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Abstract
Background: Feature selection plays an undeniably important role in classification problems
involving high dimensional datasets such as microarray datasets. For filter-based feature selection,
two well-known criteria used in forming predictor sets are relevance and redundancy. However,
there is a third criterion which is at least as important as the other two in affecting the efficacy of
the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which
varies the emphases on relevance and redundancy depending on the value of the DDP. Previous
empirical works on publicly available microarray datasets have confirmed the effectiveness of the
DDP in molecular classification. We now propose to establish the fundamental strengths and
merits of the DDP-based feature selection technique. This is to be done through a simulation study
which involves vigorous analyses of the characteristics of predictor sets found using different values
of the DDP from toy datasets designed to mimic real-life microarray datasets.

Results: A simulation study employing analytical measures such as the distance between classes
before and after transformation using principal component analysis is implemented on toy datasets.
From these analyses, the necessity of adjusting the differential prioritization based on the dataset
of interest is established. This conclusion is supported by comparisons against both simplistic rank-
based selection and state-of-the-art equal-priorities scoring methods, which demonstrates the
superiority of the DDP-based feature selection technique. Reapplying similar analyses to real-life
multiclass microarray datasets provides further confirmation of our findings and of the significance
of the DDP for practical applications.

Conclusion: The findings have been achieved based on analytical evaluations, not empirical
evaluation involving classifiers, thus providing further basis for the usefulness of the DDP and
validating the need for unequal priorities on relevance and redundancy during feature selection for
microarray datasets, especially highly multiclass datasets.

Background
The aim of feature selection is to form, from all available
features in a dataset, a relatively small subset of features
capable of producing the optimal classification accuracy.

This subset is called the predictor set. A feature selection
technique is made of two components: the predictor set
scoring method (which evaluates the goodness of a candi-
date predictor set); and the search method (which
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searches the gene subset space for the predictor set based
on the scoring method). The technique becomes wrapper-
based when classifiers are invoked in the predictor set
scoring method. Otherwise, the technique is filter-based,
which is the focus of this study.

An important principle behind most filter-based feature
selection studies can be summarized by the following
statement: A good predictor set should contain features
highly correlated to the target class concept, and yet
uncorrelated with each other [1]. The predictor set
attribute referred to in the first part of this statement, 'rel-
evance', is the backbone of rank-based feature selection
techniques. The aspect alluded to in the second part,
'redundancy', refers to pairwise relationships between all
pairs of features in the predictor set. The relevance of a
predictor set tells us how well the predictor set is able to
distinguish among different classes. The redundancy in a
predictor set indicates the amount of similarity among the
members of the predictor set, or rather, the amount of rep-
etitions in terms of the information conveyed by the
members of the predictor set.

Previous studies [1,2] have based their feature selection
techniques on the concept of relevance and redundancy
having equal importance in the formation of a good pre-
dictor set. We call the predictor set scoring methods used
in such correlation-based feature selection techniques
equal-priorities scoring methods. On the other hand, it is
demonstrated in [3] using a 2-class problem that seem-
ingly redundant features may improve the discriminant
power of the predictor set instead, although it remains to
be seen how this scales up to multiclass domains with
thousands of features. A study was implemented on the
effect of varying the importance of minimizing redun-
dancy in predictor set evaluation in [4]. However, due to
its use of a relevance score that is inapplicable to multi-
class problems, the study was limited to only binary clas-
sification.

Currently, when it comes to the use of filter-based feature
selection for multiclass molecular classification, three
popular recommendations are: 1) no selection [5,6]; 2)
select based on relevance alone [5,7]; and finally, 3) select
based on relevance and redundancy [2,8]. Thus, so far, rel-
evance and redundancy are the two existing criteria which
have ever been used in predictor set scoring methods for
multiclass molecular classification.

To these two criteria we introduce one modification and a
new criterion in our previous study [9]:

• Antiredundancy, which is a parameter opposite to
redundancy in terms of quality and thus is to be maxi-
mized along with relevance. Accordingly, instead of max-

imizing relevance and minimizing redundancy, we now
maximize both relevance and antiredundancy.

• Aside from relevance and antiredundancy/redundancy,
there is a third criterion in feature selection which is nec-
essary for the formation of the predictor set. The third cri-
terion is the degree of differential prioritization (DDP),
which represents the relative importance placed between
relevance and antiredundancy.

DDP compels the search method to prioritize the optimi-
zation of one of the two criteria (of relevance or antire-
dundancy) at the cost of the optimization of the other. In
other words, DDP controls the balance between the two
requirements in feature selection (maximizing relevance
and maximizing antiredundancy). Therefore, unlike other
existing correlation-based techniques, the novelty of the
DDP-based feature selection technique is that it does not
take for granted that the optimizations of both elements
of relevance and antiredundancy are to have equal priori-
ties in the search for the predictor set [10,11].

DDP is represented by a variable α which can take any
value from 0 to 1. Decreasing the value of α forces the
search method to put more priority on maximizing antire-
dundancy at the cost of maximizing relevance. Raising the
value of α increases the emphasis on maximizing rele-
vance (and at the same time decreases the emphasis on
maximizing antiredundancy) during the search for the
predictor set [10,11].

A predictor set found using a larger value of α contains
more features with strong relevance to the target class con-
cept, but also more redundancy among these features.
Conversely, a predictor set obtained using a smaller value
of α contains less redundancy among its member features,
but at the same time also has fewer features with strong
relevance to the target class concept. At α = 0.5, we get an
equal-priorities scoring method. At α = 1, the feature
selection technique becomes rank-based. Thus, the beauty
of the DDP concept is that it subsumes the two existing
concepts in feature selection which are represented by
equal-priorities scoring methods and rank-based tech-
niques.

A large body of our work has provided empirical support
regarding the efficacy of the DDP concept in feature selec-
tion [9-12], including comparisons to other feature selec-
tion techniques on highly multiclass microarray datasets
in [11]. However, we have yet to establish the fundamen-
tal strengths and merits of the DDP-based feature selec-
tion technique. This is precisely the aim of this paper,
which is to be realized through a simulation study involv-
ing vigorous analyses of predictor sets found using the
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DDP-based feature selection technique and simple but
illustrative examples using toy datasets.

