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Abstract

Background: A number of algorithms have been developed for calculating the quartet distance
between two evolutionary trees on the same set of species. The quartet distance is the number of
quartets — sub-trees induced by four leaves — that differs between the trees. Mostly, these
algorithms are restricted to work on binary trees, but recently we have developed algorithms that
work on trees of arbitrary degree.

Results: We present a fast algorithm for computing the quartet distance between trees of
arbitrary degree. Given input trees T and T', the algorithm runs in time O(n + |V|-|V'| min{id, id"})
and space O(n + |V|-|V']), where n is the number of leaves in the two trees, V and V are the non-leaf
nodes in T and T, respectively, and id and id" are the maximal number of non-leaf nodes adjacent
to a non-leaf node in T and T', respectively. The fastest algorithms previously published for arbitrary
degree trees run in O(n3) (independent of the degree of the tree) and O(|V|-|V'|id"id"), respectively.
We experimentally compare the algorithm with existing algorithms for computing the quartet
distance for general trees.

Conclusion: We present a new algorithm for computing the quartet distance between two trees
of arbitrary degree. The new algorithm improves the asymptotic running time for computing the
quartet distance, compared to previous methods, and experimental results indicate that the new
method also performs significantly better in practice.

Background

The evolutionary relationship for a set of species is con-
veniently described by a tree in which the leaves corre-
spond to the species, and the internal nodes correspond to
speciation events. The true evolutionary tree for a set of
species is rarely known, so inferring it from obtainable

information is of great interest. Many different methods
have been developed for this, see e.g. [1] for an overview.

Different methods often yield different inferred trees for
the same set of species, and even the same method can
give rise to different evolutionary trees for the same set of
species when applied to different information about the
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The four possible quartet topologies. The four possible quartet topologies of species g, b, ¢, d. Topologies (a): ab|cd, (b):

a
ac|bd, and (c): ad|bc are butterfly quartets, while topology (d): b

c
X

, is a star quartet.

d

species. To study such differences in a systematic manner,
one must be able to quantify differences between evolu-
tionary trees using well-defined and efficient methods.

One approach for comparing evolutionary trees is to
define a distance measure between trees and compare two
trees by computing this distance. Several distance meas-
ures have been proposed, e.g. the symmetric difference
metric [2], the nearest-neighbour interchange metric [3],
the subtree transfer distance [4], the Robinson and Foulds
distance [5], and the quartet distance [6]. Each distance
measure has different properties and reflects different
aspects of biology.

This paper is concerned with calculating the quartet dis-
tance. A quartet is a set of four species, the quartet topology
induced by an evolutionary tree is determined by the min-
imal topological subtree containing the four species. The
four possible quartet topologies of four species are shown
in Fig. 1. Given two evolutionary trees on the same set of
n species, the quartet distance between them is the number
of sets of four species for which the quartet topologies dif-
fer in the two trees.

Steel and Penny [7] pointed at Doucettes unpublished
work [8] which presented an algorithm for computing the
quartet distance in time O(n3), where n is the number of
species. Bryant et al. in [9] presented an improved algo-
rithm which computes the quartet distance in time O(n2)
for binary trees. Brodal et al. in [10] showed how to com-
pute the quartet distance in time O(n log n) considering
binary trees. For arbitrary degree trees, the quartet distance
can be calculated in time O(n3) or O(n2d?), where d is the
maximum degree of any node in any of the two trees, as
shown by Christiansen et al. [11].

Results and discussion

In [11], we presented an algorithm for computing the
quartet distance between trees of arbitrary degree. It runs
in time O(n2d2) and space O(n2?), where n is the number
of leaves in each tree and d is the maximal degree found

in either of the trees. In this paper, we present an
improved algorithm running in time O(n + |V||V'|
min{id, id'}) and space O(n + |V||V'|), where |V| and |V'|
are the number of internal (non-leaf) nodes in the two
input trees, and id and id' are the maximal degree of an
internal node, when disregarding edges to leaves, in the
two trees.

Time analysis for different types of trees

The terms |V|, id, |V'| and id' are all clearly O(n), but on
the other hand neither | V] and id nor |V'| and id' are inde-
pendent. Intuitively, if there are a lot of internal nodes in
a tree, they will not have a very large internal degree. We
address in this section, how this dependency will affect
the running time for different types on trees.

