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Abstract
The technique of Finite Markov Chain Imbedding (FMCI) is a classical approach to complex
combinatorial problems related to sequences. In order to get efficient algorithms, it is known that
such approaches need to be first rewritten using recursive relations. We propose here to give here
a general recursive algorithms allowing to compute in a numerically stable manner exact
Cumulative Distribution Function (CDF) or complementary CDF (CCDF). These algorithms are
then applied in two particular cases: the local score of one sequence and pattern statistics. In both
cases, asymptotic developments are derived. For the local score, our new approach allows for the
very first time to compute exact p-values for a practical study (finding hydrophobic segments in a
protein database) where only approximations were available before. In this study, the asymptotic
approximations appear to be completely unreliable for 99.5% of the considered sequences.
Concerning the pattern statistics, the new FMCI algorithms dramatically outperform the previous
ones as they are more reliable, easier to implement, faster and with lower memory requirements.

1 Introduction
The use of Markov chains is a classical approach to deal
with complex combinatorial computations related to
sequences. In the particular case of pattern count on ran-
dom sequences, [5] named this method Finite Markov
Chain Imbedding (FMCI, see [11] or [7] for a review).
Using this technique it is possible to compute exact distri-
butions otherwise delicate to obtain with classical combi-
natorial methods. More recently, [12] proposed a similar
approach to consider local score on i.i.d. or Markovian
([13]) random sequences. Although these methods are
very elegant, they could require a lot of time and memory
if they are implemented with a naive approach. The
authors of [6] first stated that recursive relation could be
established for any particular case in order to provide an

efficient way to perform the computations. We propose
here to explore in detail this idea with the aim to provide
fast algorithms able to compute with high numerical accu-
racy both CDF (cumulative distribution function) and
CCDF (complementary CDF) of any general problem
which can be written as a FMCI. We apply then these
results to the particular cases of local score and pattern sta-
tistics. In each case, asymptotic developments are derived
and numerical results are presented.

2 Methods
In this part, we first introduce in section 2.1 the FMCI and
see the limits of naive approaches to their corresponding
numerical computations. The main results are given in
section 2.3 where we propose two effective algorithms
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able to to compute general FMCI p-values (algorithm 1)
or complementary p-value (algorithm 2). The theoretical
background for these algorithms is given in the section
2.2.

2.1 Finite Markov Chain Imbedding

Let us consider X = X1,...,Xn a sequence of Bernoulli or

Markov observations and En an event depending on the

sequence X. We suppose that it is possible to build from X
an order one Markov chain Z = Z1,...,Zn on the finite state

space  of size L. This space contains (in the order): k
starting states denoted s1,...,sk, some intermediate states,

and one final absorbing state f. The Markov chain is
designed such as

(En|Z1 = si) = (Zn = f|Z1 = si) = ∏n-1(si, f)  (1)

where

is the transition matrix of Z.

If μ is the starting distribution of Z1, we hence get

Using this approach (and a binary decomposition of n -
1), it is possible to compute the p-value with O(log2(n) ×

L2) memory complexity and O(log2(n) × L3) time com-

plexity. As L usually grows very fast when we consider
more complex events En, these complexities are a huge

drawback of the method. Moreover, numerical precision
considerations prevent this approach to give accurate

results when using the relation ( ) = 1 - (En) to compute

the p-value of the complementary event (as the absolute
error is then equal to the relative precision of the compu-
tations).

2.2 Effective computations
Proposition 1. For all n ≥ 1 we have

Proof. This trivial to establish by recurrence using matrix
block multiplications.  �

We hence get the

Corollary 2 (direct p-value). For all n ≥ 1 we have

for all 1 ≤ i ≤ k  (En|X1 = si) =   and

  (5)

with yn-2 computable through the following recurrence
relations:

x0 = y0 = v  and, for all j ≥ 0  xj+1 = Rxj  and  yj+1 = yj+xj

 (6)

Proof. Simply use proposition 1 to rewrite equations (1)
and (3). Recurrence relations are then obvious to estab-
lish.  �

And we also get the

Corollary 3 (complementary p-value). For all n ≥ 1 we
have

for all 1 ≤ i ≤ k  ( |X1 = si) =   and

  (7)

with x0 is a size L - 1 column vector filled with ones and
with xn-1 = Rn-1x0 which is computable through the follow-
ing recurrence relation:

for all j ≥ 0  xj+1 = Rxj  (8)

Proof. ∏ being a stochastic matrix, ∏n-1 is also stochastic, it
is therefore clear that the sum of Rn-1 over the columns
gives 1 - yn-2 and the corollary is proved.  �

Using these two corollaries, it is therefore possible to accu-
rately compute the p-value of the event or of its comple-
mentary with a complexity O(L + ζ) in memory and O(n
× ζ) in time where ζ is the number of non zero terms in
the matrix R. In the worst case, ζ = (L - 1)2 but the tech-
nique of FMCI usually leads to a very sparse structure for
R. One should note that these dramatic improvements
from the naive approach could even get better by consid-
ering the structure of R itself, but this have to be done spe-
cifically for each considered problem. We will give
detailed examples of this in both our application parts
but, for the moment, we focus on the general case for
which we give algorithms.

