;
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in PPI P are considered, reverse the role of PPI network P 
and H. Input z subnetworks (h1, h2, . . . hz) extracted from 
PPI network H, repeat steps 1 to 3.

Step 4: In this step, highly overlapping conserved pro-
tein complexes will be filtered out. There are two reasons 
may contribute to overlap. The one is input subnetworks 
are overlapping. The other is the homologous mapping 
between different PPI networks may generate multiple 
overlapping conserved protein complexes. Comparing 
two input PPI networks produces a solution consisting of 
two conserved protein complexes. One comes from each 
PPI network. The overlap between a pair of solutions is 
qualified by the overlapping score of their two protein 
complexes (B and C) from PPI network One. The over-
lapping score of B and C is defined as follows.

where VB and VC denote the node sets of protein complex 
B and C, respectively. The solution will be filtered out if 
there exists another solution that consists of larger com-
plex from PPI One and their overlapping score is larger 
than a threshold t (in this work t = 0.8). In summary, 
Algorithm UEDAMAlign outlines the overall frame-
work to detect conserved protein complexes by using our 
method.

Results
To investigate the effectiveness of our method, first 
of all, we evaluate the dividing-and-matching strat-
egy of UEDAMAlign. We compare it with other exist-
ing methods such as Mawish  [19], Networkblast  [18], 
Match-and-Split  [33], Produles  [24], AlignNemo  [17] 
and AlignMCL  [21]. Mawish and Networkblast are two 
typical alignment-graph-based methods. AlignNemo and 
AlignMCL are two new alignment-graph-based meth-
ods and possess well performance. Match-and-Split and 
Produles are two dividing-and-matching-based methods. 
For fair comparison, the parameters l and r in UEDA-
MAlign are set to 2, which means UEDAMAlign adopts 
the same lenient criteria as AlignNemo does and locally 
extends a pair of homologous proteins if there exists 
at least one path of length not larger than 2 to connect 
one of node in the homologous protein pair in its cor-
responding network. The parameters “a”, “b”, “c”, “d” and 
“e” in Produles are set to “2”, “100”, “2”, “0.05”, “50” respec-
tively, as recommended by the authors. The threshold 
of blast E-value used in all comparing methods is set to 
10-9. The parameters of other methods are selected as 
their default values set by the authors. UEDAMAlign 
explores known protein complexes or some existing com-
putational methods,such as Coach  [36], MCL  [37, 38], 
CMC  [39], CFinder  [40] to partition the PPI networks. 

(3)OS(B,C) =
|VB ∩ VC |

2

|VB| ∗ |VC |

The corresponding results are named by UEDAMA-
lignKnown, UEDAMAlignCoach, UEDAMAlignMCL, 
UEDAMAlignCMC, UEDAMAlignCFinder, respectively. 
Among these computational methods that detect pro-
tein complexes in a single PPI network, Coach is a very 
successful clustering algorithm by considering the core 
attachment structure of protein complex  [2]. MCL is a 
fast and highly scalable clustering algorithm, which par-
titions a PPI network into non-overlapping subnetworks 
by simulating a random walker in it. CMC is a cluster-
ing method based on Maximal Cliques. CFinder detects 
the k-cliques in a PPI network and joins two adjacent 
k-cliques if they share (k 1) common nodes. In this 
work, the parameter k of CFinder is set to 4. The values of 
parameter of other methods are selected from those rec-
ommended by authors.

In this section, we first introduce the experimental data 
used in this work. Then the performances of the com-
paring methods are evaluated by matching with known 
protein complexes. In addition we show the biological 
relevance of the conserved protein complexes detected 
by the comparing methods. After that, UEDAMAlign 
is compared with AlignNemo based on AlignNemo’s 
experimental dataset. Finally, we show the property of 
the UEDAMAlign that can take an unequally lenient cri-
teria when comparing two networks. Moreover, the effect 
of parameters on the performance of UEDAMAlign will 
be discussed.

Experimental data
We carry out alignment among two pairs of PPI net-
work, S. cerevisiae (yeast) with D. melanogaster (fruit 
fly) and H. sapiens (human) with D. melanogaster. The 
PPI network data of yeast and fruit fly is downloaded 
from DIP database  [41], which is published on Oct. 10, 
2010, without self-interactions and repeated interactions. 
There are total of 5,093 proteins and 22,570 interactions 
in yeast dataset, and 7,916 proteins and 20,289 interac-
tions in fruit fly dataset. The PPI network data of human 
is obtained from HIPPIE [42], which includes 13,398 pro-
teins and 86,307 interactions, also excludes self-interac-
tions and repeated interactions. The protein sequence 
data of yeast, fruit fly and human are all downloaded 
from NCBI. The homologous protein pairs of the two 
input networks are inferred according to the sequence-
based similarity between proteins from different PPI 
networks. The sequence-based similarity of two protein 
a and b is calculated based on their BlAST E-values as 
follows.

where E(a,b) is the minimum BlAST E-value when align-
ing a against b. Here, sequence-base similarities are 

(4)sim(a, b) = (E(a, b)+ E(b, a))/2
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calculated for protein pairs if their Blast E-values are 
smaller than 10−9.