To generate toy datasets for this purpose, we employ two
models which are well-known and recognized not only in
the domains of molecular classification and microarray
analysis but also conventional data mining [12]. Later in
this paper, we also show how close conditions in real-life
multiclass microarray datasets resemble those of our toy
datasets. Additional advantages of toy datasets include the
unlimited number of datasets we can generate (vs. the
limited number of available real-life microarray datasets
[12]); the control we are able to exercise over dataset char-
acteristics such as the number of classes and features; and
prior knowledge of the members of the ideal predictor set,
which provides the ultimate means for measuring the effi-
cacy of the feature selection technique without involving
the inductions of actual classifiers.

The organization of the paper is as follows: Beginning
with descriptions of the models used to produce the toy
datasets: the OVA (one-vs.-all) and PW (pairwise) models,
we proceed to analyze the characteristics of the predictor
sets obtained from each of the toy datasets and then sum-
marize the properties of the predictor sets which are
dependent on the associated DDP values. After reapplying
the same set of analyses to eight real-life multiclass micro-
array datasets, we demonstrate how the DDP works for
datasets with different number of classes. We then follow
with further discussion of the results and present the con-
clusions of the study. Finally, in the Methods section, we
describe the DDP-based feature selection technique and
the real-life datasets used in this study.

Results
Toy datasets
The aim of toy datasets is to provide simple but clear and
demonstrative examples on the importance of the correct
choice of the value of the DDP in forming the best predic-
tor set. Furthermore, another advantage of toy datasets is
the fact that we know exactly just how large a predictor set
should be for each case, facilitating the task of determin-
ing the value of the maximum size of the predictor set, P.

It is widely accepted that over-expression or under-expres-
sion (suppression) of genes causes the difference in phe-
notype among samples of different classes. The
categorization of gene expression is given as follows.

• A gene is over-expressed: if its expression value is above
baseline.

• A gene is under-expressed: if its expression value is
below baseline.

• Baseline interval: the normal range of expression value.

As one of the data processing steps recommended in [13],
logarithmic transformation are applied on microarray
datasets: base 10 log for data derived from oligonucle-
otide (Affymetrix) platform and base 2 log for data
derived from cDNA (two-color) platform. Later, another
of the data processing steps, normalization, is conducted.
Normalization involves the standardization of the gene
expression data by mean-centering so that the samples
have mean 0 across genes [13]. The purpose of normaliza-
tion is to prevent the expression levels in one particular
sample from dominating the average expression levels
across samples [14]. (This normalization is not to be con-
fused with dye normalization, which is performed in an
earlier stage of data processing.)

Since the result of normalization is that the mean expres-
sion across all genes in a sample is 0, the 'average' genes in
a sample have expression values of or close to 0. As the
'average' genes are associated with the baseline or the nor-
mal range of expression, the value 0 denotes the center of
the baseline interval. Over-expression is represented by
positive values and under-expression by negative values.
With this categorization, we next employ two well-known
paradigms leading to the OVA and PW models, which are
then used to generate two different sets of toy datasets.

One-vs.-all (OVA) model
The crux of the OVA concept has gained wide, albeit tacit,
acceptance among researchers involved in gene expres-
sion analysis. The fact that particular genes are only over-
expressed in tissues of a certain type of cancer, and not any
other types of cancer or normal tissues [6], is part of the
domain knowledge. Hence the term 'marker' – for genes
that mark the particular cancer associated with them. In
the OVA model, certain groups of genes, also called the
'marker genes' are only over-expressed (or under-
expressed) in samples belonging to a particular class and
never in samples of other classes. This model emphasizes
that a group of marker genes is specific to one class. There-
fore for a K-class dataset, there are K different groups of
marker genes.

Let us denote as G the number of genes in each group of
marker genes, Xmax and Xmin the maximum and minimum
limits, respectively, to the absolute value of the class
means for the whole dataset. Thus, for the g-th gene in a
group of marker genes, the maximum limit to the abso-
lute value of the class means is defined as:

xmax,g = Xmax - (ΔX)(g - 1) (1)

where g = 1, 2, ..., G, and
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For the g-th gene in a group of marker genes, the difference
between the class means of subsequent classes is defined
in the following manner:

The purpose of equations (1), (2), and (3) is to produce
the following effect: We would like to vary the class means
such that there is an imbalance or inequality in terms of
class means among the K classes. The reasons are firstly to
mimic a condition prevalent in multiclass microarray
datasets (imbalance among classes in terms of class means
even after normalization), especially in datasets with large
number of classes; and secondly, to present a challenge to
the feature selection technique in choosing sufficiently
relevant but non-redundant genes. We will provide fur-
ther elucidation on the second reason later in this section.

Another purpose of the equations is to generate genes
with varying relevance in each group of marker genes.
Based on equations (1), (2), and (3), the first gene in a
group of marker genes (the gene associated with g = 1) has
the strongest relevance among the members of that group
of marker genes. Accordingly, the gene with the weakest
relevance is the last gene in a group of marker genes (the
gene associated with g = G). The reason for doing this is
also to present a challenge to the feature selection tech-
nique in choosing sufficiently relevant but non-redundant
genes.

Next, initialize a matrix M: = (μi, k)N × K of zeros where N is
the total number of genes in the dataset, and, in this case,
is the product of G and K. This is the matrix of class means,

whose element, μi,k, represents the mean of gene i across
samples belonging to class k (k = 1, 2, ..., K):

μ(g - 1)K + k, k = (-1g)[xmax, g - (Δxg)(k - 1)] (4)

The [(g - 1)K + k]-th gene is the g-th member of the k-th
group of marker genes and therefore has non-zero class
mean for class k and zero class means for all other classes
– the archetypal OVA trait. The term (-1g) serves to change
the sign of the class mean at different values of g so as to
produce both over- and under-expressed marker genes.

Standard deviation among samples of the same class, or
class standard deviation, is set to 1 for all instances, σi,k =
1 for all k and i. For all k, a total of m samples are gener-
ated for class k using Gaussian distribution of mean μi,k
and standard deviation σi,k for gene i.

In Table 1, an entry on the i-th row and k-th column rep-
resents the class mean of class k for gene i, where i = [(g -
1)K + k], and therefore gene i is the g-th member of the k-
th group of marker genes. We can see that using relevance
alone as a criterion, and with uniform class size, marker
genes associated with class 1 and 4 will always be favored
more than marker genes specific to any other classes,
regardless of the value of g. Including antiredundancy as
the second criterion will obviate this imbalanced predilec-
tion – therein lies the reason for us to use unequal values
for class means among different classes. But how much
weight is to be assigned to relevance, and how much to
antiredundancy?