The worst theoretical running time of the algorithm for
calculating the quartet distance presented above is O(n3).

. . . n
Consider a tree with an internal node of degree > con-

n .
nected to 5 internal nodes of degree three each con-

nected to two leaves, see Fig. 2. Such a tree has n leaves,
O(n) internal nodes and a maximal internal degree that is
O(n). If the algorithm is run on two such trees, the run-
ning time will be O(n3). In d-ary trees (trees where all

internal nodes have degree d) |V| = O (g ), the time com-

2
plexity of calculating the quartet distance will be O ( % ).

The two cases above are somewhat extreme. The first case
has a very large gap between the maximal and minimal
degree of internal nodes, while the second has little or no
gap. The theoretical performance of the algorithm on the
two types of trees reflects this difference. Let d

min

min{min, d,, min, d,}, be the minimal degree of any
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Figure 2
A worst case input tree for the algorithm. A tree with

. n n.
an internal node of degree 3 connected to 3 internal

nodes of degree three each connected to two leaves. This
tree has both a maximal degree of O(n) and at the same time
O(n) inner nodes.

. o n
internal node in either tree, then each tree has O(

min
n2
internal nodes and the time complexity is O (2—

min
min{id, id'}). If min{id, id'} is O( d,znin ) the time usage of
calculating the quartet distance will be O (n2). In the fol-

lowing section we will do practical verification of the the-
oretical results in this section.

Experimental running times

The graphs in Fig. 3 show the running time for comparing
worst case trees (see Fig. 2), (d-ary trees and random trees.
There are six types of (d-ary trees; binary, 6-ary, 15-ary,
and 30-ary and two types of random trees; r8s-based (see
[12]) and trees with random topologies. The trees gener-
ated by r8s are binary, but by contracting edges, we can get
trees of arbitrary degree (contracting an edge e connecting
nodes u and v means removing u and e and attaching the
rest of u's edges to v). Each edge is contracted with a prob-
ability that is inversely proportional with its length, i.e. a
short edge has a higher probability of being contracted
than a long edge. The trees with random topology are gen-

http://www.almob.org/content/1/1/16

erated by adding leaves one by one, starting with a tree of
size 2. A leaf can be added by attaching it to a random
inner node or by spliting a random edge with a new node,
to which the leaf is attached.

The running time for worst case input trees (as described
in the previous section) is O(n3), because such trees have
O(n) internal nodes and min{id, id'} is O(n). This is sup-
ported by the first graph in Fig. 3, which shows that the
plot of the polynomial n3 (representing the best sum-of-
squares fit of the polynomial c¢-n3 to the data-points) is
closest to the plot of the running times with regard to
slope.

The running time on the algorithm on d-ary trees is
2
O(% ). The plots of the running times in the second

graph are parallel, and one of them is plotted directly on
top of a plot of the polynomial n2 (here ¢ - n2 s fitted to the
data-points for each d separately; the different colors
match the d colors). This supports that they all have a run-
ning time of O(n?2) for fixed d's. The graph also shows that
higher degrees give lower running times, which is also
expected. The reason why the algorithm is more than
twice as fast on 6-ary trees than it is on binary trees, is that
the number of internal nodes in 6-ary trees is less than in
binary trees, and even though |V| is O(n) in both cases,
that difference has an impact on the running time. The last
graph shows the running time of the algorithm on trees
created as either random trees (each topology is equally
likely) or trees simulated using r8s (with edge contraction
as described above). We have no theoretical running time
for this data, but the graphs show that the running time is
O(n?). Even though the plotted data is only a small ran-
dom sample, this indicates that many pairs of trees actu-

ally have the property that min{id, id'} is O(d2;,).
Therefore it is not unreasonable to expect that our algo-
rithm runs in time O(n?) on trees used in practice. All

experiments were performed on a standard PC (Pentium
4, 3 GHz, 1 Gb Ram) running Linux Fedora Core 3.

