
Rubert et al. Algorithms Mol Biol (2017) 12:3
DOI 10.1186/s13015-017-0095-y

RESEARCH

Approximating the DCJ distance
of balanced genomes in linear time
Diego P. Rubert1, Pedro Feijão2, Marília Dias Vieira Braga2, Jens Stoye2*  and Fábio Henrique Viduani Martinez1*

Abstract 

Background:  Rearrangements are large-scale mutations in genomes, responsible for complex changes and struc-
tural variations. Most rearrangements that modify the organization of a genome can be represented by the double
cut and join (DCJ) operation. Given two balanced genomes, i.e., two genomes that have exactly the same number of
occurrences of each gene in each genome, we are interested in the problem of computing the rearrangement dis-
tance between them, i.e., finding the minimum number of DCJ operations that transform one genome into the other.
This problem is known to be NP-hard.

Results:  We propose a linear time approximation algorithm with approximation factor O(k) for the DCJ distance
problem, where k is the maximum number of occurrences of any gene in the input genomes. Our algorithm works for
linear and circular unichromosomal balanced genomes and uses as an intermediate step an O(k)-approximation for
the minimum common string partition problem, which is closely related to the DCJ distance problem.

Conclusions:  Experiments on simulated data sets show that our approximation algorithm is very competitive both
in efficiency and in quality of the solutions.

Keywords:  Double cut and join (DCJ), Genome rearrangements, Comparative genomics, Approximation algorithms

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Large-scale mutations or rearrangements can produce
complex changes and structural variations in genomes.
They include inversions of chromosome segments (also
called reversals), translocations of chromosome ends,
fusions and fissions of chromosomes. All these rear-
rangements can be represented by the double cut and join
(DCJ) operation [1], which basically consists of cutting a
genome in two distinct positions (possibly in two distinct
chromosomes) and joining the four resultant open ends
in a different way.

A basic task in comparative genomics is to find the
rearrangement distance between two given genomes, i.e.,
the minimum number of rearrangements that transform
one genome into the other. For genomes without dupli-
cate genes, there are linear time algorithms to compute

the distance allowing only DCJ operations [2]. On the
other hand, for genomes with duplicate genes, computing
the rearrangement distance is NP-hard, even when the
genomes have exactly the same number of occurrences of
each gene in each genome (balanced genomes) and only
DCJ operations are allowed [3, 4].

In this paper we design an approximation algorithm
for computing the DCJ distance between two unichro-
mosomal balanced genomes. The main step of our
approximation algorithm is similar to approximating
the NP-hard problem of computing the Breakpoint Dis-
tance (BD) in the presence of duplicate genes [5]. Let k
be the maximum number of occurrences of any gene
in the input genomes. With this parameter, BD has a
1.1037-approximation if k = 2 and a 4-approximation
if k = 3 [6]. Otherwise, for general values of k, it has
an O(k)-approximation [7, 8]. The latter result is based
on a linear time approximation algorithm for the mini-
mum common string partition (mcsp) problem [6] with
approximation factor O(k) [9].

As we will show, the algorithm we developed to com-
pute the DCJ distance of balanced genomes also has an

Open Access

Algorithms for
Molecular Biology

*Correspondence: jens.stoye@uni‑bielefeld.de; fhvm@facom.ufms.br
1 Faculdade de Computação, Universidade Federal de Mato Grosso do
Sul, Campo Grande, MS, Brazil
2 Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld
University, Bielefeld, Germany

http://orcid.org/0000-0002-4656-7155
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13015-017-0095-y&domain=pdf

Page 2 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

approximation factor O(k) and linear running time. It
works properly on inputs that are linear unichromosomal
genomes. In addition, we describe how to extend it for
circular unichromosomal genomes.

Experiments on simulated data sets show that our
approximation algorithm is very competitive both in effi-
ciency and in quality of the solutions.

A preliminary version of this paper appeared in the
Proceedings of the 16th Workshop on Algorithms in Bio-
informatics (WABI 2016) [10].

Preliminaries
A gene g is an oriented DNA fragment that can be repre-
sented by the symbol g itself, if it has direct orientation,
or by the symbol g , if it has reverse orientation (g = g).
A chromosome is a linear or a circular sequence of genes,
and a genome is a set of chromosomes. Each one of the
two ends of a linear chromosome is a telomere, repre-
sented by the symbol ◦.

Each chromosome in a genome can be represented by
a sequence of genes that can be circular, if the chromo-
some is circular, or linear and flanked by the symbols ◦,
if the chromosome is linear. Given a gene g, let mA(g) be
the number of occurrences of g in a genome A. To refer to
each occurrence of a gene g unambiguously, we number
the occurrences of g from 1 to mA(g). When there exists
at least one gene that occurs more than once in genome
A, we say that A has duplicate genes.

In this work we consider only unichromosomal
genomes, that are genomes composed of a single chro-
mosome. Consider for instance the linear unichromo-
somal genome A = (◦ c1 a1 d1 b1 a2 c2 ◦). In A we have
one occurrence of genes b and d and two occurrences
of genes a and c, that is, A has duplicate genes, and
mA(a) = 2, mA(b) = 1, mA(c) = 2 and mA(d) = 1.

