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Abstract 

Background:  Rearrangements are large-scale mutations in genomes, responsible for complex changes and struc-
tural variations. Most rearrangements that modify the organization of a genome can be represented by the double 
cut and join (DCJ) operation. Given two balanced genomes, i.e., two genomes that have exactly the same number of 
occurrences of each gene in each genome, we are interested in the problem of computing the rearrangement dis-
tance between them, i.e., finding the minimum number of DCJ operations that transform one genome into the other. 
This problem is known to be NP-hard.

Results:  We propose a linear time approximation algorithm with approximation factor O(k) for the DCJ distance 
problem, where k is the maximum number of occurrences of any gene in the input genomes. Our algorithm works for 
linear and circular unichromosomal balanced genomes and uses as an intermediate step an O(k)-approximation for 
the minimum common string partition problem, which is closely related to the DCJ distance problem.

Conclusions:  Experiments on simulated data sets show that our approximation algorithm is very competitive both 
in efficiency and in quality of the solutions.
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Background
Large-scale mutations or rearrangements can produce 
complex changes and structural variations in genomes. 
They include inversions of chromosome segments (also 
called reversals), translocations of chromosome ends, 
fusions and fissions of chromosomes. All these rear-
rangements can be represented by the double cut and join 
(DCJ) operation [1], which basically consists of cutting a 
genome in two distinct positions (possibly in two distinct 
chromosomes) and joining the four resultant open ends 
in a different way.

A basic task in comparative genomics is to find the 
rearrangement distance between two given genomes, i.e., 
the minimum number of rearrangements that transform 
one genome into the other. For genomes without dupli-
cate genes, there are linear time algorithms to compute 

the distance allowing only DCJ operations  [2]. On the 
other hand, for genomes with duplicate genes, computing 
the rearrangement distance is NP-hard, even when the 
genomes have exactly the same number of occurrences of 
each gene in each genome (balanced genomes) and only 
DCJ operations are allowed [3, 4].

In this paper we design an approximation algorithm 
for computing the DCJ distance between two unichro-
mosomal balanced genomes. The main step of our 
approximation algorithm is similar to approximating 
the NP-hard problem of computing the Breakpoint Dis-
tance (BD) in the presence of duplicate genes  [5]. Let k 
be the maximum number of occurrences of any gene 
in the input genomes. With this parameter, BD has a 
1.1037-approximation if k = 2 and a 4-approximation 
if k = 3  [6]. Otherwise, for general values of k, it has 
an O(k)-approximation  [7, 8]. The latter result is based 
on a linear time approximation algorithm for the mini-
mum common string partition (mcsp) problem [6] with 
approximation factor O(k) [9].

As we will show, the algorithm we developed to com-
pute the DCJ distance of balanced genomes also has an 
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approximation factor O(k) and linear running time. It 
works properly on inputs that are linear unichromosomal 
genomes. In addition, we describe how to extend it for 
circular unichromosomal genomes.

Experiments on simulated data sets show that our 
approximation algorithm is very competitive both in effi-
ciency and in quality of the solutions.

A preliminary version of this paper appeared in the 
Proceedings of the 16th Workshop on Algorithms in Bio-
informatics (WABI 2016) [10].

Preliminaries
A gene g is an oriented DNA fragment that can be repre-
sented by the symbol g itself, if it has direct orientation, 
or by the symbol  g , if it has reverse orientation (g = g). 
A chromosome is a linear or a circular sequence of genes, 
and a genome is a set of chromosomes. Each one of the 
two ends of a linear chromosome is a telomere, repre-
sented by the symbol ◦.

Each chromosome in a genome can be represented by 
a sequence of genes that can be circular, if the chromo-
some is circular, or linear and flanked by the symbols ◦, 
if the chromosome is linear. Given a gene g, let mA(g) be 
the number of occurrences of g in a genome A. To refer to 
each occurrence of a gene g unambiguously, we number 
the occurrences of g from 1 to mA(g). When there exists 
at least one gene that occurs more than once in genome 
A, we say that A has duplicate genes.

In this work we consider only unichromosomal 
genomes, that are genomes composed of a single chro-
mosome. Consider for instance the linear unichromo-
somal genome A = (◦ c1 a1 d1 b1 a2 c2 ◦). In A we have 
one occurrence of genes b and d and two occurrences 
of genes a and c, that is, A has duplicate genes, and 
mA(a) = 2, mA(b) = 1, mA(c) = 2 and mA(d) = 1.

