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A better scoring model for de novo 
peptide sequencing: the symmetric difference 
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Abstract 

Background:  Given a peptide as a string of amino acids, the masses of all its prefixes and suffixes can be found by a 
trivial linear scan through the amino acid masses. The inverse problem is the ideal de novo peptide sequencing prob-
lem: Given all prefix and suffix masses, determine the string of amino acids. In biological reality, the given masses are 
measured in a lab experiment, and measurements by necessity are noisy. The (real, noisy) de novo peptide sequencing 
problem therefore has a noisy input: a few of the prefix and suffix masses of the peptide are missing and a few other 
masses are given in addition. For this setting, we ask for an amino acid string that explains the given masses as accu-
rately as possible.

Results:  Past approaches interpreted accuracy by searching for a string that explains as many masses as possible. 
We feel, however, that it is not only bad to not explain a mass that appears, but also to explain a mass that does not 
appear. We propose to minimize the symmetric difference between the set of given masses and the set of masses 
that the string explains. For this new optimization problem, we propose an efficient algorithm that computes both 
the best and the k best solutions. Proof-of-concept experiments on measurements of synthesized peptides show that 
our approach leads to better results compared to finding a string that explains as many given masses as possible.

Conclusions:  We conclude that considering the symmetric difference as optimization goal can improve the identifi-
cation rates for de novo peptide sequencing. A preliminary version of this work has been presented at WABI 2016.
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Background
The determination of the amino acid sequence of a pep-
tide based on mass spectrometric data is an important 
task in proteomics. A typical tandem mass spectrometry 
experiment consists of three steps  [1, 2]. First, the mass 
spectrometer measures the mass-to-charge ratio and 
the abundance of the analyzed peptide. Second, the pep-
tide of interest is selected by the instrument to perform 
fragmentation, i.e. dissociation of multiple copies of this 
peptide at random positions into charged prefix and suf-
fix fragments. Finally, the mass spectrometer measures 

the mass-to-charge ratios and abundances of the result-
ing fragments. Afterwards, data processing algorithms 
deconvolute mass-to-charge ratios to masses. There are 
several sources of uncertainties and errors in every step 
of this experiment. Therefore, some masses of prefix 
and suffix fragments are missing, while other masses are 
given in addition.

In this noisy setting, de novo sequencing is the prob-
lem to compute as accurately as possible the amino acid 
string of the recorded peptide given the mass M of the 
peptide measured in the first step of the experiment and 
the set X of prefix and suffix masses measured in the 
third step. Several approaches [2–5] tackle this problem 
by computing an amino acid string S with mass M, such 
that the set TS(S) of all prefix and suffix masses of S con-
tains as many masses as possible of the set X. This scoring 
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model is often referred to as shared peaks count. Besides 
only considering the size of the intersection TS(S) ∩ X , 
several of these approaches  [6–8] can also maximize a 
more elaborate score on the masses in TS(S) ∩ X.

However, considering only the intersection of TS(S) 
and X might lead to a bias towards the use of amino acids 
with small masses. For example, the amino acid glu-
tamine has the same mass as the sum of the masses of 
a glycine and an alanine. When maximizing |TS(S) ∩ X |, 
one can always replace a glutamine by both a glycine and 
an alanine in the string S without decreasing the size of 
the intersection. In an ideal experiment, where all pre-
fix and suffix masses and no other masses are given in 
X, there exists a string S with TS(S) = X. However, in a 
real-world experiment with missing masses, we want to 
explain masses that are in X, but not to explain masses 
that are not in X. Dančík et al. [6] noted this problem and 
proposed a probabilistic scoring model incorporating 
penalty scores for some specific fragment masses pre-
sent in TS(S) but not in X. However, current algorithms 
do not systematically account for exactly those masses in 
TS(S) \ X.

In this paper, we propose a new fundamental scor-
ing model that considers both the masses in TS(S) ∩ X 
and the masses in TS(S) \ X. Conceptually, our aim 
is to minimize the size of the symmetric difference 
|TS(S)�X | = |TS(S) \ X | + |X \ TS(S)| instead of maxi-
mizing the size of the intersection |TS(S) ∩ X |, namely 
the shared peaks count. We explore this scoring model by 
first giving a precise definition of our new optimization 
problem and by developing an algorithm for this prob-
lem. Then, we provide a proof-of-concept implementa-
tion and study how the symmetric difference improves 
over the shared peaks count in terms of quality of the 
result. Our experiments demonstrate that the symmet-
ric difference scoring model leads to higher identification 
rates that do not come at an unbearable computational 
cost. We hope that our results encourage software devel-
opers to integrate the proposed scoring model in com-
mercial or advanced open-source de novo sequencing 
software in the future.

The paper is structured as follows. In section “Problem 
definition” we precisely define the considered de novo 
sequencing problem. In section “Algorithm”, we develop 
a dynamic programming algorithm to find the best and 
the k best strings with respect to our objective function. 
We first describe a simplified variant that does not con-
sider different types of fragments and molecular losses 
that can happen during the fragmentation process. Then, 
we describe how we can additionally compute the k best 
strings and, finally, a more general version of our algo-
rithm that considers multiple fragment types. In section 
“Results and discussion”, we compare the performance of 

the proposed symmetric difference scoring model with 
the widely used shared peaks count scoring model. We 
consider experimental mass spectrometric data from 
synthesized peptides of known sequences (SWATH Gold 
Standard dataset [9]). The proof-of-concept implementa-
tion is available under a BSD license [10] and we plan to 
integrate it into the OpenMS framework [11].

Problem definition
Preliminary data cleaning
A peptide is composed of a chain of amino acids and, 
additionally, an oxygen and two hydrogen atoms. The 
mass of an uncharged peptide is the sum of its amino acid 
masses and the mass of the additional H2O molecule (18 
Dalton, [12]). In our exposition, we deal with the mass 
M that is the sum of the amino acid masses of the pep-
tide, where the H2O mass has already been subtracted. 
Moreover, let the set X represent the masses measured in 
the third step of the experiment including both 0 and the 
mass M.

Notation
We represent a peptide as a string S of characters (amino 
acids) of an alphabet �. Each character a ∈ � has its 
own mass m(a) ∈ R

+. For a string S = a1 . . .an, we 
denote a substring by Si,j = ai . . .aj for 1 ≤ i ≤ j ≤ n . 
The mass of S is the sum of its characters’ masses, i.e. 
m(S) =

∑

n

i=1
m(ai). The set Pre(S) of prefixes of S con-

tains every string S1,i for 1 ≤ i ≤ n and the set Suf(S) of 
suffixes of S every string Sj,n with 1 ≤ j ≤ n. Both Pre(S) 
and Suf(S) additionally contain the empty string whose 
mass is zero. A fragment of S is a prefix or a suffix of S. 
The theoretical spectrum of S is the union of all fragment 
masses TS(S) = {m(T) | T ∈ (Pre(S) ∪ Suf(S))}. A mass 
is explained by S if it is in TS(S).