2.3 Algorithms
Using with the corollary 2 we get a simple algorithm to
compute p = (En)
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algorithm 1: direct p-value

x is a real column vector of size L - 1 and y a real column
vector of size k

initialization x = (v1,...,vL-1)' and y = (v1,...,vk)'

main loop for i = 1...n - 2 do

 • x = R × x (sparse product)

 • y = y + (x1,...,xk)'

end return 

and using the corollary 3 we get an even simpler algo-

rithm to compute the q = 1 - p = ( )

algorithm 2: complementary p-value

x is a real column vector of size L - 1

initialization x = (1,...,1)'

main loop for i = 1...n - 1 do

 • x = R × x (sparse product)

end return 

The more critical stage of both these algorithms is the
sparse product of the matrix R by a column vector which
can be efficiently done with ζ operations.

It is interesting to point out the fact that these algorithms
do not require the stationarity of the underlying Markov
chain. More surprisingly, it is also possible to relax the
random sequence homogeneity assumption. Indeed, if
our transition matrix ∏ depends on the position i in the
sequence, we simply have to replace R in the algorithms
with the corresponding Ri (which may use a significant
amount of additional memory depending on its expres-
sion as a function of i).

For complementary p-value, we require to compute
R1R2...Rn-1Rnx which is easily done recursively starting
from the right. In the direct p-value case however, it seems
more difficult since we need to compute x + R1x + R1R2x +
... + R1R2...Rn-1Rnx. Fortunately this sum can be rewritten
as x + R1(x + R2{... [x + Rn-1(x + Rnx)]...}) which is again
easy to compute recursively starting from the right.

The resulting complexities in the heterogeneous case are
hence the same than in the homogeneous one (assuming
that the number of non zero terms in Ri remains approxi-
mately constant). This remarkable property of the FMCI
should be remembered especially in the biological field
where most sequences are known to have complex heter-
ogeneous structures which are often difficult to take into
account.

3 Application 1: local score
We propose in this part to apply our results to the compu-
tation of exact p-values for local score. We first recall the
definition of the local score of one sequence (section 3.1)
and design a FMCI allowing to compute p-value in the
particular case of an integer and i.i.d. score (section 3.2).
We explain in sections 3.5 and 3.6 how to relax these two
restrictive assumptions to consider rational or Markovian
scores. The main result of this part is given in section 3.4
where we propose an algorithm improving the simple
application of the general ones by using a specific asymp-
totic behaviour presented in section 3.3. As numerical
application, we propose finally in section 3.7 to find sig-
nificant hydrophobic segments in the Swissprot database
using the Kyte-Doolittle hydrophobic scale. Our exact
results are compared to the classical Gumble asymptotic
approximations and discussed both in terms of numerical
performance and reliability.

3.1 Definition
We consider S = S1,...,Sn a sequence of real scores and we
define the local score Hn of this sequence by

which is exactly the highest partial sum score of a subse-
quence of S.

This local score can be computed in O(n) using the auxil-
iary process

U0 = 0  and for 1 ≤ j ≤ n  

= max{0, Uj-1 + Sj}  (10)

because we then have Hn = maxj Uj.

Assuming the sequence S is random (Bernoulli or Markov
model), we want to compute p-values relative to the event
En = {Hn ≥ a} where a > 0.
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3.2 Integer score
In order to simplify, we will first consider the case of inte-
ger scores (and hence a ∈ ) then we will extend the result
to the case of rational scores.

In the Bernoulli case, [12] introduced the FMCI Z defined
by

(resulting with a sequence of length n + 1) with 0 as the
only starting state and a as the final absorbing state. The
transition matrix ∏ is given by

where

p(i) = (S1 = i)  f(i) = (S1 ≤ i)  g(i) = (S1 ≥ i)  ∀i ∈   (13)

It is possible to apply to this case the general algorithm 1
with L = a + 1 and k = 1 (please note that we have added
Z0 to the sequence and n must then be replaced by n + 1
in the algorithm to get correct computations) to compute
the p-value we are looking for. In the worst case, R has ζ =
a2 non zero terms and the resulting complexity is O(a2) in
memory and O(n × a2) in times. But in most cases, S1 sup-
port is reduced to a small number of values and the com-
plexities decrease accordingly.

