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Abstract 

Background: Recent coevolutionary analysis has considered tree topology as a means to reduce the asymptotic 
complexity associated with inferring the complex coevolutionary interrelationships that arise between phylogenetic 
trees. Targeted algorithmic design for specific tree topologies has to date been highly successful, with one recent 
formulation providing a logarithmic space complexity reduction for the dated tree reconciliation problem.

Methods: In this work we build on this prior analysis providing a further asymptotic space reduction, by providing 
a new formulation for the dynamic programming table used by a number of popular coevolutionary analysis tech-
niques. This model gives rise to a sub quadratic running time solution for the dated tree reconciliation problem for 
selected tree topologies, and is shown to be, in practice, the fastest method for solving the dated tree reconciliation 
problem for expected evolutionary trees. This result is achieved through the analysis of not only the topology of the 
trees considered for coevolutionary analysis, but also the underlying structure of the dynamic programming algo-
rithms that are traditionally applied to such analysis.

Conclusion: The newly inferred theoretical complexity bounds introduced herein are then validated using a combi-
nation of synthetic and biological data sets, where the proposed model is shown to provide an O(

√
n) space saving, 

while it is observed to run in half the time compared to the fastest known algorithm for solving the dated tree recon-
ciliation problem. What is even more significant is that the algorithm derived herein is able to guarantee the optimal-
ity of its inferred solution, something that algorithms of comparable speed have to date been unable to achieve.

Keywords: Coevolution, Phylogny, Cophylogeny, Tree reconciliation, Tree shape, NP-hard

© 2016 The Author(s) This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Selective pressures and the adaptations that they give 
rise to, have provided almost a limitless diversity within 
the natural world [1]. These adaptations are often repre-
sented using bifurcating trees, where each internal node 
represents a divergence of a species lineage. Modelling of 
the evolutionary process in this manner, in particular the 
rates and patterns with which species diverge, is encapsu-
lated within the field of phylogenetics [2]. A long stand-
ing area of interest in this field is the unbalanced nature 
of evolutionary trees, and the relationship between this 

imbalance and the evolutionary process [3]. Analysis of 
this imbalance can be traced back to at least Yule’s mod-
elling of the evolutionary process in 1924 [4], yet even 
today, more than ninety years after Yule’s model was first 
proposed, there still remains no single synthetic model 
capable of successfully capturing the topological varia-
tion of the evolutionary process [5], although significant 
progress has been made recently including the introduc-
tion of the the age dependent model by Hagen et al.[6]. 
While no single model is able to capture the variation of 
all evolutionary trees, it is possible to bound this varia-
tion using the Yule and Uniform synthetic tree generation 
models [7, 8]. As such, targeted algorithmic development 
has been able to exploit this narrow subset of expected 
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topologies as a means to optimise phylogenetic analysis 
techniques for expected evolutionary data [9].

The Yule model, also known as the equal-rates-Markov 
model [7, 10], is a synthetic tree generation process, 
which produces trees through a continuous-time pure 
birth process where each node has the same instantane-
ous rate of speciation, regardless of the length of time 
since its parent speciated. Ignoring branch lengths when 
selecting the next node for speciation has been shown to 
produce trees that represent the most balanced evolu-
tionary trees within the tree of life [11, 12].

The Uniform model, also known as the proportional-
to-distinguishable arrangements (PDA) model [13], is 
a synthetic tree generation process that produces trees 
through uniform sampling of all possible tree shapes [8]. 
Although the Uniform model captures the behaviour of a 
number of biological processes, such as explosive radia-
tion [14] and multitype branching processes with species 
quasi stabilization [15], it does not directly model any 
evolutionary process, nor does it, in its purest sense grow 
trees [5]. While this model may not simulate the evolu-
tionary process directly, it does provide a bound for the 
most unbalanced phylogenetic trees [16, 17].

Only recently has tree topology, specifically the Yule 
and Uniform models, been considered as a means to 
reduce the computational complexity associated with 
the analysis of coevolving systems. Tree topology, how-
ever, may be leveraged for such analysis, as coevolution 
considers the relationships between two or more phy-
logenetic trees. One popular coevolutionary analysis 
approach where tree topology may be exploited is cophy-
logeny mapping, due to the high correlation between this 
technique’s computational complexity and the shape of 
phylogenetic trees [9].

Cophylogeny mapping is the process of mapping a 
dependent (parasite) phylogeny into an independent 
(host) phylogeny, providing a framework to analyse the 
significance of the observed congruence between a pair 
of phylogenetic trees, and reconcile the shared evolution-
ary history for the two phylogenetic trees in question. 
This reconciliation process generally applies four recov-
erable evolutionary events: codivergence, duplication, 
host switch and loss [18].

These four evolutionary events allow for the shared 
evolutionary history to be inferred, regardless of any 
form of incongruence that may exist between the pair 
of evolutionary trees [19]. In fact Ronquist in 1995 [18] 
proved that these four evolutionary events alone are suf-
ficient to reconcile all conceivable phylogenetic tree pair-
ings if the problem instance is constrained, such that a 
parasite may only inhabit a single host; the version of the 
problem considered herein, and throughout the majority 
of coevolutionary analysis literature to date [20–37].

The development of algorithms which map a depend-
ent phylogeny into an independent phylogeny has gained 
significant traction due to its extensibility for a number of 
important problems in the field of evolutionary biology, 
including gene–species tree reconciliation, where the 
evolutionary events considered within this context are 
cospeciation, gene duplication, lateral gene transfer and 
loss [38–42], and biogeographical reconciliation, where 
the evolutionary events considered within this context 
include allopatric speciation, sympatric speciation, dis-
persal, and extinction [43–47].

Cophylogeny mapping algorithms are developed with 
the purpose of inferring a minimum cost map, where 
each evolutionary event is assigned an associated penalty 
score, where the minimum cost map aims to represent 
the most likely shared coevolutionary history between a 
pair of phylogenetic trees [48]. The minimum cost may 
be defined as follows [21]:

where C, D, W, and L define the associated penalty cost 
for codivergence, duplication, host switch and loss events 
respectively, and α, β, γ and δ define the number of codi-
vergence, duplication, host switch and loss events within 
the reconciled map [49].

An example of a map that displays all four evolutionary 
events can be seen in Fig.  1. This map has been inferred 
from an input set, known as a tanglegram, which consists 
of a host tree, parasite tree and the associations between 
their extant taxa [26]. In this example, the inferred map is 
optimal under a certain set of cost schemes, most nota-
bly where the event costs are set under the Jungle cost 
scheme [25, 50], one of the most commonly applied cost 
schemes in coevolutionary analysis [26, 51–54].