The ostensible answer would be equal weights, which is
the foundation of existing equal-priorities scoring meth-
ods. But as mentioned previously in the Background sec-
tion, it has been implied that antiredundancy is not as
important as relevance for the 2-class problem [3] – this is
obvious in case of our OVA toy dataset; any subset of suf-

ΔX
X X

G
=

−
−

max min

1
(2)

Δx
x

Kg
g=

−
2

1
max, (3)

Table 1: A 4-class example from the OVA model. μi, k represents the mean of gene i across samples belonging to class k.

g k μi,k μi,1 μi,2 μi,3 μi,4

1 1 μ1,k -Xmax 0 0 0
1 2 μ2,k 0 -0.5 Xmax 0 0
1 3 μ3,k 0 0 0.5 Xmax 0
1 4 μ4,k 0 0 0 Xmax
2 1 μ5,k Xmax-ΔX 0 0 0
2 2 μ6,k 0 0.5(Xmax-ΔX) 0 0
2 3 μ7,k 0 0 0.5(ΔX - Xmax) 0
2 4 μ8,k 0 0 0 ΔX - Xmax
� � � � � � �
G 1 μ(G - 1)K+1,k (-1G)Xmin 0 0 0
G 2 μ(G - 1)K+2,k 0 0.5(-1G) Xmin 0 0
G 3 μ(G - 1)K+3,k 0 0 -0.5(-1G) Xmin 0
G 4 μ(G - 1)K+4,k 0 0 0 -(-1G) Xmin
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ficiently relevant genes is capable of differentiating
between the two classes. Hence we ask the questions
which motivate the concept of the DDP: If at K = 2, antire-
dundancy is not as important as relevance, will this
change as the number of classes increases (an important
theme in multiclass classification studies)? As K increases,
might not the importance of antiredundancy (w.r.t. rele-
vance) increase as well? If yes, is there a point where
antiredundancy eventually overcomes relevance in terms
of importance as a criterion in feature selection? These
questions are to be answered from the analyses in this
study.

Pairwise (PW) model

In the PW model, for a given pair of classes, a group of
marker genes only distinguishes samples from one class of
the pair of classes against samples from the other class of
the pair of classes. As implied by its name, this model rep-
resents the 1-vs.-1 paradigm as opposed to the 1-vs.-others

of the OVA model. For a K-class dataset, there are 

different groups of marker genes in the PW model.

 is the number of unique pairs of classes

in a K-class dataset; it is also known as KC2.

As is the case in the OVA model, we denote as G the
number of genes in each group of marker genes, Xmax and
Xmin the maximum and minimum limits, respectively, to
the absolute value of the class means for the whole data-
set. The definitions of xmax,g, ΔX, and Δxg are the same as
for the OVA model.

Initialize a matrix M: = (μi,k)N × K of zeros where N is the

total number of genes in the dataset, and, in this case, is

the product of G and . Again this is the matrix of

class means, whose element, μi,k, represents the mean of

gene i across samples belonging to class k. Now let us
define the q-th pair of classes as Cq = {c1,q,c2,q} where q =

1, 2,..., , c1,q ∈ [1, K], c2,q ∈ [1, K], and c1,q ≠ c2,q. For

the q-th pair of classes, the class means are computed as
follows:

for b = 1 and b = 2. For the PW model, the

-th gene is the g-th member of the q-th

group of marker genes and therefore has non-zero class
means for classes c1,q and c2,q, and zero class means for all

other classes – which is the typical PW characteristic.

The procedure for the generation of datasets is similar to
that of the OVA model.

Experiment settings
In this study, for both models, Xmax and Xmin are set to 100
and 1 respectively, while the number of samples per class,
or class size, m, is set to 100 uniformly for all classes.

Ten values of α are tested from 0.1 to 1 with equal inter-
vals of 0.1, α denoting the value of the DDP. For both
models, the number of genes in each group of marker
genes, G, is set to 3, 5, 10, 20, and 30. We test for K = 2 to
K = 30, K denoting the number of classes in a dataset.
Since no inductions of classifiers are to be implemented in
this study, whole datasets are used as training sets during
feature selection.

For toy datasets generated from the OVA model, the min-
imum predictor set size necessary to differentiate among
the K classes is K - 1. The optimal predictor set is actually
any subset of K - 1 genes from the first K of the marker
genes (i.e., at g = 1) generated using the class means
defined in equation (4).

In case of toy datasets based on the PW model, the opti-
mal predictor set is any subset S of K - 2 genes from the

first  of the marker genes generated using the class

means defined in equation (5) at g = 1 which also fulfills
the following condition:

where |S| = K - 2, ,

, and Cqi represents the qi-th pair of

classes as defined previously in the subsection on the PW
model. In other words, the optimal predictor set contains
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representatives from enough groups of marker genes such
that all K classes are represented in pairs of classes associ-
ated to those groups of marker genes.

Therefore for datasets generated from the OVA model, P is
set to K - 1 and for those from the PW model, P is set to K
- 2.

Separation of classes
A natural way to measure separation of classes is the dis-
tance between pairs of class centers. We use two popular
metrics, the Euclidean and the Manhattan (or taxicab) dis-
tances. At the end of the "One-vs.-all (OVA) model" sub-
section under the Results section, we discuss a preceding
study on feature selection [3] which inspired the DDP
concept. The authors of that study employ a form of sep-
aration of classes to demonstrate that a redundant feature
may enhance the predictor set's ability to distinguish
between two classes in a 2-class problem (thus implying
that antiredundancy is not as important as relevance for
the 2-class problem). This form of separation of classes
corresponds to the Manhattan distance used in our study.

In a 2-class problem, the authors of [3] first present two
features from a toy dataset which are both relevant but
redundant w.r.t each other, contained in a predictor set
distinguishing between the two classes. Then, after a 45°
rotation of those two features, the authors of that study
show that the Manhattan distance between the class cent-

ers along one axis is now greater by a factor of  than
the corresponding Manhattan distance in the original
plane – thus increasing the separation of classes. For a pre-
dictor set with two members, the aforementioned 45°
rotation is akin to the transformation by principal compo-
nent analysis, which we will implement later in this study.

We observe that the Euclidean distance remains the same
before and after the transformation in that study. There-
fore we have included the Euclidean distance as another
form of separation of classes to study, if any, the differ-
ences between the two distances in the context of the
DDP. Moreover, the Euclidean distance is as popularly
used as the Manhattan distance in the field of intelligent
data analysis.