Measuring the similarity of a string and a set of fragment 
masses
We want to find a string S that explains a given set of 
fragment masses X as accurately as possible. We define 
the score of a string S ∈ �∗ and a set of fragment masses 
X as an additive function

where f∗(m,X) ∈ R indicates the score of a mass m that 
is explained by S depending on whether m is in X or not. 
Past approaches  [2, 3, 5] often considered the so-called 
shared peaks count, where one uses

(1)
score(S,X) =

∑

m∈TS(S)

f∗(m,X),

(2)fscp(m,X) = |{m} ∩ X | =

{

1 ifm ∈ X ,
0 ifm /∈ X ,
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and variants of it. Conceptually, the shared peaks count 
computes the number of masses that are both in TS(S) 
and X.

In this paper, we do not want to only consider the 
masses explained by a string S that are in X, but also the 
explained masses that are not in X. We aim to minimize 
the symmetric difference between TS(S) and X. Equiva-
lently, we can solve the problem of finding a string S 
that maximizes |TS(S) ∩ X | − |TS(S) \ X |. The reason 
is that for a fixed X, a chosen S that maximizes the latter 
also minimizes the symmetric difference. Hence, we can 
define

Problem definition
We can now formulate the de novo sequencing problem 
that we consider in this paper.

The de novo sequencing problem.  Let   �  be an 
alphabet of characters, with a mass   m(a) ∈ R

+  for 
each  a ∈ �.  Given the peptide mass  M ∈ R

+  and a 
set X = {xi ∈ R

+ | i = 1, . . . , k}  of fragment masses, find 
a string S  of characters in �  with m(S) = M  that maxi-
mizes score(S,X) =

∑

m∈TS(S) f�(m,X).

Algorithm
In this section, we present a dynamic programming 
algorithm for the de novo sequencing problem. Our 
algorithm builds on Chen’s algorithm  [3, 13], a seminal 
graph-based algorithm for de novo sequencing that com-
putes a string that maximizes the shared peaks count. 
We will briefly present Chen’s algorithm and then pro-
pose an algorithm that also accounts for masses that are 
explained by the computed string, but are not in the set 
of measured masses X.

Chen’s algorithm [3, 13] models the set X as a directed 
acyclic graph (NC-spectrum graph). A path in this graph 

(3)

f�(m,X) = |{m} ∩ X | − |{m} \ X | =

{

1 ifm ∈ X ,
−1 ifm /∈ X .

represents a string. The problem of computing a string S 
that maximizes |TS(S) ∩ X | is reduced to the longest path 
avoiding forbidden pairs problem, that is the problem of 
finding a longest path between two vertices s and t, such 
that at most one vertex of every given forbidden pair of 
vertices is used. This problem is NP-hard in general [14] 
and Chen’s algorithm [3, 13] solves the problem for a spe-
cial structure of forbidden pairs on general directed acy-
clic graphs.

The NC-spectrum graph (Fig. 1) is defined on the vertex 
set X̄M =

{

m,M−m |m ∈ X
}

. There is a directed edge 
from a vertex v to a vertex w if w−v is equal to the mass 
of some string. A path from v to w represents one or mul-
tiple strings of mass w−v. For every vertex a traversed by 
the path, a−v is a prefix mass of every string represented 
by the path. If a path from vertex 0 to vertex M traverses 
a vertex a, every string it represents explains both a (as 
a prefix mass) and M−a (as the complementary suffix 
mass). It is sufficient to only traverse one of both comple-
mentary vertices a and M−a to explain both.

To reduce the de novo sequencing problem to the 
longest path avoiding forbidden pairs problem, we 
assign weights to the vertices of the graph. Every vertex 
v /∈ {0,M} has weight |{v,M−v} ∩ X |, namely the number 
of masses that are both in X and explained by traversing 
this vertex. The vertices 0 and M both have weight 1. The 
weight of a path is the sum of the weights of all vertices it 
traverses. If a path from 0 to M does not use both comple-
mentary vertices a and M−a for some a ∈ X \ {0,M}, the 
weight of the path corresponds to the number of masses 
in X that are explained by a string represented by the 
path. On the other hand, consider a path that traverses 
both a and M−a for some a ∈ X \ {0,M}. The weight of 
the path is higher than the number of masses in X that 
are explained, because masses in X that are explained 
by the vertex a and the vertex M−a are counted twice. 
We exclude such paths by introducing forbidden pairs 
of vertices for all complementary vertices {a,M−a} with 
a ∈ X \ {0,M}, such that a path uses at most one of both 
vertices. Note that each string of mass M is represented 

M0

A G

V

Q
F

Y

Y

S
G

Q

V

Q

G

V

A

M/2

Fig. 1  The set X is depicted on the real line (bottom): Masses in X are denoted by vertical bars and masses in X̄M \ X  by crosses. On the top, a sub-
graph of the NC-spectrum graph is shown. Every vertex represents a mass in X̄M and an edge connects two vertices if their mass difference is equal 
to the mass of a string (only edges for strings of length 1 are shown)
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by a path from 0 to M avoiding forbidden pairs. The 
heaviest path avoiding forbidden pairs from 0 to M repre-
sents a string that maximizes |TS(S) ∩ X |.

Chen et al.  [3] propose a dynamic programming algo-
rithm for computing the heaviest path avoiding for-
bidden pairs in this graph. For every pair of vertices 
v ≤ M/2 < w, the algorithm computes the maximal 
weight of any two paths from 0 to v and from w to M, 
such that no two vertices of a forbidden pair are both 
used by the paths. One path represents a prefix and the 
other one a suffix. In every step, the algorithm extends 
one of both paths until they can be concatenated, such 
that they represent a string of mass M that maximizes the 
size of |TS(S) ∩ X | among all strings S of mass M.

An example of the NC-spectrum graph is depicted in 
Fig. 1. For simplicity, we only consider edges connecting 
two vertices with a mass difference equal to the mass of a 
single character. In this example, two strings that maxi-
mize the number of explained masses in X are AGFSGQV 
or AGQYQV (Fig. 2). While the first string explains masses 
that are not in X (crosses), all explained masses of the sec-
ond string are in X. We are only interested in the second 
string that minimizes the symmetric difference. At first 
sight, one might think that Chen’s algorithm can be eas-
ily modified to additionally consider how many explained 
masses are not in X. However, this is not obvious as 
the algorithm needs to check in every extension step, 
whether an explained mass that is not in X has already 
been explained in a different way in a previous step.

An algorithm that minimizes the symmetric difference
We propose the algorithm DeNovo� that solves the de 
novo peptide sequencing problem as defined in the pre-
vious section. The algorithm considers a directed acyclic 
multigraph G = (X̄M ,E). For every pair of vertices v and 
w in X̄M =

{

m,M−m |m ∈ X
}

 and for every string with 
mass w−v there is a directed edge from v to w in E that is 
labeled with this string. Note that all edges are directed 
from the smaller to the larger mass. G is a multigraph, 
because there can exist multiple strings with equal mass, 
i.e. multiple edges can connect the same pair of vertices. 
We denote the label of an edge (v, w) by l(v,w) and the 

concatenation of the edge labels of a path P by l(P). A 
path in G from v to w represents a string with mass w−v.