The inference of a map which minimises E, often 
referred to as the cophylogeny reconstruction problem 
[55], is NP-Hard [56]. Due to the inherent computational 
complexity associated with this problem, coevolutionary 
analysis has often been forced to rely on heuristics [27, 
29–36, 55]. There are currently two popular heuristics 
applied to solve the cophylogeny reconstruction problem 
where the first ignores the order of evolutionary events 
defined by the parasite phylogeny [27], and the second 
constrains the order of evolutionary events within the 
host phylogeny, reducing this problem to the polynomi-
ally solvable dated tree reconciliation problem [55]. It is 
the latter that is considered in detail herein.

A major advantage of fixing the internal node order-
ing is that it provides a framework that may guaran-
tee that the reported solutions are biologically feasible, 
something that alternate methods have been unable to 
achieve [32, 33]. Constraining the problem in this fash-
ion however presents its own challenges, most notably 

(1)E = αC + βD + γW + δL
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that there are an exponential number of internal node 
orderings in the worst case that needs to be considered 
to guarantee optimality [55]. Metaheuristics, however, 
have recently been shown to provide a successful means 
to mitigate this complexity, where genetic algorithms in 
particular, have been shown to converge on robust esti-
mations in a reasonable period of time [29]. Due to the 
success of genetic algorithms for solving the cophylog-
eny reconstruction problem, recent algorithmic analysis 
has focused on minimising the associated time complex-
ity of the dated tree reconciliation problem to allow for a 
greater exploration of this complex search space within a 
fixed period of time [36, 48].

To date the fastest known approach for solving the 
dated tree reconciliation problem is Bansal et  al.’s rec-
onciliation algorithm, implemented in the software suite 
RANGER-DTL [57]. This O(n2 log n) algorithm requires 
O(n2) space, offering a significant reduction from the ini-
tial solution proposed by Libeskind-Hadas and Charles-
ton in 2009 (O(n7)) [55]. It is important to note, however, 
that Bansal et  al.’s reconciliation algorithm achieves this 
complexity bound by relaxing the constraint that the rec-
onciled map is time-consistent [34]. To guarantee the 
consistency of the inferred map requires a cubic time 
algorithm as defined by Yodpinyanee et  al.’s Edge Map-
ping algorithm [31], Doyon et al.’s Slicing algorithm [32, 
33] or Drinkwater and Charleston’s Improved Node 
Mapping algorithm [49].

Although a number of improvements have been 
applied since Libeskind-Hadas and Charleston’s proposal 
of applying the dated tree reconciliation for coevolution-
ary analysis [55], allowing for even larger data sets to be 
analysed [58], further reductions to the time and space 
complexity bound for the dated tree reconciliation prob-
lem would allow a greater exploration of the complex 

coevolutionary analysis landscape. In particular, reducing 
the space requirements would allow for a larger number 
of instances to be considered in parallel, while reducing 
the time complexity allows for a greater number of itera-
tions to be performed in the same period of time.

The work presented herein re-examines the recent 
complexity analysis, which aims to exploit the subset of 
tree topologies which represent expected evolutionary 
trees, as a means to reduce the asymptotic complex-
ity of the dated tree reconciliation problem [9]. Using 
a number of previous results we construct a new worst 
case complexity bound which outperforms Bansal et al.’s 
reconciliation [34] method for a select set of tree topolo-
gies, where these selected tree topologies represent the 
bounds for expected evolutionary data. As a result, the 
formulation presented herein represents the most effi-
cient approach for solving the dated tree reconciliation 
problem, in terms of both time and space, for expected 
biological data. The asymptotic bounds constructed 
within the methodology section are then evaluated using 
a combination of synthetic and biological data, validat-
ing that the proposed algorithm is not only more efficient 
theoretically, but is also superior in practice compared to 
Bansal et  al.’s reconciliation algorithm [34], which until 
now was the best known approach for solving the dated 
tree reconciliation problem.

Methods
Considering only a fraction of all bifurcating trees
When considering all possible bifurcating trees one is 
presented with a diverse range of tree topologies [59]. 
Within the field of phylogenetics only a small subset of 
these topologies are of interest, that is, the tree topologies 
which represent biological data. Trees produced under 
the Yule and Uniform models represent topological 
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Fig. 1 Tanglegram instance and one of its optimal maps. The resultant map (right) of a pair of phylogenetic trees based on their known associations 
(left). What is special about this particular map is that it is composed of all four evolutionary events, codivergence (at nodes z and v), duplication (at 
node w), host switch (at node y) and loss (edge (z, x) at host node c)



Page 4 of 18Drinkwater and Charleston  Algorithms Mol Biol  (2016) 11:15 

bounds for this subset, representing the search space of 
interest within the context of phylogenetics, and there-
fore represent the topological bounds considered herein.

This subset of trees represents only a fraction of all 
conceivable trees, highlighted in Fig.  2 (left), where the 
heights of a series of synthetically generated trees pro-
duced under the Yule and Uniform models are plotted 
between the two boundaries formed by the expected 
height of the most balanced and unbalanced binary trees 
(log n and n− 1). This is compared to the trees produced 
under the Yule or Uniform models which are bound by 
the curves 4.11n0.23 and 4.68n0.41 as can be seen in Fig.  2 
(right).

Using these approximate bounds we can estimate the 
fraction of the search space that is of interest within the 
context considered herein, S

∗

(n), and compare this to the 
entire tree space, ST (n). When constraining the integral 
to only compare trees produced between 10 and 2500 
taxa, for which we have data, the region of interest is only 
4.99 % ( 1546323097866) of the possible tree heights.

We argue that although this is a very crude estimation, 
it does demonstrate that the set of trees correspond-
ing to the heights that we expect to see under realistic 

(2)

S
∗

(n) = 4.68

∫ 2500

10
(n0.41)dn− 4.11

∫ 2500

10
(n0.23)dn

≈ 154632

(3)

St(n) =

∫ 2500

10
(n− 1)dn−

∫ 2500

10
(lg n)dn

≈ 3097866

biological conditions represents only a very small frac-
tion of all tree topologies. This may be extended further, 
where it is observed that this fraction of tree topologies 
only decreases in size relative to the search space encap-
sulating all conceivable trees, as the size of the trees con-
sidered continues to grow. This is proven by evaluating 
Eq.  (4) using L’Hôpital’s rule.

