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Abstract

Background: In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather
short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow
practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source,
no specific developments have taken into account the counting of occurrences in a set of independent sequences.
We aim to address this problem by deriving efficient approaches and algorithms to perform these computations
both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models.

Results: The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based
on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal
with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in
individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the
complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In
the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary
decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative
interest in comparison with existing ones were then tested and discussed on a toy-example and three biological
data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and
transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the
tempting approximation that consists in concatenating the sequences in the data set into a single sequence.

Conclusions: Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as
well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for
example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single
sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model
displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and
on its potential improvements.

Introduction
The availability of biological sequence data prior to any
kinds of data is one of the major consequences of the
revolution brought by high throughput biology. Large-
scale DNA sequencing projects now routinely produce
huge amounts of DNA sequences, and the protein
sequences deduced from them. The number of

completely sequenced genomes stored in the Genome
Online Database [1] has already reached the impressive
number of 2, 968. Currently, there are about 99 million
DNA sequences in Genbank [2] and 8.6 million proteins
in the UniProtKB/TrEMBL database [3]. Sequence ana-
lysis has become a major field of bioinformatics, and it
is now natural to search for patterns (also called motifs)
in biological sequences. Sequence patterns in biological
sequences can have functional or structural implications
such as promoter regions or transcription factor binding
sites in DNA, or functional family signature in proteins.
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Because they are important for function or structure,
such patterns are expected to be subject to positive or
negative selection pressures during evolution, and con-
sequently they appear more or less frequently than
expected. This assumption has been used to search for
exceptional words in a particular genome [4,5]. Another
successful application of this approach is the identifica-
tion of specific functional patterns: restriction sites [6],
cross-over hotspot instigator sites [7], polyadenylation
signals [8], etc. Obviously the results of such an
approach strongly depend on the biological relevance of
the data set used. A convenient way to discover these
patterns is to build multiple sequence alignments, and
look for conserved regions. This is done, for example, in
the PROSITE database, a dictionary of functional signa-
tures in protein sequences [9]. However, it is not always
possible to produce a multiple sequence alignment.
In this paper, patterns refer to a finite family of words

(or a regular expression), which is a slightly different
notion from that of Position Specific Scoring Matrices
(PSSM) [10] or in a similar way, from Position Weighted
Matrices (PWM) or HMM profiles. Indeed, PSSM pro-
vide a scoring scheme to scan any sequence for possible
occurrence of a given signal. When one defines a pat-
tern ocurrence as a position where the PSSM score is
above a given threshold, it is possible to associate a reg-
ular expression to this particular pattern. In that sense,
PSSM may be seen as a particular case of the class of
patterns we considered in this paper. However, this
approach usually leads to huge regular expressions
whose complexity grows geometrically with the PSSM
length. For that reason, it seems far more efficient to
deal with PSSM problems with methods and techniques
that have been specifically developed for them [11,12].
Pattern statistics offer a convenient framework to treat

non-aligned sequences, as well as assessing the statistical
significance of patterns. It is also a way to discover puta-
tive functional patterns from whole genomes using sta-
tistical exceptionality. In their pioneer study, Karlin et
al. investigated 4- and 6-palindromes in DNA sequences
from a broad range of organisms, and found that these
patterns had significantly low counts in bacteriophages,
probably as a means of avoiding restriction enzyme clea-
vage by the host bacteria [6]. Then they analyzed the
statistical over- or under-representation of short DNA
patterns in herpes viruses using z-scores and Markov
models, and used them to construct an evolutionary
tree [4]. In another study, the authors analyzed the gen-
ome of Bacillus subtilis and found a large number of
words of length up to 8 nucleotides with biased repre-
sentation [5]. Another striking example of functional
patterns with unusual frequency is the Chi motif (cross-
over hot-spot instigator site) in Escherichia coli [7].

Pattern statistics have also been used to detect putative
polyadenylation signals in yeast [8].
In general, patterns with unusual frequency are

detected by comparing their observed frequency in the
biological sequence data under study to their distribu-
tion in a background model whose parameters are
derived from the data. Among a wide range of possible
models, a popular choice consists in considering only
homogeneous Markov models of fixed order. This
choice is motivated both by the fact that the statistical
properties of such models are well known, and that it is
a very natural way to take into account the sequence
bias in letters (order 0 Markov model), or words of size
h ≥ 2 (order h - 1 Markov model). However, it is well-
known that biological sequences usually display high
heterogeneity. Genome sequences, for example, are
intrinsically heterogeneous, across genomes as well as
between regions in the same genome [13]. In their study
of the Bacillus subtilis chromosome, Nicolas et al. iden-
tified different compositional classes using a hidden
Markov model [14]. These different compositional
classes showed a good correspondence with coding and
non-coding regions, horizontal gene transfer, hydropho-
bic protein coding regions and highly expressed genes.
DNA heterogeneity is indeed used for gene prediction
[15] and horizontal transfer detection [16]. Protein
sequences also display sequence heterogeneity. For
example, the amino-acid composition differs according
to the secondary structure (alpha-helix, beta-strand and
loop), and this property has also been used to predict
the secondary structure from the amino-acid sequence
using hidden Markov models [17]. In order to take into
account this natural heterogeneity of biological data, it
is common to assume either that the data are piecewise
homogeneous (that is typically what is done with hidden
Markov models [18]), or simply that the model changes
continuously from one position to another (e. g., walk-
ing Markov models [19]). One should note that such
fully heterogeneous models may also appear naturally as
the consequences of a previous modeling attempt
[20,21].
A biological pattern study usually first consists in

gathering a data set of sequences sharing similar fea-
tures (ribosome binding sites, related protein domains,
donor or acceptor sites in eucaryotic DNA, secondary or
tertiary structures of proteins, etc.). The resulting data
set typically contains a large number of rather short
sequences (ex: 5,000 sequences of lengths ranging
between 20 and 300). Then one searches this data set
for patterns that occur much more (or less) than
expected under the null model. The goal of this paper is
to provide efficient algorithms to assess the statistical
significance of patterns both for low and high
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complexity patterns in sets of multiple sequences gener-
ated by homogeneous or heterogeneous Markov sources.
From the statistical point of view, studying the distri-

bution of the random count of a simple or complex pat-
tern in a multi-state homogeneous or heterogenous
Markov chain is a difficult task. A lot of effort has gone
into tackling this problem in the last fifty years with
many concurrent approaches and here we give only a
few references; see [22-25] for a more comprehensive
review. Exact methods are based on a wide range of
techniques like Markov chain embedding, moment gen-
erating functions, combinatorial methods, or exponential
families [26-33]. There is also a wide range of asympto-
tic approximations, the most popular of which are Gaus-
sian approximations [34-37], Poisson approximations
[38-42] and Large Deviation approximations [43-45].
Recently several authors [46-49] have pointed out the

connexion between the distribution of random pattern
counts in Markov chains and the pattern matching the-
ory. Thanks to these approaches, it is now possible to
obtain an optimal Markov chain embedding of any pat-
tern problem through minimal Deterministic Finite
Automata (DFA).
In this paper, we first recall the technique of optimal

Markov chain embedding for pattern problems and how
it allows obtaining the distribution of a pattern count in
the particular case when a single sequence is considered.
We then extend this result to a set of several sequences
and provide three efficient algorithms to cover the prac-
tical computation of the corresponding distribution,
either for heterogeneous or homogeneous models, and
patterns of various complexity. In the second part of the
paper, we apply our methods to a simple but illustrative
toy-example, and then consider three real-life biological
applications: structural patterns in protein loop struc-
tures, PROSITE signatures in a bacteria proteome, and
transcription factors in upstream gene regions. Finally,
the results, methods and possible improvements are
discussed.