We use the notations G(A) and GN (A), respectively, to 
refer to the set of (non-numbered) genes and to the set 
of numbered genes of a genome A. Considering again 
the genome A above, we have G(A) = {a, b, c, d} and 
GN (A) = {a1, a2, b1, c1, c2, d1}. Observe that the genomes 
A′ = (◦ c2 a1 d1 b1 a2 c1 ◦), A′′ = (◦ c1 a2 d1 b1 a1 c2 ◦) 
and A′′′ = (◦ c2 a2 d1 b1 a1 c1 ◦) are equivalent to 
A = (◦ c1 a1 d1 b1 a2 c2 ◦). Given a genome A, possibly 
with duplicate genes, we denote by [A] the equivalence 
class of genomes that can be obtained from A by swap-
ping indices between occurrences of the same gene.

Balanced genomes
Let A and B be two unichromosomal genomes, possi-
bly with duplicate genes. If they contain the same num-
ber of occurrences of each gene, i.e. GN (A) = GN (B),  
we say that A and B are balanced. We can then 
simply denote by G = G(A) = G(B) the set of 

(non-numbered) genes and by GN = GN (A) = GN (B) 
the set of numbered genes of A and B. For example, 
for balanced genomes A = (◦ c1 a1 d1 b1 c2 c3 ◦) and 
B = (◦ a1 c3 c1 b1 d1 c2 ◦) we have G = {a, b, c, d} and 
GN = {a1, b1, c1, c2, c3, d1}.

DCJ operations
Rearrangements can change the organization of a 
genome, i.e., the number of chromosomes in a genome 
or the order and the orientation of its genes. In general, 
such a rearrangement cuts a genome in two different 
positions, creating four open ends, and joins these open 
ends in a different way. It can be modeled by a double-
cut and join (DCJ) operation [1]. Consider, for example, 
a DCJ applied to genome (◦ c1 a1 d1 b1 a2 c2 ◦) that cuts 
before and after  a1 d1, creating the segments (◦ c1 •) , 
(• a1 d1 •) and (• b1 a2 c2 ◦), where the symbol  • rep-
resents the open ends. If we then join the first with the 
third and the second with the fourth open end, we obtain 
(◦ c1 d1 a1 b1 a2 c2 ◦). This DCJ corresponds to the 
inversion of contiguous genes a1 d1. In general genomes, 
DCJ operations can also correspond to other rearrange-
ments, such as translocations, fusions and fissions [1].

DCJ distance and adjacency graph
Observe that the DCJ operation alone can only sort bal-
anced genomes. We formally define the DCJ distance 
problem:

Problem  DCJ-distance(A,  B): Given two balanced 
genomes A and B, compute their DCJ distance ddcj(A,B), 
i.e., the minimum number of DCJ operations required to 
transform A into B′, such that B′ ∈ [B].

Any sequence of ddcj(A,B) DCJ operations transform-
ing A into B′ ∈ [B] is called an optimal sequence of DCJ 
operations.

Given two balanced genomes A and B, ddcj(A,B) can be 
computed with the help of the following concepts. First 
note that, since a gene g has an orientation, we can distin-
guish its two ends, also called its extremities, and denote 
them by gt (tail) and gh (head). An adjacency in a genome 
is an unordered pair of consecutive extremities in its 
chromosome (one of the two extremities can be a tel-
omere). Thus, a genome A can also be defined as a set of 
adjacencies adj(A) of its numbered genes. Given genome 
A = {(◦ c1 a1 d1 b1 a2 c2 ◦)}, for example, we have 
adj(A) = { ◦ct1 , c

h
1a

h
1 , at1d

t
1 , d

h
1b

t
1 , b

h
1a

h
2 , at2c

t
2 , c

h
2◦ }.

Given two balanced genomes A and B, the adjacency 
graph AG(A,B)  [2] is a bipartite multigraph such that 
each partition corresponds to the set of adjacencies of 
one of the two input genomes, and an edge connects the 
same gene extremities of adjacencies in both partitions, 
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regardless of their index numbers. We say that the edge 
represents those extremities. If A and B are linear, each of 
the two telomeres of A must be connected by an edge to 
each of the two telomeres of B.

Without duplicate genes
First we consider the case when the genomes A and B 
contain no duplicate genes. If A and B are circular, there 
is a one-to-one correspondence between the set of edges 
in AG(A,B) and the set of gene extremities. In this case, 
all vertices have degree two and thus the adjacency graph 
is a collection of disjoint cycles. Here, problem DCJ-dis-
tance can easily be solved in linear time [1, 2] using the 
formula

where n = |adj(A)| = |adj(B)| = |G| is the number of 
adjacencies or genes in any of the two genomes and c is 
the number of cycles in AG(A,B).