We use the notations G(A) and GN (A), respectively, to
refer to the set of (non-numbered) genes and to the set
of numbered genes of a genome A. Considering again
the genome A above, we have G(A) = {a, b, c, d} and
GN (A) = {a1, a2, b1, c1, c2, d1}. Observe that the genomes
A′ = (◦ c2 a1 d1 b1 a2 c1 ◦), A′′ = (◦ c1 a2 d1 b1 a1 c2 ◦)
and A′′′ = (◦ c2 a2 d1 b1 a1 c1 ◦) are equivalent to
A = (◦ c1 a1 d1 b1 a2 c2 ◦). Given a genome A, possibly
with duplicate genes, we denote by [A] the equivalence
class of genomes that can be obtained from A by swap-
ping indices between occurrences of the same gene.

Balanced genomes
Let A and B be two unichromosomal genomes, possi-
bly with duplicate genes. If they contain the same num-
ber of occurrences of each gene, i.e. GN (A) = GN (B),
we say that A and B are balanced. We can then
simply denote by G = G(A) = G(B) the set of

(non-numbered) genes and by GN = GN (A) = GN (B)
the set of numbered genes of A and B. For example,
for balanced genomes A = (◦ c1 a1 d1 b1 c2 c3 ◦) and
B = (◦ a1 c3 c1 b1 d1 c2 ◦) we have G = {a, b, c, d} and
GN = {a1, b1, c1, c2, c3, d1}.

DCJ operations
Rearrangements can change the organization of a
genome, i.e., the number of chromosomes in a genome
or the order and the orientation of its genes. In general,
such a rearrangement cuts a genome in two different
positions, creating four open ends, and joins these open
ends in a different way. It can be modeled by a double-
cut and join (DCJ) operation [1]. Consider, for example,
a DCJ applied to genome (◦ c1 a1 d1 b1 a2 c2 ◦) that cuts
before and after a1 d1, creating the segments (◦ c1 •) ,
(• a1 d1 •) and (• b1 a2 c2 ◦), where the symbol • rep-
resents the open ends. If we then join the first with the
third and the second with the fourth open end, we obtain
(◦ c1 d1 a1 b1 a2 c2 ◦). This DCJ corresponds to the
inversion of contiguous genes a1 d1. In general genomes,
DCJ operations can also correspond to other rearrange-
ments, such as translocations, fusions and fissions [1].

DCJ distance and adjacency graph
Observe that the DCJ operation alone can only sort bal-
anced genomes. We formally define the DCJ distance
problem:

Problem  DCJ-distance(A, B): Given two balanced
genomes A and B, compute their DCJ distance ddcj(A,B),
i.e., the minimum number of DCJ operations required to
transform A into B′, such that B′ ∈ [B].

Any sequence of ddcj(A,B) DCJ operations transform-
ing A into B′ ∈ [B] is called an optimal sequence of DCJ
operations.

Given two balanced genomes A and B, ddcj(A,B) can be
computed with the help of the following concepts. First
note that, since a gene g has an orientation, we can distin-
guish its two ends, also called its extremities, and denote
them by gt (tail) and gh (head). An adjacency in a genome
is an unordered pair of consecutive extremities in its
chromosome (one of the two extremities can be a tel-
omere). Thus, a genome A can also be defined as a set of
adjacencies adj(A) of its numbered genes. Given genome
A = {(◦ c1 a1 d1 b1 a2 c2 ◦)}, for example, we have
adj(A) = { ◦ct1 , c

h
1a

h
1 , at1d

t
1 , d

h
1b

t
1 , b

h
1a

h
2 , at2c

t
2 , c

h
2◦ }.

Given two balanced genomes A and B, the adjacency
graph AG(A,B) [2] is a bipartite multigraph such that
each partition corresponds to the set of adjacencies of
one of the two input genomes, and an edge connects the
same gene extremities of adjacencies in both partitions,

Page 3 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

regardless of their index numbers. We say that the edge
represents those extremities. If A and B are linear, each of
the two telomeres of A must be connected by an edge to
each of the two telomeres of B.

Without duplicate genes
First we consider the case when the genomes A and B
contain no duplicate genes. If A and B are circular, there
is a one-to-one correspondence between the set of edges
in AG(A,B) and the set of gene extremities. In this case,
all vertices have degree two and thus the adjacency graph
is a collection of disjoint cycles. Here, problem DCJ-dis-
tance can easily be solved in linear time [1, 2] using the
formula

where n = |adj(A)| = |adj(B)| = |G| is the number of
adjacencies or genes in any of the two genomes and c is
the number of cycles in AG(A,B).

If A and B are linear, besides the edges connecting gene
extremities, each telomere of A must be connected by
an edge to each telomere of B. There is then an ambigu-
ity concerning the vertices that contain a telomere, that
have degree three. This means that we need to choose
one of the two possible matchings of telomeres to obtain
a graph in which all vertices have degree two, that is, a
graph that is composed of cycles only. We must choose
a matching that maximizes the number of cycles in the
resulting AG(A,B). To accomplish this task, we just need
to do a walk on the graph starting in one telomere of A
until we find the next telomere in AG(A,B). If the sec-
ond telomere is also in A, then we can pick any of the two
possible matchings. In this case we have one big cycle
covering all four vertices that contain a telomere. If the
second telomere is in B, then we can pick the matching
that connects these two telomeres (and consequently
connects the other two telomeres, that were not covered
by this walk). In this case we have two cycles covering the
four vertices that contain a telomere. Once this matching
is defined, problem DCJ-distance can again be solved in
linear time [1] using the formula

where n = |adj(A)| = |adj(B)| = |G| + 1 is the number
of adjacencies in any of the two genomes and c is the
number of cycles in AG(A,B).