The list of known yeast protein complexes is obtained 
from literature published in Nucleic Acids Research 
(CYC2008)   [43], which consists of 408 protein com-
plexes. The list of human protein complexes is obtained 
from CORUM  [44], which consists of 1613 distinct pro-
tein complexes composed by no less than two proteins.

Matching with known protein complexes
To evaluate the performance of each method, we match 
the predicted conserved protein complexes with known 
ones. The better the predicted protein complexes match 
with the known one, the better the performance of the 
method has. A predicted conserved protein complex is 
considered to match with known protein complexes if 
their overlapping score OS (see Eq. 3) is equal to or larger 
than a threshold (in this work, threshold = 0.2) [18]. 
Three statistic measures that are widely used to evaluate 
a result: Precision Recall and F-measure. Precision meas-
ures the percentage of predicted protein complexes that 
match the known complexes. Recall measures the frac-
tion of known complexes that are matched by the pre-
dicted conserved protein complexes. F-measure is the 
harmonic mean of precision and recall. Formally, they are 
defined as follows.

where TP (true positive) is the number of predicted con-
served protein complexes matched by known protein 
complexes. FP (false positive) is the number of predicted 
conserved complexes that fail to match with known 
protein complexes. FN (false negative) is the number of 
known protein complexes that are not matched by pre-
dicted conserved protein complexes. In addition, cover-
age rate in introduced to measure how many proteins in 
the known complexes can be covered by the predicted 
conserved complexes. Let m be the number of known 
protein complexes Tij is the number of proteins in com-
mon between ith known protein complex and jth pre-
dicted conserved protein complex. Coverage rate (CR) is 
the defined as follows.

(5)Precision =
TP

TP+ FP

(6)Recall =
TP

TP + FN

(7)F-measure = 2 ∗
Precision ∗ Recall

Precision+ Recall

(8)CR =

∑m
i=1 max(Tij)

j
∑m

i=1 |KCi|

where |KCi| denotes the number of proteins in the ith 
known complex.

Table  1 shows the basic information of results of dif-
ferent methods based on our experimental dataset. Col-
umn “conserved pairs” refers to the number of conserved 
protein complexes pairs generated from alignment of 
two different PPI network. Since there exists many-to-
many mappings between proteins of different PPI net-
works, the conserved protein complexes in one network 
may be repeat and match with different ones in the other 
network. Additionally, a conserved protein complexes in 
on network may include some repeat proteins which are 
mapped to different proteins in the other network. Col-
umn “distinct complexes (size ≥2)” refers to the number 
conserved protein complexes in one PPI network after 
filtering out repeat proteins in one complex and repeat 
complexes as well as those that consist of only one pro-
tein. For example, AlignMCL yields 933 pairs of con-
served protein complexes when comparing yeast PPI 
network against to fly PPI network. 915 out of 933 con-
served protein complexes in yeast PPI network and 927 
out of 933 conserved protein complexes in fly PPI net-
work are distinct , each of which includes at least two dis-
tinct proteins.