This demonstrates that expected evolutionary data rep-
resents a relatively small fraction of the entire tree space 
and that algorithmic design may potentially benefit from 
leveraging its unique structure, rather than designing 
algorithms for the general case. This topic is explored in 
detail herein where we will show that this benefit may be 
realised through the careful construction of the dynamic 
programming table when reconciling a pair of phyloge-
netic trees which lie within the interval bounded by the 
Yule and Uniform models.

Leveraging the tree topologies of the Yule and Uniform 
models
Leveraging tree topology as a means to mitigate the high 
computational complexity faced when reconciling a pair 
of phylogenetic trees was first proposed by Drinkwater 
and Charleston [49] when they introduced a logarith-
mic space complexity reduction for the improved Node 
Mapping algorithm. The space complexity reduction was 

(4)

lim
x→∞

S
∗

(n)

St(n)
= lim

x→∞

∫ x
10(4.68n

0.41
− 4.11n0.23)dn

∫ x
10(n− lg 2n− 1)dn

= 0
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Fig. 2 The heights of trees produced under a Yule and Uniform model. The heights of trees produced under a Yule and Uniform model bounded 
between the maximum and minimum heights of all possible binary trees (left) and the heights of trees produced under a Yule and Uniform model 
compared against the fitted curves for this specific data set inferred using least-squares function approximation (right)
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achieved by applying an array of lists, rather than a two 
dimensional matrix to store the dynamic programming 
table when solving the dated tree reconciliation problem. 
This approach was able to exploit the previously observed 
distribution of elements stored within the dynamic pro-
gramming tables produced using the dated tree reconcili-
ation problem; in particular that significantly fewer than 
the O(n2) possible elements are stored using this tech-
nique [49].

Such a distribution can be observed in Fig.   3, where 
the dynamic programming table required to solve the 
tanglegram instance introduced in Fig.  1 has been con-
structed. In this case fewer than half of the total num-
ber of elements are populated (only 42 %), where it has 
been shown that this observed distribution is asymptoti-
cally less than O(n2) [9]. To infer this asymptotic bound, 
Drinkwater and Charleston [9] proposed an arithmetic 
series which considers the aggregate of two functions f(i) 
and g(i). The function f(i) captures the number of ele-
ments, mapping sites, retained within the dynamic pro-
gramming table for each parasite node, at level i; where 
the level is the maximum distance that that parasite 
node is from its leaves. The function g(i) captures the 
number of nodes at a specific level i within a bifurcating 
tree. This series therefore summarises the total number 
of elements retained when solving the dated tree recon-
ciliation problem; where this series may be represented 
in the form:

where h is the height of the parasite tree; bound between 
log n and n− 1.

(5)
h

∑

i=0

(f (i)× g(i))

It is known that g(i) varies depending on the tree 
topology considered, ranging from g(i) = 1 for com-
pletely unbalanced trees through to g(i) = n× 2−i for 
completely balanced trees. It is this variation that may 
be leveraged when designing coevolutionary analysis 
algorithms, where they may be targeted exclusively for 
expected evolutionary data. This may be achieved by 
applying the known formulations for g(i) for trees pro-
duced under expected Yule and Uniform models which 
have been previously derived as:

Theorem  1 The expected number of internal nodes 
at each level of a tree generated under a Yule process is 
2(i−1)n

3i
 , where n is the number of leaves in the tree and i is 

the level for all i ≥ 1, (Drinkwater and Charlteston  [9]).

Theorem  2 The expected number of internal nodes at 
each level of a tree generated under a Uniform process is 
3(i−1)n

4i
, where n is the number of leaves in the tree and i is 

the level for all  i ≥ 1, (Drinkwater and Charlteston  [9]).

By inferring targeted formulations for g(i), which lev-
erage topological properties of expected evolutionary 
data, it has been shown that a sub-quadratic number of 
elements are retained when solving the dated tree recon-
ciliation problem. Within this work we build on the prior 
formulations using Eq. (5), where, rather than achieving 
a logarithmic space saving, we introduce a square root 
space complexity reduction. This is achieved by observ-
ing that while prior asymptotic analyses have inferred a 
tight bound for g(i), a rather loose set of constraints was 
applied in the formulation of f(i), specifically f(i) was 
defined under Libeskind-Hadas and Charleston’s 2009 
[55] formulation of the Node Mapping algorithm, rather 
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Fig. 3 Tanglegram instance and the matrix which corresponds to the optimal map presented in Fig. 1. The tanglegram (left) first presented in Fig.  1 
along with the dynamic programming matrix (right) generated in the process of solving this tanglegram instance using the Improved Node Map-
ping algorithm. What is of interest is that only 19 of the possible 45 (42 %) elements in the matrix are populated to solve this particular example. It is 
this gap, number of unpopulated elements within the dynamic programming matrix, which is exploited within this analysis
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than the Improved Node Mapping algorithm [49] intro-
duced in 2014.

Carefully constructing the dynamic programming table
Node mapping algorithms construct dynamic program-
ming tables by mapping each parasite node p into the 
host tree, from the leaves up to the root. This is con-
trasted with Bansal et  al.’s reconciliation algorithm, 
which maps each parasite into the host phylogeny start-
ing at the root, moving down to the tips, resulting in a 
significant reduction in the algorithm’s time complex-
ity. This is possible due to the application of a novel 
O(n log n) preprocessing step, executed for each parasite 
node. While asymptotically slower, bottom-up, tips to 
root, approaches are capable of solving the dated tree 
reconciliation problem in sub-quadratic space, a result 
which has yet to be replicated for top-down, root to tips, 
approaches, due to their quadratic space requirement for 
preprocessing [9].

Previous approaches[9] which solve the dated tree 
reconciliation problem using sub-quadratic space, have 
constructed their asymptotic space complexity bound 
by considering the number of mapping sites required at 
each level in the reconciliation process, where it has been 
proven that the maximum number of mapping sites that 
must be retained for a specific node p at level i may be 
defined as follows:

We will show that while this exponential function 
does provide a bound for the number of mapping sites 
required for each node p at level i, it often significantly 
over–counts this value. The set of filters introduced 
herein aims to combat the rate of growth of f(i) to provide 
an asymptotic reduction to the space storage require-
ment for the dated tree reconciliation problem.