With duplicate genes
When genomes have duplicate genes, problem DCJ-
distance becomes NP-hard [4]. In the same paper, the
authors present an exact, exponential-time algorithm for
its solution, phrased in form of an Integer Linear Pro-
gram (ILP).

ddcj(A,B) = n− c,

ddcj(A,B) = n− c,

An approach to compute the DCJ distance with duplicate
genes
Observe that, in the presence of duplicate genes, the
adjacency graph may contain vertices of degree larger
than two. A decomposition of AG(A,B) is a collection of
disjoint cycles covering all vertices of AG(A,B).

There can be multiple ways of selecting a decompo-
sition of the adjacency graph. We need to find one that
allows to match each occurrence of a gene in genome A
with exactly one occurrence of the same gene in genome
B and each telomere of A to one telomere of B. In order
to build such a decomposition, we need the following
definitions.

Let gi and gj be, respectively, occurrences of the same
gene g in genomes A and B. The edge e that represents
the connection of the head of gi to the head of gj and the
edge f that represents the connection of the tail of gi to
the tail of gj are called siblings. Two edges are compatible
if they are siblings, if they represent the connection of
extremities of distinct occurrences of the same gene, or
if they represent the connection of extremities of distinct
genes. Otherwise they are incompatible. A set of edges is
compatible if it has no pair of incompatible edges. A cycle
C of AG(A,B) is consistent if the set E(C) of edges of C
is compatible. Note that, when constructing a decompo-
sition, by choosing consistent cycles one may still select
incompatible edges that occur in separate cycles (see the
three dotted cycles of length 2 in Fig. 1). Thus, consist-
ency cannot be taken into account in cycles separately.

A set of cycles {C1,C2, . . . ,Ck} of AG(A,B) is consistent
if and only if E(C1) ∪ E(C2) ∪ · · · ∪ E(Ck) is compatible.
A consistent decomposition D of AG(A,B) is a consistent
set of disjoint cycles that cover all vertices in AG(A,B).
Observe that in a consistent decomposition D we have
only pairs of siblings, i.e., either an edge e and its sibling
f are in D or both e and f are not in D. Thus, a consistent
decomposition corresponds to a matching of occurrences
of genes and telomeres in both genomes and allows us to
compute the value

where n = |adj(A)| = |adj(B)| and cD is the number of
cycles in D. Observe that n = |GN | if A and B are circular.
If A and B are linear genomes, then n = |GN | + 1.

We can now compute the DCJ distance of two unichro-
mosomal balanced genomes.

Theorem 1  Given two unichromosomal balanced
genomes A and B, the solution for the problem DCJ-dis-
tance is given by the following equation:

dD = n− cD,

ddcj(A,B) = min
D∈D

{dD},

Page 4 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

where D is the set of all consistent decompositions of
AG(A,B).

Proof  Since a consistent decomposition allows
to match duplicates in both genomes, clearly
ddcj(A,B) ≤ minD∈D{dD}. Now, assume that
ddcj(A,B) < minD∈D{dD}. By definition, this distance
corresponds to an optimal rearrangement scenario from
A to some B′ ∈ [B] and therefore implies a matching
between the genes of A and the genes of B′. Furthermore,
this matching gives rise to a consistent decomposition D′
of AG(A, B) such that dD′ < minD∈D{dD}, which is a con-
tradiction.� �

A consistent decomposition D such that dD = ddcj(A,B)
is said to be optimal.

Once a consistent decomposition D of the adjacency
graph AG(A,B) is found, following [2] it is easy to derive
in linear time a DCJ rearrangement scenario with dD DCJ
operations transforming A into B. Moreover, an optimal
consistent decomposition allows to find all optimal rear-
rangement scenarios [11].

Results
Actually, all definitions and properties for the DCJ dis-
tance of balanced genomes presented from the begin-
ning to here work properly for the general case, where
genomes can be multichromosomal. However, as we will
see in this section, to solve the DCJ distance problem we
use an intermediate procedure whose inputs are strings.
For this reason we restricted our inputs to unichromo-
somal genomes. Moreover, for the moment we will addi-
tionally consider only linear unichromosomal genomes,
discussing later how to deal with circular unichromo-
somal genomes. The extension to multichromosomal
genomes is left as an open problem.

Approximating the DCJ distance by cycles of length 2
As mentioned above, given two linear unichromosomal
balanced genomes A and B, we have to find a consistent
decomposition of AG(A,B) to compute the DCJ distance
according to Theorem 1. Recall that this is an NP-hard
problem [4].

Given a consistent decomposition D ∈ D of the adja-
cency graph AG(A,B), we can see that

where n = |adj(A)| = |adj(B)|, c2 is the number of cycles
of length 2, and c> is the number of cycles of length
longer than 2 in D.