The algorithm computes a string of mass M that mini-
mizes the symmetric difference by iteratively extending 
two paths in G. Both paths start at vertex 0. One path 
represents a prefix and the other path a reversed suffix 
of the solution. The algorithm extends these paths until 
they end in two vertices v, respectively M−v. Then, the 
corresponding prefix and the reversed suffix can be con-
catenated to a string of mass M. In every step, the algo-
rithm extends the path that represents the substring of 
smaller mass. In this way, the two corresponding sub-
strings have similar masses throughout the execution of 
the algorithm. Let P = (0, . . . ,w) and Q = (0, . . . , a, b) be 
two paths with w ≤ b and w + b ≤ M after some exten-
sion steps (Fig. 3). We know that a ≤ w, as the algorithm 
extends in every step the path ending in the smaller mass. 
If a would be larger than w, the algorithm would not have 
extended the subpath Q′ of Q ending in a by the edge 
(a,  b) in a previous step, but P instead (by some other 
edge). Based on this observation, DeNovo� can update 
the number of explained masses that are in X, respec-
tively not in X, efficiently while extending the paths.

We define the set of masses that are explained by the 
two paths P and Q as partial theoretical spectrum

The partial theoretical spectrum of P and Q contains 
all masses that are explained by the prefix l(P) and the 
reversed suffix l(Q) for a given total mass M. Every mass 
in the partial theoretical spectrum of P = (0, . . . ,w) and 
Q = (0, . . . , a, b) with a ≤ w ≤ b is either smaller or equal 
b or larger or equal M−b.

Assume that the algorithm extends P by an edge (w,w′) 
in the next step (dashed edge in Fig. 3). By this extension, 
we explain the following set of additional masses

Note that we do not consider the empty prefix in 
Pre(l(w,w′)), because w and M−w are already explained 

PTS(P,Q,M) ={m(T),M−m(T) |T ∈ Pre(l(P)) ∪ Pre(l(Q))}.

TSe((w,w′),M) = {m(T)+ w, M − (m(T)+ w) |

T ∈ Pre(l(w,w′)), m(T) �= 0}.

M0
A G Q Y Q V

A G F S G Q V

Fig. 2  Two strings that maximize the number of explained masses in X (Fig. 1). While the upper string has two prefixes (AGF and AGFS) explaining 
masses that are not in X (crosses), all masses explained by the lower string are in X
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by P. Every mass in TSe((w,w′),M) is larger than w and 
smaller than M−w. If the edge (w,w′) is labeled by a sin-
gle character, TSe((w,w′),M) contains only two masses, 
namely w′ and M − w′.

To compute the explained masses in X after the 
extension, we consider the masses that are explained 
by the edge (w,w′), but that have not been explained 
by P and Q (i.e. before the extension). The follow-
ing invariant holds for every two paths P = (0, . . . ,w) 
and Q = (0, . . . , a, b) computed by the algorithm: All 
masses, that are both explained by some outgoing edge 
(w,w′) of w and by P or Q, are in TSe((a, b),M). That is, 
if a mass explained by (w,w′) is also explained by P or 
Q, then this mass is explained by the last edge (a,  b) of 
Q. To see this, we first note that TSe((w,w′),M) con-
tains no mass that is explained by P, as every mass 
in TSe((w,w′),M) is larger than w and smaller than 
M−w . Therefore, no mass explained by the edge (w,w′) 
has already been explained by P. Finally, by the exten-
sion rule of the algorithm it holds that a ≤ w ≤ b. 
Hence, every mass that is both explained by (w,w′) and 
by Q, is explained by the last edge (a,  b) of Q. There-
fore, the invariant TSe((w,w′),M) ∩ PTS(P,Q,M) = 
TSe((w,w′),M) ∩ TSe((a, b),M) follows. This invari-
ant holds for any two paths P and Q computed by the 

algorithm, even if P and Q share no explained masses, 
and for any outgoing edge (w,w′).

Thus, the algorithm does not have to remember all 
traversed vertices of the two paths in order to compute 
the newly explained masses after an extension. It is suf-
ficient to remember the last two vertices of each of the 
paths, namely w and w′, respectively a and b. The set 
of newly explained masses of the last extension step is 
TSe((w,w′),M)\TSe((a, b),M). We define the additional 
score of this extension as

We compute a string with mass M that minimizes the 
symmetric difference with dynamic programming. We 
define a two-dimensional table T with |V| rows and |E| 
columns, where V denotes the set of vertices and E the 
multiset of edges of G. An entry T[w,  (a,  b)] contains 
the maximum score of any two paths P = (0, . . . ,w) and 
Q = (0, . . . , a, b), i.e.

where the maximum is taken over all paths P = (0, . . . ,w) 
and all paths Q = (0, . . . , a, b) in G. We only consider an 
entry T[w, (a, b)] if a ≤ w ≤ b and w + b ≤ M.

By considering the invariant described above, we can 
compute the value of T[w,  (a, b)] given the values of all 
entries T[x, (c, d)] with x < w or x = w and c < a as fol-
lows (Fig.  4): Let P = (0, . . . ,w) and Q = (0, . . . , a, b) 
with a ≤ w ≤ b be the two paths that maximize the score 
among all paths ending in w and (a, b). We consider all 
incoming edges of w and distinguish two cases. Either 
the last edge of P starts at a source vertex that is at most 
as large as a or at a source vertex that is larger than a. 
In the former case, a subpath of Q was extended by the 
edge (a,  b) in the last extension step before reaching P 
and Q. Hence, for an edge (v, w) with v ≤ a, we consider 

(4)

gain((w,w′), (a, b)) =
∑

m∈(TSe((w,w′),M)\TSe((a,b),M))

f�(m,X).

(5)T [w, (a, b)] = max
P,Q

{

∑

m∈PTS(P,Q,M)

f�(m,X)
}

,

0

P = (0, . . . , w)

Q′ = (0, . . . , a)

Q = (0, . . . , a, b)

w w′

a b

Fig. 3  Two paths P = (0, . . . ,w) and Q = (0, . . . , a, b). In every step, 
the algorithm extends the path ending in the smaller mass. In the 
next step, P is extended by an edge (w ,w′). Dotted lines point towards 
masses on the real line (bottom) that are in TSe(a, b),M), respectively 
TSe((w ,w′),M) (the complementary masses are omitted). As shown 
in this example, these two sets can have a non-empty intersection

0

v w

a b

P

Q
0

v′ w

a b

P

Q
Fig. 4  Computation of T[w, (a, b)]. Either a path P = (0, . . . ,w) ends with an edge (v, w) with v ≤ a (left) or it ends in an edge (v′ ,w) with v′ > a 
(right)
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the value of T[a,  (v,  w)], that is the maximum score of 
any two paths ending in a respectively (v, w), and add the 
additional score of (a, b), i.e. gain((a, b), (v,w)). In the lat-
ter case, a subpath of P was extended by an edge ending 
in w in the last step before reaching P and Q. For an edge 
(v′,w) with v′ > a, we add gain((v′,w), (a, b)) to the value 
of T [v′, (a, b)]. We consider all incoming edges of w in 
this way in order to cover all possibilities for reaching P 
and Q.