Methods
Model and notations
Let (Xi)1≤i≤ℓ be an order d ≥ 0 Markov chain over the
finite alphabet  (with cardinal | | ≥ 2). For all 1 ≤ i

≤ j ≤ ℓ, we denote by X X Xj
i

i j
def

 the subsequence

between positions i and j. For all a a ad
d

d
1 1 

def
  , b

Î  , and 1 ≤ i ≤ ℓ - d, let us denote by

( ) ( )a X ad d d
1 1 1 

def
 the starting distribution and by

 i d
d

i d i
i d da b X b X a 
   ( , ) ( | )1

1
1

def
 the transition

probability towards Xi+d.
Let  be a finite set of words (for simplification pur-

pose, we assume that  contains no word of length
less than d - in the general case, one may have to count
the pattern occurrences already seen in X d

1 , which
results in a more complex starting distribution for our
embedding Markov chain) over  . We consider the
random number Nℓ of matching positions of  in X1



defined by:

N
X

i

i 



 

def


{ ( ) }  1
1

(1)

where ( )X i
1 is the set of all the suffixes of X i

1 and
where  A is the indicator function of event A.
Overview of the Markov chain embedding
As suggested in [46-49], we perform an optimal Markov
chain embedding of our pattern problem through a
DFA. We use here the notations of [49]. Let ( ,  , s,
ℱ, δ) be a minimal DFA that recognizes the language

 * of all texts over  ending with an occurrence

of  where  * denotes the set of all - possibly empty

- texts over  .  is a finite state space, s Î  is the

starting state, ℱ ⊂  is the subset of final states and

 :    is the transition function. We recur-

sively extend the definition of δ over  ×  * thanks

to the relation   ( , ) ( ( , ), )p aw p a w
def

for all p Î  , a

Î  , w Î  *. We additionally suppose that this auto-
maton is non d-ambiguous (a DFA having this property
is also called a d-th order DFA in [48]), which means

that for all q Î  , the set       d d d dq a p p a q( ) { , , ( , ) }
def

1 1 

of sequences of length d that can lead to q is either a
singleton or the empty set. A DFA is hence said to be
non d-ambiguous if the past of order d is uniquely
defined for all states. When the notation is not ambigu-
ous, the set δ-d(q) may also denote its unique element
(singleton case).
Theorem 1. We consider the random sequence over
 defined by X0 

def
 and   X X X i ii i i 

def
( , ) ,1 1  . Then

( )Xi i d is a heterogeneous order 1 Markov chain over
   

def
 ( , *)d such that, for all p, q Î  ’ and 1 ≤ i ≤ ℓ -

d the starting distribution m d dp X p( ) ( ) 
def
  and the transi-

tion matrix Ti d i d i dp q X q X p     ( , ) ( | )
def
  

1 are given by:

m d

d d

p
p p

( )
( ( )) ( )

;  





   if 

otherwise0
(2)
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Ti d
i d

d

p q
p b b p b q





   




( , )

( ( ), ) , ( , )
.

  if 

otherwise


0

(3)

And for all i ≥ d we have:

   ( ) .X Xi
i1     (4)

Proof. The result is immediate considering the proper-
ties of the DFA. See [48] or [49] for more details. □
From now on, we will denote the cardinality of the set
 ’ by L and call this the pattern complexity (even if
technically, L depends both on the considered pattern
and the Markov model order). A typical low complexity
pattern corresponds to L ≤ 50, moderate complexity to
50 <L < 100, and high complexity to L ≥ 100.
Proposition 2. The moment generating function

GN  (y) of Nℓ is given by:

G y N n y yN
n

d

n

i d i d

i

d

 



( ) ( ) ( )   
















 




 
def

 m P Q 1T

0 1

(5)

where 1 is a row vector of ones, and 1T denotes the
transpose vector, and, for all 1 ≤ i ≤ ℓ - d, Ti+d = Pi+d +
Qi+d with P Ti d q i dp q p q  ( , ) ( , )

def
  and

Q Ti d q i dp q p q  ( , ) ( , )
def
  for all p, q Î  ’.

Proof. Since Qi+d contains all the counting transitions,
we keep track of the number of occurrences by associat-
ing a dummy variable y to these transitions. Therefore,
we just have to compute the marginal distribution at the
end of the sequence and sum up the contribution of
each state. See [46-49] for more details. □
Corollary 3. In the particular case where (Xi)1≤i≤ℓ is a

homogeneous Markov chain, we can drop the indices in
Pi+d and Qi+d and Equation (5) is simplified into

G y yN d
d



( ) ( ) .  m P Q 1T (6)

Corollary 3 can be found explicitly in [48] or [50] and
its generalisation to a heterogeneous model (Proposition
2) is given in [51].
Extension to a set of sequences
Let us now assume that we consider a set of r
sequences. For any particular sequence j (with 1 ≤ j ≤ r)
we denote by ℓj its length, by N

j its number of pat-
tern occurrences, and by m d

j , Pi d
j
 , and Q i d

j
 its corre-

sponding Markov chain embedding parameters.
Proposition 4. If we denote by

G y N N n yN
n

n
r

( ) ( )   




def
  

1

0

(7)

the moment generating function of N N N
r

  
def

 
1

, we
have:

G y y

G

N

N y

d i d i d
i

d

( ) ( )

( )

 












 





m P Q 1T1 1 1

1

1

1





  









  












 





m P Q 1Td
r

i d
r

i d
r

i

d

y

G

r

N r
y

( )

( )

1  

.
(8)

Corollary 5. In the homogeneous case we get:

G y y yN

N y

d
d

G
d
r d

G

r( ) ( ) ( )

( )

     m P Q 1 m P Q 1T T1 1

1

 



  


NN r
y



  
( )

.
(9)

Single sequence approximation
Instead of computing the exact distribution of N = N1 +
... + Nr, which requires specific developments, one may
study the number N’ of pattern occurrences in a single
sequence of length ℓ = ℓ1 + ... + ℓr resulting from the
concatenation of our r sequences. The main advantage
of this method is that we can rely on a wide range of
classical techniques to compute the exact or approxi-
mated distribution of N’ (Poisson approximation or
large deviations for example).
The drawback of this approach is that N and N’ are

clearly two different random variables and that deriving the
P-value of an observed event for N using the distribution of
N’may produce erroneous results due to edge effects.
These effects may be caused by two distinct phenom-

ena: forbidden positions and stationary assumption. For-
bidden positions simply come from the fact that the
artificial concatenated sequence may have pattern occur-
rences at positions that overlap two individual
sequences. If we consider a pattern of length h, it is
clear that there are h - 1 positions that overlap two
sequences. It is hence natural to correct this effect by
introducing an offset for each sequence, typically set to
h - 1 for a pattern of length h. The length of our conca-
tenated sequence has then to be adjusted to ℓ’ = (ℓ1 -
offset) + ... + (ℓr - 1- offset) + ℓr = ℓ - (r - 1) × offset.
One should note that there is no canonical choice of
offset for patterns of variable lengths.
Even if we take into account the forbidden overlap-

ping positions with a proper choice of offset, there is a
second phenomenon that may affect the quality of the
single sequence approximation, and it is connected to
the model itself. When one works with a single
sequence, it is common to assume that the underlying
model is stationary. This assumption is usually consid-
ered to be harmless since the marginal distribution of
any non-stationary model converges very quickly
towards its stationary distribution. As long as the time
to convergence is negligible in comparison with the
total length of the sequence, this approximation has a
very small impact on the distribution. In the case where
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we consider a data set composed of a large number of
relatively short sequences, this edge effect might how-
ever have huge consequences. This obviously depends
both on the difference between the starting distribution
of the sequences, and on the convergence rate toward
the stationary distribution. This phenomenon is studied
in detail in our applications.
Algorithms
Let n be the observed number of occurrences of our pattern
of interest. Our main objective is to compute both ℙ(N ≤ n)
and ℙ(N ≥ n). We provide here various algorithms to per-
form these computations both for low or high complexity
patterns, and for homogeneous or heterogenous models.
Heterogeneous case
Algorithm 1: Compute n NG y1( ( )) (see Equation (10)
for a proper definition of n1 ) in the case of a hetero-
geneous model. The workspace complexity is O(n × L)
and since all matrix vector products exploit the sparse
structure of the matrices, the time complexity is O(ℓ × n
× | | × L) where | | × L corresponds to the maxi-
mum number of non-zero terms in Ti+d = Pi+d + Qi+d.
Require: The starting distributions m d

j the matrices
Q i d

j
 , Q i d

j
 , for all 1 ≤ j ≤ r, 1 ≤ i ≤ ℓj - d, a O(n × L)

workspace to keep the current values of E(y), and a
dimension L polynomial row-vector of degree n + 1.

