Non-exhaustive list of matrices ($$\sharp$$rows $$\times$$ $$\sharp$$columns) 500 × 50 1000 × 100 2000 × 200 4000 × 400
Number of hidden biclusters (K) $$6\times \frac{1}{\mu }$$ $$10\times \frac{1}{\mu }$$ $$15\times \frac{1}{\mu }$$ $$20\times \frac{1}{\mu }$$
Number of rows per hidden bicluster $$\mu$$[50,70] $$\mu$$[70,100] $$\mu$$[100,200] $$\mu$$[200,300]
Number of columns per hidden bicluster $$\mu$$[5,7] $$\mu$$[7,10] $$\mu$$[8,12] $$\mu$$[10,15]
1. where $$\mu$$ defines the flexibility of the underlying coherency assumption ($$\mu$$ = 1 for constant and $$\mu$$ = 2 for order-preserving)
3. Coherency strength $$\delta$$ = {5, 10, 15, 20, 25, 33 %} (or symbols $$|\mathcal {L}|$$ = {20, 10, 7, 5, 4, 3})
4. Deviations on data values in {0, $$\varvec{\delta }$$/2, $${\delta }$$, 2$$\delta$$}, and degree of noisy and missing elements in {0, 2, 5, 10 %}
5. Overlapping degree $$\theta$$ = {0, 0.1, 0.2, 0.4} with plaid effects$$^2$$ described by f = {sum, product, weighted} (cumulative function) $$\nu$$ = {1, 0.7, 0.4} (cumulative effect), $$\epsilon$$ = {0.1, 0.2} (noise), $$\kappa$$ = {0.5, 0.3, 0.1 K} (average number of interacting biclusters) and $$\phi$$ = {1, 0.8, 0.5} (distribution of overlapping areas between the $$\kappa$$ bics)— variables according to