Comparison with existing algorithms

In Fig. 4 we compare the running time of the new algo-
rithm with the O(n2d2) and O(n3) time algorithms from
[11] on random and r8s simulated trees. In Fig. 5 we com-
pare the running time of the new algorithm with the other
two algorithms on Buneman and refined Buneman trees
built for a range of Pfam [13] derived distance matrices
using the tool in [14]. Buneman and refined Buneman
trees are not binary unless this is well supported by the
input distance matrix, and thus represent the kind of trees
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Time usage for the O(n+|V||V'|min{id,id'}) algorithm on worst case trees
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Figure 3

Experimental running times. The running time of the algorithm for worst case trees, d-ary trees and random trees. The
lines plots the polynomials c. ni, where c is a fitted constant and i € [I, 4]. The two bottommost plots are in log-scale on both
the x- and y-axis.
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Comparison of new and existing algorithms
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Comparisons with earlier algorithms on random and r8s trees. The running time for the new algorithm compared to
the existing O(n2d2) and O(n3) time algorithms for random and r8s trees. The lines are fitted polynomial c. n2, for the case of the
new algorithm (denoted n2d in the legend) and the O(n2d?) algorithm, and the polynomial c. n3 for the O(n3) algorithm. The plot

is in log-scale on both the x- and y-axis.

which can only be compared by methods which allow for
trees of arbitrary degrees. In both experiments, the O(n3)
time algorithm is slowest by a large margin for all plotted
sizes of n. The new algorithm is consistently faster than
the O(n24d2) time algorithm for the r8s (with edge contrac-
tion) simulated trees and for the Buneman and refined
Buneman trees. For random trees the previous O(n2d?)
time algorithm is slightly faster in practice. This difference
is most likely caused by the additional overhead of
precomputing the sums used by the new O(n2d) time
algorithm compared to the previous O(n2d?) time algo-
rithm in order to improve the asymptotic worst case run-
ning time (see method section). For trees of low degree,
the overhead might dominate the factor d by which the
worst case running time of the new algorithm is
improved. The observed running times on random trees
thus indicate that over selection of random trees consists
of trees of low degree, whereas the 18s simulated, Bune-
man, and refined Buneman trees are trees with a few

nodes of high degree which more than compensate for the
additional overhead of dealing with nodes of low degree.
In conclusion, we find that the experimental comparison
of the new algorithm with the previously developed algo-
rithms indicate that the new algorithm not only improves
on the theoretical asymptotic running time, but also
improves the running time in practice if the input trees
contain a few nodes of high degree.

Conclusion

We have constructed an algorithm for finding the quartet
distance between two trees of arbitrary degree. It runs in
time O(n + |V||V'| min{id, id'}) and uses space O(n +
|V||V'|), where n is the number of leaves in the trees, |V|
and |V'| are the number of internal nodes in the trees and
id and id' are the maximal internal degree of internal
nodes in input tree T and T' respectively. Internal degree
of an internal node is the number of internal nodes con-
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Comparison on Buneman and refined Buneman trees
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Comparisons with earlier algorithms on Buneman and refined Buneman trees. The running time for the new
O(nZd) time algorithm compared to the existing O(n2d?) and O(n3) time algorithms on the Buneman and the refined Buneman
trees for range of Pfam based distance matrices. The plot is in log-scale on both the x- and y-axis.

nected to it, so neighbouring leaves do not add to this
value. The values |V|, |V'], id and id' are not independent,
therefore we have investigated how the structure of the
trees affect the running time of the algorithm. We show
that the time used to count the butterfly quartets - topol-
ogies where one pair of the four leaves is separated from
the other pair by an edge - is reduced to O(n?) when

min{id, id'} = O( drzm-n ), where d,;,, is the minimal degree
of all internal nodes in the trees. If the input trees are d-

ary, that is all internal nodes have degree d, the running

2
L n . . . .
time is O( 7 ), excluding the time to find intersections.

These theoretical running times have been validated by
running a series of tests using a Java implementation of
the algorithm, available at [15]. We also done a series of
tests on random trees, trees generated by the program 18s,
Buneman trees, and refined Buneman trees. Running the
algorithm on these trees gives an impression on how it

performs on trees used in practice. On both types of trees
the running time appears to be O(n2). It is however still an
open problem to develop an algorithm running in time
O(n2)for all types of trees.