// Initialization
E(y) ¬ 1
// Loop on sequences
for j = 1, ..., r do
E(y) ¬ (E(y)1T) × m d

j

// Loop on positions within the sequence
for i = 1, ... ℓj-d do

E E P Q( ) ( ) ( )y y yn i d
j

i d
j      1

Output: return n1 (GN (y)) = E(y)1T

When working with heterogeneous models, there is
very little room for optimization in the computation of
Equation (8). Indeed, since all terms Pi d

j
 and Q i d

j


may differ for each combination of position i and
sequence j, there is no choice but to compute the indivi-
dual contribution of each of these combinations. This
may be done recursively by taking advantage of the
sparsity of matrices Pi d

j
 and Q i d

j
 . Note that, so as to

speed up the computation, it is not necessary to keep
track of the polynomial terms of degrees greater than n
+ 1. This may be done by using the polynomial trunca-
tion function n1 defined by

n k
k

k

k
k

k

n

k

k n

np y p y p y
 

  













 











1

0 0

1



def
. (10)

This function also applies to vector or matrix polyno-
mials. This approach results in Algorithm 1 whose time

complexity is O(ℓ × n × | | × L). In particular, one
observes that the time complexity remains linear with n,
which is a unique feature of this algorithm, while an
individual computation of each GN

j
(y) would

obviously result in a final O(r × n2) complexity to per-
form the polynomial product
G y G y G yN N N

r
( ) ( ) ( )  

 


1
. It is also interesting to

point out that the number r of considered sequences
does not appear explicitly in the complexity of Algo-
rithm 1 but only through the total length      

def

1 r .
Homogeneous case
Algorithm 2: Compute the n1 (GN(y)) in the case of a
homogeneous model. The workspace complexity is O(n
× L) and since all matrix vector products exploit the
sparse structure of the matrices, the time complexity to
compute all n1 (GN

j
(y)) is O(ℓr × n × | | × L)

where | | × L corresponds to the maximum number of
non-zero terms in T = P + Q. The product updates of U
(y) result in a additional time complexity of O(r × n2).
Require: The matrices P and Q, for all 1 ≤ j ≤ r, the

starting distributions m d
j , the length ℓj (assuming

   0 1
def

d r   ), a O(n × L) workspace to keep
the current values of E(y) (a dimension L polynomial
row-vector of degree n + 1) and U(y) (a polynomial of
degree n + 1).

// Initialization
U(y) ¬ 1 and E(y) ¬ 1
// Loop on sequences
for j = 1, ..., r do
for i = 1, ..., ℓj - ℓj-1 do
E(y)T¬ n1 ((P + yQ)E(y)T)

optionally return n N d
jG y y

j
 1( ( )) ( )


m E T

U y U y yn d
j( ) ( ) ( )   1 m E T

Output: return n1 (GN (y)) = U (y)
If we now consider a homogeneous model, we can

dramatically speed up the computation of Equation (9)
by recycling intermediate results in order to compute
efficiently all GN

j
(y). Without loss of generality, we

assume that the sequences are ordered by increasing
lengths: ℓ1≤ ...≤ ℓr. If one stores the value of
( )P Q 1T y d1 in some polynomial vector E(y)T, it is
clear that ( ) ( ) ( )P Q 1 P Q ET T    y y yd  2 2 1 . By
repeating this trick for all ℓj, it is then possible to adapt
Algorithm 1 to compute all GN

j
with a complexity O

(ℓr × n × | | × L) (ℓr being the length of the longest
sequence), which is a dramatic improvement. Unfortu-
nately, it is then necessary to compute the product
G y G y G yN N N

r
( ) ( ) ( )  

 


1
, which results in a com-

plexity O(r × n2) to get all polynomial terms of degree
smaller that n + 1 in GN(y). This additional complexity
therefore limits the interest of this algorithm in compar-
ison to Algorithm 1, especially when one observes a
large number n of pattern occurrences. However, it is
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clear that Algorithm 2 remains the best option when
considering a huge data set where we typically have ℓr

<< ℓ = ℓ1 + ... + ℓr.
Long sequences and low complexity pattern
Algorithm 3: Compute the n1 (GN(y)) in the case of a
homogeneous model using power computations. The
workspace complexity is O(n × K × L2) with K = log2
(max{ℓ1- d, ℓ2 - ℓ1, ..., ℓr- ℓr-1}). The precomputation
time complexity is O(n2 × K × L3). All n1 (GN

j
(y))

are computed with a total time complexity O(r × n2 × K
× L3). The product updates of U(y) result in an addi-
tional time complexity of O(r × n2).
Require: The matrices P and Q, for all 1 ≤ j ≤ r, the

starting distributions m d
j , the length ℓj (assuming

   0 1
def

d r   ), a O(n × L) workspace to keep
the current values of E(y) (a dimension L polynomial
row-vector of degree n + 1) and U(y) (a polynomial of
degree n + 1), and a O(n × K × L2) workspace to store
the values of M

2k (y) with 0 ≤ k ≤ K = log2(max{ℓ1 - d,
ℓ2 - ℓ1, ..., ℓr - ℓr-1}).

// Precompute all M
2k (y)

M
20 (y) ¬ P + yQ

for k = 1, ..., K do
M M M

2 1 2 21 1k k ky y yn( ) ( ( ) ( ))   
// Initialization
U(y) ¬ 1 and E(y) ¬ 1
// Loop on sequences
for j = 1, ..., r do

compute M  j j 1 (y) using a binary decomposi-
tion and set E(y) ¬ n1 (M  j j 1 (y)E(y)

T)
optionally return n N d

jG y y
j

 1( ( )) ( )


m E T

U(y) ¬ n1 (U(y) × m d
j E(y)T)

Output: return n1 (GN (y)) = U (y)
We now consider the case where ℓr is large (ex: ℓr = 100,