The function, f(i), introduced in Eq. (6), defines two 
possible values for the total number of mapping sites for 
each parasite node, p, at a particular level, i, where i ≥ 1 . 
Either the node p may be mapped to all nodes in the 
host tree, that is, there are n mapping sites required for 
node p, or there is only a subset of the host tree where 
p is mapped, where the number of nodes in this subset 
is bound by 3(2i−1) < n. This subset can alternatively be 
bound by the following recurrence as defined in [9]:

Under this model the total number of mapping sites 
retained are all host nodes present within the subtrees 
formed by the left and right children’s mapping location 
in the host; in line with the original construction of the 

(6)f (i) =

{

1 if i = 0

min(3(2
i
−1), n) if i ≥ 1

(7)
a0 = 1,

ai = 3× (ai−1)
2
∀ i ≥ 1

Node Mapping algorithm. Under prior formulations the 
function, ai, was constrained by noting that the number 
of mapping sites required is bound by n, but did not con-
sider any filters to reduce the rate of growth of the recur-
rence relation, ai.

This work considers two filters to constrain the rate at 
which ai grows. These filters are derived from a number 
of previous algorithmic optimisations applied to both the 
dated tree reconciliation problem and the more complex 
cophylogeny reconstruction problem.

The first filter considered stems from noting that only 
one optimal location for a codivergence or duplication 
needs to be retained for each parasite node p. This was 
not considered in the original construction of the node 
mapping algorithm [55] but has been adopted in subse-
quent methodologies [33, 34]. This constraint has been 
used not only for reducing the inherent complexity of the 
dated tree reconciliation problem, but also in addressing 
the complexity of other coevolutionary analysis tech-
niques, starting with its application by Page in 1990 [21]. 
By applying this filter only one additional mapping site is 
considered for codivergence and duplication events when 
computing ai from its two children, ai−1, in line with 
Page’s original formulation.

The second filter that we apply is to leverage the previ-
ous proof [49] that while there are up to O(n2) optimal 
host switch locations for each parasite node p, only one 
of these optimal host switch events needs to be retained 
to guarantee that the reconciled map is optimal. That is, 
through careful selection, it is possible to infer an opti-
mal map by retaining only one host switch event[49]. 
This selection involves always retaining the most recent 
host switch event, which may be recovered using an 
application of the level ancestor problem [36], ensuring 
that the total number of loss events is minimised [49]. 
As noted previously this approach only guarantees that 
an optimal switch event is inferred; it cannot guaran-
tee that all optimal events are inferred [49]. Therefore, 
when selecting a host switch event only one additional 
mapping location needs to be retained for ai. This is the 
case even though a host switch may be inferred in either 
direction during the construction of the dynamic pro-
gramming table, as at least one of those two host switch 
events will be mapped to the same node as its child, 
ai−1 , because the most recent host switch event is always 
selected [9]. This is consistent with a number of alternate 
methodologies for handling the computational intrac-
tability that may arise when dealing with host switch 
events, such as Bansal et  al.’s [34] application of range 
minimum queries to infer the optimal host switch event 
in constant time.

It is important to note that these two filters comple-
ment one another, and that by applying both filters it 
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can be guaranteed that an optimal reconstruction will be 
recovered when applied to the Node Mapping algorithm 
[49]. That is, that retaining only three mapping sites, a 
single codivergence or duplication event, along with two 
host switch events for each parasite node p, ensures that 
the resultant map will be optimal [33, 34, 36, 49]. The 
complementary nature of these two filters was proved as 
part of the formulation of the Improved Node Mapping 
algorithm, although these filters were not considered 
within the context of dynamically sized data structures at 
the time they were proposed [9, 49].

The benefit of applying these two additional filters to 
the formulation of ai is that it allows for a reformula-
tion of ai as an additive growth function as opposed to 
the initial multiplicative function, Eq.  (7). This drastically 
reduces the growth of ai, as follows:

We will show that this reformulation translates to a sig-
nificant reduction to the asymptotic space complexity 
bound for the Improved Node Mapping algorithm. Of 
note, is that a1 is defined as 3 rather than 4 at level one, 
as both host switch events will always be mapped to the 
host leaves in this case. This result was inferred as part of 
a prior formulation of ai [9].

From Eq.   (8) a new closed form function may be 
derived which is asymptotically less than Eq.   (6). This 
function allows for the total number of mapping sites 
required to solve the dated tree reconciliation problem to 
be derived as:

Theorem  3 The maximum number of mapping sites, 
ai , required to solve the dated tree reconciliation problem 
optimally for each level i ≥ 1 is bounded by the function 
ai = 5× 2(i−1)

− 2

Proof 

 �

(8)

a0 = 1

a1 = 3

ai = ai−1 + ai−1 + 2 ∀ i ≥ 2

(9)

ai = ai−1 + ai−1 + 2

= 2× 2× ai−2 + 4 + 2

= 2× 2× 2× ai−3 + 8+ 4 + 2

= . . .

= 2(i−1)a1 + 2× (2(i−1)
− 1)

= 5× 2(i−1)
− 2

Using this result f(i) may be redefined as follows:

where this function may then be split into three com-
ponents; where i = 0, the values for i for which 
5× 2(i−1)

− 2 < n and the values for i for which 
5× 2(i−1)

− 2 ≥ n:

Lemma 1 5× 2(i−1)
− 2 < n ∀ i < ⌊lg (n+ 2)⌋ − 1

Proof 

 �

which gives rise to:

This new formulation for f(i), defines a significantly 
larger subset of the dynamic programming table where 
strictly fewer than n sub-solutions are retained compared 
with previously defined functions for f(i). A visual com-
parison of this difference is represented in Fig.  4 where 
f (i)p, the previous bound for f(i), is compared against 
f (i)c, the current bound for f(i). Of note is that to accu-
rately compare these two curves the y axis is configured 
using a double log scale.

The new formulation of f(i) derived herein clearly grows 
at a significantly slower rate than prior formulations. It 
is therefore expected that by applying our new formula-
tion for f(i) that a further asymptotic space complexity 
reduction may be derived. In the next section it will be 
shown that this is the case with a significant reduction to 
not only the space required to solve the dated tree recon-
ciliation problem but also to the time complexity as well. 
Most notably this new formulation is comparable in prac-
tice to the running time of Bansal et al.’s [34] reconcilia-
tion algorithm, while ensuring that reported solutions are 

(10)f (i) =

{

1 if i = 0

min(5× 2(i−1)
− 2, n) if i ≥ 1

(11)

5× 2(i−1)
− 2 ≤ n

2(i−1)
≤

n+ 2

5

i ≤ lg (n+ 2)− lg 5+ 1

i ≤ ⌊lg (n+ 2)⌋ − ⌊lg 5⌋ + 1

i < ⌊lg (n+ 2)⌋ − 1

(12)

f (i) =







1 if i = 0

5× 2(i−1)
− 2 if 0 < i < ⌊lg (n+ 2)⌋ − 1

n if i ≥ ⌊lg (n+ 2)⌋ − 1
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time consistent, something which Bansal et al.’s [34] rec-
onciliation algorithm has been unable to achieve to date.