Table  2 shows the comparison of different methods 
by matching the predicted conserved protein complexes 
with known protein complexes. When using known com-
plexes to partition PPI network, our method (UEDAMA-
lignKnownComplex) detects 148 yeast conserved protein 
complexes (PC) and 515 human conserved protein com-
plexes (PC), respectively when comparing yeast against 
fly and comparing human against fly. 145 out of 148 yeast 
conserved protein complexes match at least a known 
yeast complex (MPC), and 172 known yeast protein com-
plexes match at least a predicted one (MKC). 508 out of 
515 human conserved protein complexes match at least 
a known human complex (MPC), and 821 known human 
protein complexes match at least a predicted one (MKC). 
Moreover, UEDAMAlignKnownComplex detects 45 
yeast and 158 human conserved protein complexes which 
share identical proteins with known yeast and human 
protein complexes, respectively (PM). The F-measure 
of UEDAMAlignKnownComplex is about 0.55 in align-
ment of yeast and fly, and 0.56 in alignment of human 
and fly, which is the highest among all comparing meth-
ods. When using computational methods to partition the 
PPI network, the performance of our methods varies due 
to their different performance of detecting protein com-
plexes in a single PPI network. UEDAMAlignCoach pos-
sesses the second best performance and its F-measure 
is 0.34 when aligning yeast with fly, which is 0.11, 0.28, 
0.27, 0.29, 0.21 higher than AlignMCL, Match-and-Split, 
Mawish, NetworkBlast and Produles, respectively. When 
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aligning human with fly, the F-measure of UEDAMAlign-
Coach achieves 0.28, which is 0.17, 0.25, 0.25, 0.23, 0.24 
higher than AlignMCL, Match-and-Split, Mawish, Net-
workBlast and Produles, respectively. As for coverage rate 
(CR), UEDAMAlignKnownComplex and UEDAMAlign-
Coach also possess the first and the second best coverage 
rate in the two alignments. Here we don’t compare our 
methods with AlignNemo because AlignNemo cannot 
output results on our experimental dataset. AlignMCL 
takes the same strategy of constructing alignment graph 
as AlignNemo and are more scalable than AlignNemo, 
which has the best performance among other existing 
methods, including Match-and-Split, Mawish, Network-
Blast and Produles, in term of F-measure and coverage 
rate. Both AlignMCL and UEDAMAlignMCL employ 
MCL method to partition PPI network. The difference is 
that the former uses MCL after constructing alignment 
graph while the latter uses it before aligning with the 
other PPI network. On the whole, UEDAMAlignMCL is 

litter advanced than AlignMCL because its F-measure is 
litter higher than that of AlignMCL in two alignments. 
The CR value of DAMAlignMCL is higher than that of 
AlignMCL when comparing human against fly, while is 
almost the same as that of AlignMCL when comparing 
yeast against fly.

Biological relevance of conserved protein complex pairs
To further validate our method, we investigate biological 
relevance between the conserved protein complexes from 
the two different PPI networks, which is measured by 
the average of functional similarity among all proteins in 
them. Functional similarity of two proteins refers to the 
semantic similarity of their GO annotations  [45]. Given 
two protein p1 and p2, and their GO annotations GO(p1) 
and GO(p2), the functional similarity between protein p1 
and p2 is defined as follows:

(9)sim(p1, p2) = max(Resinksim(goi, goj))

Table 1  The basic information of results of different methods

Method Yeast-fly

Conserved pairs Yeast Fly

Distinct complex  
(size ≥2)

Avg size Distinct complex  
(size ≥2)

Avg size

UEDAMAlignCFinder (k=4) 129 129 7.48 129 10.72

UEDAMAlignCMC 128 128 9.65 128 12.89

UEDAMAlignCoach 725 725 5.84 723 4.32

UEDAMAlignknowncomplex 148 148 3.92 146 5.12

UEDAMAlignMCL 862 862 3.16 861 3.23

AlignMCL 933 915 3.22 927 3.79

Match-and-Split 27 27 4.63 27 6.85

Mawish 41 41 2.34 40 3.55

NetworkBlast 191 179 9.12 191 10.86

Produles 95 46 4.09 46 4.39

Methods Human-fly

Conserved pairs Human Fly

Distinct complexes  
(size ≥2)

Avg size Distinct complexes  
(size ≥2)

Avg size

UEDAMAlignCFinder (k = 4) 238 238 9.38 235 8.31

UEDAMAlignCMC 404 404 9.39 404 8.69

UEDAMAlignCoach 1,538 1,538 5.96 1,519 5.51

UEDAMAlignknowncomplex 515 515 4.11 510 4.48

UEDAMAlignMCL 1,453 1,453 3.77 1,450 3.2

AlignMCL 1,117 1,094 3.25 1,068 3.31

Match-and-Split 53 53 5.26 53 3.83

Mawish 65 61 2.59 55 2.22

NetworkBlast 164 164 9.01 158 7.6

Produles 187 99 3.77 91 3.41
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where goi ∈ GO(p1) and goj ∈ GO(p2). Resinksim(goi, goj) 
refers to the semantic similarity score of GO pair (goi, goj)  
measured by Resink method  [46]. In this work, we use 
Resinksim to measure the similarity between GO terms 
because both AlignNemo [17] and AlignMCL [21] use it. 
Based on Resink method, a free tool FastSemSim (http://
sourceforge.net/projects/fastsemsim/) is adopted to cal-
culate the similarity of two proteins. The GO system con-
sists of three separate categories of annotations, namely 
Molecular Function (MF), Biological Process (BP) and 
Cellular Component (CC). In this work, we mainly focus 
on the biological process (BP).