000 or 1, 000, 000 or more). With Algorithm 2, the time
complexity is linear with ℓrand may then result in an unac-
ceptable running time. It is however possible to turn this
into a logarithmic complexity by computing directly the
powers of (P + yQ). This particular idea is not new in itself
and has already been used in the context of pattern pro-
blems by several authors [50,51]. The novelty here is to
apply this approach to a data set of multiple sequences.
If we denote by M P Qi n

iy y( ) (( ) ) 
def
 1 , it is clear that

all M
2k (y) can be computed (and stored) for 0 ≤ k ≤ K

with a space complexity O(n × K × L2) and a time com-
plexity O(n2 × K × L3). It is therefore possible to com-
pute all GN

j
(y) using the same approach as in

Algorithm 2 except that all recursive updates of E(y) are
replaced by direct power computations. This results in
Algorithm 3 whose total complexities are O(n × K × L3)
in space and O(r × n2 × K × L3) in time with K = log2
(max{ℓ1 - d, ℓ2 - ℓ1, ..., ℓr - ℓr-1}). The key feature of this
algorithm is that we have replaced ℓr by the quantity K,
which is typically dramatically smaller when we consider

large ℓr. The drawback of this approach is that the space
complexity is now quadratic with the pattern complexity
L, and that the time complexity is cubic with L. As a
consequence, it is not suitable to use Algorithm 3 for a
pattern of high complexity.
Long sequences and high complexity pattern
If we now consider a moderate or high complexity pat-
tern, we cannot accept either a cubic complexity with
L or even a quadratic complexity. Hence only Algo-
rithms 1 or 2 are appropriate. However, if we assume
that our data set contains at least one long sequence,
it may be difficult to perform the computations. This
is why we introduce an approach that allows comput-
ing GN (y) = md(P + yQ)ℓ-d1T for large ℓ and L. The
technique is directly inspired from the partial recursion
introduced in [51] to compute g(y) = md(P + Q +
yQ)ℓ-d1T.
In this particular section, we assume that P is an irre-

ducible and aperiodic matrix. We denote by l the lar-
gest magnitude of the eigenvalues of P, and by ν the
second largest magnitude of the eigenvalues of P/l. For
all i ≥ 0 we consider the polynomial vector
F P Q 1T
i

i
y y( )   def   , where P P

def
/  and Q Q

def
/  ,

and hence we have GN (y) = lℓ-dmdFℓ-d(y).
Like in [51], the idea is then to recursively compute

finite differences of Fi(y) up to the point where these
differences asymptotically converge at a rate related to
νi. We then derive an approximated expression for Fℓ-d
(y) using only terms such as i ≤ a. Unfortunately, this
approach through partial recursion suffers the same
numerical instabilities as in [51] when computations are
performed in floating point arithmetic. For this reason,
we chose here not to go further in that direction until a
more extensive study has been conducted.

Results and discussion
Comparison with known algorithms
To the best of our knowledge, there is no record of any
method that allows computing the distribution of a ran-
dom pattern count in a set of heterogeneous Markov
sequences. However, a great number of concurrent
approaches exists to perform the computations for a
single sequence, where the result for a set of sequences
is obtained by convolutions.
For the heterogeneous case for a single sequence of

length ℓ, any kind of Markov chain embedding techni-
ques [48,52] may be used to get the expression of one
GN  (y) up to degree n + 1 with complexity O(ℓ × n ×
| | × L). In this respect, there is little novelty in Algo-
rithm 1, except that it allows avoiding the O(r × n2)
additional cost of the convolution product, which could
be a great advantage. In the homogeneous case, the
main interest of our approach is its ability to exploit the
repeated nature of the data (a set of sequences) to save

Nuel et al. Algorithms for Molecular Biology 2010, 5:15
http://www.almob.org/content/5/1/15

Page 6 of 18



computational time. This is typically what it is done in
Algorithm 2.
From now on, we will only consider the problem of

computing the exact distribution of the pattern count
Nℓ in a single (long) sequence of length ℓ generated by a
homogeneous Markov source, and compare the novel
approaches introduced in this paper to the most effi-
cient methods available.
One of the most popular of these methods consists in

considering the bivariate moment generating function

G y z N n y zn

n d

( , ) ( )
,

 def


 




0

(11)

where y and z are dummy variables. Thanks to Equa-
tion (6) it is easy to show that

G y z z z yd
d( , ) ( ( ))    m Id P Q 1T1 (12)

It is thus possible to extract the coefficients from G(y,
z) using fast Taylor expansions. This interesting
approach has been suggested by several authors includ-
ing [46] or [48] and is often referred to as the “golden”
approach for pattern problems. However, in order to
apply this method, one should first use a Computer
Algebra System (CAS) to perform the bivariate polyno-
mial resolution of the linear system (Id - z(P + yQ)) xT

= 1T. This may result in a complexity in O(L3) which is
not suitable for high complexity patterns. Alternatively,
one may rely on efficient linear algebra methods to
solve sparse systems like the sparse LU decomposition.
But the availability of such sophisticated approaches,
especially when working with bivariate polynomials, is
likely to be an issue.
Once the bivariate rational expression of G(y,z) is

obtained, performing the Taylor expansions still requires
a great deal of effort. This usually consists in first per-
forming an expansion in z in order to get the moment
generating function GN  (y) of Nℓ for a particular length
ℓ. The usual complexity for such task is O(Dz

3 × log ℓ)
where Dz is the denominator degree (in z) in G(y, z). In
this case however, there is an additional cost due to the
fact that these expansions have to be performed with
polynomial (in y) coefficients. Finally, a second expan-
sion (in y) is necessary to compute the desired distribu-
tion. Fortunately, this second expansion is done with
constant coefficients. It nevertheless results in a com-
plexity O( Dy

3 × log n) where Dy is the degree of the
denominator in GN  (y) and n the observed number of
occurrences.
In comparison, the direct computation of GN  (y) =

md(P + yQ)1T by binary decomposition (Algorithm 2) is

much simpler to implement (relying only on floating
point arithmetics) and is likely to be much more effec-
tive in practice.
Recently, [50] suggested to compute the full bulk of

the exact distribution of Nℓ through Equation (6) using
a power method like in Algorithm 3, with the noticeable
difference that all polynomial products are performed
using Fast Fourier Transforms (FFT). Using this
approach, and a very careful implementation, one can
compute the full distribution with a complexity O(L3 ×
log2 ℓ × nmax log2 nmax) where nmax is the maximum
number of pattern occurrences in the sequence, which
is better than Algorithm 3. There is however a critical
drawback to using FFT polynomial products: the result-
ing coefficients are only known with an absolute preci-
sion equal to the largest one times the relative precision
of floating point computations. As a consequence, the
distribution is accurately computed in its center region,
but not in its tails. Unfortunately, this is precisely the
part of the distribution that matters for significant P-
values, which are obviously the number one interest in
pattern study. Finally, let us remark that the approach
introduced by [50] is only suitable for low or moderate
complexity patterns.
The new algorithms we introduce in this paper have

the unique feature to be able to deal with a set of het-
erogeneous sequences. These algorithms, compared to
the ones found in the literature, also display similar or
better complexities. Last but not least, the approaches
we introduce here only rely on simple linear algebra and
are hence far easier to implement than their classical
alternatives.
Illustrative examples
In this part we consider several examples. We start with
a simple toy-example for the purpose of illustrating the
techniques, and we then consider three real biological
applications.
A toy-example
In this part we give a simple example to illustrate the
techniques and algorithms presented above. We con-
sider the pattern  = {abab, abaab, abbab} over the
binary alphabet  = {a, b}. The minimal DFA that
recognizes the language L =  * (which is the set of
all texts over  ending with occurrence of  ) is then
given in Figure 1.
Let us now consider the following set of r = 3

sequences:

x x x1
1

2
2

3
39 6 8     abaabbaba bababb and abbaabab ( ), ( ) ( ).  

We process these sequences to the DFA of Figure 1
(starting each sequence in the initial state 0) to get the
observed state sequences x1 , x2 and x3 :
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a b a a b b a b a
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b a b a
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.
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0 1 2 3 5 4 5 3
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1
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x
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bb b  and 
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a b b a a b a b

 x

x

x2

3

30 0 1 2 3 4

1 2 3 4 5 6 7 8

0 1 2 4 5 1 2 36 6

.

.