In the pseudocode of DeNovo� (Algorithm 1), we use 
a slightly different formulation from Eq. 6, as it simpli-
fies the analysis of the algorithms’ time complexity. The 
algorithm first initializes every entry of table T by −∞ . 
To simplify the notation, we assume that E contains 
a loop edge (0,  0) and set T [0, (0, 0)] = 2 (the empty 
string explains 0 and M). Then, the algorithm considers 
all vertices v in ascending order and for a vertex v all 
edges (a,  b) with T [v, (a, b)] �= −∞ in ascending order 
of a and b. It extends the path ending in v by every out-
going edge of v and updates the corresponding entry in 
T. Once all entries have been computed, the optimal 
solution can be reconstructed starting from an entry 
T [w, (v,M−w)] with maximal value among all vertices 
v,w ∈ V .

Theorem  1  Given a peptide mass M ∈ R
+ and a set 

X = {xi ∈ R
+ | i = 1, . . . , k} of fragment masses, algo-

rithm DeNovo� computes a solution for the de novo 
sequencing problem.

(6)

T [w, (a, b)] = max







































max

(v,w) ∈ E,

v ≤ a

�

T [a, (v,w)] + gain((a, b), (v,w))

�

max

(v′,w) ∈ E,

v
′ > a

�

T [v′, (a, b)] + gain((v′,w), (a, b))

�

.

Proof  We prove by induction that algorithm 
DeNovo� computes the entries of table T correctly. 
As base case, we see that the entries T[0,  (0,  v)] for 
all (0, v) ∈ E are computed correctly. Assume that 
all entries T [w′, (a′, b′)] with w′ < w or a′ ≤ w′ = w 
are correct. The next entry T[w,  (a,  b)] is either com-
puted using an entry T[a,  (v,  w)] with v ≤ a or an 
entry T [v′, (a, b)] with a < v′. Both entries are cor-
rect by the induction hypothesis. In the first case, 
T [a, (v,w)] =

∑

m∈PTS(P′,Q,M) f�(m,X) for some paths 
P′ = (0, . . . , a) and Q = (0, . . . , v,w). A path P ending 
in b can be constructed by extending P′ with the edge 
(a, b). It remains to show that

We denote the empty path by P0. The set 
TSe((a, b),M) ∩ PTS(P′,P0,M) is empty, because 
every mass in PTS(P′,P0,M) is in the interval 
[0,  a] or [M−a,M], but a < m < M − a for every  
mass m ∈ TSe((a, b),M). Moreover, TSe((a, b),M) ∩

PTS(P0,Q,M) = TSe((a, b),M) ∩ TSe((v,w),M) due to 
the fact that v ≤ a ≤ w. Therefore, no mass considered 
by gain((a, b), (v,w)) has already been considered when 
computing T[a,  (v, w)]. We can prove the second case 
with a similar argument.

Let S be an optimal string for the de novo sequenc-
ing problem. There are exactly two consecutive prefixes 
of S with masses v and w such that v ≤ M/2 < w. The 
entry T [M−w, (v,w)] is equal to 

∑

m∈PTS(P,Q,M) f�(m,X) 
for some paths P = (0, . . . ,M − w) and Q = (0, . . . ,w) . 
Concatenating l(P) and the reversed string of 
l(Q) either results in S or in another string S’ with 
score(S,X) = score(S’,X), as S is an optimal solution.� �

T [w, (a, b)] =
∑

m∈PTS(P′,Q,M)

f�(m,X)+ gain((a, b), (v,w))

=
∑

m∈PTS(P,Q,M)

f�(m,X).
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1 T [v, (a, b)] ← −∞ for all (a, b) ∈ E and v ∈ V

2 T [0, (0, 0)] ← 2

3 for v ∈ V in ascending order do

4 foreach (a, b) ∈ E with T [v, (a, b)] = −∞ in ascend. order of a and b do

5 foreach (v, w) ∈ E with w + b ≤ M do

6 if w ≤ b then

7 T [w, (a, b)] ← max T [w, (a, b)], T [v, (a, b)] + gain((v, w), (a, b))

8 else

9 T [b, (v, w)] ← max T [b, (v, w)], T [v, (a, b)] + gain((v, w), (a, b))

10 end

11 end

12 end

13 end

Algorithm 1: DeNovo∆.

Theorem  2  The time complexity of  DeNovo� is in 
O(|V | · |E| · d · p) , where d is the maximal out-degree of 
a vertex in G and p is the maximal length of an edge label.

Proof  The table T can be initialized in O(|V | · |E|) time. 
To compute an entry T[v,  (a, b)], the algorithm considers 
all outgoing edges of v, that is at most d edges. The time for 
computing gain(·, ·) depends linearly on the length of the 
label of an edge. Note that G is a multigraph and that there 
exists an edge from v to w for every permutation of the 
characters of l(v, w). As the maximal length of an edge label 
is p, which is bounded by O(M/µ), where µ is the smallest 
mass of a character in �, the time complexity for consid-
ering an outgoing edge (lines 7 or 9) is in O(p). Thus, the 
runtime of DeNovo� is in O(|V | · |E| · d · p).� �

When considering practical applications, the param-
eter p depends on the data quality rather than on the 
size of the input X and M. If we assume p to be a con-
stant, there are only O(1) edges between two vertices 
and every vertex has only a constant out-degree. Hence, 
our algorithm matches the time complexity of Chen’s 
algorithm [3] unless the length of the edge labels grows 
asymptotically with the size of the input.

Computing the k best solutions
In this section, we sketch how to find the k best solutions 
for the de novo peptide sequencing problem. Similar to 
the technique used in  [15], we model the table T as a 
directed acyclic graph termed matrix graph. The edges 
in this graph correspond to all possible extension steps 
of our algorithm. The weight of an edge is equal to the 
additional score of the corresponding extension. A solu-
tion for the de novo sequencing problem corresponds to 
a path in this graph starting at the vertex representing the 
entry T[0, (0, 0)]. The score of the solution is equal to the 
weight of the path.

The matrix graph MG is a directed acyclic graph on ver-
tices V (MG) ⊆ (V × E). For every entry T[v, (a, b)] with 
a ≤ v ≤ b and v + b ≤ M, there is a vertex vv,(a,b) in MG. 
Every vertex vv,(a,b) has the following set of outgoing edges 
in MG:

Note that the edges defined above correspond up to 
renaming to the extension steps in lines 7 and 9 of 
DeNovo�. The vertex vv,(a,b) represents paths ending in v 

{

(vv,(a,b), vw,(a,b)) | (v,w) ∈ E, w ≤ b, w + b ≤ M
}

∪
{

(vv,(a,b), vb,(v,w′)) | (v,w
′) ∈ E, w < b, w′ + b ≤ M

}

.
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and (a,  b). The edges in the first set represent all exten-
sions with edges (v, w) and w ≤ b, while the edges in the 
second set represent all edges (v,w′) with w > b. The 
weight of each of these edges is gain((v,w), (a, b)), respec-
tively gain((v,w′), (a, b)), i.e. the additional score of add-
ing the corresponding edge to the path in G ending in v.