For the q-th pair of classes, Cq = {c1,q, c2,q} (where in a K-

class problem q = 1, 2,..., , c1,q ∈ [1, K], c2,q ∈ [1, K],

and c1,q ≠ c2,q), the separation between classes given by the

predictor set found through a DDP value of α, Sα, meas-

ured using the Euclidean metric is given below:

 is the average of the expression of gene i across sam-

ples belonging to class k. Averaging across all  pairs

of classes, we obtain the mean Euclidean distance
between a pair of classes as measured by Sα:

where θ denotes . Hence, the value of the DDP lead-

ing to the best separation of classes in terms of the Eucli-

dean metric is the one which gives the largest :

The Manhattan distance between the q-th pair of classes as
measured by Sα is computed as follows:

Averaging across all  pairs of classes, the mean Man-

hattan distance between a pair of classes is given below:

where θ denotes . The value of the DDP which pro-

duces the largest  is the one which provides the best

separation of classes in terms of the Manhattan distance:
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adjacent to each other, taking the mean will still provide a
good picture of how the DDP affects separation of classes.

Figure 1 shows that the number of classes, K, influences

the value of , regardless of the value set to G. Larger G

tends to produce a more distinct  - K plot. As K

increases beyond 20,  settles to a smaller value (around

0.2) for OVA toy datasets than for PW toy datasets
(around 0.3). This is due to the difference in the rate of
decline, which is greater for OVA toy datasets than for PW
toy datasets. Regardless of the model type or the value the
model parameter, G, is set to, the number of classes in the
dataset undoubtedly affects the value of the DDP which
produces the best separation of classes in terms of the
Euclidean distance.

Conversely, we find this to be untrue in terms of the Man-
hattan distance (Figure 2). Regardless of the number of

classes, K, the value of  remains around the range

[0.8,1], near the DDP value for rank-based selection. (See
the Background section for details on the significance of
the values of the DDP.)

Principal component analysis (PCA)
PCA linearly transforms the data such that the greatest
amount of variance among samples comes to lie along the
axis representing the first principal component (PC). Sim-
ilarly, the second PC contains the second largest variance
among samples, and so on. An important property of the
PCs is that a PC is always orthogonal to the adjacent PC.

In addition to analyzing the predictor sets in the original
projection, we investigate the characteristics of the predic-
tor sets after transformation by PCA. In the original form,
the data are characterized along axes representing mem-
bers of the predictor set (original feature space). After
transformation by PCA, data are characterized along axes
representing the PCs derived from the members of the
predictor set (PCA-transformed space or PC space).

The input data matrix is never mean-centered throughout
the transformation procedures – this is to enable compar-
isons in terms of distance metrics between data in original
feature space and data in PC space later in this study. (For
instance, in this manner, the Euclidean distance remains
constant in both original feature space and PC space.) The
sole effect of not mean-centering the dataset is that the
first PC will span the variance characterized by the overall
distance of the dataset from the origin [15]. In case of our
models (OVA and PW), marker genes contain non-zero
class mean for each of the classes (OVA model) or non-

zero class means for each of the pairs of classes (PW
model) that they mark, and zero class means for all other
classes. Thus for both models, even without mean-center-
ing, the variance contained by the first PC will still be var-
iance among classes, because for both models, the
distance of a data point (a sample) from the origin as
measured by each gene is actually characterized by the
class of that data point.

The main use of PCA in this case is to rotate the data from
the original sets of axes (represented by the members of
the predictor set) so that the data are now projected along
new sets of axes (represented by the PCs) which are
orthogonal and hence minimally correlated to each other.
In this study, PCA is conducted only on the members of
the predictor set, not on the whole dataset. The reason we
apply PCA in this manner is to expand on the finding in
[3] which we discuss in the beginning of the "Separation
of classes" subsection. Therefore, each of the PCs in this
study contains information only from the predictor set,
and never from any gene which is not a member of the
predictor set.

Antiredundancy of PCA-transformed predictor sets

Let us denote the antiredundancy of predictor set Sα after

transformation by PCA as . The value of the DDP giv-

ing the largest antiredundancy in PC space is defined as
follows:

For untransformed predictor sets, the value of the DDP

satisfying the expression  is naturally 0. However, this

is not so for PCA-transformed predictor sets. In Figure 3,

we observe that K has a similar effect on  as it has on

. As K increases, the value of the DDP needed to pro-

duce a predictor set with the highest  decreases in an

exponential-like manner. Also, similar to the case of ,

larger values of G generate better-defined  - K curves.

Model type (OVA or PW) does not affect the shape of the

 - K plot as much as it does the shape of the  - K

plot. The converging value of  is around 0.2 for both

models.

Separation of classes in PCA-transformed predictor sets

The Euclidean distance remains the same whether the pre-
dictor sets have been transformed by PCA or not; hence
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Plots of  vs. KFigure 1

Plots of  vs. K. The DDP producing the optimal separation of classes as measured using the Euclidean distance, , as a 

function of K for toy datasets generated from (a) the OVA model and (b) the PW model. Each of the five panels in (a) and (b) 
represents a plot from toy datasets generated using a different value of G (a parameter which denotes the number of genes in 
each group of marker genes and is set during the generation of the toy datasets).
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Plots of  vs. KFigure 2

Plots of  vs. K. The DDP producing the optimal separation of classes as measured using the Manhattan distance, , as 

a function of K for toy datasets generated from (a) the OVA model and (b) the PW model. Each of the five panels in (a) and (b) 
represents a plot from toy datasets generated using a different value of G (a parameter which denotes the number of genes in 
each group of marker genes and is set during the generation of the toy datasets).
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Plots of  vs. KFigure 3

Plots of  vs. K. The DDP producing the optimal antiredundancy as measured in PC space, , as a function of K for toy 

datasets generated from (a) the OVA model and (b) the PW model. Each of the five panels in (a) and (b) represents a plot from 
toy datasets generated using a different value of G (a parameter which denotes the number of genes in each group of marker 
genes and is set during the generation of the toy datasets).
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we do not repeat the analysis described in the previous
subsection (on separation of classes) for PCA-transformed
predictor sets. The Manhattan distance, however, is
affected by the transformation. The procedures involved
in computing the DDP value leading to the best separa-
tion of classes are the same as in case of the untrans-
formed predictor sets described in the previous subsection
(on separation of classes). To distinguish between the
DDP value associated with untransformed predictor sets
and the DDP value associated with PCA-transformed pre-

dictor sets, we will denote the latter as . Similarly,

separation of classes in PC space in terms of the Manhat-
tan distance as measured by a predictor set found using

the DDP value of α, Sα, is denoted as .