Therefore, Sequence x1 contains n1 = 2 occurrences of the
pattern (ending in positions 5 and 8), Sequence x2 contains
n2 = 1 occurrence (ending in position 5) and Sequence x3

contains n3 = 1 occurrence (ending in position 8).
Let us now consider X1, X2 and X3, three homoge-

neous order d = 1 Markov chains of respective lengths
ℓ1, ℓ2 and ℓ3 such that X1 and X3 start with a, and X2

starts with b, and the transition matrix of which is given
by:

 










0 7 0 3

0 4 0 6

. .

. .
.

The corresponding state sequences X1 , X 2 and X 3

are hence order 1 homogeneous Markov chains defined
over  ’ = {0, 1,2, 3, 4, 5, 6} with the starting distribu-
tions m1

1 = m1
3 = (0 1 0 0 0 0 0), m1

2 = (1 0 0 0 0 0
0) (since starting from 0 in the DFA of Figure 1, a leads
to state 1 and b to state 0) and with the following tran-
sition matrix (please note that transitions belonging to
Q are marked with a ‘*’. The others ones belong to P):

T 

    
    
    
    

    

0 6 0 4

0 7 0 3

0 4 0 6

0 3 0 7

0 6 0 4

. .

. .

. .

. . *

. .

    
    





























0 7 0 3

0 4 0 6

. . *

. .

A direct application of Corollary 3 therefore gives
GN1

(y) = 0.743104 + 0.208944y + 0.0450490y2 +
0.0029030y3 for the moment generating function of N1

(the number of pattern occurrences in X1);
GN2

(y) = 0.94816 + 0.05184y for the moment gener-
ating function of N2 (the number of pattern occurrences
in X2); and GN3

(y) = 0.7761376 + 0.1880064y +
0.0353376y2 + 0.0005184y3 for the moment generating
function of N3 (the number of pattern occurrences in
X3). One should note that occurrences of  are
strongly disfavored in Sequence X2 since it starts with b.
We then derive from these expressions the value of the
moment generating function GN (y) of N = N1 + N2 +
N3:

G y G y G y G y y yN N N N( ) ( ) ( ) ( ) . . .     
1 2 3

0 5468522 0 3161270 0 1109456 22 3

4 5 6

0 0227431

0 0030882 0 0002358 0 0000080 7 801 1



    

.

. . . .

y

y y y 00 8 7 y
(13)

Since we observe a total of n = n1 + n2 + n3 = 4
occurrences of Pattern  , the P-value of over-repre-
sentation is given by

     ( ) ( ) ( ) ( ) ( )

. . .

N N N N N4 4 5 6 7

0 0030882 0 0002358 0 0

       

   0000080 7 801 10

3 33 10

8

3

 

 





.

.

(14)

Let us finally compare the exact distribution of N’, the
number of pattern occurrences over X = X1... Xℓ with ℓ

= ℓ1 + ℓ2 + ℓ3 - 2 × offset, and a homogeneous order 1
Markov chain with transition matrix π:

offset

a

0 1 2 3 4 5 6

10 4 2 252 1 647 1 158 0 743 0 447 0 242
1   ( | ) . . . . . .N X 99 0 043

10 4 1 561 1 088 0 706 0 417 0 223 0 064 0 0022
1

.

( | ) . . . . . . .   N X b

As  contains both words of lengths 4 and 5, offset
should be set either to 3 or 4. However, for both these
values, 102 × ℙ(N’ ≥ 4) (either when X1 = a or when X1

= b) differs from the reference exact P-value 102 × ℙ(N
≥ 4) = 0.333.

Figure 1 Minimal DFA that recognizes the language L = {a, b}* with  = {abab, abaab, abbab}.
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Structural motifs in protein loops
Protein structures are classically described in terms of
secondary structures: a-helices, b-strands and loops.
Structural alphabets are an innovative tool that allows
describing any three-dimensional (3D) structure by a
succession of prototype structural fragments. We here
use HMM-27, an alphabet composed of 27 structural
letters (it consists in a set of average protein fragments
of four residues, called structural letters, which is used
to approximate the local backbone of protein structures
through a HMM): 4 correspond to the alpha-helices, 5
to the beta-strands and the 18 remaining ones to the
loops (see Figure 2) [53]. Each 3D structure of ℓ resi-
dues is encoded into a linear sequence of HMM-27
structural letters and results in a sequence of ℓ - 3
structural letters since each overlapping fragment of
four consecutive residues corresponds to one structural
letter.
We consider a set of 3D structures of proteins pre-

senting less than 80% identity and convert them into
sequences of structural letters. Like in [54], we then
make the choice to focus only on the loop structures
which are known to be the most variable ones, and
hence the more challenging to study. The resulting loop
structure data set is made of 78,799 sequences with
length ranging from 4 to 127 structural letters.
In order to study the interest of the single sequence

approximation described in the “Single sequence
approximation” section, we first perform a simple
experiment. We fit an order 1 homogeneous Markov
model on the original data set, and then simulate a ran-
dom data set with the same characteristics (loop lengths
and starting structural letters). We then compute the z-

score - these quantities are far easier to compute than
the exact P-values and they are known to perform well
for pattern problems as long as we consider events in
the center of the distribution, and such events are pre-
cisely the ones expected to occur with a simulated data
set - of the 77, 068 structural words of size 4 that we
observe in the data, using simulated data sets under the
single sequence approximation. We observe that high z-
scores are strongly over-represented in the simulated
data set: for example, we observed 264 z-scores of mag-
nitude greater than 4, which is much larger than the
expected number of 4.88 under H0. This observation
clearly demonstrates that the single sequence approxi-
mation completely fails to capture the distribution of
structural motifs in this data set. Indeed this experiment
initially motivated the present work by putting emphasis
on the need for taking into account fragmented struc-
ture of the data set.
We further investigate the edge effects in the data set

by comparing the exact P-values obtained under the sin-
gle sequence approximation. Table 1 gives the results
for a selected set of 14 motifs whose occurrences range
from 4 to 282. We can see that the single sequence
approximation with an offset of 0 clearly differs from
the exact value: e. g., Pattern ODZR has an exact P-value
of 5.78 × 10-5 and an approximate one of 2.81 × 10-4;
Pattern BZOU has an exact P-value of 2.56 × 10-11 and
an approximate one of 4.49 × 10-5.
As explained in the Methods section, these differences

may be caused by the overlapping positions in the artifi-
cial single sequence where the pattern cannot occur in
the fragmented data set. Since we consider patterns of
size 4, a canonical choice of offset is 4 - 1 = 3. We can

Figure 2 Geometry of the 27 structural letters of the HMM-27 structural alphabet.
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see in Table 1 the effects of this correction. For most
patterns, this approach improves the reliability of the
approximations, even if we still see noticeable differ-
ences. For instance we get an approximated P-value lar-
ger than the exact one for Pattern BZOU, and an
approximated P-value smaller than the exact one for
Pattern UOEI. For other patterns, this correction is inef-
fective and gives even worse results than with an offset
of 0. For example, Pattern DRPI has an exact P-value of
7.26 × 10-167 and an approximate P-value with an offset
of 3 equal to 3.56 × 10-222, while the approximation
with no offset gives a P-value of 9.08 × 10-174.
Hence it is clear that the forbidden overlapping posi-

tions alone cannot explain the differences between the
exact results and the single sequence approximation.
Indeed, there is another source of edge effects which is
connected to the background model. Since each
sequence of the data set starts with a particular letter,
the marginal distribution differs from the stationary one
for a number of positions that depends on the spectral
properties of the transition matrix. It is well known that
the magnitude μ of the second eigenvalue of the transi-
tion matrix plays here a key role since the absolute dif-
ference between the marginal distribution at position i
and the stationary distribution is O(μi). In our example,
μ = 0.33, which is very large, leads to a slow conver-
gence toward the stationary distribution: we need at
least 30 positions to observe a difference below machine
precision between the two distributions. Such an effect
is usually negligible for long sequences where 30 << ℓ,
but is critical when considering a data set of multiple
short sequences.
However, this effect might be attenuated on the aver-