If A and B are linear, besides the edges connecting gene 
extremities, each telomere of A must be connected by 
an edge to each telomere of B. There is then an ambigu-
ity concerning the vertices that contain a telomere, that 
have degree three. This means that we need to choose 
one of the two possible matchings of telomeres to obtain 
a graph in which all vertices have degree two, that is, a 
graph that is composed of cycles only. We must choose 
a matching that maximizes the number of cycles in the 
resulting AG(A,B). To accomplish this task, we just need 
to do a walk on the graph starting in one telomere of A 
until we find the next telomere in AG(A,B). If the sec-
ond telomere is also in A, then we can pick any of the two 
possible matchings. In this case we have one big cycle 
covering all four vertices that contain a telomere. If the 
second telomere is in B, then we can pick the matching 
that connects these two telomeres (and consequently 
connects the other two telomeres, that were not covered 
by this walk). In this case we have two cycles covering the 
four vertices that contain a telomere. Once this matching 
is defined, problem DCJ-distance can again be solved in 
linear time [1] using the formula

where n = |adj(A)| = |adj(B)| = |G| + 1 is the number 
of adjacencies in any of the two genomes and c is the 
number of cycles in AG(A,B).

With duplicate genes
When genomes have duplicate genes, problem DCJ-
distance becomes NP-hard  [4]. In the same paper, the 
authors present an exact, exponential-time algorithm for 
its solution, phrased in form of an Integer Linear Pro-
gram (ILP).

ddcj(A,B) = n− c,

ddcj(A,B) = n− c,

An approach to compute the DCJ distance with duplicate 
genes
Observe that, in the presence of duplicate genes, the 
adjacency graph may contain vertices of degree larger 
than two. A decomposition of AG(A,B) is a collection of 
disjoint cycles covering all vertices of AG(A,B).

There can be multiple ways of selecting a decompo-
sition of the adjacency graph. We need to find one that 
allows to match each occurrence of a gene in genome A 
with exactly one occurrence of the same gene in genome 
B and each telomere of A to one telomere of B. In order 
to build such a decomposition, we need the following 
definitions.

Let gi and gj be, respectively, occurrences of the same 
gene g in genomes A and B. The edge e that represents 
the connection of the head of gi to the head of gj and the 
edge f that represents the connection of the tail of gi to 
the tail of gj are called siblings. Two edges are compatible 
if they are siblings, if they represent the connection of 
extremities of distinct occurrences of the same gene, or 
if they represent the connection of extremities of distinct 
genes. Otherwise they are incompatible. A set of edges is 
compatible if it has no pair of incompatible edges. A cycle 
C of AG(A,B) is consistent if the set E(C) of edges of C 
is compatible. Note that, when constructing a decompo-
sition, by choosing consistent cycles one may still select 
incompatible edges that occur in separate cycles (see the 
three dotted cycles of length 2 in Fig.  1). Thus, consist-
ency cannot be taken into account in cycles separately.

A set of cycles {C1,C2, . . . ,Ck} of AG(A,B) is consistent 
if and only if E(C1) ∪ E(C2) ∪ · · · ∪ E(Ck) is compatible. 
A consistent decomposition D of AG(A,B) is a consistent 
set of disjoint cycles that cover all vertices in AG(A,B). 
Observe that in a consistent decomposition D we have 
only pairs of siblings, i.e., either an edge e and its sibling 
f are in D or both e and f are not in D. Thus, a consistent 
decomposition corresponds to a matching of occurrences 
of genes and telomeres in both genomes and allows us to 
compute the value

where n = |adj(A)| = |adj(B)| and cD is the number of 
cycles in D. Observe that n = |GN | if A and B are circular. 
If A and B are linear genomes, then n = |GN | + 1.

We can now compute the DCJ distance of two unichro-
mosomal balanced genomes.

Theorem  1  Given two unichromosomal balanced 
genomes A and B, the solution for the problem DCJ-dis-
tance is given by the following equation:

dD = n− cD,

ddcj(A,B) = min
D∈D

{dD},
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where D is the set of all consistent decompositions of 
AG(A,B).

Proof  Since a consistent decomposition allows 
to match duplicates in both genomes, clearly 
ddcj(A,B) ≤ minD∈D{dD}. Now, assume that 
ddcj(A,B) < minD∈D{dD}. By definition, this distance 
corresponds to an optimal rearrangement scenario from 
A to some B′ ∈ [B] and therefore implies a matching 
between the genes of A and the genes of B′. Furthermore, 
this matching gives rise to a consistent decomposition D′ 
of AG(A, B) such that dD′ < minD∈D{dD}, which is a con-
tradiction.�  �

A consistent decomposition D such that dD = ddcj(A,B) 
is said to be optimal.

Once a consistent decomposition D of the adjacency 
graph AG(A,B) is found, following [2] it is easy to derive 
in linear time a DCJ rearrangement scenario with dD DCJ 
operations transforming A into B. Moreover, an optimal 
consistent decomposition allows to find all optimal rear-
rangement scenarios [11].