Methods

Consider two input trees, and assume that a quartet has
butterfly topology in both trees, i.e. that one pair of the
four leaves is separated from the other pair by an edge in
the tree in both trees. We say that the butterfly quartet is
shared, if it has the same butterfly topology in both trees.
Otherwise, we say that the butterfly quartet is nonshared.
We let shared(T, T') denote the number of butterflies
shared between tree T and tree T', i.e. the number of quar-
tets that are butterflies with the same topology in tree T
and tree T', and let nonshared (T, T') denote the number
of quartets that are butterflies in both T and T' but with
different topology. By our definition of shared, the
number of butterfly quartets in a single tree can be stated
as the number of butterfly quartets shared between the
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An internal node v e T with subtrees F,,...,F,, here d,= 6.

tree and itself, i.e. shared(T, T) or shared(T", T') for the
number of butterfly quartets in T and T" respectively. (This
notation also emphasizes that computing the number of
butterfly quartets in a single tree by our algorithm is per-
formed as a comparison of the tree against itself.)

In [11] we argue that the quartet distance between T and
T', qdist(T, T"), can be found by focusing only on the com-
putation of the number of shared and nonshared butterfly
quartets between two trees, i.e. it is unnecessary to con-
sider non-butterfly quartets explicitely. More specifically,
we show that:

qdist(T, T’) = shared(T, T) + shared(T’, T")

— 2-shared(T, T’) — nonshared(T, T") D
The proof of this formula is a follows. Let Q denote the
number of quartets which have butterfly topology in T
and non-butterfly topology in T'. Symmetrically, let Q'
denote the number of quartets which have butterfly topol-
ogy in T' and non-butterfly topology in T. A butterfly
quartet in T is either a butterfly quartet in T' or a non-but-
terfly quartet in T'. The number of butterfly quartets in T,
shared(T, T), can thus be expressed as the sum shared(T,
T") + nonshared(T, T') + Q. Similarly, the sum shared (T",
T) = Q' + shared (T, T') + nonshared (T, T'). It is now
straightforward to verify that the righthand side of (1)
adds up Q + Q' + nonshared(T, T') which is the number of
quartets where the quartet topologies differ in T and T',
i.e. qdist(T,T").

http://www.almob.org/content/1/1/16

In the section below, we describe how to use (1) to com-
pute the quartet distance in time O(n + |V||V'| min{id,
id'}), more precisely O(n + |V||V'|) for a preprocessing
step, after which we can use O(|V||V'|) for calculating
shared(T, T'), O(|V||V'|{id, id'}) for calculating non-
shared(T,T'), O(|V|) for calculating shared(T,T) and
O(|V"|) for calculating shared(T',T").

Terminology

Let T and T' be two unrooted trees. In this paper we will
explicitly refer to the leaves of a tree as leaves and the non-
leaf nodes as internal node. We will assume that T and T"
each has n labelled leaves numbered 1,..., n such that the
leaf numbered x in T has the same label as the leaf num-
bered x in T'. The leaf sets are denoted L and L' for T and
T' respectively, note that L = L'. We will use V and V' to
denote the internal nodes in T and T' respectively. The
degree of an internal node v is the number of subtrees con-
nected to it, and is denoted d,. The internal degree of an
internal node v, id,, is the number of non-leaf subtrees
connected to it. We will assume that no internal node in T
and T' has degree two, and we will denote the maximal
internal degree of all internal nodes in T and T' by id and
id' respectively. Let v be an internal node in T, and let F;,

o de be the subtrees connected to it, as shown in Fig. 6

We call these the subtrees of v. We say that v claims all but-
terfly quartets ab|cd where a,b € F,, ¢ € F,and d € F,, for i

# k # m (see Fig. 7). With this definition, each butterfly
quartet is claimed by exactly two internal nodes.

Adding the subscript yz|w|x to an internal node claiming
the butterfly quartet wx|yz, indicates that the leaves y and
z are found in a single subtree of the internal node, while
the leaves w and x are found in different subtrees. For
example, considering the quartet ab|cd, v and v' in Fig. 7

. 4
are written as vgand Vgpjq -

Given a subtree F of T, and a subtree G of T', we call the
intersection F N G a shared leaf set, i.e. the set of leaves
present in both F and G. The size of the shared leaf set, |F
N G|, then denotes the number of leaves present in both F
and G. The size of a single subtree F is similarly denoted

|F|. We will use F to represent the subtree of T containing
all leaves not in F and similarly for G and G in T", see Fig.
8 for an example. Note that F and G are also subtrees of
T and T' respectively, and thus [FN G|, |F NG|, |Fn G |
and | F N G | are all sizes of shared leaf sets between a sin-
gle subtree from T and a single subtree from T". In the pres-
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d

Figure 7

Internal nodes v € Tand v' € T', each claiming the quartet ab|cd.
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entation of the algorithms below, we will assume that we
have access to |F|, |G| and |F n G| for all subtrees F of T
and G of T" in time O(1). At the end of the section we will
describe how this can be achieved by an O(n) time pre-
processing step, which does not affect the asymptotic
worst case running time of the presented algorithms.