Although we have seen from Figure 2 that K has no effect

on , Figure 4 clearly demonstrates that the increase of

K produces an exponential-like decrease in . The

plots in Figure 4 are generally more clear-cut for toy data-
sets based on the OVA model than those based on the PW
model, especially when G is greater than 5. As in the case

of , the decline rate is greater for toy datasets generated

from the OVA model than those from the PW model. The

converging value of  as K increases beyond 20 is 0.1

for all G in case of the OVA model. In case of the PW
model it lies between 0.1 and 0.2 for G = 3, 5, 10 and
between 0.2 and 0.3 for G = 20, 30.

Indeed, the observation regarding  provides the link

between the study in [3] and the DDP concept. In almost
all cases, a predictor set which is obtained using the DDP

value of  shows enhanced separation of classes in PC

space compared to separation of classes in the original fea-
ture space (measured using the Manhattan distance) – a
finding which is reflected in that study described earlier in
the beginning of the "Separation of classes" subsection.
Therefore at the optimal value of the DDP, separation of
classes as measured using the Manhattan distance in PC
space is maximized because of this enhancement.

Summary of analyses
We have found that as K increases, three parameters
decrease in an exponential-like manner:

• the value of the DDP producing the best separation of
classes in terms of the Euclidean distance;

• the value of the DDP producing the highest antiredun-
dancy in PC space; and

• the value of the DDP producing the best separation of
classes in terms of the Manhattan distance in PC space.

We have shown that regardless of the model type (OVA or
PW) or the value set to the model parameter, G (3, 5, 10,
20, or 30), each of these three characteristics can be opti-
mized by choosing the right value of the DDP, and that
this value, in turn, is determined by the number of classes
in the dataset.

Investigating the imbalance of class means in real-life 
datasets

Before reapplying the analyses to real-life datasets, we
investigate how close conditions in real-life datasets
match those of toy datasets. We have mentioned in the
section on the generation of toy datasets that imbalance in
terms of class means among classes is prevalent in highly
multiclass microarray datasets. Investigation is conducted
on whole datasets (no splitting) in this case. For class k, we
choose the class mean with the greatest absolute value

(equivalent to the absolute value of μ(g - 1)K+k,k from equa-

tion (4) or  from equation (5) at g = 1)

among all N class means:

Next, to illustrate the imbalance among classes in terms of
class means, we compute the range of class means:

The results are shown in Table 2. We observe that for data-
sets with large K (such as BRN, GCM, and NCI60) the

range R( ) is greater than in case of datasets with

smaller K. Looking at the maximum and minimum values

of  across k in Table 2, we can say with certainty that

there is an imbalance among classes in terms of class
means especially in datasets containing more than 6
classes. We expect this imbalance to either increase or at
least remain unchanged as K increases beyond 14 (which
is the largest number of classes to be found among real-
life datasets). Therefore the implementation of unequal
maximum limits to the absolute value of the class means
for different classes in equations (4) and (5) is justified,
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Plots of  vs. KFigure 4

Plots of  vs. K. The DDP producing the optimal separation of classes as measured using the Manhattan distance in PC 

space, , as a function of K for toy datasets generated from (a) the OVA model and (b) the PW model. Each of the five pan-

els in (a) and (b) represents a plot from toy datasets generated using a different value of G (a parameter which denotes the 
number of genes in each group of marker genes and is set during the generation of the toy datasets).
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particularly in analyses involving K as high as 30 for toy
datasets, as is the case in this study.

Reapplying the analyses on real-life datasets

For real-life datasets, the analyses are implemented sepa-
rately upon the training set of each split, there being a
total of 10 splits of training and test sets. The mean across
all splits is taken for the characteristics measured in the

analyses: , , and , and then used to find

the corresponding value of the DDP which optimizes each
of the aforementioned characteristics.

We will assume that the optimal P for each real-life dataset
is also directly proportional to K (as is the case for toy
datasets). However, allowing for remnant noise (left even
after data preprocessing), we assign larger values to P for
real-life datasets (30K) than for toy datasets with similar
K. Furthermore, we conduct two versions of the analyses
involving PCA-transformed predictor sets:

• in the first version, only the top three PCs are used

• in the second version, all PCs are used, as is the case for
toy datasets.

The reason for this is given as follows: The large percent-
age of the total variance among samples which is repre-
sented by the top PCs is 'relevant' variance (i.e., variance
which is due to the difference among classes and thus is
relevant w.r.t. the target class concept). On the other hand,
the last PCs contain the remainder (small) percentage of
the total variance, which is most likely caused by noise or
variance within class (i.e., 'non-relevant' variance as
opposed to the first type of variance since variance within
class is not relevant w.r.t. the target class concept). Vari-
ance within class in real-life datasets, unlike variance
within class in toy datasets (which is fixed at 1 in this
study), differs from class to class even within the same
dataset, and is likely to be larger than 1. This is the reason
for the first version of the analysis.

Figure 5 shows that for majority of real-life datasets, the
trend regarding the aforementioned three characteristics is
similar to the trend for toy datasets (Figures 1, 3, and 4),
as indicated by the accompanying gray trend-lines. There

are several divergences. In the  - K plot, one dataset

(NCI60) produces a point (  = 1 at K = 8) which

diverges from the  - K plots observed in toy datasets

(Figure 1). Two datasets, BRN and NCI60, give 'outlier'

points for the  - K plots. In the  - K plot, two data-

sets, SRBC and MLL, produce points which deviate from
the rest. The probable causes of these discrepancies are
presented in the Discussion section.

In Figure 6, we repeat the analysis involving PCA using all
PCs instead of merely the top three PCs. This applies only

to the  - K and  - K plots, since the computation

of  does not involve PCA. We find that the  - K

plot for real-life datasets obtained by using all PCs still

resembles the  - K plots from toy datasets (Figure 4).

Conversely, the  - K plot for real-life datasets obtained

by using all PCs shows no resemblance whatsoever to the

 - K plots from toy datasets (Figure 3). We deduce that

 is more sensitive to the addition of the within-class

variance and noise introduced by the inclusion of the rest
of the PCs (i.e., the fourth and the subsequent PCs) than

 is.

Discussion
In this section, we demonstrate how the DDP works for
datasets with different number of classes. Then we discuss

the reasons for the difference between the behaviors of 
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Table 2: Range of class means in real-life datasets.

Dataset R( )

BRN 11.57 3.93 7.65
GCM 73.00 7.77 65.23
NCI60 7.64 4.20 3.44
PDL 2.77 2.67 0.10
Lung 9.62 8.39 1.23
SRBC 2.27 1.59 0.68
MLL 4.35 4.08 0.27
AML/ALL 7.14 6.76 0.38

max ,
k

kx0( ) min ,
k

kx0( ) x k0,
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and  as K increases and the causes of the discrepancies

between the plots for toy datasets and real-life datasets.