3.3 Asymptotic development
Is it possible to compute this p-value faster ? In the case
where R admits a diagonal form, simple linear algebra
could help to cut off the computations and answer yes to
this question.

Proposition 4. If R admits a diagonal form we have

where []1 denotes the first component of a vector, with R∞

= limi→∞ Ri/λi, where 0 <λ < 1 is the largest eigenvalue of
R and ν is the magnitude of the second largest eigenvalue.
We also have v = [g(a),...,g(1)]'.

Proof. By using the corollary 15 (appendix A) we know
that

Ri - λiR∞ = O(νi)  (15)

uniformly in i so we finally get for all α

uniformly for all n ≥ α and the proposition is then proved
by considering the first component of equation (16).  �

Corollary 5. We have

and

Proof. Simply replace the terms in (17) and (18) with
equation (14) to get the results.  �

3.4 Algorithm
The simplest way to compute (Hn ≥ a) is to use the algo-
rithm 2 in our particular case. As the number of non zero
terms in R is then a2, the resulting complexity is O(n × a2).
Using the proposition 4, it possible to get the same result
a bit faster on very long sequence by computing the first
two largest eigenvalues magnitudes λ and ν (complexity
in O(a2) with Arnoldi algorithms) and to use them to
compute a p-value.

As the absolute error is in O(να) we obtain a require ε error
level using a α proportional to log(ε)/log(ν) which results
in a final complexity in O(log(ε)/log(ν) × a2). Unfortu-
nately, this last method requires to use delicate linear alge-
bra techniques and is therefore more difficult to
implement. Another better possibility is to use the corol-
lary 5 to get the following fast and easy to implement
algorithm:

algorithm 3: local score p-value

x a real column vector of size a, (pi)i≥1 and (λi)i≥3 to
sequences of real and i an integer

initialization x = [g(a),...,g(1)]', p1 = g(a), and i = 0

main loop while (i <n and (λi) has not yet converged
towards λ)

 • i = i + 1

 • x = R × x (sparse product)
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 • pi = pi-1 + x1

 • λi = (pi - pi-1)/(pi-1 - pi-2) (if defined)

end • p = pi

 • if (i <n) then p = p + (pi - pi-1) 

 • return p

At any step i of the main loop we have pi = (Hi ≥ a) and the
final value taken by i is the α of proposition 4. One should
note that only the last three terms of (pi)i≥1 and (for a sim-
ple convergence testing) the last two terms of (λi)i≥3 are
required by the algorithm.

3.5 Rational scores

What if we consider now a rational score instead of an

integer one ? If we denote by  ⊂  the support of S1, let

us define M = mini∈{i  ⊂ }. Changing the scale of the

problem by the factor M allows us to get back to the inte-
ger case:

(Hn ≥ a) = (M Hn ≥ M a)  (19)

This scale factor will obviously increase the complexity of
the problem, but as the support cardinal (denoted η) is
not changed during the process, the resulting complexities
are O(M × a × η) in memory and O(M × n × a × η) in time
(n could vanish from the time complexity thanks to the
faster algorithm presented above).

For example, if we consider the Kyte-Doolittle hydropho-
bicity score of the amino-acids (see [10] and table 1), it
takes only η = 20 values and M = 10, the resulting com-
plexity to compute (Hn ≥ a) is then O(200 × n × a). If we
consider now the more refined Chothia score ([4]), the
scale factor increases from M = 10 to M = 100 and the
resulting complexities are multiplied by 10.

3.6 Markov case
All these results can be extended to the Markov case but
this require to define a new FMCI allowing us to trace the
last score (in the case of an order one Markov chain for the
sequence S, if a higher order m is considered, we just have
to add the corresponding number of preceding scores to Z
instead of one):

Doing this now we get k = η (the cardinal of the score sup-
port) starting states instead of one so we need a starting
distribution μ (which could be a Dirac) to compute the p-
value.

We will not detail here the structure of the corresponding
sparse transition matrix ∏ (see [13]) but we need to know
its number ζ of non zero terms. If a is an integer value (we
suppose here that the scale factor has been already
included in it) then the order of R is M × a × η and ζ =
O(M × a × η2) (and we get O(M × a × ηm+1) when an order
m Markov model is considered).

3.7 Numerical results
In this section, we apply the results presented above to a
practical local score study. We consider the complete pro-
tein database of Swissprot release 47.8 and the classical
amino acid hydrophobic scale of Kyte-Doolittle given in
table 1 ([10]). The database contains roughly 200 000
sequences of various lengths (empiric distribution given
in figure 1).

Once the best scoring segment has been determined for
each of these sequences, we need to compute the corre-
sponding p-values. According to [9], the asymptotic distri-
bution of Hn is given (if mean score is < 0, which is
precisely the case here) by the following conservative
approximation:

(Hn ≥ a) � 1 - exp (-nKe-aλ)  (21)

where constants λ and K depend on the scoring distribu-
tion.