Table  3 shows the comparison of each method in 
terms of the functional similarity of conserved protein 
complex pairs, when comparing yeast against fly and 
comparing human against fly. Column “avg_yeast” and 
“avg_fly” refer to the average functional similarity of 
conserved yeast protein complexes and conserved fly 
protein complexes respectively when comparing yeast 
against fly. Column “avg_intra” lists the average func-
tional similarity of conserved protein complex pair, 
when only considering the functional similarity between 
proteins from different species. Column “avg_mixed” 
lists the average functional similarity of conserved 
protein complex pair, when considering the functional 
similarity among all proteins, both inter-species and 

intra-species. Results for two alignments show that 
UEDAMAlignKnownComplex yields conserved pro-
tein complex pairs which are highly functional related, 
due to the highest avg_mixed values. Our method using 
computational methods, such as Coach, CMC and 
CFinder, to partition PPI networks, can also produce 
conserved protein complex pairs with similar functions, 
because their avg_mixed values for two alignments are 
higher than that of AlignMCL and NetworkBlast, com-
parable to that of Produles and litter lower than that of 
Match-and-Split and Mawish. As for UEDAMAlign-
MCL, it has relative lower avg_mixed values. However, 
its avg_mixed value is higher than that of AlignMCL for 
the alignment between yeast and fly, and comparable 
to that of AlignMCL for the alignment between human 
and fly.

Above results show that although previous methods 
such as Mawish, Produles and Match-and-Split can yield 
a small amount of conserved protein complexes that both 
match well with known protein complexes and are highly 
functional related, UEDAMAlign is able to detect more 
high quality conserved protein complexes that are func-
tional related, if taking effective strategy to partition PPI 
network, i.e. inputting known protein complexes or those 
predicted by effective computational methods, such as 
Coach.

Table 2  Comparison of different methods in terms of how well matching with known proteins