A look at how the DDP concept works

A few examples from OVA-based toy datasets generated at
G = 30 are used to demonstrate how the DDP concept
works for different number of classes. Figures 7, 8, 9, 10
show predictor sets obtained using several values of the

DDP: , 0.5 (equal-priorities scoring method), and 1

(rank-based selection) for datasets with K = 4, 6, 10, and
14 classes respectively. (See the Background section for
details on the significance of the values of the DDP.) The
intensity of the grayscale shading in a rectangular patch
located on the i-th row and the k-th column indicates the

value of the mean of the i-th member of the predictor set
across samples belonging to class k.

For the 4-class toy dataset, the values of the DDP which
maximize separation of classes in terms of the Euclidean
distance are 0.7, 0.8, 0.9, and 1; we can observe from Fig-
ure 7 that the predictor set produced from these DDP val-
ues do not contain non-relevant genes (genes which are
generated at large values of g and hence barely differenti-
ate among the K classes). On the other hand, predictor
sets obtained using the DDP values of 0.5 and smaller do
comprise such non-relevant genes.

Figure 8 shows that for the 6-class toy dataset, only predic-

tor sets obtained at the DDP values of  (0.5, 0.6, or 0.7)

are able to differentiate samples among the maximum

αM
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αE
∗

αE
∗

Analyses on real-life microarray datasets (with all PCs)Figure 6
Analyses on real-life microarray datasets (with all PCs). Values of the DDP which optimize various predictor set char-

acteristics, (a) , and (b)  (both with all PCs used), each as a function of K for real-life microarray datasets.αU
∗ αMP

∗

Analyses on real-life microarray datasetsFigure 5
Analyses on real-life microarray datasets. Values of the DDP which optimize various predictor set characteristics, (a) 

, (b)  (only the top three PCs used), and (c)  (only the top three PCs used), each as a function of K for real-life 

microarray datasets.
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number of classes (3 classes: class 1, class 5, and class 6).

Predictor sets obtained at α = 1 and DDP values less than

0.5 (e.g., α = 0.2) merely manage to distinguish samples
between 2 classes at most (class 1 and class 6). The predic-

tor set obtained at α = 1 contains redundant marker genes
from both the first and sixth groups of marker genes. The

predictor set obtained at α = 0.2 contains no such redun-
dancy but has non-relevant genes among its members.

Note that at smaller values of K,  tends to have multi-

ple values; this is because more than one value of α satis-

fies the requirement  for datasets where K < 9.

For the 10-class toy dataset, the predictor set obtained at

 = 0.4 contains representatives from the largest number

of groups of marker genes, 6 (Figure 9). This means that
this predictor set is able to distinguish samples among
those 6 classes (class 1, class 2, class 3, class 8, class 9, and
class 10). The predictor set found from the equal-priorities

scoring method (α = 0.5) is only capable of telling apart
samples from 5 classes and contains more redundancy
than the optimal predictor set. For instance, S0.5 has two

redundant marker genes from the first group of marker
genes, whereas S0.4 has only one redundant marker gene
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dE,α( )
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Separation of classes for a 6-class OVA-based toy datasetFigure 8
Separation of classes for a 6-class OVA-based toy 
dataset. Separation of classes by predictor sets obtained 

using several values of the DDP: 0.2, , and 1 (rank-based 

selection) for a 6-class OVA-based toy dataset. The mean of 
the i-th member of a predictor set across samples belonging 
to class k is represented by the intensity of the grayscale 
shading in a rectangular patch located on the i-th row and the 
k-th column.
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Separation of classes for a 4-class OVA-based toy datasetFigure 7
Separation of classes for a 4-class OVA-based toy 
dataset. Separation of classes by predictor sets obtained 
using several values of the DDP: 0.2, 0.5 (equal-priorities 

scoring method), and  for a 4-class OVA-based toy data-

set. The mean of the i-th member of a predictor set across 
samples belonging to class k is represented by the intensity of 
the grayscale shading in a rectangular patch located on the i-
th row and the k-th column.
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from that same group of marker genes. The rank-based

predictor set (α = 1) comprises redundant marker genes
from only 2 groups of marker genes and therefore can
only differentiate samples of the associated 2 classes from
any other classes.

Figure 10 shows that for the 14-class toy dataset, the pre-

dictor set obtained at  = 0.3, S0.3 contains genes from 8

groups of marker genes and thus is able to distinguish
samples among more classes than predictor sets obtained
using any other values of the DDP. The equal-priorities
scoring method produces the predictor set S0.5 which is

not able to differentiate samples of class 4 and class 11
from all other classes because the members of S0.5 come

from only 6 groups of marker genes. S0.5 also contains

more redundancy than S0.3. S0.5 has 2 and 3 redundant

genes from the first and 14-th groups of marker genes,
respectively, while S0.3 has only 1 and 2 redundant genes

from the first and 14-th groups of marker genes, respec-
tively. The rank-based predictor set S1 fares worse since it

can only tell apart samples from 4 classes due to the high
redundancy among its members (i.e., redundant genes
from 3 out of the 4 groups of marker genes).

In summary, a predictor set obtained at  contains rep-

resentative genes from more groups of marker genes and
thus has lower redundancy compared to predictor sets
found using any other values of the DDP. As mentioned

previously, the value of  changes depending on the
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Separation of classes for a 14-class OVA-based toy datasetFigure 10
Separation of classes for a 14-class OVA-based toy 
dataset. Separation of classes by predictor sets obtained 

using several values of the DDP: , 0.5 (equal-priorities 

scoring method), and 1 (rank-based selection) for a 14-class 
OVA-based toy dataset. The mean of the i-th member of a 
predictor set across samples belonging to class k is repre-
sented by the intensity of the grayscale shading in a rectangu-
lar patch located on the i-th row and the k-th column.
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Separation of classes for a 10-class OVA-based toy datasetFigure 9
Separation of classes for a 10-class OVA-based toy 
dataset. Separation of classes by predictor sets obtained 

using several values of the DDP: , 0.5 (equal-priorities 

scoring method), and 1 (rank-based selection) for a 10-class 
OVA-based toy dataset. The mean of the i-th member of a 
predictor set across samples belonging to class k is repre-
sented by the intensity of the grayscale shading in a rectangu-
lar patch located on the i-th row and the k-th column.
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value of K. Therefore the equal-priorities scoring method
is only capable of producing the optimal predictor set for
a certain range of K. Below that range (small number of
classes), rank-based selection may work better than equal-
priorities scoring method (supporting the implication
from the 2-class example of [3]), while DDP values
smaller than or equal to 0.5 will select non-relevant genes.
Above that range (large number of classes), the value of
the DDP producing the optimal predictor set is always less
than 0.5; S0.5 will contain more redundancy and, for a

given P, is able to tell apart samples from smaller number

of classes than the predictor set found using .