A vertex vv,(a,b) in MG is a terminal vertex if v = M−b . 
A terminal vertex represents two paths that cannot 
be extended anymore, as they represent a prefix and a 
reversed suffix with a combined mass equal to M. A path 
from v0,(0,0) to a terminal vertex represents two substrings 
that can be concatenated to a string S of mass M. The sum 
of the edge weights of this path is equal to score(S,X). 
Therefore, a solution for the de novo sequencing problem 
corresponds to a longest path from v0,(0,0) to some termi-
nal vertex in MG.

Similarly, the k-th best solution for the de novo sequenc-
ing problem corresponds to the k-th longest path from 
v0,(0,0) to a terminal vertex in MG. We can apply Eppstein’s 
algorithm  [16] to compute the k longest paths. Eppstein’s 
algorithm  [16] computes the k shortest paths connecting 
a pair of vertices s and t in a directed acyclic graph with 
n vertices and m edges in O(n+m+ k) time. The algo-
rithm outputs an implicit representation of the paths and 
the sequence of edges of a path can be listed in time pro-
portional to the length of the path. The matrix graph is a 
directed acyclic graph and in order to compute the longest 
instead of the shortest paths, we multiply all edge weights 
with −1. As the matrix graph can have multiple terminal 
vertices, but Eppstein’s algorithm only computes paths 
between two given vertices, we add a dummy vertex to the 
graph and connect all terminal vertices to this dummy ver-
tex by directed edges with weight 0. Then, we compute the 
k longest paths between v0,(0,0) and the dummy vertex in 
MG.

We can build MG while executing DeNovo� in time 
O(|V | · |E| · d · p), where V is the set of vertices and E 
the multiset of edges of G, d is the maximal out-degree 
of a vertex in G and p is the maximal length of an edge 
label in G. The matrix graph has O(|V | · |E|) vertices 
and O(|V | · |E| · d) edges. Hence, we can find the k best 
solutions for the de novo peptide sequencing problem in 
O(|V | · |E| · d · p+ k) time.

The general de novo sequencing problem
In the previous section, we studied the de novo sequenc-
ing problem in a simplified version. We assumed that a 
mass in X corresponds exactly to the mass of the amino 
acid sequence of the measured fragment. In real experi-
ments, a mass in X can have a small offset from the mass 
of its string as a peptide can split at different chemi-
cal bonds between two amino acids and can loose small 

neutral molecules (e.g. water, ammonia). In this sec-
tion, we study a more general version of the de novo 
sequencing problem that considers such mass offsets 
with bounded maximal pairwise difference. We present a 
modified version of DeNovo� for this problem.

First, we formulate the general de novo sequencing 
problem for a given set of possible mass offsets. We 
define the extended theoretical spectrum of a string S 
as the set of all fragment masses with all possible mass 
offsets. As the possible offsets for prefixes and suffixes 
can differ, the extended theoretical spectrum of a string 
S is not equal to the extended theoretical spectrum of 
the reversed string of S. Therefore, our modified algo-
rithm DeNovo�g for the general de novo sequencing 
problem needs to distinguish the prefix and the suffix 
string.

An important difference to the simplified problem is 
that mass offsets can alter the order of masses in X with 
respect to the masses of the corresponding strings. This 
complicates the computation of the newly explained 
masses of an extension step. While Chen’s algorithm [3] 
cannot deal with mass offsets that alter the order of the 
masses with respect to the masses of the corresponding 
strings, our algorithm can handle a broader range of mass 
offsets. The order of the masses in X with respect to the 
masses of the corresponding strings does not change if 
the maximal difference of any two offsets is smaller than 
the smallest mass µ of a character in �. We propose an 
algorithm that handles offsets with a maximal difference 
smaller than 2 · µ.

We model the extended theoretical spectrum as fol-
lows. Let Op and Os be the sets of all possible mass offsets 
δ ∈ R for a prefix fragment, respectively a suffix fragment. 
A prefix of a string S with mass m explains all masses  
in OM(m,M) =

⋃

δ∈Op
(m+ δ) ∪

⋃

δ′∈Os
(M−m+ δ′), 

where M is the mass of S. The extended theoretical spectrum 
of a string S is the set of all prefix and suffix masses with 
all possible offsets TSx(S) =

⋃

T∈Pre(S)OM(m(T),m(S)). 
The maximal mass offset difference of two sets (Op,Os) 
is γ = maxδ∈(Op∪Os)(δ)−minδ′∈(Op∪Os)(δ

′). Two sets 
(Op,Os) of mass offsets are α-basic if γ < α · µ.

The general de novo sequencing problem  Let �  be 
an alphabet of characters, with a mass  m(a) ∈ R

+  for 
each a ∈ �.  Given a set  X = {xi ∈ R

+ | i = 1, . . . , k}  of 
fragment masses, a peptide mass  M ∈ R

+ ,  and  2-basic 
sets  (Op,Os)  of mass offsets, find a string  S  of 
characters in  �  with m(S) = M  that maxi-
mizes score(S,X) =

∑

m∈TSx(S)
f�(m,X).

We can solve the general de novo problem by con-
sidering a multigraph Gx = (Vx,Ex). In contrast to the 
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multigraph G defined above, Gx contains up to |Op| + |Os| 
vertices for each mass in X. For every m ∈ X, we consider 
every offset δ in (Op ∪ Os), assume that m is the mass of 
a fragment with offset δ and add a vertex with the corre-
sponding prefix mass to the graph. The multiset of edges 
is defined in the same way as for the multigraph G. A path 
in Gx from vertex 0 to vertex M corresponds to a string 
of mass M. In the same way as DeNovo�, our algorithm 
for the general de novo sequencing problem DeNovo�g 
extends two paths representing a prefix and a reversed 
suffix. In every step, the algorithm extends the path rep-
resenting the string with smaller mass. The extension of a 
path by an edge (w,w′) explains the masses

Note that we distinguish prefixes and suffixes, as the 
extended theoretical spectrum is not necessarily sym-
metric. The set of newly explained masses by extending 
a path by an edge (w,w′) given the last edge (a, b) of the 
second path is

It is necessary to remove the masses in OM(w,M) , 
respectively OM(M−w,M), even if the masses 
explained by the substring with mass w are not con-
sidered in TSex((w,w′),M). This is due to the fact, 
that we consider 2-basic sets of mass offsets, where 
OM(w,M) ∩OM(w′,M) is not necessarily empty. 
Consider Fig.  5 for an illustration of the set of newly 
explained masses. The path P, which represents a prefix, 
is extended by an edge (w,w′). Let m be the mass of the 
first character of l(w,w′). The masses explained by w +m 
in TSex((w,w′),M) might also be explained by w. How-
ever, m cannot explain any masses that are explained 
by some mass m′ traversed by the other path before the 
source vertex a of the last edge (a, b), as the mass differ-
ence of w +m and m′ is at least 2µ.

