# Table 1 Path recombinations that are used to compute the DCJ-indel distance

Sources Resultants Δλ Δ DCJ Δ DCJ-λ   Sources Resultants Δλ Δ DCJ Δ DCJ-λ
o -2 $A A A B +B B A B$ ∙+∙ −2 0 −2w
n -2 $A A A B +A A A B$ $A A A +A A B$ −2 1 1−2w
o -1 $A A A +B B A B$ $∙+A B A B$ −1 0 w n -2 $B B A B +B B A B$ $B B A +B B B$ −2 1 1−2w
o -1 $B B A +A A A B$ $∙+A B B A$ −1 0 w n -2 $A A A B +A B A B$ $∙+A A A$ −2 1 1−2w
o -1 $A A B +B B A B$ $∙+A B B A$ −1 0 w n -2 $A A A B +A B B A$ $∙+A A B$ −2 1 1−2w
o -1 $B B B +A A A B$ $∙+A B A B$ −1 0 w n -2 $B B A B +A B A B$ $∙+B B B$ −2 1 1−2w
o -1 $A A A +B B A$ ∙+∙ −1 0 w n -2 $B B A B +A B B A$ $∙+B B A$ −2 1 1−2w
o -1 $A A B +B B B$ ∙+∙ −1 0 w n -2 $A B A B +A B B A$ ∙+∙ −2 1 1−2w
n -1 $A A A +A B B A$ $∙+A A A B$ −1 1 1−w n -1 $B B A +A B A B$ $∙+B B A B$ −1 1 1−w
n -1 $A A B +A B A B$ $∙+A A A B$ −1 1 1−w n -1 $B B B +A B B A$ $∙+B B A B$ −1 1 1−w
1. Recombinations of type o - 2 (optimal with Δλ=−2), o - 1 (optimal with Δλ=−1) and n - 2 (neutral with Δλ=−2) can have Δ DCJ - λ <0. Recombinations of type n - 1 (neutral with Δλ=−1) have Δ DCJ - λ =1−w≥0, but produce an$AA A B$ or a$BB A B$ path.