With our hydrophobic scale and a distribution of amino-
acids estimated on the entire database we get

λ = 5.144775 × 10-3  and  K = 1.614858 × 10-2

(computation performed with a C function implemented
by Altschul). Once the constants are computed we could
get all the approximated p-values very quickly (a few sec-
onds for the 200 000 p-values).
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Table 1: Distribution of amino-acids estimated on Swissprot 
(release 47.8) database and Kyte-Doolittle hydrophobic scale. 
Mean score is -0.244.

a. a. F M I L V C W A T G

 in % 4.0 2.4 5.9 9.6 6.7 1.5 1.2 7.9 5.4 6.9
score 2.8 1.9 4.5 3.8 4.2 2.5 -0.9 1.8 -0.7 -0.4
a. a. S P Y H Q N E K D R

 in % 6.9 4.8 3.1 2.3 3.9 4.2 6.6 5.9 5.3 5.4
score -0.8 -1.6 -1.3 -3.2 -3.5 -3.5 -3.5 -3.9 -3.5 -4.5
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On the other hand, our new algorithm allows to compute
(for the very first time) the exact p-values for this example.
As the chosen scoring function has a one digit precision
level, we need to use a scale factor of M = 10 to fall back
to the integer case. A C++ implementation (available on
request) performed all the computations in roughly three
hours on a Pentium 4 CPU 2.8 GHz (this means approxi-
mately 20 p-values computed by second).

We can see on figure 2 the comparison between exact val-
ues and Karlin's approximations. The conservative design
of the approximations seems to be successful except for
very short unsignificant sequences. While the approxima-
tions are rather close to perfection for sequences with
more than 2 000 amino-acids, the smaller the sequence is,
the worse the approximations get. This is obviously con-
sistent with the asymptotic nature of Karlin's formula but
seems to indicate that these approximations are not relia-
ble for 99.5% of the sequence in the database (protein of
length < 2 000).

One should object that it exists ([1,2]) a well known finite
size correction to formula (21) that might be useful, espe-
cially when considering short sequences. Unfortunately in
our case, this correction does not seems to improve the
quality of the approximations (data not shown) and we
hence make the choice to ignore it.

In table 2 we compare the number of sequences predicted
to have a significant hydrophobic segment at a certain e-
value level by the two approaches. If the Karlin's approxi-
mations are used, many proteins are considered unsignif-
icant while they are. For example, with the classical
database threshold of 10-5, only few sequences (6%) are
correctly identified by Karlin's approximations.

We have seen that Karlin's approximations are often far
too conservative to give accurate results, but what about
the ranking ? Table 3 proposes the Kendall's tau rank cor-
relation (see [16] chapter 14.6 for more details) which is
equal to 1.0 for a complete rank agreement and equal to -

Empiric distribution of Swissprot (release 47.8) protein lengthsFigure 1
Empiric distribution of Swissprot (release 47.8) protein lengths. In order to improve readability, 0.5% of sequences with length 
∈ [2 000, 9 000] have been removed from this histogram.
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1.0 for a complete inverse rank agreement. As we will cer-
tainly be interested in the most significant sequences pro-
duced by our study, we compute our Kendall's tau only on
these sequences. When all sequence lengths are consid-
ered, Karlin's approximations show their total irrelevance
to give correct ranking for the first 10 or 50 most signifi-
cant p-values. Even when the 100 first p-values are taken
into account, relative ranks given by Karlin's approxima-
tions are wrong in 63% of the cases, which is huge. How-
ever, in the case where the approximations values are close
to the exact ones (sequence lengths greater than 2 000,
which correspond only to 0.5% of the database), p-values
obtained with both methods are highly correlated.

4 Application 2: pattern statistics
In this part, we consider the application of FMCI to pat-
tern statistics. After a short introduction of notations (sec-
tion 4.1) we explain with an example in section 4.2 how
to build through the tool of DFA a particular FMCI related

to a given pattern. The block structure of this FMCI (sec-
tion 4.3) is then used to get in section 4.4 two efficient
algorithms for under- and over-represented patterns. We
derive in section 4.5 some asymptotic developments but
unlike with local score application, these results are not
used to improve our algorithms. In the last section 4.6 we
finally compare this new method to existing ones.