At P equal to K - 1 for OVA-based toy datasets we observe

that none of the DDP values (whether , 0.5, or 1) are

able to produce predictor sets which contain representa-
tives from at least K - 1 different groups of marker genes.
This is definitely achievable with greater P; we also do not
expect the findings in this study to change significantly if

a greater value of P is used. The predictor set found at 

will always contain representatives from more different
groups of marker genes than predictor sets obtained using

any other values of the DDP, and the value of  is not

necessarily 0.5 (equal-priorities scoring method) or 1
(rank-based selection), but varies according to K. Similar
findings are also observed for toy datasets generated from
the PW model, but for the sake of brevity, are not included
in this paper.

The difference between the behaviors of  and  as K 

increases

The difference that we observe between the  - K plots

(Figure 1) and the  - K plots (Figure 2) is rooted in the

fundamental difference between the Euclidean and the
Manhattan distances. The Euclidean distance is a square
root of the sum of the squared differences between class
means, as indicated in equation (7). In contrast, the Man-
hattan distance is simply the sum of the absolute differ-
ences between class means, as indicated in equation (10).
Because of this, if there are h features that are redundant
w.r.t. each other in the predictor set, all h features contrib-
ute

• the square root of their corresponding differences
between class means to the Euclidean distance

• simply the absolute value of their corresponding differ-
ences between class means to the Manhattan distance.

If for the sake of simplicity we assume that all h features
contain the same corresponding differences between class

means, Δd, then the Euclidean distance is Δd·  and the

Manhattan distance is Δd·h. Recall that the higher the
value of h, the higher the redundancy in the predictor set
(and the lower the antiredundancy). Note that redundant
features are not necessarily non-relevant. Furthermore, we
assume that the other (P - h) members of the predictor set
are equally relevant (i.e., contain the same corresponding

differences between class means, Δd).

Since the Manhattan distance in the original feature space
gives equal weight to the contributions from the bulk of
redundant features (represented by h) and from the indi-

vidual relevance (represented by Δd), it is maximized

when relevance is maximized (Δd is maximized) and/or
antiredundancy is minimized (h is maximized), regardless
of K. In the context of the DDP, there is greater emphasis
on maximizing relevance than on maximizing antiredun-
dancy in the range [0.8,1], where majority of the points in

the  - K plots are located (Figure 2). We can then

deduce that the Manhattan distance is a pure embodiment
of relevance because it does not matter whether the total
relevance results from redundancy or otherwise – any rel-
evant feature, whether redundant w.r.t. the other mem-
bers of the predictor set or not, will increase separation of
classes as measured using the Manhattan distance.

On the other hand, the Euclidean distance gives the indi-

vidual relevance (represented by Δd) more weight than it
gives to the number of redundant features, h, since it only
takes account of the square root of h and not h by itself as
the Manhattan distance does. We denote the separation
between a pair of classes as measured using the Euclidean
distance as de, and the separation between a pair of classes

as measured using the Manhattan distance as dm. Recalling

that de = Δd·  and dm = Δd·h, we note that

Given that the Manhattan distance, dm, represents rele-

vance and h represents redundancy, then in maximizing
separation of classes as measured using the Euclidean dis-
tance, de, we are maximizing relevance while at the same
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time maximizing antiredundancy. This is the reason that,

unlike  (Figure 2),  does not occur exclusively in

the range [0.8,1]. The maximizations of relevance and
antiredundancy which happen in the maximization of the
Euclidean distance are not always given equal weights

either ('equal' as in the sense denoted by α = 0.5), since

 decreases as K increases and is not constantly located

in the range [0.4,0.6] (Figure 1). Also, factors which have
been oversimplified by the previous two assumptions

(which state that Δd is constant for all members of the pre-
dictor set) might contribute to the observation in Figure 1.
Indeed, this aspect of the analysis provides us with the
scope for future study on the differences between the two
distances in the context of the DDP.

Causes of the discrepancies between the plots for toy 
datasets and real-life datasets
The causes of the discrepancies between the plots for toy
datasets and real-life datasets are based on the differences
in dataset characteristics between toy datasets and real-life
datasets.

• Small class sizes: compared to the class sizes in toy data-
sets (100 samples per class), some classes in the real-life
datasets are comparatively small (e.g., 5 samples in the
central nervous system tumor type in the NCI60 dataset).

• Varying class sizes: in toy datasets, the class size is kept
fixed for all classes and all datasets (m = 100), whereas
class size varies in real-life datasets. For example, the lung
cancer class consists of 47 samples, whereas there are only
6 bladder tumor samples in the BRN dataset.

• Heterogeneity of some of the classes and the residual
noise (variance within class) which remain even after dis-
carding the fourth and the subsequent PCs: as mentioned
previously, variance within class in real-life datasets,
unlike the variance within class in toy datasets (which is
fixed at 1), differs from class to class even within the same
dataset.

Despite the aforementioned discrepancies and their prob-

able causes, the general trends in the  - K,  - K, and

 - K plots for real-life datasets in Figure 5 can be said

to correspond to the general trends in the corresponding
plots for toy datasets (Figures 1, 3, and 4). The overall pic-
ture provided by Figure 5 indicates that the effect of K on

the values of the DDP which optimize , , and

 in real-life datasets is the same as the effect in toy

datasets.

Conclusion
For each dataset from both collections of toy datasets and
real-life microarray datasets, we have shown that there
exists a value of the DDP which optimizes several charac-
teristics representing the goodness of the predictor set. In
turn, this optimal value of the DDP is influenced by the
number of classes in the dataset.

We have also demonstrated, through selected examples
from toy datasets and comparisons against both simplistic
rank-based selection and state-of-the-art equal-priorities
scoring methods, how the DDP concept works for datasets
with different number of classes. A predictor set obtained
at the optimal value of the DDP contains representative
genes from more groups of marker genes than predictor
sets found using any other values of the DDP. Thus the
predictor set obtained using the optimal value of the DDP
contains lower redundancy, and is capable of telling apart
samples from more classes than predictor sets found using
other, sub-optimal values of the DDP.