age if the distribution of the first letter in the data set is
close to the stationary distribution. Figure 3 compares
these two distributions. Unfortunately in the case of

structural letters, there is a drastic difference between
these distributions.
The example of structural motifs in protein loop

structures illustrates the importance of explicitly taking
into account the exact characteristics of the data set
(number and lengths of sequences) when the single
sequence approximation appears to be completely unre-
liable. As explained above, this may be due both to the
great differences between the starting and the stationary
distributions, as well as to a slow convergence and to
the problem of forbidden positions.
PROSITE signatures in protein sequences
We consider the release 20.44 of PROSITE (03-Mar-
2009) which encompasses 1, 313 different patterns
described by regular expressions of various complexity
[9]. PROSITE currently contains patterns and specific
profiles for more than a thousand protein families or
domains. Each of these signatures comes with documen-
tation providing background information on the struc-
ture and function of these proteins. The shortest regular
expression is for pattern PS00016: RGD, i. e., an exact
succession of arginine, glycine and aspartate residues.
This pattern is involved in cell adhesion. The longest
regular expression, on the opposite, is for pattern
PS00041:
[KRQ][LIVMA].(2)[GSTALIV]FYWPGDN.(2)

[LIVMSA].(4, 9)[LIVMF].{PLH}[LIVMSTA]
[GSTACIL]GPKF.[GANQRF][LIVMFY].(4, 5)
[LFY].(3)[FYIVA]{FYWHCM}{PGVI}.(2)[GSA-
DENQKR].[NSTAPKL][PARL] (note that X means
“any aminoacid”, brackets denote a set of possible let-
ters, braces a set of forbidden letters, and parentheses
repetitions -fixed number of times or on a given range).
This is the signature of the DNA-binding domain of the
araC family of bacterial regulatory proteins.
This data set is useful to explore one of the key points

of our optimal Markov chain embedding method using

Table 1 P-values for structural patterns in protein loop structures using exact computations or the single sequence
approximation (SSA) with offset or not.

Structural pattern n Exact SSA (no offset) SSA (offset = 3)

KYNH 16 1.62 × 10-2 5.95 × 10-1 8.43 × 10-2

PNKK 7 2.20 × 10-2 6.68 × 10-2 9.19 × 10-3

JLPQ 25 1.37 × 10-3 4.89 × 10-1 2.19 × 10-2

QYHB 110 1.71 × 10-3 9.46 × 10-1 2.59 × 10-3

ODZR 4 5.78 × 10-5 2.81 × 10-4 5.49 × 10-5

CPBQ 27 5.69 × 10-6 3.07 × 10-3 3.81 × 10-6

ZGBZ 50 3.45 × 10-7 4.84 × 10-2 9.71 × 10-6

BZOU 40 2.56 × 10-11 4.49 × 10-5 1.22 × 10-9

UOEI 52 5.74 × 10-16 1.96 × 10-10 2.30 × 10-17

EGZD 58 3.19 × 10-32 1.91 × 10-23 1.26 × 10-32

GIYC 149 1.05 × 10-41 1.06 × 10-30 3.85 × 10-51

DRPI 282 7.26 × 10-167 9.08 × 10-174 3.56 × 10-222
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DFAs: the impact of the pattern complexity L. For this
purpose, we first build 1-unambiguous (since we want
to work with an order 1 Markov model) associated
DFAs for 1,276 PROSITE patterns (37 patterns requir-
ing a prohibiting computation time and/or memory
were not computed). The repartition of the resulting
pattern complexities is shown in Figure 4. There is a
peak in the distribution at 2, meaning that many DFAs
have ≃ 100 states. The smallest DFA is obtained for the
RGD pattern (22 states), and the largest is for APPLE
(PS00495) which is represented by the regular expres-
sion C.(3)[LIVMFY].(5)[LIVMFY].(3)[DENQ]
[LIVMFY].(10)C.(3)CT.(4)C.[LIVMFY]F.
[FY].(13, 14)C.[LIVMFY][RK].[ST].(14, 15)
SG.[ST][LIVMFY].(2)C which has 837, 507 states.
The mean computing time of the DFA is 3 minutes, but
50% of the DFA could be computed in less than 0.01s,
and 95% in less than 9s.
In Table 2, we can see that if short regular expressions

usually lead to low complexity patterns, it is difficult to
predict the result for longer regular expressions. For
instance, the PROSITE signatures PUR_PYR_PR_-
TRANSFER and ADH_ZINC have the same size, but
the former has a complexity of L = 102 while the latter
has a complexity of L = 478. Indeed, we know from the
theory of language and automata [55] that the minimal
DFA corresponding to a regular expression of size R has
a size L verifying L ≤ 2R. Fortunately, in practice, L is
usually dramatically smaller than this upper bound.
We now consider the complete proteome of the bac-

teria Escherichia coli (File NC_000913.faa, retrieved at
ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

Escherichia_coli_K_12_substr__MG1655/). This data set
encompasses a total of 4, 131 protein sequences with
lengths ranging from 14 to 2, 358 aminoacids. We fit on
this data set a homogeneous order 1 Markov model
which is used to derive over-representation P-values of
patterns.
Like for structural letters, we compare the exact P-

values to the ones obtained using the single sequence
approximation, see Table 3. Unlike in Table 1, we see
here that the single sequence approximation performs
already well with no offset, but that the use of the
appropriate offset further improves this approximation.
This result is surprising, since, in this case, the start-

ing distribution of the model strongly differs from the
stationary distribution. Indeed, it is a biological fact that
all protein sequences start with a methionine (M). As a
consequence, it is hence clear that the starting distribu-
tion and the stationary distribution of the model
strongly differ. This observation obviously does not
favor the single sequence approximation. But in this
example, this effect is corrected by the rapid conver-
gence of the marginal distribution toward the stationary
distribution ensured by a very low second magnitude
eigenvalue of the matrix: μ = 0.049. We expect the same
kind of behavior for the high complexity patterns of
Table 4 but because of the numerical instabilities in the
partial recursion approach suggested in the “Long
sequences and high complexity pattern” section, unfor-
tunately it was impossible to perform the computations
for the single sequence approximation for such pattern
in a reasonable time. However, it is possible to perform

Figure 3 Starting and stationary distributions of the 27 structural letters in the loop structure data set.
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Figure 4 Histogram of the log10(L) for 1, 276 PROSITE patterns in the framework of an order 1 Markov model. Note that the 0.1%
patterns with the largest complexities have been removed from the graph in order to improve readability.

Table 2 Size of the regular expression (regex) and pattern complexity (L) for a selected subset of PROSITE signatures.