Complexity analysis
Space complexity reduction
The total storage required to solve the dated tree rec-
onciliation problem is inferred by multiplying the total 
number of mapping sites retained for each node, f(i), 
by the total number of nodes at each level, g(i), as in 
Eq.  (5).

Under this model h represents the height of the para-
site tree. To simplify this analysis the worst case height 
of both the Yule and Uniform trees are considered as the 
maximum height for all bifurcating trees, (n− 1), in line 
with prior analysis [9]. It is important to note that the 
heights estimated as part of the analysis undertaken in 
Fig.  2 would not have been appropriate as they were only 
representative of a small subset of tree sizes, and as such, 
may have poorly captured the total search space. There-
fore, the complexity analysis considered herein over-
counts the height of tree topologies considered, which is 
appropriate as this analysis only aims to provide a worst 
case complexity bound rather than the exact value for the 

number of elements retained in the dynamic program-
ming table’s construction.

If the newly derived function for f(i) as defined in 
Eq.   (12) is combined with the known function for g(i) 
derived in [9], it is possible to expand Eq.  (5) to extrapo-
late the space required to solve the dated tree reconcilia-
tion problem, in the case where tanglegrams considered 
are composed of trees produced under a Yule (Eq.  (13)) 
or Uniform (Eq.  (14)) model.

The simplification of these two Eqs.   (13) and  (14) may 
therefore provide a new set of worst case space complex-
ity bounds for solving the dated tree reconciliation prob-
lem; where these simplified space complexity bounds give 
rise to the following two theorems:

Theorem  4 The space required to solve the dated tree 
reconciliation problem for tanglegrams composed of trees 
constructed under the expected Yule process is bounded 
by O(n1.42).

Theorem  5 The space required to solve the dated tree 
reconciliation problem for tanglegrams composed of 
trees constructed under the expected Uniform process is 
bounded by O(n1.58).

Proof for Theorem 4

Proof To infer the worst case space complexity required 
to solve the dated tree reconciliation problem for coevo-
lutionary systems, composed of phylogenetic trees pro-
duced under an expected Yule model, requires that the 
set of geometric series defined in Eq.  (13) be simplified. 
This may be achieved by treating the asymptotic com-
plexity bound in Eq.  (13) as a function α(n) and simplify-
ing as follows:

(13)

O

(

n+ n

⌊lg (n+2)⌋−1
∑

i=1

2(i−1)(5× 2(i−1)
− 2)

3i
+ n

2
n−1
∑

i=⌊lg (n+2)⌋

2(i−1)

3i

)

(14)

O

(

n+ n

⌊lg (n+2)⌋−1
∑

i=1

3(i−1)(5× 2(i−1)
− 2)

4i
+ n

2
n−1
∑

i=⌊lg (n+2)⌋

3(i−1)

4i

)
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(i
)

Rate of growth of f(i)p = 3(2
i−1) and f(i)c = 5 × (2(i−1)) − 2

f(i)p = 3(2
i−1)2(i−1))− 2

f(i)c = 5× (2(i−1))− 2....

Fig. 4 Asymptotic space comparison in practice. A comparison of 
two derived functions for counting the number of elements retained 
at each level i. The first f (i)p was derived as part of an early reduc-
tion to reduce the asymptotic space complexity for the dated tree 
reconciliation problem [9] while f (i)c is the inferred function for f(i) 
constructed herein and is representative of the most efficient func-
tion which has been derived for f(i) to date
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Proof for Theorem 5

Proof To infer the worst case space complexity required 
to solve the dated tree reconciliation problem for coevo-
lutionary systems, composed of phylogenetic trees pro-
duced under an expected Uniform model, requires that 
the set of geometric series defined in Eq.   (14) be sim-
plified. This may be achieved by treating the asymptotic 

(15)

α(n) = n+ n

⌊lg (n+2)⌋−1
∑

i=1

2(i−1)(5× 2(i−1)
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+ n
2
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3i

= n+ n

(

5

4
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(

4

3

)i

−
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(

2

3

)i

+

n

2

n−1
∑
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(

2

3

)i)

< n+ n
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5

4
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(

4

3

)i

+

n

2
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∑
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(
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3

)i)
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5

4
×
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3
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+

n

2
×

(

(

2
3

)
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−

(

2
3

)n

1− 2
3

))

= n+ n
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3
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(
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− 5
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(

15

4
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4

3

(lg (n+2))

+

3n

2
×

2

3

(lg (n+2)))

= n+ n

(

15

4
× (n+ 2)(2−lg 3)

+

3n

2
× (n+ 2)(1−lg 3)

)

≈ n× n
(2−lg 3)

≈ n
1.42

complexity bound in Eq.  (14) as a function β(n) and sim-
plifying as follows:

 �

Space saving in practice
Theorems 4 and 5 are representative of the current low-
est worst case space complexity bound for an algorithm 
capable of solving the dated tree reconciliation problem 

(16)

β(n) = n+ n
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optimally. In fact these asymptotic bounds are only the 
second sub-quadratic complexity bound presented for 
the dated tree reconciliation problem, and offer almost 
an O(

√

n) saving compared to existing techniques.
To date little focus has been given to the space required 

for the dated tree reconciliation problem since Yod-
pinyanee et al. [31] and Bansal et al. [34] independently 
derived quadratic space solutions. This is largely due to 
current data sets not being restricted by the quadratic 
space requirements of these two algorithms. Space how-
ever will quickly become the bottleneck in coevolution-
ary analysis using the dated tree reconciliation problem 
as data sets continue to grow. In fact, space will become 
the primary limiting factor, as once the threshold on a 
machine’s memory is exceeded, coevolutionary analysis 
algorithms will be unable to solve the cophylogeny recon-
struction problem regardless of time allocated for the 
task [9].

To observe how space will become a limiting factor 
it is useful to consider both the impact that the current 
resource requirements have on the large data sets today 
and how this will translate to larger data sets in the 
future. The largest data set analysed using the dated tree 
reconciliation problem to date is the mutualistic coevolu-
tionary dependence which has formed between fig trees 
and their pollinator wasps [58]. This data set contains 
approximately 200 taxa in the host tree and 300 taxa in 
the parasite tree.

As the dated tree reconciliation problem requires that 
each of the internal and external nodes are mapped into 
the host, a dynamic programming table of an algorithm 
which applies a two dimensional matrix will in this case 
require 239,001 (399× 599) mapping sites be retained. 
This is in contrast to the worst case under our proposed 
model which only requires 19,319 (599× 3990.58) map-
ping sites.