Methods PC MPC MKC Recall Precision F-measure CR PM

Yeast-fly

 UEDAMAlignCFinder (k = 4) 129 59 66 0.1471 0.4574 0.2226 0.1891 2

 UEDAMAlignCMC 128 58 73 0.1476 0.4531 0.2226 0.2068 0

 UEDAMAlignCoach 725 207 129 0.4259 0.2855 0.3419 0.3057 4

 UEDAMAlignknowncomplex 148 145 172 0.3806 0.9797 0.5482 0.3432 45

 UEDAMAlignMCL 862 159 137 0.3698 0.1845 0.2461 0.2401 9

 AlignMCL 915 151 162 0.3804 0.165 0.2302 0.2479 9

 Match-and-Split 27 12 20 0.03 0.4444 0.0562 0.0641 2

 Mawish 41 16 26 0.0402 0.3902 0.0729 0.0318 1

 NetworkBlast 179 9 10 0.0221 0.0503 0.0307 0.0391 0

 Produles 46 29 26 0.0706 0.6304 0.1269 0.0573 3

Human-fly

 UEDAMAlignCFinder (k = 4) 238 80 187 0.0531 0.3361 0.0917 0.106 3

 UEDAMAlignCMC 404 67 182 0.0447 0.1658 0.0705 0.1585 2

 UEDAMAlignCoach 1,538 428 493 0.2765 0.2783 0.2774 0.2983 10

 UEDAMAlignknowncomplex 515 508 821 0.3908 0.9864 0.5598 0.4242 158

 UEDAMAlignMCL 1,453 171 322 0.117 0.1177 0.1173 0.2008 9

 AlignMCL 1,094 144 305 0.0992 0.1316 0.1131 0.1697 7

 Match-and-Split 53 23 73 0.0147 0.434 0.0285 0.0558 3

 Mawish 61 28 70 0.0178 0.459 0.0343 0.0333 1

 NetworkBlast 164 45 107 0.029 0.2744 0.0525 0.0897 0

 Produles 99 35 77 0.0223 0.3535 0.0419 0.0461 5

http://sourceforge.net/projects/fastsemsim/
http://sourceforge.net/projects/fastsemsim/
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Validation based on experimental data of AlignNemo
Our UEDAMAlign method takes the same lenient cri-
teria as AlignNemo does to align two PPI network. The 
main difference between the two methods lies in whether 
or not dividing PPI networks before aligning. However, 
AlignNemo cannot produce results when using our 
experimental data. For fair comparison, we compare our 
method with AlignNemo, as well as AlignMCL based 
on AlignNemo’s experimental data  [17]. Table  4 shows 
the basic information of their results. The results of two 
alignment in Tables  5 and   6 show that UEDAMAlign-
KnownComplex outperforms all comparing methods 
in term of its F-measure, coverage rate and Avg_mixed 
value, which suggest it can yield high quality conserved 
protein complexes not only matching well with known 
protein complexes but also highly functional related to 
their counterparts. UEDAMAlignCoach possesses the 
second best performance among all comparing methods 
in term of their F-measure and coverage rate. Its Avg_
mixed value is comparable to UEDAMAlignCFinder (k 
= 4), UEDAMAlignCMC. As for UEDAMAlignCFinder 
and AignNemo, UEDAMAlignCFinder (k = 4) divides 
PPI network by using CFinder to detect the 4-cliques in 

a PPI network, and AignNemo detects conserved protein 
complexes from alignment graph by extracting 4-sub-
graphs. DAMAlignCFinder (k = 4) has higher F-measure 
and Avg_mixed value than AignNemo and comparable 
coverage rate to AlignNemo. As for DAMAlignMCL and 
AlignMCL, both methods use MCL method to partition 
network before or after aligning two network. UEDA-
MAlignMCL has higher F-measure and Avg_mixed value 
than AignMCL and comparable coverage rate to Align-
MCL. All of these facts verify the effectiveness of our 
methods that take the dividing-and-matching strategy to 
align two networks.

Effect of parameters on performance
The other contribution of UEDAMAlign lies in being 
capable of taking unequally lenient criteria when com-
paring two PPI networks. It makes use of two param-
eters l and r to control the walking steps taken in the 
two input PPI networks and therefore determine the 
distance that a protein pair can span in corresponding 
network. For example, when aligning the network of 
yeast and fruit fly, setting parameter l and r to 2 and 3 
respectively means that UEDAMAlign locally extends a 

Table 3  Comparison in  terms of  biological relevance between  each pair of  conserved protein complexes predicted 
by each method

Methods Yeast-fly

Conserved pairs Avg_mixed Avg_yeast Avg_fly Avg_intra

UEDAMAlignCFinder (k = 4) 129 3.96 5.3766 3.4259 3.7503

UEDAMAlignCMC 128 3.5266 4.9468 2.9469 3.3061

UEDAMAlignCoach 725 3.4729 4.4809 2.5707 3.1565

UEDAMAlignKnownComplex 148 4.5041 7.0767 3.7421 3.9779

UEDAMAlignMCL 862 2.3539 3.2412 1.4475 2.3063

AlignMCL 933 2.2563 2.9469 1.255 2.2319

Match-and-Split 27 4.069 5.7868 3.3512 3.614

Mawish 41 4.4942 5.9584 3.7828 4.2566

NetworkBlast 191 2.2865 2.8698 1.8388 2.198

Produles 95 3.4301 6.3427 2.525 2.8541

Methods Human-fly

Conserved pairs Avg_mixed Avg_human Avg_fly Avg_intra

UEDAMAlignCFinder (k = 4) 238 3.7826 4.0948 3.7551 3.6892

UEDAMAlignCMC 404 3.5078 4.0341 3.2929 3.3612

UEDAMAlignCoach 1,538 3.5807 4.0532 3.3599 3.4388

UEDAMAlignKnownComplex 515 4.8490 6.1202 4.4131 4.5720

UEDAMAlignMCL 1,453 2.2718 2.4197 1.905 2.2812

AlignMCL 1,117 2.4166 2.5095 1.7317 2.456

Match-and-Split 53 4.0713 4.484 4.6043 3.7865

Mawish 65 4.424 4.8343 4.9263 4.1549

NetworkBlast 164 3.3956 3.7568 3.3467 3.2386

Produles 187 3.8828 4.3098 4.2651 3.7342
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pair of homologous proteins if there exists one path of 
length not larger than 2 to connect the yeast node in 
the homologous protein pair or one path of length not 
larger than 3 to connect the fruit fly node in the homol-
ogous protein pair. Specially, as l and r are both set to 

2, UEDAMAlign achieves the same performance to 
DAMAlign on detecting conserved protein complexes. 
To investigate the effect of unequally lenient strategy on 
the performance of detecting conserved protein com-
plexes, we vary the two parameters ranging from 2 to 3 

Table 4  The basic information of results of different methods based on AlingNemo’s dataset