Counting shared butterfly quartets
For each pair of internal nodes v, v' from T, T' we want to
count the number of shared butterfly quartets claimed by

both internal nodes, shared(v, v'). Assume that Fy, ..., Fj
are subtrees of vand G, ..., de, are subtrees of v'. We wish

to count all quartets on the form ab|cd where a, b € F,n
Gyce F,nGandd € F,N G, i#k#m,j#1+n (seeFig.
7). Counting the possible combinations of a and b is

expressed by the following double sum, which sums over
all pairs of subtrees of v and v":

237"

Given that a and b are in F; N G;, we need to find ¢ and d

in F,n G j- The number of possible choices of ¢ and d is

expressed by:

|Eﬁ@|
2

However when findingcandd in F;n G j the condition

that ¢ and d must be in different subtrees is not satisfied.
Therefore we subtract the number of times ¢ and d are in
the same subtree of v and v":

z{mmc‘:j |]+Z[IE2G1 |J_zz[|Fkr;cz |]

ki 2 I#j k#il#j

Any pair in F, " G, is counted twice, once in |[F,n G jland
oncein | F ;N G|, therefore these pairs are subtracted once

using the double sum above. (2) expresses the number of
ways ¢ and d can be found in different subtrees, given that

aand b are found in F;N G;:

[mmaj\],z[m,méj\]fz[mzczl}zz('ﬂe;@j (2)

2 k#i 2 I#j k#il#j

=

Figure 8

e

A rooted subtree F, and its complement rooted subtree F.
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We can now compute the number of shared butterfly
quartets between two internal nodes, ie. the number of
butterfly quartets claimed by both internal nodes with the
same topology:

Shared(v,v'):ZZ(‘Fizcj ][[“:if;Gj \]_Z[IFk nG; \]

i ki 2

_2(|Pi;cl|]+zz[|ﬁfr;cl|n v

1#j ki l#]

If the trees, T and T', have a shared quartet ab|cd, then
there are two internal nodes in each tree that claims this

quartet: v ;g and vy, in T and v;b\dd and V2d|a|b in T".
Since both shared (v, ¢4 Vapja ) and shared (Ve qpr Vedlap)

will count the quartet, the total number of shared quartets
between the two trees is:

shared(T,T’) = % > Y shared(v,)

veTveT’
It is straightforward to observe that calculating shared(v,
v') using a direct computation of (3) takes time O( dgd,%' ).
It is however not necessary for shared (v, v') to sum over all
subtrees of v and v'. Since each term in the sums involves

taking a 2-subset from a shared leaf set, we need only to
consider subtrees that are not leaves. This reduces the run-

ning time to O( idfidgf ). This running time can be
improved even more, we start by expressing (2) in a differ-
ent way:
[F NGl | B NGl |E NG| [B NG [ _
S - N >
I

ez 2 I%j le#i %]
I i v

C{i] %[wer;éj\] [\mc |] [\chzl] [Iﬁﬂch‘] ()

1 11 1

e PR N U N

1

v

Let

http://www.almob.org/content/1/1/16

(5)

We can ignore leaf subtrees, so we need to compute id,,
different S j's and S;'s which can each be computed in
O(id,) time. Symmetrically each of the id, S;'s and S/'s
takes time O( id;, ) to compute, and the total time of com-
puting S is O(id,id, ). The total time of computing all sums
mentioned is thus O(id,id,) and this is the key to reducing

the time usage of shared(v,v'). Using the sums we can

express (4) as:
ENG; EnNG;
[| |] s,._s;+[' i ,|)
2 2

I II il v

fes]]

oD

N3l

I_
‘Cn

[~ 4\

=

oD

Qi

;/

Provided that the sums S , S/, S; S/ and S have been cal-

culated, (4) can be calculated in time O(l). Since calcula-
tion of the sums is independent on the calculation of
shared(v, v'), these calculations can be done serially as
shown in the algorithm below, thereby reducing the time
usage of shared(T, T') to:

D Y idyidy = Y id, Y idy =2(|V[-1)-2(]V'[-1)=O(| V|| V'])
veTVeT’ veT  veT
ALGORITHM - CALCULATING THE NUMBER OF

SHARED BUTTERFLY QUARTETS BETWEEN T AND T"
Requires: T, T' two input trees with the same leaf set.
Ensures: Res = shared(T, T")

Res < 0

for v internal node in T do

for v' internal node in T' do
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b
d

Figure 9
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Internal nodes v € T claiming the quartet ab|cd and v' € T' claiming the quartet ad|bc.

Calculate sums S ;, S/, S, S/ and S
Res <— Res + shared(v, v')
end for

end for

R
Res « —2
2

Counting nonshared butterfly quartets

For each pair of internal nodes v, v' we want to count the
number of nonshared butterfly quartets claimed by both
internal nodes, nonshared(v, v'). Such quartets have the
property that a pair of leaves found in the same subtree of
vwill be found in different subtrees of v’ and vice versa, i.e.
a nonshared quartet with leaves g, b, c and d, hasa € F;n
Gj b e FFnG,c e F,nG,andd € F, N G (see Fig. 9). The
following expression counts all nonshared quartets
related to a pair of nodes v and v', obeying that if two
leaves of the quartet are in one subtree of v they are in dif-
ferent subtrees of v' and vice versa:

szﬁchFiﬁé]‘||Eﬁéj||ﬁiﬁcj| (6)
i

Even though (6) satisfies the property of nonshared quar-
tets, it possibly counts more than the number of non-
shared quartets claimed by an internal node in each tree.
The problem is that given two internal nodes, they do not
nescessarily claim the quartets counted by (6). If we

denote the leaves of an nonshared quartet a, b, c and d, the
first, second, third and fourth factors in (6) counts the
number of choices of 4, b, ¢ and d respectively. The first
and second factor choose a and b from F;, while the third

and fourth choose ¢ and d from F ;. In the cases where ¢
and d are chosen from the same subtree F,, k =i of v, v does

not claim the quartet. We must subtract these quartets,
which can be counted as:

22 2IENGIENG B NG| NG| (7)
i) ke

Similarly there are cases where b and ¢ are chosen from the

same subtree G, I # j of v', which we must also subtract.

These can be counted as:

SIVIENGENG||ENG |G| (8)
i jl¢j

The cases where both ¢ and d are chosen from the same
subtree F,, k # i of v and b and ¢ are chosen from the same
subtree G, I # j of v' are included in both the expressions
above and therefore they must be added again. The fol-
lowing expression counts the number of these cases:

SYIDIENG |ENG|FNG || F NG| (9)

i j k#il#j

Combining equations (6), (7), (8) and (9), gives a way of
calculating the number of nonshared quartets between
two internal nodes v and v":
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nonshared(u,v')zzzuﬁ-r'WCj Hﬁr‘\aj Hl?,-ﬁéj HE-F‘-C]-\
L
-DIENG|ENGj || NG| B NG|
ki _ _
NENG IENG I ENG || NG|
I#j

(10)
+X YIENGIENG I E NG || E NG \J
k#il#j
Assuming that the trees have a nonshared quartet with
topology form ab|cd in T, and ad|bc in T', there are two
internal nodes in each tree claiming the quartet: v, and
Vegjaipin Tand vggpc and vpgqq in T All of the four com-
binations of these will identify the quartet as nonshared.

Therefore the total number of nonshared quartets
between the two trees is:

nonshared(T,T") = 1 Y. > nonshared(v,v)

veTveT’
Direct computation of nonshared(v, v') using (10) takes

time O( dfd,% ). Each of the subtrees has to be intersected

with two disjoint sets in each of the sums. This means that
if a subtree is only a leaf, at least one of these intersections
will be zero, and the term will be zero. Therefore we can
ignore subtrees that consist of a single leaf, just like when
computing shared(T, T'), and reduce the time usage to
O(id2id% ). The time usage of the calculation of non-

shared(v, v') can be further improved by rewriting (9):

XYY YIENGHIENG NG NG;|=

i ] k#il#]

szﬂcj |2|Fkﬁcj DIENG B NG |=
ij

ki 1#j

Y SIENG; Y| E NG ‘(Z\Fimcl | B NG |- FNGj || B NG \)
ij

i !