In the previous calculations we took the number of 
nodes as (2n− 1) and (2m− 1) where n and m are the 
number of leaves in the host and parasite tree respec-
tively. When comparing algorithms which require quad-
ratic space compared to the newly proposed model a 
twelve fold saving is observed.

While a comparison of the number of elements in the 
dynamic programming table is of interest in compar-
ing these two methodologies, what is of more interest is 
how this translates to the hardware requirements for the 
analysis of such systems. This may be estimated by mul-
tiplying the worst case number of mapping sites by the 
estimated size of each element stored within the dynamic 
programming table. Based on prior algorithmic defini-
tions [31, 32, 49, 55] we estimated the minimal number 
of bytes which must be retained to reconstruct a single 

mapping site element which is captured in the class defi-
nition in Fig.  5.

The space of such a class is 28 bytes with the further 
requirement of two 32 bit words to represent the space 
of the class. Therefore, the total storage requirement for 
each MappingSite object is 36 bytes. When this is com-
pared with the total number of mapping sites retained for 
each method the difference of each approach is 8.2 MB 
compared to 679 KB.

These numbers, however, only represent the space 
required for a single instance of the dated tree reconcilia-
tion problem. When solving the cophylogeny reconstruc-
tion problem using a metaheuristic framework it is often 
required that multiple instances be run in parallel. This 
was the case in the analysis performed over the fig-wasp 
system undertaken by Cruaud et al. [58] which required 
1000 parallel instances.

Therefore the difference between each approach in 
practice is actually 8GB compared to 663 MB. Even when 
considering the 1000 parallel instances, a data set of this 
size is not impacted by its space requirement as most 
machines handling phylogenetic inference require more 
than 8GB of RAM. This difference, however, changes sig-
nificantly as n and m continue to grow.

If we consider systems where the host and parasite con-
tain 4000 taxa it becomes infeasible to apply a quadratic 
space solution. Coevolutionary systems of this magnitude 
are well within the scope of this problem as recent stud-
ies have indicated that Wolbachia has coevolved to some 
degree with up to 65 % of all insects [60]. As of early 2015 
a small subset of this system has been constructed con-
sisting of 397 taxa, almost twice that of the fig wasp sys-
tem published three years earlier [58], and is expected to 
only grow further. This was demonstrated with a recent 
(2015) study of 3600 arthropod species and their dispo-
sition to bacterial endosymbionts, including Wolbachia 
[61].

c l a s s MappingSite {
// 8 bytes
pub l i c long costToThisPoint ;
// 4 bytes
pub l i c EventType eventType ;
// 8 bytes ( pa i r o f 32 b i t i n t e g e r s )
pub l i c i n t [ ] l e f tCh i l d ;
// 8 bytes ( pa i r o f 32 b i t i n t e g e r s )
pub l i c i n t [ ] r i gh tCh i ld ;

}

Fig. 5 MappingSite class. The member variables of a class represent-
ing the minimum number of bytes required to store a mapping 
instance within the dynamic programming table
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In the case where metaheuristics are used to analyse 
systems with 4000 taxa, at least 10000 parallel instances 
will be required if we assume a linear scaling in the num-
ber of parallel instances which must be maintained. 
Such a scaling is conservative considering that a quad-
ratic increase in the number of parallel instances was 
required when analysing the relationships between fig 
trees and their pollinator wasps, compared to the analy-
sis of insects’ exploitation of Leguminosae, undertaken in 
2010 [29]. By considering only 10,000 parallel instances 
the space required for each method is 20 TB compared to 
492 GB respectively. While access to hardware with up to 
1 TB of RAM is often feasible, having access to machines 
with 20 TB of RAM is far less common [62–65].

This comparison is only representative of the storage 
requirement for the dynamic programming table. Solu-
tions that require quadratic space will require additional 
memory for preprocessing tables. These preprocessing 
tables will require approximately an additional 20 TB to 
cache the optimal evolutionary event locations. This is 
not the case for the algorithm described herein, which 
requires only linear time preprocessing [9, 49]. There-
fore, sub quadratic space solutions will become critical 
to allow biologists to infer the underlying relationships 
within emerging coevolutionary systems such as Wol-
bachia and their arthropod hosts. Applying such algo-
rithms offers at least a forty fold decrease in the amount 
of RAM required, with this only improving as the data 
sets considered continue to grow.

Time complexity reduction
Theorems  4 and  5 provide a new worst case bound for 
space required to solve the dated tree reconciliation prob-
lem. In this section we apply these asymptotic bounds to 
provide a reduction to the cubic time complexity bound 
faced by the Improved Node Mapping algorithm, and 
prove that for a select set of tree topologies it is possi-
ble to solve the dated tree reconciliation problem in sub-
quadratic time.

A sub-quadratic space requirement is achieved by 
storing a sublinear number of mapping sites for each 
parasite node. A sub-cubic time complexity bound may 
be inferred in this same manner as the time complexity 
bound is also directly correlated to the number of map-
ping sites stored for each parasite node.

The time complexity analysis for the Improved Node 
Mapping algorithm considered herein is constructed in 
terms of the total number of host and parasite nodes, 
O(n). Within this context we assume the total number 
of nodes is approximately equal, in line with the major-
ity of coevolutionary analysis literature [29, 55]. By treat-
ing the number of nodes in both the host and parasite 
trees as approximately equal the time complexity may 

be formulated as the total number of parasite nodes, 
O(n), multiplied by the total number of mapping sites, 
m, stored for each parasite node, squared [55]. The total 
number of mapping sites is squared as all possible pairs 
must be considered to ensure the optimal mapping loca-
tions are inferred [66], and therefore the time complexity 
bound is bound by nm2.

The number of mapping sites in the worst case is O(n), 
however in the previous section it was shown that this 
value is sublinear for select tree topologies. Previous 
analysis considering the expected time complexity for 
solving the dated tree reconciliation problem has consid-
ered the distribution of m to be uniform [9]. If we con-
sider the time complexity analysis in line with this prior 
analysis then m, the number of mapping sites for each 
parasite node, may be defined as:

Lemma 2 The average number of mapping sites, m,that 
need to be retained for each parasite node when solving 
the dated tree reconciliation problem for a tanglegram 
composed of trees produced under a Yule model is n0.42.

Lemma 3 The average number of mapping sites, m, that 
need to be retained for each parasite node when solving 
the dated tree reconciliation problem for a tanglegram 
composed of trees produced under a Uniform model is 
n0.58.