Results
Actually, all definitions and properties for the DCJ dis-
tance of balanced genomes presented from the begin-
ning to here work properly for the general case, where 
genomes can be multichromosomal. However, as we will 
see in this section, to solve the DCJ distance problem we 
use an intermediate procedure whose inputs are strings. 
For this reason we restricted our inputs to unichromo-
somal genomes. Moreover, for the moment we will addi-
tionally consider only linear unichromosomal genomes, 
discussing later how to deal with circular unichromo-
somal genomes. The extension to multichromosomal 
genomes is left as an open problem.

Approximating the DCJ distance by cycles of length 2
As mentioned above, given two linear unichromosomal 
balanced genomes A and B, we have to find a consistent 
decomposition of AG(A,B) to compute the DCJ distance 
according to Theorem  1. Recall that this is an NP-hard 
problem [4].

Given a consistent decomposition D ∈ D of the adja-
cency graph AG(A,B), we can see that

where n = |adj(A)| = |adj(B)|, c2 is the number of cycles 
of length 2, and c> is the number of cycles of length 
longer than 2 in D.

Building a consistent decomposition by maximizing c2 
as a first step is itself an NP-hard problem [12]. Further-
more, this strategy is not able to optimally solve the DCJ 
distance, as we can see in Fig. 2. Nevertheless, it allows us 
to approximate the DCJ distance:

Lemma 2  A consistent decomposition D′ of AG(A,B) 
containing the maximum number of cycles of length 2 is a 
2-approximation for the DCJ-distance problem.

Proof  Let c∗2 and c∗> be the number of cycles of length 2 
and longer than 2, respectively, of an optimal consistent 
decomposition D∗ of AG(A,B). Let c′2 and c′> be the num-
bers analogous to c∗2 and c∗> with respect to the decompo-
sition D′. It it easy to see that c∗2 + 2c∗> ≤ n, thus

Therefore, we have

dD = n− cD = n− c2 − c>,

(1)

0 ≤ n− c∗2 − 2c∗>
n− c∗2 ≤ n− c∗2 − 2c∗> + n− c∗2
n− c∗2 ≤ 2(n− c∗2 − c∗>).

Fig. 1  Examples of an inconsistent cycle (dashed edges) and an inconsistent set of cycles (dotted edges). The adjacency graph for 
A = (◦ a1 b1 a2 b2 a3 a4 a5 ◦) and B = (◦ b1 a1 b2 a2 a3 a4 a5 ◦), with some edges omitted. For the sake of clarity, edges are labeled with 
extremities they represent. For example, an edge labeled gti−j represents extremities gti  from A and gtj  from B
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where (2) holds since c′2 ≥ c∗2, and (3) is true from (1). � �

Minimum common string partition
The main result of this work relies on a restricted version 
of the minimum common string partition (mcsp) prob-
lem [6, 9], described briefly as follows.

Given a string s, a partition of s is a sequence 
S = [S1,S2, . . . ,Sm] of substrings called blocks whose 
concatenation is s, i.e., S1S2 · · ·Sm = s, and m is the size 
of S.

Two strings s and t are balanced if any character has 
the same number of occurrences in s and in t, disregard-
ing signs. Given two balanced strings s and t and parti-
tions S = [S1, . . . ,Sm] of s and T = [T1, . . . , Tm] of t, the 
pair (S , T ) is a common partition of s and t if there exists 
a permutation f on {1, . . . ,m} such that Si = Tf (i) for each 
i = 1, . . . ,m. The minimum common string partition 

(2)

dD′

dD∗
=

n− c′2 − c′>
n− c∗2 − c∗>

≤
n− c∗2 − c′>
n− c∗2 − c∗>

(3)

≤
n− c∗2

n− c∗2 − c∗>

≤
2(n− c∗2 − c∗>)

n− c∗2 − c∗>

(4)= 2,

problem (mcsp) is to find a common partition (S , T ) of 
two balanced strings s and t with minimum size.

We are interested in a restricted version of mcsp:

Problem  k-mcsp(s, t): Given two balanced strings s and 
t such that the number of occurrences of any character in 
s and t is bounded by k, find a common partition (S , T ) of 
s and t with minimum size.

Now let occ(A) = maxg∈G(A){mA(g)} be the maximum 
number of occurrences of any gene in a genome A. If two 
genomes A and B are balanced, we have occ(A) = occ(B). 
For simplicity, in this case we use only occ.

For a given linear unichromosomal genome A, let the 
index-free string Â be the gene sequence of the chro-
mosome of A ignoring telomeres and gene indices. For 
example, for genome A = (◦ c1 a1 d1 b1 c2 c3 ◦), we have 
Â = cadbcc.

Finding consistent decompositions
In this section we present a linear time approxima-
tion algorithm Consistent-Decomposition, which 
receives two linear unichromosomal balanced genomes A 
and B with occ = k and returns a consistent decomposi-
tion of AG(A,B), which is an O(k)-approximation for the 
DCJ distance. The main steps of Consistent-Decom-
position can be briefly described as follows.

