Skip to main content
Fig. 6 | Algorithms for Molecular Biology

Fig. 6

From: Global exact optimisations for chloroplast structural haplotype scaffolding

Fig. 6

Repeated fragment sets illustration for two contigs \(c\) and \(d\). In the two subfigures, \(mult(c) = 4\) and \(mult(d) = 2\), so that \(contig(u_{or,occ}) = c\) and \(contig(v_{or,occ}) = d\). Two vertices coming from the same contig are respectively direct/inverted fragments if they are in the same coloured box, and so they belong to \(DirF{}\)/\(InvF{}\). A tight grey line connects two direct/inverted fragments if their pair belong to \(PDirF{}\)/\(PInvF{}\). a \(|{DirF{}}| = 6\), and, e.g. \((u_{f,0}, u_{f,1}) \in DirF{}\) so \(dirfrag\,({u_{f,0}}) = dirfrag\,({u_{f,1}}) = (u_{f,0}, u_{f,1})\). \(|{PDirF{}}| = 12\), and, e.g. \(((u_{f,0}, u_{f,1}), (u_{r,2}, u_{r,3})) \in PDirF{}\). b \(|{InvF{}}| = 3\), and, e.g. \((u_{f,2}, u_{r,3}) \in InvF{}\) so \(invfrag\,({u_{f,2}}) = invfrag\,({u_{r,3}}) = (u_{f,2}, u_{r,3})\). \(|{PInvF{}}| = 3\), and, e.g. \(((u_{f,2}, u_{r,3}), (v_{f,0}, v_{r,1})) \in PInvF{}\)

Back to article page