Methods Yeast-fly

Conserved pairs Yeast Fly

Distinct complexes (size ≥2) Avg size Distinct complexes (size ≥2) Avg size

UEDAMAlignCFinder (k = 4) 126 126 8.02 126 17.13

UEDAMAlignCMC 127 127 10.57 127 23.39

UEDAMAlignCoach 1,019 1,019 9.34 1,019 18.6

UEDAMAlignknowncomplex 160 160 4.04 156 8.65

UEDAMAlignMCL 697 697 6.26 696 5.35

AlignNemo 248 243 9.27 246 10.06

AlignMCL 684 523 3.63 630 12.92

Methods Human-fly

Conserved pairs Human Fly

Distinct complexes (size ≥2) Avg size Distinct complexes (size ≥2) Avg size

UEDAMAlignCFinder (k = 4) 116 116 9.74 114 8.86

UEDAMAlignCMC 288 288 9.86 287 9.24

UEDAMAlignCoach 2,978 2,978 14.82 2,968 13.98

UEDAMAlignknowncomplex 333 333 4 312 3.98

UEDAMAlignMCL 679 679 3.45 677 3.11

AlignNemo 114 114 12.27 114 11.94

AlignMCL 732 732 4.68 729 4.18

Table 5  Comparison of  different methods in  terms of  how well matching with  known protein based one AlignNemo’s 
dataset

Methods PC MPC MKC Recall Precision F-measure CR PM

Yeast-fly

 UEDAMAlignCFinder (k = 4) 126 62 66 0.1535 0.4921 0.234 0.1682 2

 UEDAMAlignCMC 127 57 74 0.1458 0.4488 0.2201 0.2208 0

 UEDAMAlignCoach 1,019 190 134 0.4095 0.1865 0.2562 0.288 0

 UEDAMAlignknowncomplex 160 158 184 0.4136 0.9875 0.583 0.3745 47

 UEDAMAlignMCL 697 113 115 0.2783 0.1621 0.2049 0.2365 4

 AlignNemo 243 77 53 0.1782 0.3169 0.2281 0.1755 0

 AlignMCL 523 95 97 0.234 0.1816 0.2045 0.2224 5

Human-fly

 UEDAMAlignCFinder (k = 4) 116 42 67 0.0264 0.3621 0.0493 0.0451 1

 UEDAMAlignCMC 288 62 101 0.0394 0.2153 0.0666 0.1251 1

 UEDAMAlignCoach 2,978 432 281 0.2449 0.1451 0.1822 0.1945 0

 UEDAMAlignknowncomplex 333 326 552 0.235 0.979 0.3791 0.2634 34

 UEDAMAlignMCL 679 103 219 0.0688 0.1517 0.0947 0.1459 2

 AlignNemo 114 31 48 0.0194 0.2719 0.0363 0.0628 0

 AlignMCL 732 97 254 0.0666 0.1325 0.0887 0.2012 2
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and evaluate the prediction accuracy of UEDAMAlign 
when utilizing known protein complexes or Coach to 
partition the input PPI networks.

Tables 7 and 8 show that in the two alignments, UEDA-
MAlign does not always possess the best performance 

when its parameters l and r are both set to 2 in terms of 
F-measures values and Avg_mixed values. For example, 
as aligning human and fruit fly, UEDAMAlignKnown-
Complex when the parameters l and r are set to 3 and 2 
outperforms that when the parameters l and r are both 

Table 6  Comparison in  terms of  biological relevance between  each pair of  conserved protein complexes predicted 
by each method based one AlignNemo’s dataset

Methods Yeast-fly

Conserved pairs Avg_mixed Avg_yeast Avg_fly Avg_intra

UEDAMAlignCFinder (k = 4) 126 2.669 4.9984 1.8629 2.5173

UEDAMAlignCMC 127 2.3109 4.669 1.661 2.223

UEDAMAlignCoach 1,019 2.0566 3.784 1.5193 2.0422

UEDAMAlignKnownComplex 160 2.7962 7.16 1.7741 2.4475

UEDAMAlignMCL 697 1.9411 3.0208 1.3032 1.6191

AlignNemo 248 1.7501 3.5919 0.916 1.3803

AlignMCL 683 1.2522 2.283 1.019 1.4451

Methods Human-fly

Conserved pairs Avg_mixed Avg_human Avg_fly Avg_intra

UEDAMAlignCFinder (k = 4) 116 3.7834 4.0505 3.583 3.7361

UEDAMAlignCMC 288 3.7938 4.2582 3.6216 3.6653

UEDAMAlignCoach 2,978 3.6269 3.9705 3.4952 3.5129

UEDAMAlignKnownComplex 333 4.8623 5.9331 4.5124 4.5783

UEDAMAlignMCL 679 2.3677 2.3178 2.1294 2.3791

AlignNemo 114 2.7493 2.9498 2.7695 2.5799

AlignMCL 732 2.2485 2.2044 1.7298 2.2649

Table 7  Comparison of performance of UEDAMAlignKnownComplex and UEDAMAlignCoach with respect to various val-
ues of parameter l and r on how well matching with known protein