PROSITE signature Accession number pattern size L

RGD PS00016 3 22

ER_TARGET PS00014 3 28

PPASE PS00387 7 41

ALDEHYDE_DEHYDR_GLU PS00687 8 44

PROKAR_NTER_METHYL PS00409 21 46

GLY_RADICAL_1 PS00850 9 77

PEP_ENZYMES_PHOS_SITE PS00370 12 96

PUR_PYR_PR_TRANSFER PS00103 13 102

PILI_CHAPERONE PS00635 18 226

SIGMA54_INTERACT_2 PS00676 16 313

EFACTOR_GTP PS00301 16 320

ALDEHYDE_DEHYDR_CYS PS00070 12 331

ADH_ZINC PS00059 13 478

THIOLASE_1 PS00098 19 637

SUGAR_TRANSPORT_1 PS00216 15 to 17 796

FGGY_KINASES_2 PS00445 21 to 22 2668

PTS_EIIA_TYPE_2_HIS PS00372 16 2758

MOLYBDOPTERIN_PROK_3 PS00551 27 to 28 3907

SUGAR_TRANSPORT_2 PS00217 26 6889
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the exact computation for these high complexity pat-
terns using Algorithm 2.
Considering the multi-testing problem of this study

(we consider a total of 1, 276 PROSITE signatures), we
can set a significance threshold of 7.84 × 10-7 at level
0.1% using a Bonferonni correction. Even at this strin-
gent level, it is clear that many of the considered PRO-
SITE signatures (2 out of 8 in Table 3, and 9 out of 11
in Table 4) are over-represented compared to our
homogeneous order 1 Markov background model. How-
ever, this result is not a surprise since these patterns
actually correspond to very precise functional signatures
which are therefore expected to be strongly maintained
through evolution in order keep their functional
activities.
DNA motifs in gene upstream regions
Transcription factors regulate the expression of genes by
activating or repressing the RNA polymerase. This is
done by specific binding of the transcription factors
(TFs) onto DNA, in proximity to the target genes,
usually in the upstream regions. The transcription bind-
ing signatures on DNA are thus biologically important
patterns.

We retrieved the sequence of transcription factor
binding sites of Saccharomyces cerevisiae on the YEAS-
TRACT website http://www.yeastract.com/consensuslist.
php and searched for a subset of these transcription fac-
tor binding sites in the upstream regions of yeast genes,
retrieved on the Regulatory Sequence Analysis Tools
website [56]http://rsat.ulb.ac.be/rsat/. This data set com-
prises a total of 1,371 upstream sequences between posi-
tions -800 and -1 (the length is hence ℓ = 800 for each
sequence).
On these data, we first fit an order 1 homogeneous

Markov model. Since there is little difference between
the starting distribution observed in the data set over
 = {A, C, G, T}(0.30 0.16 0.19 0.35) and the station-
ary distribution (0.32 0.18 0.18 0.32), and since the
magnitude of the second eigenvalue of the transition
matrix is fairly low (μ = 0.092), we do not expect a
great difference between the exact computations and
the single sequence approximation. However, since
exact computations are easily tractable, we do not
further consider the single sequence approach for this
particular problem.
We can see in Table 5 the P-values (column “homoge-

neous”) of a selection of known TFs (marked with a
star) as well as arbitrary candidate patterns. Several
known TFs appear to be highly significant (e.g., TF
AAGAAAAA with a P-value of 1.31 × 10-99) while others
are not (e.g., TF WWWTTTGCTCR with a P-value of 4.15
× 10-1). It is the same for arbitrary candidate patterns.
These results are difficult to interpret since these varia-
tions may be due either to statistical problems (e.g.,
insufficient Markov order) or real functional activities.
Moreover, it is obviously impossible to distinguish a sig-
nificant pattern which is a real TF of the organism from
a significant pattern which is directly or indirectly impli-
cated in another biochemical process.
We now want to get rid of the homogeneous

assumption of the model in an attempt to get a better
fitting on the data. A simple way to achieve this is to
perform a point-wise estimation of our transition func-
tion at position i by fitting the model on a window of

Table 3 P-values for a selection of PROSITE patterns of low (or moderate) complexities using the complete proteome
of Escherichia coli (NC_000913.faa).

PROSITE signature n Exact SSA with no offset SSA (offset)

RGD 215 5.35 × 10-1 5.91 × 10-1 5.55 × 10-1(2)

ER_TARGET 72 4.01 × 10-2 5.21 × 10-2 4.70 × 10-2(2)

PPASE 3 2.60 × 10-2 2.76 × 10-2 2.63 × 10-2(6)

ALDEHYDE_DEHYDR_GLU 12 1.99 × 10-5 2.41 × 10-5 1.95 × 10-5(7)

PROKAR_NTER_METHYL 10 6.79 × 10-3 8.01 × 10-3 5.10 × 10-3(20)

GLY_RADICAL_1 6 1.58 × 10-6 1.86 × 10-6 1.60 × 10-6(8)

PEP_ENZYMES_PHOS_SITE 4 1.49 × 10-10 1.74 × 10-10 1.49 × 10-10(12)

PUR_PYR_PR_TRANSFER 7 2.15 × 10-14 2.75 × 10-14 2.10 × 10-14(12)

Table 4 Exact P-values for a selection of PROSITE
patterns of high complexities using the complete
proteome of Escherichia coli (NC_000913.faa). We use an
order 1 homogeneous Markov model estimated over the
data set.

PROSITE signature n Exact

PILI_CHAPERONE 10 3.27 × 10-46

SIGMA54_INTERACT × 2 12 1.58 × 10-42

EFACTOR_GTP 8 4.43 × 10-20

ALDEHYDE_DEHYDR_CYS 11 5.63 × 10-9

ADH_ZINC 12 8.93 × 10-16

THIOLASE_1 5 5.76 × 10-9

SUGAR_TRANSPORT_1 18 3.75 × 10-8

FGGY_KINASES_2 5 2.14 × 10-4

PTS_EIIA_TYPE_2_HIS 8 7.19 × 10-19

MOLYBDOPTERIN_PROK_3 11 2.59 × 10-35

SUGAR_TRANSPORT_2 10 1.22 × 10-5
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size w centered around i. Small values of w lead to
better fitting, while large values lead to better smooth-
ing (resulting in a homogeneous model if w ≥ ℓ, the
length of the sequence). In this example, we achieve a
satisfactory trade-off between the two extremes with
an arbitrary choice of w = 200. We can see in Figure
5, that the model gives a unique profile for each transi-
tion probability (e.g., πi(A, G) or πi(G, G)), and these

profiles are both quantitatively and qualitatively differ-
ent from each other. In Figure 6 we consider the
model in a more global way with the marginal distri-
butions of the four nucleotides. According to this
graph, it is clear that the upstream region has a bias in
GC content that depends on the position. In particular,
we observe a smaller GC content in the region [-200,

Table 5 P-values for several DNA patterns (known transcription factors are marked with a star) in the upstream region
data set.

DNA pattern n L homogeneous heterogeneous

CGCACCC* 28 10 2.95 × 10-3 3.74 × 10-3

AAGAAAAA* 427 11 1.31 × 10-99 1.29 × 10-99

AACAACAAC 25 10 1.76 × 10-6 1.38 × 10-6

TCCGTGGA* 22 11 1.12 × 10-6 1.55 × 10-6

GCGCGCGC 18 11 6.52 × 10-10 1.65 × 10-9

RTAAAYAA* 391 14 7.70 × 10-12 1.68 × 10-12

WWWTTTGCTCR* 15 17 4.15 × 10-1 4.09 × 10-1

AAAAAAAAAAAAAAAAAAAAAAAA 42 27 2.05 × 10-23 2.14 × 10-22

TAWWWWTAGM* 212 36 3.08 × 10-9 3.04 × 10-9

YCCNYTNRRCCGN* 11 40 3.10 × 10-2 3.05 × 10-2

GCGCNNNNNNGCGC 1 106 8.97 × 10-1 8.84 × 10-1

CGGNNNNNNNNCGG* 102 183 1.26 × 10-14 1.73 × 10-13

GCGCNNNNNNNNNNGCGC 6 464 2.88 × 10-2 2.84 × 10-2

Figure 5 Some transitions of the order 1 heterogeneous Markov model fitted using a sliding window of size 200 on the upstream
region data set. The plots respectively correspond to the following quantities: a) πi(A, G); b) πi(G, A); c) πi(G, G); d) πi(T, T), 1 ≤ i ≤ 800.
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-1] (positions 601 to 800) than in the region [-800,
-201] (positions 1 to 599).
Thanks to Algorithm 1, it is possible to compute the

P-values of DNA patterns in our heterogeneous model.
The results are given in Table 5 (column “heteroge-
neous”). For most patterns, we can see that the P-values
obtained with this heterogeneous model are in fact very
close to the ones obtained with the homogeneous one.
There are however several patterns for which a ratio
factor of 10 may appear between these two P-values (e.
g., Pattern GCGCGCGC or CGGNNNNNNNNCGG).