Proof These results may be inferred by considering that 
the total space requirement n1.42 and n1.58 is representa-
tive of the total storage of n mapping sites and therefore 
on average there must be n0.42 and n0.58 stored for each 
mapping site respectively.  �

Using Lemmas (2) and (3) we may define the expected 
time complexity bounds for the dated tree reconciliation 
problem as:

Corollary 1 The expected time required to solve the 
dated tree reconciliation problem for trees constructed 
under the expected Yule process is n1.84.

Corollary 2 The expected time required to solve the 
dated tree reconciliation problem for trees constructed 
under the expected Uniform process is n2.17.

Time complexity bound in practice
The time complexity in Corollaries 1 and 2 are of interest 
as, for a select subset of tree topologies, those that con-
form to a Yule process, it is possible to solve the dated 
tree reconciliation problem in sub-quadratic time. In 
the case where trees conform to those produced by a 
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Uniform process, however, the time complexity bound 
of the model presented herein is n2.17, which is slightly 
worse asymptotically than Bansal et  al.’s [34] O(n2 log n) 
algorithm.

In practice however, the complexity of our algorithm 
does not exceed that of Bansal et al.’s reconciliation algo-
rithm [34] until n exceeds 353 million, which is an order 
of magnitude greater than the current largest estimates 
of the number of species on our planet [67]. Further, the 
newly proposed algorithm can also provide the additional 
guarantee that all solutions reported are biologically fea-
sible. If we compare the time complexity of the newly 
proposed model to those algorithms which are able to 
provide such a guarantee, such as Doyon et  al.’s slicing 
model [32], this time complexity reduction is even bet-
ter, offering almost an O(n) reduction in the overall time 
complexity.

It is important to note that the argument framed within 
this section is based purely on the complexity bounds of 
each algorithm, which may poorly represent each algo-
rithm’s in practice performance, due to potential con-
stants which are hidden as part of the complexity analysis 
performed. This discussion, however, is important as it 
provides further insight into the subset of tree topolo-
gies that are of interest for coevolutionary analysis, and 
the potential benefits that may exist when developing tar-
geted algorithms for these data sets. In the next section 
we prove that the theoretical time and space complex-
ity bounds presented herein do translate to in-practice 
improvements and that not only does our newly pro-
posed algorithm out perform Bansal et  al.’s [34] recon-
ciliation algorithm in theory, but it is shown to run in 
less than half the time on average, using a fraction of the 
space.

Results and discussion
The theoretical complexity bounds presented above 
prove that a significant reduction to the Improved Node 
Mapping algorithm’s asymptotic time and space com-
plexity may be achieved through the careful construction 
of its underlying dynamic programming table. Within 
this section we introduce a series of datasets which aim 
to validate that these theoretical complexity bounds do in 
fact translate to improvements in practice. The validation 
process can be considered in three parts, where the first 
analysis step considers the space complexity reduction 
offered by the proposed model over synthetic data sets 
constructed using both the Yule and Uniform models. 
Following this the running time of the proposed method 
is compared against Bansal et  al.’s [34] reconciliation 
algorithm, over the same synthetic data sets. Algorithms 
such as those applied within Jane [68] and MPR [69], 
which are the fastest methods with comparable accuracy 

to the proposed model, were excluded from this analysis 
as their cubic running times were estimated to require 
over 3000 computational years compared to the experi-
mental design considered herein, which required only 
24 computational hours. This is in line with prior experi-
ments of this size [48].

In both cases the synthetic data sets applied were con-
structed using CoRe-PA’s random nexus file generator 
[30], allowing for a larger number of taxa to be consid-
ered. To allow for this study to be undertaken, CoRe-PA’s 
random nexus file generator was updated by the Paral-
lel Computing and Complex Systems lab at University 
in Leipzig to allow for larger data sets, with the previous 
versions being bound to only allow up to 1000 taxa. The 
data set considered within this study represents one of 
the largest synthetic coevolutionary data sets constructed 
for the analysis of coevolutionary methodologies, with 
only the data set generated for the analysis of RASCAL 
offering a comparable sized data set [48].

Finally, we compare the time and space complexity of 
our proposed method against Bansal et al.’s [34] approach 
over 102 previously published biological data sets, ensur-
ing our result translates to a time and space reduction for 
biological data analysis. This data set is the same as that 
which has been previously used to validate a number of 
algorithmic improvements in this field [9, 36, 48].

In all three sections a Java implementation of the 
Improved Node Mapping algorithm was compared 
against a Java implementation of Bansal et al.’s reconcili-
ation algorithm [34]. RANGER-DTL was not used as the 
source code for this method is not freely available, and 
the aim of the analysis considered herein was to imple-
ment both algorithms using common code wherever pos-
sible, to provide the most accurate comparison of each 
algorithm. Implementing the experiment in this fashion 
results in 97 % (14259/14663 lines) of the code base being 
shared between both methods. Further, a benefit of using 
a custom implementation rather than using standalone 
binaries was that it allowed for the benchmarking of the 
specific mapping algorithms, and therefore allowed for 
the pre and postprocessing algorithms of each approach 
considered to be excluded from the time complexity 
analysis.

Analysis of space complexity improvements (synthetic 
data)
To validate that an asymptotic space complexity reduc-
tion was achieved requires that the total number of 
mapping sites retained when solving the dated tree 
reconciliation problem be recorded over a range of 
tanglegrams of varying size. In this study 500 unique 
tanglegrams were considered including 250 tanglegram 
instances composed of trees produced under a Yule 
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model, along with 250 tanglegram instances composed 
of trees produced under a Uniform model, where in both 
cases the set of tanglegrams consisted of trees ranging 
from 10 through to 2500 taxa. In all cases the host and 
parasite phylogenies were constrained, such that the size 
of the host and parasite phylogenies were an equivalent 
size.

This approach was favoured for this analysis compared 
to simulating coevolutionary data sets using a tool such 
as CoRe-Gen [70], as data sets which are randomly gen-
erated are expected to represent the entire search space 
more fairly [71]. Further, CoRe-PA was the most appro-
priate synthetic generation tool as it is the only method 
capable of generating synthetic coevolutionary systems 
using both Yule and Uniform models.

The median space required for 100 replicates of each 
data set has been plotted in Fig.   6, where it can be 
seen that significantly less than O(n2) mapping sites are 
required. In fact our asymptotic bounds appear to actu-
ally grow at a rate slightly faster than the required space, 
meaning that an even lower asymptotic complexity 
bound may be achievable.

As an extension to the analysis considered by Drink-
water and Charleston in 2015 [72], these results were 
analysed using an application of least-squares function 
approximation to validate that this observed phenom-
enon is correct [73, 74]. That is, that the observed rate 
of growth is even less than the theoretical space com-
plexity bound inferred herein. In this case we restricted 
the least-squares analysis to only consider a power-law 

function, l(n) = anb, fitting both a and b for both the 
Yule and Uniform data sets.