First, from the input genomes A and B, we build their 
adjacency graph AG(A,B). We can then find a consist-
ent decomposition by computing an approximation for 

a

b

Fig. 2  Two consistent decompositions for the same pair of genomes. The genomes (with gene indices omitted) are A = (◦ c a f1 e d a b i h g b ◦) 
and B = (◦ c a d e f a b g h i b ◦). Solid edges are in both decompositions. a A consistent decomposition D′ containing the maximum number 
of cycles of length 2, composed of 2 cycles of length 2, 1 cycle of length 4 and 2 cycles of length 8, resulting in dD′ = 12− 5 = 7. b An optimal 
consistent decomposition D∗, composed of 6 cycles of length 4, resulting in dD∗ = 12− 6 = 6
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k-mcsp(Â, B̂), which gives an approximation for the num-
ber of breakpoints between genomes A and B. After that 
we remove the chosen cycles of length 2 from AG(A,B). 
Following, we iteratively collect arbitrary cycles of length 
longer than 2, removing them from the remaining graph 
after each iteration. Finally, we return the set of col-
lected cycles as a consistent decomposition of AG(A,B) . 
Pseudocode of Consistent-Decomposition is given 
in Algorithm  1. The individual steps are detailed in the 
following.

algorithm for k-mcsp from [9], establishes an approxima-
tion factor for DCJ-distance.

Theorem 3  Let A and B be linear unichromosomal bal-
anced genomes such that occ = k . Let (A,B) be a com-
mon string partition with approximation factor O(k) for 
k-mcsp(Â, B̂). A consistent decomposition D of AG(A,B) , 
containing cycles of length 2 reflecting preserved adjacen-
cies in (A,B), is an O(k)-approximation for the DCJ-dis-
tance problem.

Step  1 of Consistent-Decomposition consists 
of building the adjacency graph of the given balanced 
genomes A and B as described previously. After that, 
Step  2 collects cycles of length 2 of AG(A,B) using an 
O(k)-approximation algorithm for k-mcsp(Â, B̂)  [9]. 
Step 3 removes from AG(A,B) vertices covered by cycles 
in C2 and edges incompatible with edges of cycles in C2.

Step  4 constructs the set C> by decomposing the 
remaining graph into consistent cycles. Iteratively, it 
chooses a consistent cycle C and then removes from the 
remaining graph vertices covered by C. To find C, it can 
start with an empty path, choose some edge e from the 
remaining graph that extends the path and then remove 
from the remaining graph edges incompatible with e (just 
inspecting edges incident to vertices which are adjacent 
to e and to its sibling), repeating both edge selection and 
removal steps until the cycle is closed (it is easy to verify 
that this procedure will always close a consistent cycle). 
Hence the algorithm does not form an inconsistent cycle 
nor choose an inconsistent set of cycles. Further, this 
guarantees that for every edge in the decomposition, its 
sibling edge will also be in the decomposition. Note that 
C> may contain cycles of length 2 not collected in C2.

A consistent decomposition of AG(A,B) is then the set 
C2 ∪ C>, which is returned in Step 5.

To conclude this section, we present the following 
result which, together with the O(k) approximation 

Proof  Let c∗2 and c∗> be the number of cycles of length 
2 and longer than 2, respectively, of an optimal consist-
ent decomposition D∗ of AG(A,B). Let C2 be the set of 
cycles of length 2 reflecting preserved adjacencies in 
(A,B), and let C> be an arbitrary consistent decomposi-
tion of cycles in AG(A,B) \ C2. Let D = C2 ∪ C>, a con-
sistent decomposition, c2 = |C2|, and c> = |C>|. Since 
(A,B) is an O(k)-approximation of k -mscp, it follows that 
n− c2 ≤ ℓ(n− c′2), where ℓ = O(k) and c′2 is the number 
of cycles of length 2 in a consistent decomposition D′ 
with maximum number of cycles of length 2. Hence,

where (5) is analogous to (1) and (6) holds from (4), both 
in the proof of Lemma 2. � �

(5)

dD

dD∗
=

n− c2 − c>

n− c∗2 − c∗>

≤
ℓ (n− c′2)− c>

n− c∗2 − c∗>

≤
ℓ (n− c′2)

n− c∗2 − c∗>

≤ 2ℓ

(
n− c′2 − c′>
n− c∗2 − c∗>

)

(6)≤ 4ℓ,
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Running time
Prior to addressing the running time of Consistent-
Decomposition, we must consider one implicit but 
important step in the algorithm, which is to obtain the 
set C2 given the output of the k-mcsp approximation 
algorithm [9]. This algorithm takes as input Â and B̂ and 
outputs a common string partition (A,B).