Inspired by the precomputing of sums used in shared(v,
v'), (5), we calculate for each i, k, k # i the sum:

Sik=2IENG || E NG| (11)
1

There are O(id2) of these sums and each takes time

O(id,) to calculate, so the time complexity for calculating

all sums is O(id%id, ). In the case that id, < id, we can
switch v and v' and thus get time usage O(id,id, min{id,,
id,}). Assuming that the sums have been calculated, (9)
can now be calculated in time O(id,id, min{id,, id,}) by
the expression:

http://www.almob.org/content/1/1/16

Y YIENG Y IB NG |(Sie= | E NG [ NGl) (12)
ij ki

By substituting (9) with (12) in (10), we can calculate
nonshared(v, v', in time O(id,id,min{id,, id,}). Since cal-
culation of the sums is independent of the calculation of
nonshared(v, v'), these calculations can be done serially as
shown in the algorithm below.

ALGORITHM - CALCULATING THE NUMBER OF NON-
SHARED BUTTERFLY QUARTETS BETWEEN T AND T

Requires: T, T' two input trees with the same leaf set.
Ensures: Res = nonshared(T, T")
Res <0
for v internal node in T do
for v' internal node in T' do
Calculate sums S,
Res < Res + nonshared(v, v')
end for

end for

R
Res « il
4

The time complexity of the algorithm is:

Y Y, id,idy min{id, id, } < min{id,id’} Y id, Y. id; = O(| V||V’ | min{id,id'})
veTveT veT VveT’

Counting butterfly quartets in a single tree

Reusing the idea of precomputing certain sums enables us
to calculate the number of butterfly quartets in a single
tree T in time O(]V]). Since the number of butterfly quar-
tets in a single tree is the number of butterfly quartets
shared between the tree and itself, we will use shared(T, T)
to denote the number of butterfly quartet in T. This nota-
tion also emphasizes that computing the number is essen-
tially a comparison of the tree against itself. Given a node
v in T we can express the number of quartets it claims in
the following way:

EY(E x5
2 - (13)
i [ 2 ] {2 ) i¢i( 2
where the F;'s are the subtrees of v. Now let
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(@) An unrooted tree

Figure 10

http://www.almob.org/content/1/1/16

(b) A rooted tree

An arbitrary node, r, is chosen as the root in the tree, leading to a rooted tree.

33}

we can now express (13) as

{ACH)

S can be calculated in time O(id,)and using the precom-
puted S, (14) can be also calculated in time O(id,). Sum-
ming the results of (14) for all nodes in T gives the
number of quartets in the tree, shared(T, T). The total time
usage is

Zidv :O(|V|)'

veT

(14)

Calculating the shared leaf set sizes

The algorithms presented above all rely on O(1) time
access to the size of the shared leaf set |F m G| for any pair
of subtrees F of T and G of T", where F and G each has size
at least two, i.e. contains more than a single leaf. We will
refer to |F N G| as the intersection size of subtree F and G.
In [9] and O(n?) time and space algorithm is presented for
computing the intersection sizes of all pairs of subtrees F
and G of two binary input trees. A straightforward gener-
alization of this algorithm to two input trees T and T' of
arbitrary degrees results in an O(n2dd') time and O(n2)
space algorithm, which gives a worst case running time of
O(n*).

In this section we will present an improved algorithm for
computing the intersection sizes of all pairs of subtrees of
T and T' which runs in time O(n + |V||V'|) and space

O(|V]|V']). We will assume that the size of each subtree F
of Tand G of T', i.e. |F| and |G|, is available in time O(1).
This can be achieved as presented in the next section. Our
algorithm for computing all intersection sizes is as fol-
lows. Choose an arbitrary node r in T and an arbitrary
node r'in T". Rooting the trees in r and r' respectively gives
rise to two rooted trees T,and T/, Fig. 10 shows an exam-
ple of rooting a tree. Calculating the shared leaf set sizes
of T,and T, and all subtrees in both trees can be done

using:

T, AT Y Y EAG Y EAGE Y FAG ], (15)
i j i j

where F; are all subtrees of T, and G; are all subtrees of Ty .