4.1 Definition

Let us consider a random order m homogeneous Markov
sequence X = X1,...,Xn on the finite alphabet  (cardinal

k). If Ni is the random variable counting the number of

occurrences (overlapping or renewal) of a given pattern in
X1...Xi. We define the pattern statistic associated to any

number Nobs ∈  of observations by



Exact p-value against Karlin ones (in log scale)Figure 2
Exact p-value against Karlin ones (in log scale). Color refers to a range of sequence lengths: smaller than 100 in black (� 20 000 
sequences), between 100 and 200 in red (� 40 000 sequences), between 200 and 500 in orange (� 90 000 sequences), 
between 500 and 1000 in yellow (� 30 000 sequences), between 1000 and 2 000 in blue (� 6 000 sequences) and greater than 
2 000 in green (� 1 000 sequences). The solid line represents y = x. Range have been chosen for readability and few dots with 
exact p-value smaller than 10-30 are hence missing.
Page 7 of 14
(page number not for citation purposes)



Algorithms for Molecular Biology 2006, 1:5 http://www.almob.org/content/1/1/5
This way, a pattern has a positive statistic if it is seen more
than expected, a negative statistic if seen less than
expected and, in both cases, the corresponding p-value is
given (in log scale) by the magnitude of the statistic.

The problem is: how to compute this statistic ?

4.2 DFA

We first need to construct a Deterministic Finite state
Automaton (DFA) able to count our pattern occurrences.
It is a finite oriented graph such as all vertexes have exactly
k arcs starting from them each one tagged with a different
letter of . One or more arcs are marked as counting
ones. By processing a sequence X in the DFA, we get a
sequence Y (of vertexes) in which the words of length 2
corresponding to the counting transitions occur each time
a pattern occurs in X.

Example: If we consider the pattern aba.a (. means "any
letter") on the binary alphabet  = {a, b}. We define ver-

tex set  = {a, b, ab, aba, abaa, abab} and then the struc-
ture of the DFA counting the overlapping occurrences (set
of vertexes and structure would have been slightly differ-
ent in the renewal case) of the pattern is given by

(the counting arcs are denoted by a star). In the sequence

of length n = 20, the pattern occurrences end in positions
9,11 and 18. Processing this sequence into the DFA gives

which is a sequence of the same length as X, where occur-
rences of the pattern end exactly in the same positions.

If X is an homogeneous order one Markov chain, so is Y
and its transition matrix is given by P + Q where P con-
tains the non counting transitions and Q the counting
ones:

and

It is therefore possible to work on Y rather than on X to
compute the pattern statistics. In order to do that, it is very
natural to use the large deviations (in this case, computa-
tions are closely related to the largest eigenvalue of the
matrix Tθ = P + Qeθ) but other methods can be used as well
(binomial or compound Poisson approximations for
example).

This method easily extends to cases where X is an order m
> 1 Markov chain by modifying accordingly our vertex set.
For example, if we consider an order m = 2 Markov model
our vertex set becomes

S
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Table 3: Kendall's tau (rank correlation) comparing the most 
significant exact p-values (the reference) to the Karlin's 
approximations. The column "all" gives the result for all 
sequences while the Ri give the results for a certain range of 
sequence lengths: smaller than 100 for R1, between 100 and 200 
for R2, between 200 and 500 for R3, between 500 and 1 000 for 
R4, between 1 000 and 2 000 for R5 and greater than 2 000 for 
R6.

number of p-values all R1 R2 R3 R4 R5 R6

10 0.30 0.64 0.24 -0.20 0.58 0.64 0.97
50 0.14 0.73 0.50 0.46 0.56 0.78 0.97
100 0.37 0.70 0.67 0.62 0.61 0.80 0.98

Table 2: Number of e-value smaller than a threshold are given for exact computations (exact) and asymptotic Karlin's approximations 
(Karlin). The last row gives the accuracy of asymptotic predictions (accuracy = Karlin/exact).

e-value 10-1 10-2 10-3 10-4 10-5 10-6

exact 9473 7772 6271 4563 3232 2348
Karlin 3417 2047 1056 439 195 96

accuracy 34% 26% 17% 10% 6% 4%
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 = {aa, ab, ba, bb, aba, abaa, abab}

In all cases, if we denote by L the cardinal of . In order
to count overlapping occurrences of a non degenerate pat-
tern of length h on a size k alphabet we get L = k + h - 2
when an order 1 Markov model is considered and L = km

+ h - m - 1 for an order m > 1 Markov model. For a degen-
erate pattern of length h, L is more difficult to know as it
depends on the degeneracy of the patterns, in the worst
case L = kh-1, but L should be far smaller in most cases.
One should note that L increases by the number of differ-
ent words present in the pattern if we consider renewal
occurrences instead of overlapping ones.

Although construction and properties of DFA are well
known in the theory of language and automata ([8]), their
connexions to pattern statistics have surprisingly not been
extensively studied in the literature. In particular, the
strong relation presented here between the FMCI tech-
nique for pattern and DFA appears to have never been
highlighted before. If this interesting subject obviously
need to (and will soon) be investigated more deeply, it is
not really the purpose of this article which focus more on
the algorithmic treatment of a built FMCI.