Both A and B are composed of the same set of sub-
strings, in different orders and possibly reversed, e.g., 
A = [ba, a, ab] and B = [ab, ab, a] for index-free strings 
Â = baaab and B̂ = ababa. Each substring of length 
l > 1 in A and B induces a sequence of l − 1 preserved 
adjacencies in Â and B̂. Then we just have to map each 
substring in A to the same substring in B (in case of mul-
tiple occurrences, we choose any of them). Consider-
ing A and B in the example above, ab and ba in A could 
be mapped to the first and second occurrences of ab 
in B, respectively, since both ab and ba contain exactly 
the same preserved adjacency ahbt. We describe care-
fully in the next paragraphs the algorithm Substring-
mapping (Algorithm  2) and how to use it to find such 
mapping while preserving the linear time complexity of 
Consistent-Decomposition.

The nontriviality of finding such mapping in linear time 
comes from the fact that alphabets of strings representing 

will be in the range [n+ 1, 2n]. Given different strings 
s = s1, . . . , sℓ and t = t1, . . . , tℓ of the same length ℓ such 
that i is the first position in which they differ, s is lexi-
cographically smaller than t if v(si) < v(ti). (Note that 
v(g) < v(g), therefore g comes before g  lexicographically 
for any symbol g.)

As preprocessing, we first create normalized versions 
Ã of A and B̃  of B, to ensure that for any substring s, only 
s or only its reverse s occurs in Ã ∪ B̃ . Therefore, for each 
string s in A (respectively B), the normalized partition Ã 
(respectively B̃ ) contains s itself, if s is lexicographically 
smaller than s, and s otherwise. For instance, normalizing 
A = [ba, a, ab] would change it to Ã = [ab, a, ab]. Also as 
a preprocessing step, given that we must find the same 
substrings in A and B, it only makes sense to analyze 
substrings in both sets of the same length. Then, if there 
are substrings of multiple lengths in Ã and B̃ , in one pass 
through them (i.e. linear time) we can gather substrings 
of same length in buckets. Therefore, we define multisets 
Ãl = {s in Ã : |s| = l} (analogously B̃l) and the generic 
bucket (multiset) ÃBl = Ãl ∪ B̃l (also recording in some 
manner whether a string in ÃBl comes from A or B), 
running the algorithm Substring-mapping for each 
bucket ÃBl. See Fig. 3 for an example of this preprocess-
ing step.

genomes are not constant size alphabets. They can and 
most likely will be of size O(n).

Before describing the algorithm, some observations 
and preprocessing must be addressed. We assume that 
the value v(g) of each symbol (gene family) g in the alpha-
bet G is unique and in the range [1, n]. For reversed sym-
bols we define v(g) = v(g)+ n, therefore their values 

The main idea of the algorithm Substring-mapping 
is, given a set of strings of length l, to obtain a set of 
buckets for some value of i (from 1 to l), each one con-
taining strings which are found to be equal to the ith 
symbol, by splitting buckets for which strings are equal to 
the (i − 1)st symbol. At the end, each bucket holds equal 
strings and we just have to map them taking into account 
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their origin, A or B. See an example in Fig. 4. Of course, 
instead of working with the substrings themselves we 
work just with references.

We shall demonstrate in the following lemma that this 
implicit mapping step can be performed in O(n) time:

Lemma 4  The running time of Substring-mapping is 
proportional to the sum of lengths of strings in ÃBl, for 
some l.

Proof  Operations in lines 5, 7 and 8 can be done in con-
stant time and are performed at most once per symbol of 
strings in ÃBl. Operations in line 9 are performed O(1) 
times for each string in ÃBl. Therefore, the total running 
time of Substring-mapping is O(

∑
s∈ÃBl

|s|). � �

Since the buckets ÃBl are disjoint, we also have:

Lemma 5  The set C2 can be obtained from the output of 
the k-mcsp approximation algorithm in O(n) time.

Proof  Let S̃ = {ÃBl : there exists at least one substring 
of length l in Ã (and therefore also in B̃ )}. To obtain C2 , 
we must call Substring-mapping for each ÃBl ∈ S̃ , 
as noted before. The time complexity is the sum of time 
spent in all calls plus some extra preprocessing time. It 
is easy to see that S̃  can be obtained in one pass through 
Ã and B̃ , therefore in linear time. The array of buckets 
w1..2n can be defined in linear time once before calling 
Substring-mapping the first time and the buckets are 
empty at the end of each call. Finally, by Lemma  4 the 
running time of Substring-mapping for some ÃBl is 
linear in the sum of lengths of strings in ÃBl, and the 
total sum of the lengths of strings in buckets ÃBl ∈ S̃  is 

Fig. 4  Example of the algorithm Substring-mapping for the bucket ÃB3 of Fig. 3

A = [aba, bbb, abba, aba, abb]
B = [bbb, aba, aba, abb, abba]

abaA
bbbB
abbA
abaB
abaB
abaA
bbbA
abbB

AB3

abbaA
abbaB

AB4

Fig. 3  Example of the preprocessing step for the map-
ping of substrings. The subscript represents the origin of the 
string (A or B), where A = [aba, bbb, abba, aba, abb] and 
B = [bbb, aba, aba, abb, abba]
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2n (each substring of Ã or B̃  appears once in exactly one 
ÃBl). Hence, the total time complexity is O(n).�  �

Having the running time of the implicit step of 
obtaining C2 by the output of the k-mcsp approxima-
tion algorithm, we can now analyze the complexity of 
Consistent-Decomposition.