Building a consistent decomposition by maximizing c2
as a first step is itself an NP-hard problem [12]. Further-
more, this strategy is not able to optimally solve the DCJ
distance, as we can see in Fig. 2. Nevertheless, it allows us
to approximate the DCJ distance:

Lemma 2  A consistent decomposition D′ of AG(A,B)
containing the maximum number of cycles of length 2 is a
2-approximation for the DCJ-distance problem.

Proof  Let c∗2 and c∗> be the number of cycles of length 2
and longer than 2, respectively, of an optimal consistent
decomposition D∗ of AG(A,B). Let c′2 and c′> be the num-
bers analogous to c∗2 and c∗> with respect to the decompo-
sition D′. It it easy to see that c∗2 + 2c∗> ≤ n, thus

Therefore, we have

dD = n− cD = n− c2 − c>,

(1)

0 ≤ n− c∗2 − 2c∗>
n− c∗2 ≤ n− c∗2 − 2c∗> + n− c∗2
n− c∗2 ≤ 2(n− c∗2 − c∗>).

Fig. 1  Examples of an inconsistent cycle (dashed edges) and an inconsistent set of cycles (dotted edges). The adjacency graph for
A = (◦ a1 b1 a2 b2 a3 a4 a5 ◦) and B = (◦ b1 a1 b2 a2 a3 a4 a5 ◦), with some edges omitted. For the sake of clarity, edges are labeled with
extremities they represent. For example, an edge labeled gti−j represents extremities gti from A and gtj from B

Page 5 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

where (2) holds since c′2 ≥ c∗2, and (3) is true from (1). � �

Minimum common string partition
The main result of this work relies on a restricted version
of the minimum common string partition (mcsp) prob-
lem [6, 9], described briefly as follows.

Given a string s, a partition of s is a sequence
S = [S1,S2, . . . ,Sm] of substrings called blocks whose
concatenation is s, i.e., S1S2 · · ·Sm = s, and m is the size
of S.

Two strings s and t are balanced if any character has
the same number of occurrences in s and in t, disregard-
ing signs. Given two balanced strings s and t and parti-
tions S = [S1, . . . ,Sm] of s and T = [T1, . . . , Tm] of t, the
pair (S , T) is a common partition of s and t if there exists
a permutation f on {1, . . . ,m} such that Si = Tf (i) for each
i = 1, . . . ,m. The minimum common string partition

(2)

dD′

dD∗
=

n− c′2 − c′>
n− c∗2 − c∗>

≤
n− c∗2 − c′>
n− c∗2 − c∗>

(3)

≤
n− c∗2

n− c∗2 − c∗>

≤
2(n− c∗2 − c∗>)

n− c∗2 − c∗>

(4)= 2,

problem (mcsp) is to find a common partition (S , T) of
two balanced strings s and t with minimum size.

We are interested in a restricted version of mcsp:

Problem  k-mcsp(s, t): Given two balanced strings s and
t such that the number of occurrences of any character in
s and t is bounded by k, find a common partition (S , T) of
s and t with minimum size.

Now let occ(A) = maxg∈G(A){mA(g)} be the maximum
number of occurrences of any gene in a genome A. If two
genomes A and B are balanced, we have occ(A) = occ(B).
For simplicity, in this case we use only occ.

For a given linear unichromosomal genome A, let the
index-free string Â be the gene sequence of the chro-
mosome of A ignoring telomeres and gene indices. For
example, for genome A = (◦ c1 a1 d1 b1 c2 c3 ◦), we have
Â = cadbcc.

Finding consistent decompositions
In this section we present a linear time approxima-
tion algorithm Consistent-Decomposition, which
receives two linear unichromosomal balanced genomes A
and B with occ = k and returns a consistent decomposi-
tion of AG(A,B), which is an O(k)-approximation for the
DCJ distance. The main steps of Consistent-Decom-
position can be briefly described as follows.

First, from the input genomes A and B, we build their
adjacency graph AG(A,B). We can then find a consist-
ent decomposition by computing an approximation for

a

b

Fig. 2  Two consistent decompositions for the same pair of genomes. The genomes (with gene indices omitted) are A = (◦ c a f1 e d a b i h g b ◦)
and B = (◦ c a d e f a b g h i b ◦). Solid edges are in both decompositions. a A consistent decomposition D′ containing the maximum number
of cycles of length 2, composed of 2 cycles of length 2, 1 cycle of length 4 and 2 cycles of length 8, resulting in dD′ = 12− 5 = 7. b An optimal
consistent decomposition D∗, composed of 6 cycles of length 4, resulting in dD∗ = 12− 6 = 6

Page 6 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

k-mcsp(Â, B̂), which gives an approximation for the num-
ber of breakpoints between genomes A and B. After that
we remove the chosen cycles of length 2 from AG(A,B).
Following, we iteratively collect arbitrary cycles of length
longer than 2, removing them from the remaining graph
after each iteration. Finally, we return the set of col-
lected cycles as a consistent decomposition of AG(A,B) .
Pseudocode of Consistent-Decomposition is given
in Algorithm 1. The individual steps are detailed in the
following.

algorithm for k-mcsp from [9], establishes an approxima-
tion factor for DCJ-distance.

Theorem 3  Let A and B be linear unichromosomal bal-
anced genomes such that occ = k . Let (A,B) be a com-
mon string partition with approximation factor O(k) for
k-mcsp(Â, B̂). A consistent decomposition D of AG(A,B) ,
containing cycles of length 2 reflecting preserved adjacen-
cies in (A,B), is an O(k)-approximation for the DCJ-dis-
tance problem.