For this analysis a power-law function was the most 
appropriate function to fit to the observed data set, as 
b is expected to lie between 1 and 2. This is due to the 
asymptotic analysis derived herein considering a reduc-
tion from a previous quadratic bound, where this reduc-
tion may not be reduced further than a linear threshold, 
as each parasite node must be mapped to at least one 
host node. Therefore, attempting to fit a higher order 
polynomial function would not have been appropriate in 
this case.

It can be seen in Fig.  7 that for both the Yule and Uni-
form data sets that the inferred functions provide tighter 
asymptotic bounds than the theoretical bounds derived 
herein. In the case of the Yule data set the least-squares 
analysis inferred the function l(n) = 5.34x1.22, which 
provides a strong correlation to the observed distribu-
tion of the synthetically generated data (R2 = 0.9977). A 
similar trend was observed for the Uniform data set. In 
this case the least-squares analysis inferred the function 
l(n) = 5.06x1.38, which again provides a strong correla-
tion to the observed distribution of the synthetically gen-
erated data (R2 = 0.9782).

Over both the Yule and Uniform data sets least-
squares analysis infers a power-law function where the 
parameter b is approximately 0.2 less than the inferred 
asymptotic complexity bound. This result demon-
strates that there is potential for a slight improvement 
in the space complexity bound presented herein, while 
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demonstrating that the space complexity analysis per-
formed above has provided a relatively tight upper 
bound for the space complexity required to solve the 
dated tree reconciliation problem. This additional analy-
sis also provides further confidence in the theoretical 
space requirements derived herein.

Analysis of time complexity improvements (synthetic data)
The running time required to solve the dated tree rec-
onciliation problem for each of the synthetic data sets 
applied in the previous section was recorded for both 
Improved Node Mapping and Bansal et  al.’s [34] recon-
ciliation algorithm. To ensure a robust comparison of 
each approach 100 replicates were run for each system 
with the median running time plotted in Fig.   8. The 
time recorded was constrained to only consider the time 
required to map the parasite into the host. This con-
straint was enforced to observe Bansal et al.’s [34] recon-
ciliation algorithm’s running time variation for systems 
composed of specific tree topologies, without any poten-
tial noise that its quadratic preprocessing may intro-
duce. This did not assist the Improved Node Mapping’s 
observed improvement as it applies a linear time pre-
processing step compared to Bansal et al.’s, [34] quadratic 
preprocessing requirement, and therefore if anything this 
constraint provides additional benefit to Bansal et  al.’s, 
[34] reconciliation methodology.

The running time performance of each algorithm is 
displayed in Fig.   8. When comparing this improve-
ment over the entire data set it was observed that a 
median reduction of 43 % occurs for the Yule data set 
with a reduction of 62  % observed over the Uniform 
data set. This result is highly significant as the run-
ning time reduction is achieved using less resources, 
while providing a framework with a higher degree of 
accuracy, as the Improved Node Mapping algorithm 
guarantees that the solutions inferred are biologically 
feasible.

Time and space complexity improvements for biological 
data
The time and space experiments considered for the 
synthetic data sets were repeated over a set of previ-
ously published biological data sets to ensure that the 
successful results observed over the synthetic data sets 
translate to biological data. The biological data consid-
ered have been applied to the validation of a number of 
coevolutionary analysis algorithms including TreeCol-
lapse [36] and RASCAL [48], and includes the data 
sets used to validate TreeFitter [75], ParaFit [76], Tar-
zan [27], CoRe-PA [30], CoRe-ILP [77], and Jane [29]. 
In total this data set contains 102 unique tanglegrams 
and is the largest single source of biological data sets for 
coevolutionary analysis catalogued to date. These data 
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sets are not expected to present the same degree of con-
vergence that was observed over the synthetic data set 
as they are significantly smaller, with the largest only 
containing 53 taxa compared with 2500 in the synthetic 
data sets.

Even with the smaller biological data sets relative to 
the synthetic data, the experimental results demonstrate 
that the space required is generally less than O(n2). The 
exceptions seen in Fig.  9 (left) are due to larger parasite 
phylogenies, often twice the size of the host phylogeny, 
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which therefore require more mapping sites as there are 
2n sub-solutions (parasite nodes). To verify this result 
this experiment was rerun, where the space requirement 
was plotted against the size of the tanglegram (total num-
ber of taxa in both trees) rather than the number of host 
taxa.

This additional result provides a clearer trend that as 
the number of taxa within the considered data set con-
tinues to grow that there are asymptotically fewer map-
ping sites required compared to the quadratic number 
required by existing algorithms. In particular that the 
total number of mapping sites is asymptotically less than 
n×m where n and m are the number of taxa in the host 
and parasite phylogenies.

In terms of running time our proposed algorithm is 
observed to have a median reduction of 51 % as can be 
seen in Fig.  10 (left). This result is a comparable reduc-
tion to that which was observed over the synthetic data 
set and it is expected, based on the analysis presented 
herein, to improve as n grows. The time required for both 
algorithms was also compared to the total size of the 
tanglegrams, in line with the space analysis where once 
again the newly proposed model was shown to outper-
form Bansal et  al.’s reconciliation algorithm, as seen in 
Fig.  10 (right), this time by 57 %. These results are very 

promising as the newly proposed algorithm is shown to 
outperform Bansal et  al.’s [34] reconciliation algorithm 
in practice, over a series of biological data sets, while 
providing an asymptotic space complexity reduction of 
O(

√

n).

Conclusion
The experimental results presented demonstrate that 
the theoretical asymptotic reductions proved within this 
work translate to an in-practice time and space complex-
ity improvement over both biological and synthetic data 
sets. Further, the asymptotic analysis performed herein 
have shown that while the Improved Node Mapping algo-
rithm may not achieve an asymptotic reduction from its 
bound of O(n3) for all data sets, it is able to perform as 
well as Bansal et al.’s, [34], O(n2 log n) algorithm for evo-
lutionary data. In fact Improved Node Mapping’s run-
ning time is observed to be twice as fast as Bansal et al.’s, 
[34] reconciliation algorithm in practice, while providing 
almost an O(

√

n) reduction in the space required. There-
fore if adopted, this approach will allow metaheuristic 
frameworks to execute a higher number of threads which 
are capable of finishing in less than half the time. Such a 
framework will we hope result in a higher degree of confi-
dence in coevolutionary analysis.
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