These findings have been achieved without turning to
empirical experiments involving inductions of classifiers
(which have previously proved the usefulness of the DDP
for both artificial and real-life datasets), thus establishing
the fundamental underpinnings for the DDP concept.

Methods
The DDP-based feature selection technique
For gene expression datasets, the terms gene and feature
may be used interchangeably. From the total of N genes,
the objective is to form the subset of genes, called the pre-
dictor set S, which gives the optimal classification accu-
racy.

The score of goodness for predictor set S is given as fol-
lows:

VS represents the relevance of S, while US represents the
antiredundancy of S. VS measures the average of the corre-
lation of the members of S to the target class concept:

The target class concept is represented by the target class
vector y, which is defined as [y1, y2,..., y|T|], yj ∈ [1, K] in a
K-class dataset. yj is the class label of sample j. The training

αM
∗ αE

∗

αE
∗

αE
∗ αU

∗

αMP
∗

dE,α dMP,α

′USα

W V UA S S S, = ( ) ⋅ ( ) −α α1 (17)

V
S

F iS
i S

= ( )
∈
∑1

(18)
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set, T, consists of all training samples of K classes. Based
on y, the relevance of gene i is computed as follows:

where I(.) is an indicator function returning 1 if the con-
dition inside the parentheses is true, otherwise it returns

0.  is the average of the expression of gene i across all

training samples in T.  is the average of the expression

of gene i across training samples belonging to class k. xi,j is

the expression of gene i in sample j. F(i) is the BSS/WSS
(between-groups sum of squares/within-groups sum of
squares) ratio first used in [13] for multiclass molecular
classification. It indicates the gene's ability in discriminat-
ing among samples belonging to K different classes.

F i

I y k x x

I y k x x

j i k i
k

K

j T

j i j i k
k

K

j
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∑
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i
2

1

2

1∈∈
∑

T
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xi,i

xi k,

Table 4: Glossary

Term Meaning

The value of the DDP leading to the best separation of classes in terms of the Euclidean distance

The value of the DDP leading to the best separation of classes in terms of the Manhattan distance 
in original feature space

The value of the DDP giving the largest antiredundancy in PC space

The value of the DDP leading to the best separation of classes in terms of the Manhattan distance 
in PC space

α A variable representing the DDP
Antiredundancy A parameter opposite to redundancy in terms of quality and thus is to be maximized along with 

relevance
DDP Degree of differential prioritization, which controls the balance between the two requirements in 

feature selection (maximizing relevance and maximizing antiredundancy)
Equal-priorities scoring methods Filter-based feature selection techniques in which the predictor set scoring method places equal 

importance on relevance and redundancy as criteria in forming the predictor set
G Number of genes in each group of marker genes, a parameter set during the generation of toy 

datasets
K Number of classes in the dataset
m Class size (number of samples per class), a parameter set during the generation of toy datasets
N Number of genes in the dataset
OVA One-vs.-all
P Predictor set size, i.e., number of genes selected into the predictor set
PCA Principal component analysis
PW Pairwise
Rank-based selection or rank-based techniques Filter-based feature selection techniques in which relevance is the sole criterion in forming the 

predictor set
Redundancy The redundancy in a predictor set indicates the amount of similarity among the members of the 

predictor set
Relevance The ability to distinguish among different classes
Sα The predictor set found using a DDP value of α

αE
∗

αM
∗

αU
∗

αMP
∗

Table 3: Descriptions of real-life datasets. N is the number of 
features after preprocessing. K is the number of classes in the 
dataset.

Dataset Type N K Training set size:Test set size

BRN cDNA 7452 14 174:83
GCM Affymetrix 10820 14 144:54
NCI60 cDNA 7386 8 40:20
PDL Affymetrix 12011 6 166:82
Lung Affymetrix 1741 5 135:68
SRBC cDNA 2308 4 55:28
MLL Affymetrix 8681 3 48:24
AML/ALL Affymetrix 3571 3 48:24
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Antiredundancy, introduced in [9], is a measure opposite
to redundancy in quality:

The absolute value of the Pearson product moment corre-
lation coefficient between genes i and j, |R(i,j)|, is used to
measure the redundancy of gene i w.r.t. gene j (and vice-
versa).

The power factor α ∈ (0, 1] in equation (17) denotes the
DDP between maximizing relevance and maximizing
antiredundancy. We posit that different datasets will
require different values of the DDP between maximizing
relevance and maximizing antiredundancy in order to
come up with the most efficacious predictor set. Therefore
the optimal range of α (leading to the predictor set giving
the best accuracy) is dataset-specific.

The linear incremental search [2,8] is conducted as fol-
lows: The first member of S is chosen by selecting the gene
with the highest F(i) score. To find the second and the
subsequent members of the predictor set, the remaining
genes are screened one by one for the gene that gives the
maximum WA,S. Since the combination of our predictor
set scoring method and this search method does not spec-
ify an output as to the final size of the predictor set, P, the
value of P will have to be predetermined by the user.

Real-life datasets
Descriptions of eight real-life microarray datasets are
shown in Table 3. The Brown (BRN) dataset [16] includes
15 broad cancer types. Following a previous study [17],
the skin tissue samples due to small class size (3 samples)
are excluded from analysis. The GCM dataset [6] contains
14 tumor classes. For the NCI60 dataset [18], only 8
tumor classes are analyzed; the 2 samples of the prostate
class are excluded due to the small class size.

The PDL dataset [19] consists of 6 classes, each class rep-
resenting a diagnostic group of childhood leukemia. The
SRBC dataset [20] consists of 4 subtypes of small, round,
blue cell tumors (SRBCTs). In the 5-class lung dataset
[21], 4 classes are subtypes of lung cancer; the fifth class
consists of normal samples. The MLL dataset [22] con-
tains 3 subtypes of leukemia: ALL, MLL, and AML. The
AML/ALL dataset [23] also contains 3 subtypes of leuke-
mia: AML, B-cell, and T-cell ALL.

Except for the BRN and SRBC datasets (which are only
available as preprocessed in their originating studies),
datasets are preprocessed and normalized based on the
recommended procedures [13] for Affymetrix and cDNA
microarray data. Except for the GCM dataset, for which

the ratio of training set size to test set size used in the orig-
inating study [6] is maintained to enable comparison with
previous studies, for all datasets we employ the standard
2:1 split ratio.

A glossary of terms used in this manuscript is shown in
Table 4
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