DeNovo�g computes an optimal path in Gx in the same 
fashion as DeNovo� described above. The algorithm can 
compute a solution for the general de novo sequencing 
problem in time O(|Vx| · |Ex| · d · p · |O|), where d is the 
maximal out-degree of a vertex in Gx, p is the maximal 
length of an edge label, and |O| = |(Op ∪ Os)| is the num-
ber of possible mass offsets.

TSex((w,w
′),M) =







�

OM(w +m(T),M) | T ∈ Pre(l(w,w′)), m(T) �= 0
�

if (w,w′) is added to
the prefix path,

�

OM(M − (w +m(T)),M) | T ∈ Pre(l(w,w′)), m(T) �= 0
�

otherwise.

New((w,w′), (a, b)) =






TSex((w,w
′),M) \ (OM(w,M) ∪OM(M − a,M) ∪ TSex((a, b),M)) if (w,w′) is added to

the prefix path,
TSex((w,w

′),M) \ (OM(M − w,M) ∪OM(a,M) ∪ TSex((a, b),M)) otherwise.

Scoring functions
A scoring function for the de novo sequencing problem 
compares the theoretical spectrum of a string S with 
the experimental spectrum measured by the mass spec-
trometer. In the previous sections, we considered very 

0

w w′

a b

w +m

m′

P

Q′

≥ µ ≥ µ

Fig. 5  Extension of a path P = (0, . . . ,w) that represents a prefix by 
an edge (w ,w′). The mass of the first character of the label of (w ,w′) 
is m. Any mass m′ traversed by Q = (0, . . . , a, b) before the source 
vertex a of the last edge (a, b) is at least 2µ smaller than w +m

intuitive scoring functions that count the number of 
masses in TS(S) ∩ X (shared peaks count, fscp), respec-
tively in TS(S)�X (symmetric difference, f�). These 
scoring functions do not consider any other information 
about the measured masses, such as the signal intensity, 
the type of the fragment, etc.

There exist several, more evolved scoring func-
tions [4, 5] that consider, for example, the signal intensity 
I(m) ∈ R

+ of each mass m ∈ X measured by the mass 
spectrometer. Instead of only counting the number of 
explained masses that are measured in the experiment, 
the signal intensities of these masses are summed up. 
That is, a weighted shared peaks count with

is maximized. The intuition for this scoring function 
is that one prefers to explain fragment mass with high 
intensities, as the intensity corresponds to the abundance 
of the fragment and as low-intensity signals are more 
likely to originate from contaminants or measurement 
noise.

(7)fwscp(m,X) =

{

I(m) ifm ∈ X ,
0 ifm /∈ X
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A weighted variant of the symmetric difference scoring 
function can be defined analogously. However, as we do 
not only consider measured masses, we define a constant 
penalty intensity p ∈ R for all masses m /∈ X.

In practice, one would rather use a non-constant penalty 
p(m) with some underlying model for predicting the sig-
nal intensity of a mass m based on the mass and the type 
of the fragment, the amino acids adjacent to the cleavage 
sites, and other factors.

To incorporate the weighted variant (Eq.  8) in the 
algorithm, it is sufficient to replace f�() by the weighted 
variant fw�() in Eq.  4. No further modifications of the 
algorithm are necessary.

Results and discussion
We implemented DeNovo� and studied the quality of 
its solution when using the shared peaks count scor-
ing function and the symmetric difference scoring func-
tion. We chose DeNovo� rather than DeNovo�g in our 
experiments to clearly expose the effect of the symmetric 
difference scoring function. While we are not primarily 
interested in runtime differences of both scoring func-
tions, we observed that both algorithms have very simi-
lar performances (on average 5  s for one spectrum on 
an Intel Core i5-3317U CPU with 4 GB RAM, in some 
rare cases several minutes for one spectrum). We refer to 
Additional file 1: Figure S8 for a more detailed compari-
son of the running times. We note that the running times 
of state-of-the-art software packages as PepNovo  [17], 
PEAKS [18], and especially Novor [19] are by magnitudes 
faster than the running times of our algorithm. However, 
we do not aim for an advanced software toolkit for de 
novo sequencing in this study, but rather propose a new 
fundamental scoring model that does not come at a sub-
stantial extra computational cost. The implementation is 
available under a BSD license [10].

We considered the DDA-mode experiments of 422 syn-
thesized peptides that are part of the SWATH-MS Gold 
Standard (SGS) dataset (dataset PASS00289 at http://
peptideatlas.org, [9]). First, we searched the spectra using 
the database search tool Comet [20] and a database con-
taining only the sequences of the 422 synthetic peptides. 
The Comet search results were further validated using 
peptideprophet, which provides a statistical estimation 
for the false discovery rate  [21]. We considered a pep-
tide to be identified if the identification probability as 
returned by peptideprophet was higher than 90%. For our 
evaluation, we considered all spectra, where Comet was 
able to identify the expected synthetic peptide sequence. 
We did not consider spectra, where Comet reported a 

(8)fw�(m,X) =

{

I(m) ifm ∈ X ,
p ifm /∈ X .

sequence with amino acid modifications or a sequence 
that was not ending with amino acid R or K, as the current 
implementation of our algorithm is not able to consider 
such spectra. If Comet identified a peptide in multiple 
spectra, we considered all of them for our comparison, as 
it is not clear how to choose one of these spectra as the 
representative for the peptide. In total, we considered 944 
spectra for our evaluation. We considered the raw profile 
data and implemented the merging algorithm proposed 
in  [6] to reduce the size of the graph (i.e. centroiding). 
We consider that our algorithm identified a peptide if it 
reported the same correct sequence identified by Comet 
as the best-scoring sequence.

Comet was able to identify 354 of the 422 synthesized 
peptides. Considering the shared peaks count (SPC), our 
algorithm identified 227 peptides, whereas it was able to 
identify 270 peptides considering the symmetric differ-
ence (SymDiff) scoring model (Fig. 6).

For a more detailed comparison, we first considered the 
position of the true sequence in the list of candidate solu-
tions (sorted by their scores) and secondly the similarity 
of the best-scoring sequence with the true sequence. For 
the first comparison, our algorithm computed all solu-
tions with a score of at least 90% of the maximum score. 
For the second comparison, we measured the similarity of 
two sequences by considering their sets of prefix masses. 
The recall of a reported sequence is the number of prefix 
masses it has in common with the true sequence divided 
by the number of prefix masses of the true sequence:

Figure  7 shows the position of the true sequence (as 
annotated by Comet) in the list of candidate sequences 
(sorted by their score). The complete true sequence was 
among the top 10 sequences in 49.8% of the spectra con-
sidering the shared peaks count and in 67.1% of the spec-
tra considering the symmetric difference.

(9)

recall =
number of correct prefix masses

number of prefix masses of the true sequence
.

8 219 51

SCP SymDiff

Fig. 6  Number of peptides that where identified by DeNovo� when 
(i) maximizing the shared peaks count (SCP) and (ii) minimizing the 
symmetric difference (SymDiff )

http://peptideatlas.org
http://peptideatlas.org
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Figure  8 depicts the similarity of the best-scoring 
sequence compared to the sequence identified by Comet. 
If there were multiple best-scoring sequences, we consid-
ered the one with the highest recall. In 60.4% of the con-
sidered spectra, our algorithm reported a sequence with 
a recall of at least 80% when considering the shared peaks 
count. Considering the symmetric difference, the best-
scoring sequence had a recall of at least 80% in 72.9% of 
the considered spectra.