Theorem  6  Given linear unichromosomal balanced 
genomes A and B such that |A| = |B| = n and occ = k, 
the running time of algorithm Consistent-Decomposi-
tion is linear in the size of the genomes, i.e., O(n).

Proof  First, note that AG(A,B) is a bipartite graph com-
posed of 2(n+ 1) vertices and at most 2kn+ 4 edges. 
This worst case occurs if there are ⌊n/k⌋ gene families of 
size k, yielding 2k2 edges each (k2 for the gene heads and 
k2 for the gene tails), thus 2kn edges in total; plus 4 edges 
from the capping. Therefore, assuming k is a constant, 
AG(A,B) is of size O(n).

It is easy to see that Step  1 of Algorithm  1 has linear 
running time with respect to the size of AG(A,B) , i.e. 
O(n). Computing the k-mcsp approximation [9] in Step 2 
(with suffix trees for integer alphabets  [13]) takes O(n) 
time. The same holds for the implicit step described 
above. The running time of Step 3 is O(n) since we have 
just to traverse vertices and edges of the remaining adja-
cency graph. Step 4 consists of collecting cycles arbitrar-
ily and its running time is also linear, since we just have 
to walk in the remaining graph finding cycles and this 
can be done looking at each edge and each vertex at most 
O(1) times. The last step (Step 5) has running time O(1). 
Therefore, Consistent-Decomposition has running 
time O(n). � �

Extending to circular unichromosomal genomes
Meidanis et  al.  [14] showed that the problem of calcu-
lating the reversal distance for signed circular chromo-
somes without duplicate genes is essentially equivalent to 
the analogous problem for linear chromosomes (similar 
for transpositions in the unsigned case [15]). Therefore, 
any algorithm for the latter works for the former. The 
main idea is that each reversal on some region of a circu-
lar chromosome can be performed in two ways: reversing 
it directly or reversing everything else (Fig. 5).

In the following we show that similar ideas can also be 
applied to genomes with duplicate genes.

Let A and B be circular unichromosomal balanced 
genomes such that occ = k. For some gene family g, there 
are in both A and B genes g1, g2, . . . , gl with l ≤ k. Gene 
g1 of A can be associated with l genes of B. We linearize 
A having g1 with positive sign in the first position and 

linearize B l times, each one of them having one of the 
genes g1, g2, . . . , gl with positive sign in the first position, 
associating it with g1 (and assuming that both already 
are in the correct position). Next, we run Consistent-
Decomposition on each one of the l linearizations, 
taking into account only the sequence of genes from 
position 2 to position n, keeping the best result. Thus, the 
running time of this strategy is l · O(n), that is, O(n) since 
l ≤ k = const.

Corollary 7  For circular unichromosomal genomes 
A and B, the strategy of keeping the minimum output of 
Consistent-Decomposition for one linearization of A 
and l linearizations of B as  described above leads to an 
O(k)-approximation for problem DCJ-distance.

Proof  Let d be the DCJ distance between A and B and 
let gc be the copy of gene g in B associated to g1 in A of the 
correct gene association to obtain d. One of the l lineari-
zations of B associates gc in B with g1 in A, approximating 
d with an O(k) factor by the Consistent-Decomposi-
tion algorithm. Clearly, the minimum output of all l lin-
earizations will not be higher. � �

Experimental results
We have implemented our approximation algorithm in 
C++, with the addition of a linear time greedy heuris-
tic for the decomposition of cycles not induced by the k-
mcsp approximation (available at https://git.facom.ufms.
br/diego/k-dcj).

We compare our algorithm with Shao et  al.’s ILP  [4] 
(GREDU software package) on simulated datasets. Given 
two genomes, the ILP based experiments first build the 
adjacency graph, followed by capping of the telomeres, 
fixing some safe cycles of length two, and finally invoking 
an ILP solver to obtain an optimal solution with a time 
limit of 2 h. The experiments for both approaches were 
performed on an Intel i7 3.4GHz (4 cores) machine.