Methods PC MPC MKC Recall Precision F-measure CR PM

Yeast-fly

  UEDAMAlignCoach_l = 2_r = 2 725 207 129 0.4259 0.2855 0.3419 0.3057 4

  UEDAMAlignCoach_l = 2_r = 3 762 214 144 0.4477 0.2808 0.3452 0.3078 4

  UEDAMAlignCoach_l = 3_r = 2 785 217 142 0.4493 0.2764 0.3423 0.3078 4

  UEDAMAlignCoach_l = 3_r = 3 785 218 144 0.4523 0.2777 0.3441 0.3078 4

  UEDAMAlignKnowComplex_l = 2_r = 2 148 145 172 0.3806 0.9797 0.5482 0.3432 45

  UEDAMAlignKnowComplex_l = 2_r = 3 149 146 173 0.3832 0.9799 0.5509 0.3453 46

  UEDAMAlignKnowComplex_l = 3_r = 2 148 145 172 0.3806 0.9797 0.5482 0.3432 45

  UEDAMAlignKnowComplex_l = 3_r = 3 149 146 173 0.3832 0.9799 0.5509 0.3453 46

Human-fly

 UEDAMAlignCoach_l = 2_r = 2 1,538 428 493 0.2765 0.2783 0.2774 0.2983 10

 UEDAMAlignCoach_l = 2_r = 3 1,420 410 474 0.2647 0.2887 0.2762 0.2963 9

 UEDAMAlignCoach_l = 3_r = 2 1,421 401 469 0.2595 0.2822 0.2704 0.2965 9

 UEDAMAlignCoach_l = 3_r = 3 1,430 406 473 0.2626 0.2839 0.2728 0.2965 9

 UEDAMAlignKnowComplex_l = 2_r = 2 515 508 821 0.3908 0.9864 0.5598 0.4242 158

 UEDAMAlignKnowComplex_l = 2_r = 3 521 514 826 0.3951 0.9866 0.5642 0.4269 158

 UEDAMAlignKnowComplex_l = 3_r = 2 522 515 827 0.3958 0.9866 0.5650 0.4270 158

 UEDAMAlignKnowComplex_l = 3_r = 3 524 517 829 0.3974 0.9866 0.5666 0.4274 158
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set to 2. It means that taking unequally lenient crite-
ria on the two input networks by setting suitable val-
ues to the parameters can improve the performance of 
UEDAMAlign.

As Table  7 shown, no matter which one of the two 
partition methods UEDAMAlign uses, for the align-
ment of yeast and fruit fly, its highest F-measure val-
ues achieve when setting the parameters l and r to 
unequal values. Specially, both UEDAMAlignKnown-
Complex and UEDAMAlignCoach achieve the highest 
F-measures as the parameters l and r are set to 2 and 3. 
For the alignment of human and fruit fly, UEDAMA-
lign has the highest F-measure values when setting the 
parameters l and r to equal values. Specially, UEDA-
MAlignKnownComplex has the highest F-measures 
value as the two parameters are set to 2 and UEDA-
MAlignCoach achieves the highest F-measures value 
as setting the two parameter to 3. Through analyzing 
the structure and topology of the three PPI networks, 
we find that the yeast PPI network contains 5,093 
proteins and 22,570 interactions, whose average path 
length is about 3.84, the fruit fly PPI network con-
tains 7,916 GO terms and 20,289 edges, whose average 
path length is about 4.5, while the human PPI net-
work includes 13,398 proteins and 86,307 interactions, 
whose average path length is about 4.2. It is obvious 

that the PPI network of fruit fly is sparser than that of 
yeast and is similar dense to that of human, which may 
cause the difference in criteria for comparing the two 
pairs of PPI networks.

Table 8 show that the conserved protein complexes that 
can well match with known protein complexes are less 
biological relevant.

For example, as the parameters l and r are set to 2 
and 3, UEDAMAlignKnownComplex and UEDAMA-
lignCoach achieve the highest F-measures when align-
ing yeast and fruit fly. However, the conserved protein 
complexes detected by them under this condition have 
lower biological relevance duo to the lowest Avg_mixed 
values. This may be caused by two reasons. The one 
may be homologous protein pairs with low functional 
similarity are introduced to identified conserved pro-
tein complexes. The other is the proteins in conserved 
protein complexes have some similar functions with 
their homologous proteins, which are not found by 
biologist.