Step 1 of Consistent-Decomposition consists
of building the adjacency graph of the given balanced
genomes A and B as described previously. After that,
Step 2 collects cycles of length 2 of AG(A,B) using an
O(k)-approximation algorithm for k-mcsp(Â, B̂) [9].
Step 3 removes from AG(A,B) vertices covered by cycles
in C2 and edges incompatible with edges of cycles in C2.

Step 4 constructs the set C> by decomposing the
remaining graph into consistent cycles. Iteratively, it
chooses a consistent cycle C and then removes from the
remaining graph vertices covered by C. To find C, it can
start with an empty path, choose some edge e from the
remaining graph that extends the path and then remove
from the remaining graph edges incompatible with e (just
inspecting edges incident to vertices which are adjacent
to e and to its sibling), repeating both edge selection and
removal steps until the cycle is closed (it is easy to verify
that this procedure will always close a consistent cycle).
Hence the algorithm does not form an inconsistent cycle
nor choose an inconsistent set of cycles. Further, this
guarantees that for every edge in the decomposition, its
sibling edge will also be in the decomposition. Note that
C> may contain cycles of length 2 not collected in C2.

A consistent decomposition of AG(A,B) is then the set
C2 ∪ C>, which is returned in Step 5.

To conclude this section, we present the following
result which, together with the O(k) approximation

Proof  Let c∗2 and c∗> be the number of cycles of length
2 and longer than 2, respectively, of an optimal consist-
ent decomposition D∗ of AG(A,B). Let C2 be the set of
cycles of length 2 reflecting preserved adjacencies in
(A,B), and let C> be an arbitrary consistent decomposi-
tion of cycles in AG(A,B) \ C2. Let D = C2 ∪ C>, a con-
sistent decomposition, c2 = |C2|, and c> = |C>|. Since
(A,B) is an O(k)-approximation of k -mscp, it follows that
n− c2 ≤ ℓ(n− c′2), where ℓ = O(k) and c′2 is the number
of cycles of length 2 in a consistent decomposition D′
with maximum number of cycles of length 2. Hence,

where (5) is analogous to (1) and (6) holds from (4), both
in the proof of Lemma 2. � �

(5)

dD

dD∗
=

n− c2 − c>

n− c∗2 − c∗>

≤
ℓ (n− c′2)− c>

n− c∗2 − c∗>

≤
ℓ (n− c′2)

n− c∗2 − c∗>

≤ 2ℓ

(
n− c′2 − c′>
n− c∗2 − c∗>

)

(6)≤ 4ℓ,

Page 7 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

Running time
Prior to addressing the running time of Consistent-
Decomposition, we must consider one implicit but
important step in the algorithm, which is to obtain the
set C2 given the output of the k-mcsp approximation
algorithm [9]. This algorithm takes as input Â and B̂ and
outputs a common string partition (A,B).

Both A and B are composed of the same set of sub-
strings, in different orders and possibly reversed, e.g.,
A = [ba, a, ab] and B = [ab, ab, a] for index-free strings
Â = baaab and B̂ = ababa. Each substring of length
l > 1 in A and B induces a sequence of l − 1 preserved
adjacencies in Â and B̂. Then we just have to map each
substring in A to the same substring in B (in case of mul-
tiple occurrences, we choose any of them). Consider-
ing A and B in the example above, ab and ba in A could
be mapped to the first and second occurrences of ab
in B, respectively, since both ab and ba contain exactly
the same preserved adjacency ahbt. We describe care-
fully in the next paragraphs the algorithm Substring-
mapping (Algorithm 2) and how to use it to find such
mapping while preserving the linear time complexity of
Consistent-Decomposition.

The nontriviality of finding such mapping in linear time
comes from the fact that alphabets of strings representing

will be in the range [n+ 1, 2n]. Given different strings
s = s1, . . . , sℓ and t = t1, . . . , tℓ of the same length ℓ such
that i is the first position in which they differ, s is lexi-
cographically smaller than t if v(si) < v(ti). (Note that
v(g) < v(g), therefore g comes before g lexicographically
for any symbol g.)

As preprocessing, we first create normalized versions
Ã of A and B̃ of B, to ensure that for any substring s, only
s or only its reverse s occurs in Ã ∪ B̃ . Therefore, for each
string s in A (respectively B), the normalized partition Ã
(respectively B̃) contains s itself, if s is lexicographically
smaller than s, and s otherwise. For instance, normalizing
A = [ba, a, ab] would change it to Ã = [ab, a, ab]. Also as
a preprocessing step, given that we must find the same
substrings in A and B, it only makes sense to analyze
substrings in both sets of the same length. Then, if there
are substrings of multiple lengths in Ã and B̃ , in one pass
through them (i.e. linear time) we can gather substrings
of same length in buckets. Therefore, we define multisets
Ãl = {s in Ã : |s| = l} (analogously B̃l) and the generic
bucket (multiset) ÃBl = Ãl ∪ B̃l (also recording in some
manner whether a string in ÃBl comes from A or B),
running the algorithm Substring-mapping for each
bucket ÃBl. See Fig. 3 for an example of this preprocess-
ing step.

genomes are not constant size alphabets. They can and
most likely will be of size O(n).