4.3 FMCI
Once a DFA and the corresponding matrices P and Q have
been built, it is easy to get a FMCI allowing to compute the
p-values we are looking for.

Let us consider

where Yj is the sequence of vertexes, Nj is the number of
pattern occurrences in the sequence Y1...Yj (or X = X1...Xj as
it is the same), where f is the final (absorbing state) and
where a ∈  is the observed number of occurrences Nobs if
the pattern is over-represented and Nobs + 1 if it is under-
represented.

The transition matrix of the Markov chain Z is then given
by:

where for all size L blocks i, j we have

with ΣQ, the column vector resulting from the sum of Q.

By plugin the structure of R and v in the corollaries 2 and
3 we get the following recurrences:

Proposition 6. For all n ≥ 1 and 1 ≤ i ≤ k we have

where for x = u or v we have ∀j ≥ 0 the following size L

block decomposition:  and we have

the recurrence relations:

with u0 = (1...1)' and v0 = v.

4.4 Algorithms
Using the proposition 6 it is possible to get an algorithm
computing our pattern statistic for an under-represented
pattern observed Nobs times:

algorithm 4under: exact statistics for under-represented
pattern

x0,...,  and y0,...,  are 2 × (Nobs + 1) real column

vectors of size L

initialization for j = 0...Nobs do xj = (1,...,1)'

main loop for i = 1...(n - 1) do

 • for j = 0...Nobs do yj = xj

 • x0 = P × y0

 • for j = 1...Nobs do xj = P × yj + Q × yj-1

end • 

 • return log10(q)

If we consider now an over-represented pattern we get
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algorithm 4over: exact statistics for over-represented
pattern

x1,..., , y1,...,  and z are 2Nobs + 1 real column

vectors of size L

initialization z = (0,...,0)', x1 = ΣQ and for j = 2...Nobs do xj
= (0,...,0)'

main loop for i = 1...(n - 2) do

 • for j = 1...Nobs do yj = xj

 • x1 = P × y1

 • for j = 2...Nobs do xj = P × yj + Q × yj-1

 • z = z + 

end • 

 • return -log10(p)

As we have O(k × L) non zero terms in P + Q, the complex-
ity of both of these algorithms is O(k × L + Nobs × L) in
memory and O(k × L × n × Nobs) in time.

To compute p-values out of floating point range (ex:
smaller than 10-300 with C double), it is necessary to use
log computations in the algorithms (not detailed here).
The resulting complexity stays the same but the empirical
running time is obviously slower. That is why we advise to
use log-computation only when it is necessary (for exam-
ple by considering first a rough approximation).

4.5 Asymptotic developments
In this part we propose to derive asymptotic develop-
ments for pattern p-values from their recursive expres-
sions. For under- (resp. over-) represented patterns, the
main result is given in theorem 9 (resp. 12). In both cases,
theses results are also presented in a simpler form (where
only main terms are taken into account) in the following
corollaries.

Proposition 7. For any x = (x(a-1),...,x0)' and all β ≥ 0 xβ =

Rβx is given by  = Pβ  and

Proof. As  =  for all j ≤ 0 it is trivial to get the

expression of . If we suppose now that the relation

(28) is true for some i and β then, thanks to the relation
(27) we have

and so the proposition is proved through the principle of
recurrence.  �

Lemma 8. For all i ≥ 0 and a ≤ b ∈  and r > 0 we define

If r ≠ 1 we have for all i ≥ 0 we have

and (case r = 1) for all i ≥ 0 we have

Proof. Easily derived from the following relation

Theorem 9. If P is primitive and admits a diagonal form
we denote by λ > ν the largest two eigenvalues magnitude
of P by P∞ = limi→+∞ Pi/λi (a positive matrix) and we get for
all α ≥ 1 and i ≥ 0

uniformly in β and where  is a polynomial of degree i

which is defined by  and for all i ≥ 1 by

the following recurrence relation:

Proof. See appendix B.  �

Corollary 10. With the same assumptions than in the the-
orem 9, for all α ≥ 1 and β ≥ (i+1)α we have
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Proof. Equation (37) and the lemma 8 gives

and the result is then proved by a simple recurrence.  �

Proposition 11. For any x = (x(a-1),...,x0)' and all β ≥ 0,

 is given by

 and

Proof. Using equation (28) we get

which gives the proposition.  �

From this result (very similar to proposition 7) it is possi-
ble to get a new theorem