In a preliminary version of this paper  [22], we con-
sidered the intensity-based variants of the shared peaks 
count and the symmetric difference scoring function 
defined in the previous section. Instead of considering 
the size of the sets TS(S) ∩ X and TS(S) \ X, we chose 
to sum up the intensities of the corresponding signals. 
The intensity-based variant of the shared peaks count is 
equivalent to the score proposed in [4]. However, the cor-
responding software PEAKS [18] uses additional features 
for scoring and is therefore not suitable for a comparison 
with our current implementation.

For this variant, one has to introduce a parameter p(m) 
for penalizing an explained mass m that is not in X when 
considering the symmetric difference. Setting p(m) = 0 
for all m is equivalent to considering the intensity-based 
weighted shared peaks count. We used p(m) = −2500 
for all m in our experiments. We chose this parameter by 
empirically testing values ranging from −10 to −5000 . The 
results for different values of p(m) appeared not to be very 
sensitive and other choices led to comparable results. For 
practical applications, it is more suitable to choose more 
evolved scoring functions, e.g. using a variable penalty 
parameter instead of a constant value for all masses.

We evaluated the DDA dataset using the intensity-
based scoring function variants as well. While both the 
position of the annotated sequence and the recall of the 
best-scoring sequence improved using these scoring 
models (Additional file 1: Figures S1, S2), our algorithm 
was not able to identify more peptides with this vari-
ant. However, we were able to identify different peptides 
using these scoring models (Additional file 1: Figure S3).

Rather than penalizing equally all explained masses 
that are not measured, one can incorporate some model 
for predicting the signal intensities  [23–25]. Similarly, 
in order to consider losses of neutral molecules or other 
types of fragments with mass offsets, one would need to 
define an appropriate penalty if the corresponding mass 
in the extended theoretical spectrum is not measured. 
For example, this penalty should depend on the type of 
the fragment and on whether a neutral loss is involved. 
Our algorithm can incorporate such aspects and gives 
us the possibility to develop more sophisticated scoring 
functions that model the fragmentation process more 
accurately.

Instead of using the raw profile data measured by the 
instrument and a simple merging algorithm [6], we addi-
tionally tested our algorithm on centroided (peak-picked) 
data. The data was peak-picked using the tool qtofpeak-
picker [26]. Considering this preprocessed data, our algo-
rithm was able to identify 237 peptides with the shared 
peaks count scoring function and 284 peptides with the 
symmetric difference scoring function. However, the 
identification rates declined considering the intensity-
based variants of the scoring functions and we suppose 
that a more evolved model for penalizing explained 
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(sorted by score) when considering (i) the shared peaks count (SCP) 
and (ii) the symmetric difference (SymDiff ) for the DDA measure-
ments of the SGS dataset
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masses that are not measured would be necessary to fur-
ther improve the identification rates. We refer to the sup-
plementary material for a more detailed comparison of 
the results for the raw profile and the preprocessed cen-
troided data (Additional file 1: Figures S3–S7).

Conclusion
In this paper we propose and study a new formulation 
of the de novo sequencing problem. Several previous 
approaches [3, 4, 6, 7] consider the set of masses that are 
both explained by a string and measured in the experi-
ment. Although it has already been pointed out  [6] that 
penalizing the fact that an explained mass is not meas-
ured improves the performance of algorithms for peptide 
identification, to the best of our knowledge the prob-
lem of minimizing the symmetric difference of the set 
of explained masses and the set of measured masses has 
not been studied before. We develop a dynamic program-
ming algorithm that can compute both the best and the k 
best solutions for this new de novo sequencing problem. 
We conclude that without substantial extra computa-
tional effort, moving from shared peaks count to sym-
metric difference as optimization goal can improve the 
identification rates for de novo peptide sequencing.

Authors’ contributions
SR, TT, and PW designed the algorithm. SR and TT implemented the software. 
LG, TT, and PW contributed to the experimental design. TT performed the 
experiments. All work was guided by PW in the whole process. TT wrote most 
parts of the manuscript. All authors contributed to the writing of the paper. All 
authors read and approved the final manuscript.

Author details
1 Department of Computer Science, ETH Zurich, Universitätstrasse 6, 
8092 Zurich, Switzerland. 2 Department of Biology, ETH Zurich, Auguste‑Pic-
card‑Hof 1, 8093 Zurich, Switzerland. 

Acknowledgements
We would like to thank Tomas Hruz, George Rosenberger, and Hannes Röst 
for helpful discussions. Moreover, we gratefully thank the three reviewers for 
providing constructive criticism and many helpful suggestions.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets analyzed during the current study are available in the peptide 
atlas repository, http://peptideatlas.org with dataset ID PASS00289 [9].

The implementation of our algorithm is available under a BSD license at 
http://github.com/tschager [10].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Additional file

Additional file 1. Supplementary Figures.

Received: 22 December 2016   Accepted: 19 April 2017

References
	1.	 Kinter M, Sherman NE. Protein sequencing and identification using 

tandem mass spectrometry. New York: Wiley-Interscience; 2000.
	2.	 Hughes C, Ma B, Lajoie GA. De novo sequencing methods  

in proteomics. Proteome Bioinform. 2010;604:105–21. 
doi:10.1007/978-1-60761-444-9_8.

	3.	 Chen T, Kao M-Y, Tepel M, Rush J, Church GM. A dynamic programming 
approach to de novo peptide sequencing via tandem mass spectrom-
etry. In: Proceedings of the eleventh annual ACM-SIAM symposium on 
discrete algorithms (SODA 2000); 2000. pp. 389–98.

	4.	 Ma B, Zhang K, Liang C. An effective algorithm for the peptide de 
novo sequencing from ms/ms spectrum. Comb Pattern Matching. 
2003;2676:266–77. doi:10.1007/3-540-44888-8_20.

	5.	 Colinge J, Bennett KL. Introduction to computational proteomics. PLoS 
Comput Biol. 2007;3(7):114. doi:10.1371/journal.pcbi.0030114.

	6.	 Dančík V, Addona TA, Clauser KR, Vath JE, Pevzner PA. De novo peptide 
sequencing via tandem mass spectrometry. J Comput Biol. 1999;6(3–
4):327–42. doi:10.1089/106652799318300.

	7.	 Jeong K, Kim S, Pevzner PA. Uninovo: a universal tool for de novo peptide 
sequencing. Bioinformatics (Oxford, England). 2013;29(16):1953–62. 
doi:10.1093/bioinformatics/btt338.

	8.	 Mo L, Dutta D, Wan Y, Chen T. Msnovo: a dynamic programming algo-
rithm for de novo peptide sequencing via tandem mass spectrometry. 
Anal Chem. 2007;79(13):4870–8. doi:10.1021/ac070039n.