This can be calculated using dynamic programming in
time O(n2):

oD ddy+ Y, D d, YD dy+ Y Y 1=0(

veVieV’ veViel leLveV’ leLlel’

Except |T.N T |, the shared leafset sizes calculated by (15)

are the shared leaf set sizes of all rooted subtrees of T and
T' that do not contain the nodes r and r'. Assuming that
the subtree F of T does not contain r, then the subtree

F does contain r and similarly for r' and subtrees G and G
of T'. The shared leaf set sizes of these trees that do contain
r and 7' can be calculated from the intersection sizes that
we have available using (16):
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|FNG| = |G|-|FNG]|
|[FAG| = |F|-|FNG] (16)
|[FAG| = n—(|G[+[F[~|FNG])

In other words all shared leaf set sizes can be calculated in
time O(n2). First the shared leaf set sizes for subtrees that
to not contain an arbitrary node r and 7' from each tree are
calculated in time O(n2). Then the shared leaf set sizes of
subtrees that do contain r or r' (or both) are calculated
constant time for each shared leaf set. Since there are
O(n?) shared leaf sets the total time usage is O(n2).

The reduction to time O(n + |V||V']) and space O(|V||V'|)
is done by handling the cases where F, F;, G or G;is a leaf
in a special way. For each pair of nodes v, v' we let Leaf [v,
'] be the number of leaves directly connected to v that
have the same label as a leaf directly connected to v'. Leaf
[v, v'] is constructable in time O(n + |V]||V']) in the follow-
ing way: First, set Leaf [v, v'] = 0 for all pairs of nodes v, v'.
Given a leaf number, x, there is a unique node, node(x), in
T and a unique node, node'(x), in T". For each leaf number,
x, we increment Leaf [node(x), node'(x)]. There are n such
numbers, and by assumption, the leaves can be found in
constant time given a number. Thus Leaf [v, v'] is con-
structable in time O(n + |V||V'|). We choose r and 7' in T
and T' and create two rooted trees T,and T, . The non-leaf
children of r in T, are F,,..., F, and the non-leaf children of
r'in T/ are G,,..., G,. The intersection size of the two trees

can be defined recursively as:

X Y X )
IT AT = Leaf [, ]+ 2| B AT |+ Y| T 0G| =2 Y| B nG 17)
i=1 j=1 i=1j=1

The first term counts all leaves directly connected to both
r and r'. The second term counts all leaves connected
directly to r', that are also in T,, but not directly connected
to r. The third term counts all leaves connected directly to
1, that are also in T,’ , but not directly connected to r'. Sum-
ming these three terms counts all leaves present in both

subtrees, but leaves not connected directly to the roots are
counted twice, and are subtracted by the last term.

Since (17) is only summing over the non-leaf children of a
given internal node, calculating the shared leaf set sizes of
all these pairs of subtrees can be done using dynamic pro-
gramming in time:

(n+ | VIV )+ Y id, + Y idy+ Y Y, idyidy =O(n+| V|| V'])

eV VeV’ veV eV’

http://www.almob.org/content/1/1/16

By the same arguments as above, the rest of the shared leaf
set sizes can be computed in time O(|V]|V'|) and space
O(|V]|V']). Therefore the total running time of the algo-
rithm is O(n + |V||V'|) and space usage is O(|V||V']).

Calculating the sizes of all subtree leaf sets

All of the above algorithms make use of the sizes of the
leaf sets of the rooted subtrees of the input trees, either
directly or indirectly. Rooting T in an arbitrary node r
gives rise to the rooted tree T,. Every subtree F, of T, is a

rooted subtree of T, and F _ is also a rooted subtree of T.

Note that the set of subtrees F, U F _, since one tree is the
complement of the other, contains all subtrees of T and
that | F | = n - |F,|. By using dynamic programming the
sizes of all subtrees, F,, can be computed by a single traver-

sal of T.. For each F, the size of F  can be computed in

constant time, since n is known. This means that all leaf
set sizes of a tree of arbitrary degree can be calculated in
time O(n).
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