Following [4], we simulate artificial genomes with seg-
mental duplications and DCJs. We uniformly select a 

ab

c

d

e

ab

c

d

e

ba

e

d

c

Fig. 5  Example of two ways of performing a reversal in a circular 
chromosome (center). Dashed lines denote where cuts are made, 
shaded regions denote the reversed region. The two resulting chro-
mosomes (sides) are the same

https://git.facom.ufms.br/diego/k-dcj
https://git.facom.ufms.br/diego/k-dcj
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position to start duplicating a segment of the genome and 
place the new copy to a new position. From a genome of 
s distinct genes, we generate an ancestor genome with 
1.5s genes by randomly performing s/2l segmental dupli-
cations of length l, resulting in an average k = 1.5. Then 
we simulate two extant genomes from the ancestor by 
randomly performing r DCJs (reversals) independently. 
Thus, the simulated evolutionary distance between the 
two extant genomes is 2r. For each gene copy in the 

extant genomes we keep track of which gene copy in 
the ancestor it corresponds to, establishing the reference 
bijection, allowing us to compute the true positive rate, 
that is, for two genomes A and B, the rate of matchings of 
gene occurrences in A and B corresponding to the same 
gene occurrence in the ancestor genome.

We first set s = 1000, test three different lengths 
for segmental duplications (l = 1, 2, 5) and vary the r 
value over the range 200, 220, . . . , 500. We also simulate 

Fig. 6  The computed number of DCJs vs. the simulated evolutionary distance for s = 1000

Fig. 7  True positive rate for s = 1000
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genomes having s = 5000, l = 1, 2, 5, 10 and r over the 
range 1000, 1100, . . . , 2000. Figures  6 and  9 show the 
average difference “computed number of DCJs minus 
simulated evolutionary distance”, taking as input three 
pairs of genomes for each combination of l and r, Figs. 7 
and  10 show the true positive rate, while Figs. 8 and  11 
show the average running times. Note that, although the 
DCJ distance is unknown, it is always less than or equal 

to the simulated evolutionary distance for these artificial 
genome pairs.

The difference of the number of DCJs (blue lines in 
Figs.  6,   9) calculated by our approximation algorithm 
remains very close to the simulated evolutionary dis-
tance for small values of l. Moreover, it remains roughly 
the same for the same value of l even for greater values of 
r. The values obtained by the ILP approach (red lines in 

a b

Fig. 8  Execution time for s = 1000 of a approximation and b ILP based programs

Fig. 9  The computed number of DCJs vs. the simulated evolutionary distance for s = 5000
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Figs. 6,  9) are very close to those obtained by the approx-
imation algorithm and to the simulated evolutionary dis-
tance from the simulations for l ≤ 2 and smaller values of 
r. However, beyond some point the DCJ distance calcu-
lated by the ILP gets even lower than the simulated evo-
lutionary distance, showing the limitations of parsimony 
for larger distance ranges.

While the true positive rate is higher than 95% for most 
of datasets (Figs.  7,   10), the rate remains between 75 

and 85% when l ≥ 5 for the approximation approach and 
even for the ILP approach in some cases. For s = 5000 
and l ≥ 5, the computed number of DCJs increases while 
the true positive rate decreases significantly beyond some 
point for the ILP results. Notice that the approximation 
algorithm results for the same sets have small rates of 
increase or decrease, even for greater values of r.

The running time of our implementation of Con-
sistent-Decomposition increases slowly from ≈0.03 

Fig. 10  True positive rate for s = 5000

a b

Fig. 11  Execution time for s = 5000 of a approximation and b ILP based programs
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s (2r = 400) to ≈0.08 s (2r = 1000) on average, when 
s = 1000, see Fig. 8a. The ILP approach takes ≈0.3 s for 
smaller values of r (where the preprocessing step fixes 
a considerable amount of cycles of length 2 in the adja-
cency graph), while always reaching the time limit of 2 
h beyond some point, see Fig.  8b. A similar behavior is 
observed for s = 5000 (Fig. 11).

Conclusion
In this paper, we have proposed a new approximation 
algorithm for the DCJ distance for genomes where each 
gene occurs the same number of times in each input 
genome and there exists at least one gene that occurs 
more than once in one of them. This so called DCJ dis-
tance with duplicates for balanced genomes problem 
is NP-hard  [4]. Our algorithm works on input genomes 
where the amount of duplicates is bounded by k, the 
maximum number of duplicates of any gene in the input 
genomes. The approximation factor is O(k). Furthermore, 
our algorithm has linear running time in the size of the 
genomes. As experiments on simulated genomes have 
shown, our algorithm is very competitive both in effi-
ciency and quality of the solutions, in comparison to an 
exact ILP solution.

Due to an intermediate step which approximates the 
minimum common string partition problem, our algo-
rithm works properly only on unichromosomal genomes 
as input. A natural extension of this work is modifying it 
to work with multichromosomal genomes as well.
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