The results in Tables 7 and  8 verify that UEDAMAlign 
can taking unequally lenient criteria on the two compar-
ing PPI network by setting parameters l and r. However, 
it is still a big challenge for us to choose suitable values 
for parameters l and r with respect to the difference 
between the two input networks.

Table 8  Comparison in  terms of  biological relevance between  each pair of  conserved protein complexes predicted 
by UEDAMAlignKnownComplex and UEDAMAlignCoach with respect to various values of parameter l and r

Methods Yeast-fly

Conserved pairs Avg_mixed Avg_yeast Avg_fly Avg_intra

UEDAMAlignCoach_l = 2_r = 2 725 3.4729 4.4809 2.5707 3.1565

UEDAMAlignCoach_l = 2_r = 3 762 3.4142 4.5086 2.6173 3.1450

UEDAMAlignCoach_l = 3_r = 2 785 3.4591 4.4847 2.6750 3.2003

UEDAMAlignCoach_l = 3_r = 3 785 3.4140 4.4826 2.6646 3.1738

UEDAMAlignKnowComplex_l = 2_r = 2 148 4.5041 7.0767 3.7421 3.9779

UEDAMAlignKnowComplex_l = 2_r = 3 149 4.3174 7.0879 3.6295 3.8850

UEDAMAlignKnowComplex_l = 3_r = 2 148 4.4140 7.0767 3.7057 3.9537

UEDAMAlignKnowComplex_l = 3_r = 3 149 4.3174 7.0879 3.6295 3.8850

 Methods Human-fly

Conserved pairs Avg_mixed Avg_human Avg_fly Avg_intra

UEDAMAlignCoach_l = 2_r = 2 1.538 3.5807 4.0532 3.3599 3.4388

UEDAMAlignCoach_l = 2_r = 3 1.420 3.6842 4.1654 3.4326 3.5286

UEDAMAlignCoach_l = 3_r = 2 1.421 3.6766 4.1517 3.4409 3.5189

UEDAMAlignCoach_l = 3_r = 3 1.430 3.6762 4.1506 3.4260 3.5201

UEDAMAlignKnowComplex_l = 2_r = 2 515 4.8490 6.1202 4.4131 4.5720

UEDAMAlignKnowComplex_l = 2_r = 3 521 4.8482 6.1193 4.4186 4.5767

UEDAMAlignKnowComplex_l = 3_r = 2 522 4.8567 6.1345 4.4277 4.5760

UEDAMAlignKnowComplex_l = 3_r = 3 524 4.8436 6.1261 4.4142 4.5696
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Conclusion
The aim of this work is to detect protein complexes con-
served across species through locally aligning a pair of 
PPI networks. Most of previous methods adopt equally 
lenient criteria on the two comparing networks but fail 
to consider the differences of the two networks. Consid-
ering that PPI network has the property of modularity 
and increasing number of known protein complex data 
are available, we propose a new dividing-and-match-
ing-based method named by UEDAMAlign to detect 
conserved protein complexes. UEDAMAlign detects 
subnetworks from one of PPI network and maps these 
subnetworks to the other one. After that, UEDAMAlign 
takes heuristic strategy to find the common connected 
components from the subnetworks and their homolo-
gous proteins in the other network. In the course of find-
ing common connected components, UEDAMAlign 
takes lenient criteria which may vary with parameters 
according to topological feature of input PPI networks. 
To access the effectiveness of UEDAMAlign. we carry out 
two alignments, yeast with fruit fly, and human with fruit 
fly. Comparison are made between other existing meth-
ods and UEDAMAlign when taking the same lenient cri-
teria as AlignNemo and DAMAlign to extend locally a 
pair of homologous proteins (parameters l and r are set to 
2). (1) The experimental results shows that UEDAMAlign 
is superior to all other methods in recovering conserved 
protein complexes which can both match known pro-
tein complexes well and have similar functions if it takes 
effective strategies to partition PPI networks, for exam-
ple using known protein complexes or Coach to parti-
tion. (2) UEDAMAlignMCL outperforming AlignMCL 
and UEDAMAlignCFinder outperforming AlignNemo 
confirm the effectiveness of dividing-and-matching strat-
egy of our UEDAMAlign method. (3) The experimental 
results when setting various values for the parameters 
(l and r) of UEDAMAlign verify that UEDAMAlign can 
taking unequally lenient criteria on the two comparing 
PPI network by setting parameters l and r. However, it 
is still a big challenge for us to choose suitable values for 
parameters l and r with respect to the difference between 
the two input networks.
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