Before describing the algorithm, some observations
and preprocessing must be addressed. We assume that
the value v(g) of each symbol (gene family) g in the alpha-
bet G is unique and in the range [1, n]. For reversed sym-
bols we define v(g) = v(g)+ n, therefore their values

The main idea of the algorithm Substring-mapping
is, given a set of strings of length l, to obtain a set of
buckets for some value of i (from 1 to l), each one con-
taining strings which are found to be equal to the ith
symbol, by splitting buckets for which strings are equal to
the (i − 1)st symbol. At the end, each bucket holds equal
strings and we just have to map them taking into account

Page 8 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

their origin, A or B. See an example in Fig. 4. Of course,
instead of working with the substrings themselves we
work just with references.

We shall demonstrate in the following lemma that this
implicit mapping step can be performed in O(n) time:

Lemma 4  The running time of Substring-mapping is
proportional to the sum of lengths of strings in ÃBl, for
some l.

Proof  Operations in lines 5, 7 and 8 can be done in con-
stant time and are performed at most once per symbol of
strings in ÃBl. Operations in line 9 are performed O(1)
times for each string in ÃBl. Therefore, the total running
time of Substring-mapping is O(

∑
s∈ÃBl

|s|). � �

Since the buckets ÃBl are disjoint, we also have:

Lemma 5  The set C2 can be obtained from the output of
the k-mcsp approximation algorithm in O(n) time.

Proof  Let S̃ = {ÃBl : there exists at least one substring
of length l in Ã (and therefore also in B̃)}. To obtain C2 ,
we must call Substring-mapping for each ÃBl ∈ S̃ ,
as noted before. The time complexity is the sum of time
spent in all calls plus some extra preprocessing time. It
is easy to see that S̃ can be obtained in one pass through
Ã and B̃ , therefore in linear time. The array of buckets
w1..2n can be defined in linear time once before calling
Substring-mapping the first time and the buckets are
empty at the end of each call. Finally, by Lemma 4 the
running time of Substring-mapping for some ÃBl is
linear in the sum of lengths of strings in ÃBl, and the
total sum of the lengths of strings in buckets ÃBl ∈ S̃ is

Fig. 4  Example of the algorithm Substring-mapping for the bucket ÃB3 of Fig. 3

A = [aba, bbb, abba, aba, abb]
B = [bbb, aba, aba, abb, abba]

abaA
bbbB
abbA
abaB
abaB
abaA
bbbA
abbB

AB3

abbaA
abbaB

AB4

Fig. 3  Example of the preprocessing step for the map-
ping of substrings. The subscript represents the origin of the
string (A or B), where A = [aba, bbb, abba, aba, abb] and
B = [bbb, aba, aba, abb, abba]

Page 9 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

2n (each substring of Ã or B̃ appears once in exactly one
ÃBl). Hence, the total time complexity is O(n).� �

Having the running time of the implicit step of
obtaining C2 by the output of the k-mcsp approxima-
tion algorithm, we can now analyze the complexity of
Consistent-Decomposition.

Theorem 6  Given linear unichromosomal balanced
genomes A and B such that |A| = |B| = n and occ = k,
the running time of algorithm Consistent-Decomposi-
tion is linear in the size of the genomes, i.e., O(n).

Proof  First, note that AG(A,B) is a bipartite graph com-
posed of 2(n+ 1) vertices and at most 2kn+ 4 edges.
This worst case occurs if there are ⌊n/k⌋ gene families of
size k, yielding 2k2 edges each (k2 for the gene heads and
k2 for the gene tails), thus 2kn edges in total; plus 4 edges
from the capping. Therefore, assuming k is a constant,
AG(A,B) is of size O(n).

It is easy to see that Step 1 of Algorithm 1 has linear
running time with respect to the size of AG(A,B) , i.e.
O(n). Computing the k-mcsp approximation [9] in Step 2
(with suffix trees for integer alphabets [13]) takes O(n)
time. The same holds for the implicit step described
above. The running time of Step 3 is O(n) since we have
just to traverse vertices and edges of the remaining adja-
cency graph. Step 4 consists of collecting cycles arbitrar-
ily and its running time is also linear, since we just have
to walk in the remaining graph finding cycles and this
can be done looking at each edge and each vertex at most
O(1) times. The last step (Step 5) has running time O(1).
Therefore, Consistent-Decomposition has running
time O(n). � �

Extending to circular unichromosomal genomes
Meidanis et al. [14] showed that the problem of calcu-
lating the reversal distance for signed circular chromo-
somes without duplicate genes is essentially equivalent to
the analogous problem for linear chromosomes (similar
for transpositions in the unsigned case [15]). Therefore,
any algorithm for the latter works for the former. The
main idea is that each reversal on some region of a circu-
lar chromosome can be performed in two ways: reversing
it directly or reversing everything else (Fig. 5).

In the following we show that similar ideas can also be
applied to genomes with duplicate genes.

Let A and B be circular unichromosomal balanced
genomes such that occ = k. For some gene family g, there
are in both A and B genes g1, g2, . . . , gl with l ≤ k. Gene
g1 of A can be associated with l genes of B. We linearize
A having g1 with positive sign in the first position and

linearize B l times, each one of them having one of the
genes g1, g2, . . . , gl with positive sign in the first position,
associating it with g1 (and assuming that both already
are in the correct position). Next, we run Consistent-
Decomposition on each one of the l linearizations,
taking into account only the sequence of genes from
position 2 to position n, keeping the best result. Thus, the
running time of this strategy is l · O(n), that is, O(n) since
l ≤ k = const.