Theorem 12. If P is primitive and admits a diagonal form
we denote by λ > ν the largest two eigenvalues magnitude
of P by P∞ = limi→+∞ Pi/λi (a positive matrix) and we get for
all α ≥ 1 and i ≥ 0

uniformly in β and where  is a constant term defined

by

and for all i ≥ 0 by the following recurrence relation

and  is a polynomial of degree i which is defined by

and for all i ≥ 1 by the following recurrence relation:

Proof. Easy to derive from the proof of theorem 9.  �

Corollary 13. We have the same assumptions than in the
the theorem 12, for all α ≥ 1 and β ≥ (i + 1)α we have

Proof. Easy to derive from the proof of corollary 10.  �

4.6 Numerical results
We propose here to consider numerical applications of
these new FMCI pattern statistics algorithms and to com-
pare their results and performance to exact computations
using Simple Recurrences ([17] and [18]) denoted SR
from now.

All computations are performed using SPatt-1.2.0 package
(see [14] or [15]) on a 2.7 Gz P4 with 512 Mo running the
linux 2.6.8 system.

As we can see on table 4, the computational time to obtain
the pattern statistics for all simple words of a given length
are quite similar with both approaches. One exception:
the Bernoulli case (m = 0) where SR are roughly 10 times
faster than FMCI computations. This is due to the fact that
the Bernoulli case uses simpler recurrences than the ones
used for the true Markovian cases (m ≥ 1). Similar simpli-
fications in the DFA structures can reduce the computa-
tional time of FMCI approach in the independent case but
they have not been implemented here (as their use is often
marginal).

If we consider now degenerate patterns instead of simple
words (see table 5), FMCI approach clearly outperforms
the SR one. Nevertheless, as considering degenerated pat-
terns roughly multiply their observed number of occur-
rences by the alphabet size for each inde-termination, the
corresponding computational time grows in the same
manner which usually limits the use of high degenerated
patterns in practical cases.
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Another interesting point is the memory requirements of
the two approaches. Exact computations using SR have a
O(n + α × k2m) memory complexity where n is the
sequence length, k the alphabet size, m the Markov model
order and α which depends on the convergence rate of the
model towards its stationary distribution. As a conse-
quence, SR is difficult to use in practice with m > 3 for
DNA words or m > 1 for protein ones. For FMCI compu-
tations, the memory requirements remain very cheap and
in practice, any Markov model that fit in memory can be
considered.

What about the reliability of the two methods. Once the
pattern DFA has been computed, the FMCI algorithms are
very simple to implement and have a high numerical sta-
bility. On the other hand, SR algorithms are quite more
complicated (especially for degenerated patterns) to
implement and require to approximate the iterate power
of the Markov transition by the stationary distribution for
large iterates. Classical convergence issues could result
then to some numerical instability when high Markov
orders are considered. As a consequence, FMCI results are
taken as references from this point.

In table 6 we can see that for p-values larger than 10-300 the
results given by both methods are exactly the same when
we consider order 0 Markov models. As smaller p-values
are not well managed by C double precision computation
(the exact limit depends on the system), we get wrong
results unless log computations are used. Such computa-
tions have been implemented for FMCI algorithms (they
are quite simple) but not for SR ones (where it is quite
more complicated) which explain the differences for pat-
terns at and tcgatc.

When we consider order m > 0 Markov models, the
numerical approximations done on the iterate power of
the transition matrix lead to some errors. For order 1
Markov model, these errors remain quite small, but when
order 2 model are considered it is more sensitive. In both
cases, the larger the statistic to compute is, the greater the
errors made are.

5 Conclusion
We proposed in this paper two general algorithms allow-
ing to compute quickly and in a stable numerical way any
p-value that can be imbedded in a finite Markov chain.
We used these algorithms in two applications: local score
on one sequence and pattern statistics.

For local score, the resulting algorithms reduce dramati-
cally the complexity of previously proposed naive ones
allowing for the very first time to produce exact computa-
tions for practical biological studies (Kyte-Doolittle
hydrophobic scale on the Swissprot database). Compar-
ing the results to the classical and very popular Karlin's
approximations, it appears that these approximations
require long sequences (length greater than 2 000) which
can dramatically reduce their range of applicability (only
0.5% of the data in our example). Of course, the exact
computations require more time than the approxima-
tions, but are nevertheless fast enough (20 p-value per sec-
ond in our example) to be used in most practicable cases.
As a consequence we strongly advise to replace asymptotic
approximations by these new exact ones whenever it is
possible.

Concerning pattern statistics, the new FMCI algorithms
appear to outperform the existing ones ([17]) in all possi-

Table 5: Computational time (in seconds) to get the statistics of degenerate patterns (the dot means "any letter") occurring 100 times 
in an order m = 1 Markovian sequence of length n = 9719 which parameters are estimated on the HIV complete genome sequence 
using either simple recurrences of finite Markov chain imbedding.

pattern atgca at.ca at..a a...a

SR 0.60 8.20 2438.43 105 209.12
FMCI 0.51 1.15 3.01 91.80

Table 4: Computational time (in seconds) to get the statistics of all DNA words of length h in the HIV complete genome sequence (n = 
9719) using either simple recurrences of finite Markov chain imbedding and in respect with an order m Markov model estimated on 
the genome.