Conclusion
In this paper, we introduce efficient algorithms to com-
pute the exact distribution of random pattern counts in
a set of multi-state sequences generated by a Markov
source. These algorithms are able to deal both with low
or high complexity patterns, and with either homoge-
neous or heterogenous Markov models.
This work, based on the recent notion of optimal

Markov chain embedding through DFAs [46-49], is a
natural extension of the methods and algorithms devel-
oped in [51] to obtain the first kth moment of a random
pattern count in one sequence. These computations of
moments for a single sequence can easily be extended
to a set of independent sequences by taking advantage
of the fact that the cumulants (the first two cumulants
are the expectation and the variance) of a sum of inde-
pendent variables are the sum of the individual
cumulants.
To the best of our knowledge, there currently exists

no method specifically designed to compute the distri-
bution of a random pattern count in a set of Markov
sequences. However it exists a great deal of concurrent

approaches to perform the computations for a single
sequence, the result for a set of sequences being then
obtained by convolution products. In this regard, Algo-
rithm 1 has the interesting feature to completely avoid
these convolutions and their possibly prohibitive O(r ×
n2) additional cost (r being the number of sequences in
the data set, and n being the observed number of occur-
rences), especially for large n. Algorithm 1 also has the
advantage to be able to deal both with heterogenous
models and high complexity patterns. However, with a
complexity in O(ℓ × n × | | × L) (ℓ = ℓ1 + ...+ ℓr being
the total length of the data set, s being the alphabet size,
and L being the pattern complexity), this algorithm may
be too slow when considering large data sets.
In the homogeneous model, Algorithm 2 can dramati-

cally reduce the overall complexity by replacing ℓ by ℓr

the length of the longest sequence in the data set. More-
over this algorithm can deal with high complexity pat-
terns, but this requires performing convolution
products. However, it is clear that Algorithm 2 remains
the best option when considering a data set with a large
number of sequences with reasonable length: ℓr << ℓ =
ℓ1 + ... + ℓr.
In the particular case where ℓr is too high (e.g., ℓr =

106 or more), it may be necessary to switch from linear
to logarithmic complexity. This may be achieved by sev-
eral methods. When dealing with low complexity pat-
terns, the best known approach consists in computing
the bivariate rational moment generating function G(y,
z) of Nℓ the random number of pattern occurrences in a
random sequence of length ℓ and then to perform fast
Taylor expansions (logarithmic complexity) to get the
probabilities of interest. However, this approach requires
sophisticated computation in bivariate polynomial

Figure 6 Marginal distribution of the four nucleotides along the 800 positions of a upstream region. The underlying model is an order 1
heterogeneous Markov model fitted using a sliding window of size 200 on the upstream region data set.
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algebra, and has at least a cubic complexity with the
denominator degree of the rational function G(y, z)
whose value may be too high to perform the computa-
tions. Alternatively, the power approach proposed in
Algorithm 3 also achieves logarithmic complexity, but
with an easier implementation relying only on basic
floating point linear algebra.
For high complexity patterns, the cubic complexity in

L is prohibitive and prevents using neither power com-
putations nor the plain formal inversion that is required
to compute G(y, z). The partial recursion approach we
introduce to deal with such a case appears to be a very
interesting alternative, but its numerical instabilities in
floating point arithmetic need to be further investigated.
It is also possible to compute G(y, z) by solving the cor-
responding sparse linear system with appropriate sparse
linear algebra methods (e.g., sparse LU), but the avail-
ability of such methods for multivariate polynomial
matrices is likely to be an issue. Moreover, one should
expect the denominator degree of the moment generat-
ing function to increase with the pattern complexity
which could thus result again in untractable
computations.
Another tempting option is to ignore the particular

structure of the data set by approximating the distribu-
tion of N = N1 +... + Nr by the one of N’, the random
pattern count in a single sequence of length ℓ = ℓ1 +...
+ℓr. When one wants to use exact computations to get
the distribution of N’, the resulting complexity is likely
to be far greater that the one required to obtain the
exact distribution of N. However, these approximations
might be interesting if the distribution of N’ is obtained
through efficient asymptotic approximations like Poisson
or Large Deviations approximations. Unfortunately, we
have seen in our applications that this approach is sub-
ject to important edge effects, especially when the con-
vergence of the marginal distribution of the model
toward the stationary distribution is slow. It is therefore
necessary to use this single sequence approximation
with extreme caution when the stationary assumption of
the model is clearly in contradiction with the observed
data.
Thanks to Algorithm 1, it is possible for the first time

(up to our knowledge) to study the distribution of pat-
terns in a data set of upstream regions using an hetero-
geneous model. Despite the fact that there are some
noticeable differences between this heterogeneous model
and its homogeneous alternative, in practice we observe
very little difference between the resulting P-values for
most of the tested patterns. Some patterns are neverthe-
less more sensitive than others to the heterogeneity of
the data, and their P-values may by altered by a factor
10 or more.

It should also be noted that heterogeneous Markov
chains may be used to describe the behavior of homoge-
neous Markov chains under particular constraints. For
example, this is exactly the distribution we get when
considering the distribution of the hidden sequence of a
HMM conditionally to the observed data (e.g., detection
of CpG islands [20]). We get similar distribution when
we take into account the special characters (N means
“any nucleotides” in DNA sequences; X means “any ami-
noacid” in proteins) in biological sequences [21].
There are several interesting directions for further

developments of this work. The first one could be to
slightly change the statistic of interest for patterns pro-
blem by considering the M = M1 + ... + Mr number of
matching sequences instead of the number of occur-
rences. Such a choice might be motivated by the nature
of the selection pressure on a particular pattern: at least
k occurrences of the pattern in a sequence insure a
given biochemical activity (e.g., structured motifs in reg-
ulation [57]). In such a case, the pattern would match
sequence j (Mj = 1) if it occurs at least k times in the
sequence, and would else mismatch the sequence (Mj =
0). From a technical point of view, this is only a minor
extension of the present work, where one only needs to
adapt the existing method to get the moment generating
function of each Mj. However, the practical interest of
such alternative statistic for pattern problem is yet to be
studied.
A open problem remains open: how to deal with high

complexity patterns (high L) in long homogeneous
sequences (high ℓ)? The partial recursion we introduce
here might be a solution, but it is necessary to study in
further details its numerical stability issues. The only
alternative seems to be the sparse LU bivariate polyno-
mial approach suggested above to compute the bivariate
moment generating function G(y, z). However, an
exhaustive study of the relation between pattern com-
plexity and the denominator degree of G(y, z) remains
to be done in order to assess the practical interest of
this approach.
Finally, let us point out that all the methods and algo-

rithms presented in this paper are not yet available in
an efficient implementation. One important task yet to
be completed is to add these innovative techniques into
the Statistics for Patterns package (SPatt) the purpose of
which is to gather and make available the best pattern
methods. SPatt is a C++ General Public License (GPL)
program package which is freely available at the follow-
ing url: http://stat.genopole.cnrs.fr/spatt
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