Corollary 7  For circular unichromosomal genomes
A and B, the strategy of keeping the minimum output of
Consistent-Decomposition for one linearization of A
and l linearizations of B as described above leads to an
O(k)-approximation for problem DCJ-distance.

Proof  Let d be the DCJ distance between A and B and
let gc be the copy of gene g in B associated to g1 in A of the
correct gene association to obtain d. One of the l lineari-
zations of B associates gc in B with g1 in A, approximating
d with an O(k) factor by the Consistent-Decomposi-
tion algorithm. Clearly, the minimum output of all l lin-
earizations will not be higher. � �

Experimental results
We have implemented our approximation algorithm in
C++, with the addition of a linear time greedy heuris-
tic for the decomposition of cycles not induced by the k-
mcsp approximation (available at https://git.facom.ufms.
br/diego/k-dcj).

We compare our algorithm with Shao et al.’s ILP [4]
(GREDU software package) on simulated datasets. Given
two genomes, the ILP based experiments first build the
adjacency graph, followed by capping of the telomeres,
fixing some safe cycles of length two, and finally invoking
an ILP solver to obtain an optimal solution with a time
limit of 2 h. The experiments for both approaches were
performed on an Intel i7 3.4GHz (4 cores) machine.

Following [4], we simulate artificial genomes with seg-
mental duplications and DCJs. We uniformly select a

ab

c

d

e

ab

c

d

e

ba

e

d

c

Fig. 5  Example of two ways of performing a reversal in a circular
chromosome (center). Dashed lines denote where cuts are made,
shaded regions denote the reversed region. The two resulting chro-
mosomes (sides) are the same

https://git.facom.ufms.br/diego/k-dcj
https://git.facom.ufms.br/diego/k-dcj

Page 10 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

position to start duplicating a segment of the genome and
place the new copy to a new position. From a genome of
s distinct genes, we generate an ancestor genome with
1.5s genes by randomly performing s/2l segmental dupli-
cations of length l, resulting in an average k = 1.5. Then
we simulate two extant genomes from the ancestor by
randomly performing r DCJs (reversals) independently.
Thus, the simulated evolutionary distance between the
two extant genomes is 2r. For each gene copy in the

extant genomes we keep track of which gene copy in
the ancestor it corresponds to, establishing the reference
bijection, allowing us to compute the true positive rate,
that is, for two genomes A and B, the rate of matchings of
gene occurrences in A and B corresponding to the same
gene occurrence in the ancestor genome.

We first set s = 1000, test three different lengths
for segmental duplications (l = 1, 2, 5) and vary the r
value over the range 200, 220, . . . , 500. We also simulate

Fig. 6  The computed number of DCJs vs. the simulated evolutionary distance for s = 1000

Fig. 7  True positive rate for s = 1000

Page 11 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

genomes having s = 5000, l = 1, 2, 5, 10 and r over the
range 1000, 1100, . . . , 2000. Figures 6 and 9 show the
average difference “computed number of DCJs minus
simulated evolutionary distance”, taking as input three
pairs of genomes for each combination of l and r, Figs. 7
and 10 show the true positive rate, while Figs. 8 and 11
show the average running times. Note that, although the
DCJ distance is unknown, it is always less than or equal

to the simulated evolutionary distance for these artificial
genome pairs.

The difference of the number of DCJs (blue lines in
Figs. 6, 9) calculated by our approximation algorithm
remains very close to the simulated evolutionary dis-
tance for small values of l. Moreover, it remains roughly
the same for the same value of l even for greater values of
r. The values obtained by the ILP approach (red lines in

a b

Fig. 8  Execution time for s = 1000 of a approximation and b ILP based programs

Fig. 9  The computed number of DCJs vs. the simulated evolutionary distance for s = 5000

Page 12 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

Figs. 6, 9) are very close to those obtained by the approx-
imation algorithm and to the simulated evolutionary dis-
tance from the simulations for l ≤ 2 and smaller values of
r. However, beyond some point the DCJ distance calcu-
lated by the ILP gets even lower than the simulated evo-
lutionary distance, showing the limitations of parsimony
for larger distance ranges.

While the true positive rate is higher than 95% for most
of datasets (Figs. 7, 10), the rate remains between 75

and 85% when l ≥ 5 for the approximation approach and
even for the ILP approach in some cases. For s = 5000
and l ≥ 5, the computed number of DCJs increases while
the true positive rate decreases significantly beyond some
point for the ILP results. Notice that the approximation
algorithm results for the same sets have small rates of
increase or decrease, even for greater values of r.

The running time of our implementation of Con-
sistent-Decomposition increases slowly from ≈0.03

Fig. 10  True positive rate for s = 5000

a b

Fig. 11  Execution time for s = 5000 of a approximation and b ILP based programs

Page 13 of 13Rubert et al. Algorithms Mol Biol (2017) 12:3

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

s (2r = 400) to ≈0.08 s (2r = 1000) on average, when
s = 1000, see Fig. 8a. The ILP approach takes ≈0.3 s for
smaller values of r (where the preprocessing step fixes
a considerable amount of cycles of length 2 in the adja-
cency graph), while always reaching the time limit of 2
h beyond some point, see Fig. 8b. A similar behavior is
observed for s = 5000 (Fig. 11).