Markov order word length m = 0 m = 1 m = 2
h = 3 h = 4 h = 5 h = 3 h = 4 h = 5 h = 3 h = 4 h = 5

SR 3 4 5 61 59 62 104 102 106
FMCI 39 45 52 39 44 52 96 102 113
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ble ways: far easier to implement, more numerical stabil-
ity, less memory requirements, as fast as SR for simple
words (except in the M0 case, but this is due to a poor
implementation of this particular case in FMCI approach)
and dramatically faster (up to 1 000 times and more) for
degenerated patterns. Even if the SR algorithms remain
available in the SPatt package, FMCI ones are now used by
default for exact computations.

Appendix A: power of a sub-stochastic matrix
Proposition 14. If P is an order L irreducible sub-stochas-
tic matrix admitting a row-eigenvector basis (e1,...,eL)
where each ej, is associated to the eigenvalue λj and |λ1| ≥
|λ2| ≥...≥ |λL| then we have

where λ = |λ1| = λ1, P∞ =  and ∀j

Proof. For any vector  we have

As P is an irreducible, Perron-Frobénius theorem (see [3]
for example) assure that λ is real and the sub-stochastic
property, that λ ≤ 1 (in the particular case where P is also
primitive i.e. ∃m, Pm > 0 then |λ2| <λ) Replacing x by I�
equation (51) gives the expression of the row � of Pi and
the proposition is then proved.  �

Corollary 15. If P is an order ≥ 2 irreducible sub-stochastic
matrix admitting a diagonal form then there exists a
matrix P∞ such as

Pi - λiP∞ = O(νi)  (52)

uniformly in i and where 1 ≥ λ ≥ ν are the two largest
eigenvalues magnitudes. In the special case where P is
primitive, then λ > ν and P∞ = limi→+∞ Pi/λi is a positive
matrix.

Proof. Using proposition 14 we get
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Table 7: 

tag\vertex a b ab aba abaa abab

a a a aba abaa a* aba*
b ab b b abab ab b

Table 6: Reliability of pattern statistics. They are computed in respect with an order m Markovian sequence of length n = 9719 which 
parameters are estimated on the HIV complete genome. Relative error uses FMCI statistics as reference.

pattern order observed expected FMCI SR relative error

acta 0 106 48.63 +12.208 +12.208 0.0
acta 1 106 47.01 +13.090 +13.079 8.7 × 10-4

acta 0 26 48.63 -3.567 -3.567 0.0
acta 1 26 47.01 -3.231 -3.230 4.8 × 10-4

acta 0 6 48.63 -13.856 -13.850 3.7 × 10-4

acta 1 6 47.01 -13.237 -13.237 3.0 × 10-5

at 0 50 759.48 -291.610 -291.610 0.0
at 0 25 759.48 -327.214 -318.192 2.8 × 10-2

at 0 0 759.48 -377.009 -319.607 1.5 × 10-1

tcgatc 0 185 1.37 +294.997 +294.997 0.0
tcgatc 0 195 1.37 +314.388 +314.388 5.7 × 10-8

tcgatc 0 205 1.37 +333.931 na na
acacaa 2 10 6.66 +0.865 +0.855 1.1 × 10-2

acacaa 2 20 6.66 +4.669 +4.520 3.2 × 10-2

acacaa 2 60 6.66 +35.751 +33.532 6.2 × 10-2

acacaa 2 100 6.66 +79.736 +73.451 7.8 × 10-2
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and the corollary is proved.  �

Appendix B: proof of theorem 9
Using propositions 7 and 14 we get the result for i = 0. Let
us prove the theorem by the principle of recurrence. We
assume now that the result is true until rank i - 1. Comput-

ing  for all β ≥ (i + 1)α we get

For all 1 ≤ j ≤ iα we have β - j ≥ β - iα ≥ α so we get

For all iα + 1 ≤ j ≤ β - α we have j - 1 ≥ iα and β - j ≥ β - iα
≥ α and so, with the help of lemma 8 we get

thanks to the recurrence assumption, it is easy to see than
B contribute with polynomial terms of degree i (as we
have a sum on O(β) terms).

For all β - α + 1 ≤ j ≤ β we have j - 1 ≥ iα so we get

C contributing with polynomial terms of degree i - 1 (as
we have a sum on α terms) Summing up all terms we get
the result at rank i and the theorem is proved.
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