	9.	 Röst HL, Rosenberger G, Navarro P, Gillet L, Miladinović SM, Schubert 
OT, Wolski W, Collins BC, Malmström J, Malmström L, Aebersold R. 
Openswath enables automated, targeted analysis of data-independent 
acquisition ms data. Nat Biotechnol. 2014;32(3):219–23. doi:10.1038/
nbt.2841.

	10.	 OpenMS Development Team, Tschager T, Rösch S, Gillet L, Widmayer P. 
DeNovoSymDiff v0.1. OpenMS including the DeNovoSymDiff util. 2016. 
doi: 10.5281/zenodo.202910

	11.	 Röst HL, Sachsenberg T, Aiche S, Bielow C, Weisser H, Aicheler F, Andreotti 
S, Ehrlich H-C, Gutenbrunner P, Kenar E, Liang X, Nahnsen S, Nilse L, 
Pfeuffer J, Rosenberger G, Rurik M, Schmitt U, Veit J, Walzer M, Wojnar D, 
Wolski WE, Schilling O, Choudhary JS, Malmström L, Aebersold R, Reinert 
K, Kohlbacher O. Openms: a flexible open-source software platform 
for mass spectrometry data analysis. Nat Methods. 2016;13(9):741–8. 
doi:10.1038/nmeth.3959.

	12.	 Steen H, Mann M. The abc’s (and xyz’s) of peptide sequencing. Nat Rev 
Mol Cell Biol. 2004;5(9):699–711. doi:10.1038/nrm1468.

	13.	 Chen T, Kao M-Y, Tepel M, Rush J, Church GM. A dynamic pro-
gramming approach to de novo peptide sequencing via tan-
dem mass spectrometry. J Comput Biol. 2001;8(3):325–37. 
doi:10.1089/10665270152530872.

	14.	 Gabow HN, Maheshwari SN, Osterweil LJ. On two problems in the 
generation of program test paths. IEEE Trans Softw Eng. 1976;3:227–31. 
doi:10.1109/TSE.1976.233819.

	15.	 Lu B, Chen T. A suboptimal algorithm for de novo peptide sequenc-
ing via tandem mass spectrometry. J Computat Biol. 2003;10(1):1–12. 
doi:10.1089/106652703763255633.

	16.	 Eppstein D. Finding the k shortest paths. SIAM J Comput. 1998;28(2):652–
73. doi:10.1137/S0097539795290477.

	17.	 Frank A, Pevzner P. Pepnovo: de novo peptide sequencing via proba-
bilistic network modeling. Anal Chem. 2005;77(4):964–73. doi:10.1021/
ac048788h.

	18.	 Ma B, Zhang K, Hendrie C, Liang C, Li M, Doherty-Kirby A, Lajoie G. Peaks: 
powerful software for peptidede novo sequencing by tandem mass 
spectrometry. Rapid Commun Mass Spectrom. 2003;17(20):2337–42. 
doi:10.1002/rcm.1196.

	19.	 Ma B. Novor: real-time peptide de novo sequencing software. J Am Soc 
Mass Spectrom. 2015;26(11):1885–94. doi:10.1007/s13361-015-1204-0.

	20.	 Eng JK, Jahan TA, Hoopmann MR. Comet: an open-source ms/ms 
sequence database search tool. Proteomics. 2013;13(1):22–4. doi:10.1002/
pmic.201200439.

http://peptideatlas.org
http://github.com/tschager
http://dx.doi.org/10.1186/s13015-017-0104-1
http://dx.doi.org/10.1007/978-1-60761-444-9_8
http://dx.doi.org/10.1007/3-540-44888-8_20
http://dx.doi.org/10.1371/journal.pcbi.0030114
http://dx.doi.org/10.1089/106652799318300
http://dx.doi.org/10.1093/bioinformatics/btt338
http://dx.doi.org/10.1021/ac070039n
http://dx.doi.org/10.1038/nbt.2841
http://dx.doi.org/10.1038/nbt.2841
http://dx.doi.org/10.5281/zenodo.202910
http://dx.doi.org/10.1038/nmeth.3959
http://dx.doi.org/10.1038/nrm1468
http://dx.doi.org/10.1089/10665270152530872
http://dx.doi.org/10.1109/TSE.1976.233819
http://dx.doi.org/10.1089/106652703763255633
http://dx.doi.org/10.1137/S0097539795290477
http://dx.doi.org/10.1021/ac048788h
http://dx.doi.org/10.1021/ac048788h
http://dx.doi.org/10.1002/rcm.1196
http://dx.doi.org/10.1007/s13361-015-1204-0
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1002/pmic.201200439


Page 13 of 13Tschager et al. Algorithms Mol Biol  (2017) 12:12 

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

	21.	 Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model 
to estimate the accuracy of peptide identifications made by ms/ms 
and database search. Anal Chem. 2002;74(20):5383–92. doi:10.1021/
ac025747h.

	22.	 Gillet L, Rösch S, Tschager T, Widmayer P. A better scoring model for 
de novo peptide sequencing: the symmetric difference between 
explained and measured masses. In: 16th International workshop on 
algorithms in bioinformatics, WABI 2016. vol. 9838. 2016. pp. 185–96. 
doi:10.1007/978-3-319-43681-4

	23.	 Elias JE, Gibbons FD, King OD, Roth FP, Gygi SP. Intensity-based protein 
identification by machine learning from a library of tandem mass spectra. 
Nat Biotechnol. 2004;22(2):214–9. doi:10.1038/nbt930.

	24.	 Degroeve S, Martens L. Ms2pip: a tool for ms/ms peak intensity predic-
tion. Bioinformatics. 2013;29(24):3199–203. doi:10.1093/bioinformatics/
btt544.

	25.	 Degroeve S, Maddelein D, Martens L. Ms2pip prediction server: compute 
and visualize ms2 peak intensity predictions for cid and hcd fragmenta-
tion. Nucleic Acids Res. 2015;43(W1):326–30. doi:10.1093/nar/gkv542.

	26.	 Schubert OT, Gillet LC, Collins BC, Navarro P, Rosenberger G, Wolski WE, 
Lam H, Amodei D, Mallick P, MacLean B, Aebersold R. Building high-
quality assay libraries for targeted analysis of swath ms data. Nat Protoc. 
2015;10(3):426–41. doi:10.1038/nprot.2015.015.

http://dx.doi.org/10.1021/ac025747h
http://dx.doi.org/10.1021/ac025747h
http://dx.doi.org/10.1007/978-3-319-43681-4
http://dx.doi.org/10.1038/nbt930
http://dx.doi.org/10.1093/bioinformatics/btt544
http://dx.doi.org/10.1093/bioinformatics/btt544
http://dx.doi.org/10.1093/nar/gkv542
http://dx.doi.org/10.1038/nprot.2015.015

	A better scoring model for de novo peptide sequencing: the symmetric difference between explained and measured masses
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Problem definition
	Preliminary data cleaning
	Notation
	Measuring the similarity of a string and a set of fragment masses
	Problem definition

	Algorithm
	An algorithm that minimizes the symmetric difference
	Computing the k best solutions
	The general de novo sequencing problem
	Scoring functions

	Results and discussion
	Conclusion
	Authors’ contributions
	References