Conclusion
In this paper, we have proposed a new approximation
algorithm for the DCJ distance for genomes where each
gene occurs the same number of times in each input
genome and there exists at least one gene that occurs
more than once in one of them. This so called DCJ dis-
tance with duplicates for balanced genomes problem
is NP-hard [4]. Our algorithm works on input genomes
where the amount of duplicates is bounded by k, the
maximum number of duplicates of any gene in the input
genomes. The approximation factor is O(k). Furthermore,
our algorithm has linear running time in the size of the
genomes. As experiments on simulated genomes have
shown, our algorithm is very competitive both in effi-
ciency and quality of the solutions, in comparison to an
exact ILP solution.

Due to an intermediate step which approximates the
minimum common string partition problem, our algo-
rithm works properly only on unichromosomal genomes
as input. A natural extension of this work is modifying it
to work with multichromosomal genomes as well.

Authors’ contributions
All authors developed the theoretical results and wrote the manuscript.
DPR implemented the approximation algorithm. DPR and PF devised and
performed the experimental evaluation. All authors read and approved the
final manuscript.

Acknowledgements
None.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Source code of the implementation of our algorithm is available from https://
git.facom.ufms.br/diego/k-dcj.

Funding
This work was funded by the author’s home institutions.

Received: 4 January 2017 Accepted: 15 February 2017

References
	1.	 Yancopoulos S, Attie O, Friedberg R. Efficient sorting of genomic permu-

tations by translocation, inversion and block interchanges. Bioinformatics.
2005;21(16):3340–6.

	2.	 Bergeron A, Mixtacki J, Stoye J. A unifying view of genome rearrange-
ments. In: Proceedings of workshop on algorithms in Bioinformatics 2006.
Heidelberg: LNBI; 2006. vol. 4175, p. 163–73

	3.	 Bulteau L, Jiang M. Inapproximability of (1, 2)-exemplar distance. IEEE/
ACM Trans Comput Biol Bioinf. 2013;10(6):1384–90.

	4.	 Shao M, Lin Y, Moret B. An exact algorithm to compute the double-cut-
and-join distance for genomes with duplicate genes. J Comput Biol.
2015;22(5):425–35.

	5.	 Bryant D. The complexity of calculating exemplar distances. In: Sankoff D,
Nadeau JH, editors. Comparative Genomics. Dortrecht: Kluwer Academic
Publishers; 2000. p. 207–11.

	6.	 Goldstein A, Kolman P, Zheng J. Minimum common string partition
problem: hardness and approximations. Electron J Comb. 2005;12(R50)

	7.	 Swenson K, Marron M, Earnest-DeYong K, Moret BME. Approximating
the true evolutionary distance between two genomes. Proc ALENEX/
ANALCO. 2005;2005:121–9.

	8.	 Jiang H, Zheng C, Sankoff D, Zhu B. Scaffold filling under the breakpoint
distance. In: Proceeding of RECOMB—comparative genomics 2010.
Lecture Notes on Bioinformatics; 2010. vol. 6398, p. 83–92.

	9.	 Kolman P, Waleń T. Reversal distance for strings with duplicates: linear
time approximation using hitting set. Elec J Comb. 2007;14(1):50.

	10.	 Rubert DP, Feijão P, Braga MDV, Stoye J, Martinez FV. A linear time approxi-
mation algorithm for the DCJ distance for genomes with bounded
number of duplicates. In: Proceedings of WABI 2016. Heidelberg: LNBI;
2016. vol. 9838, p. 293–306

	11.	 Braga MDV, Stoye J. The solution space of sorting by DCJ. J Comp Biol.
2010;17(9):1145–65.

	12.	 Angibaud S, Fertin G, Rusu I, Thévenin A, Vialette S. Efficient tools for
computing the number of breakpoints and the number of adjacen-
cies between two genomes with duplicate genes. J Comp Biol.
2008;15(8):1093–115.

	13.	 Farach M. Optimal suffix tree construction with large alphabets. Proc
IEEE/FOCS. 1997;1997:137–43.

	14.	 Meidanis J, Walter MEMT, Dias Z. Reversal distance of signed circular
chromosomes. Technical report. Campinas: University of Campinas and
University of Brasilia; 2000.

	15.	 Hartman T, Shamir R. A simpler and faster 1.5-approximation algorithm
for sorting by transpositions. Inf Comput. 2006;204(2):275–90.

https://git.facom.ufms.br/diego/k-dcj
https://git.facom.ufms.br/diego/k-dcj

	Approximating the DCJ distance of balanced genomes in linear time
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Preliminaries
	Balanced genomes
	DCJ operations
	DCJ distance and adjacency graph
	Without duplicate genes
	With duplicate genes

	An approach to compute the DCJ distance with duplicate genes

	Results
	Approximating the DCJ distance by cycles of length 2
	Minimum common string partition
	Finding consistent decompositions
	Running time
	Extending to circular unichromosomal genomes
	Experimental results

	Conclusion
	Authors’ contributions
	References

